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Outline of Talk
f % What is Biomolecular Engineering? Bioinformatics? T
%z What is a protein?
% The folding problem and variants on it.
% What is a null model (or null hypothesis) for?
&z Example 1: is a conserved ORF a protein?

&z Example 2: is residue-residue contact prediction better
than chance?

& Example 3: how should we remove composition biases
iIn HMM searches?
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What i1s Biomolecular Engineering?

-

-

Engineering with, of, or for biomolecules. For example,
with: using proteins as sensors or for self-assembly.

of: protein and RNA engineering—designing or artificially
evolving proteins or RNA to have particular functions

for: designing high-throughput experimental methods to
find out what molecules are present, how they are
structured, and how they interact.
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What i1s Bioinformatics?

-

-

Bioinformatics: using computers and statistics to make
sense out of the mountains of data produced by
high-throughput experiments.

& Genomics: finding important sequences in the genome
and annotating them.

% Phylogenetics: “tree of life”, ancestral genome
reconstruction.

& Systems biology: piecing together various networks of
molecular interactions.

%z DNA microarrays: what genes are turned on under
what conditions.

= Proteomics: what proteins are present in a mixture. J
=2 = Protein structure prediction.
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= There are many abstractions of a protein: a band on a

What Is a protein?

-

gel, a string of letters, a mass spectrum, a set of 3D
coordinates of atoms, a point in an interaction
graph, ... .

= For us, a protein is a long skinny molecule (like a string

of letter beads) that folds up consistently into a
particular intricate shape.

> The Iindividual “beads” are amino acids, which have 6

atoms the same in each “bead” (the backbone atoms: N,
H, CA, HA, C, O).

= The final shape Is different for different proteins and is

essential to the function.

. & The protein shapes are important, but are expensive '[OJ

determine experimentally.
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Folding Problem
B -

The Folding Problem:
If we are given a sequence of amino acids (the letters on a
string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK
ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN
YFDVPPHKYR MTNMQGESRF LHPLNHYNS

l

_

Too hardl!
J
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Fold-recognition problem
=

The Fold-recognition Problem: T

Given a sequence of amino acids A (the target sequence)
and a library of proteins with known 3-D structures (the
template library),

figure out which templates A match best, and align the
target to the templates.

% The backbone for the target sequence is predicted to be
very similar to the backbone of the chosen template.

% Progress has been made on this problem, but we can
usefully simplify further.
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Remote-homology Problem

- N

The Homology Problem:

Given a target sequence of amino acids

and a library of protein sequences,

figure out which sequences A is similar to and align them to
A.

% No structure information is used, just sequence
iInformation. This makes the problem easier, but the
results aren’t as good.

& This problem is fairly easy for recently diverged, very
similar sequences, but difficult for more remote
relationships.
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New-fold prediction
-

% What if there Is no template we can use?

% We can try to generate many conformations of the
protein backbone and try to recognize the most
protein-like of them.

& Search space is huge, so we need a good conformation
generator and a cheap cost function to evaluate
conformations.

% We can also try to predict local properties (e.g.,
secondary structure or burial) or contact between
residues.
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Scoring (Bayesian view)

o N

% A model M Is a computable function that assigns a
probability P (A | M) to each sequence A.

fow

. When given a sequence A, we want to know how likely

the model is. That is, we want to compute something like
P(M|A).

% Bayes Rule:

& Problem: P(A) and P(M) are inherently unknowable.
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Null models

-

-

Standard solution: ask how much more likely M is than some
null hypothesis (represented by a null model N):

P(M|A) _P(am)  P(M)
P(N|A) P (aln) P(N)
1 T 1

posterior odds likelihood ratio prior odds
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Test your hypothesis

Thanks to Larry Gonick The Cartoon Guide to Statistics




%
&

%
&

. We believe in models when they give a large score to our

Scoring (frequentist view)

-

observed data.

Statistical tests (p-values or E-values) quantify how often
we should expect to see such good scores “by chance”.

These tests are based on a null model or null hypothesis.
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Small p-value to reject null hypothesis

- N

TN

THE SMALLER
THE P-VALUE,
THE STRONGER
THE EVIDENCE
AGAINST Ho.




Statistical Significance (2 approaches)

-

-

Markov’s inequality For any scoring scheme that uses

P (seq | M)
P(seq| N)

In

the probability of a score better than T is less than e~ for
sequences distributed according to V.

Parameter fitting For “random” sequences drawn from some
distribution other than N, we can fit a parameterized
family of distributions to scores from a random sample,
then compute P and E values.
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Null models
- -

& P-values (and E-values) often tell us nothing about how
good our hypothesis is.

& What they tell us is how bad our null model (null
hypothesis) is at explaining the data.

% A badly chosen null model can make a very wrong
hypothesis look good.
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%
&

Example 1: long ORF

. A colleague found an ORF in an archaeal genome that T

was 388 codons long and was wondering if it coded for a

protein and what the protein’s structure was.

So how likely is this ORF to be a chance event?

= We know that short ORFs can appear “by chance”.

|
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Null Model 1

% DNA Is undergoing no selection at all
& G+C content bias. (GC is 36.7%, AT is 63.3%.)

& Probability of stop codon
TAG= 0.3165*0.3165*0.1835=0.0184, TGA=0.0184,
TAA=0.0317, so p(STOP)=0.0685.

& P(388 codons without stop) = (1 — p(STOP))%*® = 1.1e-12
& E-value in a 3 Megabase genome is about 3.3e-6.

% We can easily reject the null hypothesis!
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= | forgot to tell you: this ORF is on the opposite strand of a

Null Model 2
-

known 560-codon ribosomal gene.

= What is the probabillity of this long an ORF, on opposite

strand of known gene?

> Generative model: simulate random codons using the

codon bias of the organism, take reverse complement,
and see how often ORFs 388-long or longer appeatr.

- Taking 100,000 samples, we get estimates of P-value in

the range 3e-05 to 6e-05.

= There are about 3000 genes, giving us an E-value of 0.09

to 0.18. J
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Null Model 3
f = We can do the same sort of simulation, but restrict the T

codons to ones that would code for exactly the same
protein on the forward strand.

= Now we get P-value of around 0.01 for long ORFs on the
reverse strand of genes coding for this protein.

|

Better than Chance — p.20/42



Protein or chance ORF?

Thanks to Larry Gonick The Cartoon Guide to Statistics




Not a protein

-

+ A tblastn search with the sequence revealed similar ORFs
IN many genomes.

— All are on opposite strand of homologs of same gene.
— “Homologs” found by tblastn often include stop codons.
— There is no evidence for a TATA box upstream of the ORF.

— No strong evidence for selection beyond that explained by
known gene.

Conclusion: It Is rather unlikely that this ORF encodes a
protein.
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Example 1b: another ORF
B | o -

& pae0037: ORF, but probably not protein gene in

Pyrobaculum aerophilum

“fiinusonifimutimRuittiind
.o s ot

GC Percent
Genbank RefSeq Gene Annotations
PAEDD39 ¢<<<¢ <<
Arkin Lab Operon Predictions
Gene annotation from JGI
JGI genes
Alternative ORFs noted by Sorel Fitz-Gibbon
PAEOQ37
Promoter + 0g-odds scan for promoters on plus strand (16 base window)
L ll\l ,,,,,,
Promoter - “ -odds scan for promoters on minus strand (16 base window)
Poly-T Terminators plus strand (7 nt windo w)
Poly-T term (+)

Poly-T Terminators minus strand (7 nt window)
Poly-T term (-) |

% Promoter on wrong side of ORF.

& High GC content (need local, not global, null)
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Example 2: contacts

-

& |Is residue-residue contact prediction better than chance?

& Early predictors (1994) reported results that were 1.4 to
5.1 times “better than chance” on a sample of 11 proteins.

& But they used a uniform null model:
P(residue i contacts residue j) = constant .
& A better null model:

P (residue ¢ contacts residue j) =

P (contact | separation = |i — j\) .

|
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P(contact|separation)

-

Using CASP definition of contact, CB within 8 A, CA for GLY.

dunbrack-40pc-3157-CB8
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- By ignoring chain separations, the early predictors got

Can get accuracy of 100%
-

what sounded like good accuracy (0.37-0.68 for L/5
predicted contacts)

= But just predicting that : and 4+ 1 are in contact would

have gotten accuracy of 1.0 for even more predictions.

= More recent work has excluded small-separation pairs,

with different authors choosing different thresholds.

= CASP uses separation > 6, > 12, and > 24, with most

focus on > 24.
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Evaluating contact prediction

-

-

Two measures of contact prediction:

& Accuracy:
> x(2,7)
>1

% Weighted accuracy:

3 X(t,4)
P (contact[separation-—|i—;)
51

= 1 if predictions no better than chance, independent of
separations for predicted pairs.

|
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-

If we predict all pairs with given separation as in contact, we

Separation as predictor

do much better than uniform model.

-

sep

P (contact | i —j| = sep)

P (contact | i —j| > sep)

“better than chance”

6
9
12

24

0.0751
0.0486
0.0424
0.0400

0.0147
0.0142
0.0136
0.0116

4.96
3.42
3.13
3.46
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CASP7 Contact prediction
-

= Use mutual information between columns of thinned
alignment (< 50% identity)

& Compute e-value for mutual info (correcting for
small-sample effects).

& Compute rank of e-value within protein.

% Feed log(e-value), log(rank), contact potential, joint
entropy, and separation along chain for pair, and
amino-acid profile, predicted burial, and predicted
secondary structure for window around each residue of
pair into a neural net.

|
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Now doing better

-

separation > 9
Predictions/residue taken separately for each protein.

accuracy weighted accuracy
0.6 T T T T T T T (7)] 25 T T LA | T T T T T
" CASP7 neural net s CASP7 neural net
& 05FE NN(sep,mi e-value,propensity) --—----- i S 0l NN(sep,mi e-value,propensity) ------- |
3 mi e-value -------- S mi e-value -
8 04 propensity (Wt) """""""" | 5 propensity -
S S w15 .
% 03Ff : E .
Boo02p e T 8 e
e | el D st :
s oip - £
0 I = 0 L
0.1 1 0.1 1
predictions / residue predictions / residue
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Contacts per residue

We can also use our null model to predict the number of
contacts per residue (which is not a constant).

contacts with separation>=9

N
)
T

=
ol
T

contacts/residue

o
ol
T

number of residues
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Example 3: HMM

& Hidden Markov models assign a probability to each
sequence Iin a protein family.

& A common task is to choose which of several protein
families (represented by different HMMSs) a protein
belongs to.
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Standard Null Model

-

-

% Null model is an 1.i.d (independent, identically distributed)
model.

lenca

P(A|N,Ien ) H P(A

P (A ‘ N) = P(sequence of length len (A))




. When using the standard null model, certain sequences

Composition as source of error

-

and HMMs have anomalous behavior. Many of the
problems are due to unusual composition—a large
number of some usually rare amino acid.

= For example, metallothionein, with 24 cysteines in only 61

total amino acids, scores well on any model with multiple
highly conserved cysteines.
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Composition examples

Metallothionein Isoform Il (4mt2)

25
iy PL ; i




Composition examples

Kistrin (1kst)
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Reversed model for null

f % We avoid this (and several other problems) by using a T
reversed model M™ as the null model.

% The probability of a sequence in M" is exactly the same

as the probability of the reversal of the sequence given
M.

& This method corrects for composition biases, length
biases, and several subtler biases.
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Helix examples

Tropomyosin (2tmaA)
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-

Improvement from reversed model

False Positives

SCOP whole chains

1000 |
100 |

10 |

without reversed-model scoring ———
with reversed-model scoring ---->----

150

200

250 300 350 400
True Positives

450

-

|

Better than Chance — p.39/42



Fold recognition results

Fold Recognition for 1415 SAM-T05 HMMs with w(amino-acid)=1
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False positives per query
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Take-home messages
-

& Base your null models on biologically meaningful null
hypotheses, not just computationally convenient math.

& Generative models and simulation can be useful for more
complicated models.

& Picking the right model remains more art than science.
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\Web sites

-

List of my papers: hitp://www.soe.ucsc.edu/karplus/papers/

These slides: http://www.soe.ucsc.edu/karplus/papers/

better-than-chance-sep-07.pdf

Reverse-sequence null:  cCalibrating E-values for hidden Markov models with
reverse-sequence null models. Bioinformatics, 2005. 21(22):4107-4115;

doi:10.1093/bioinformatics/bti629
Archaeal genome browser:  http://archaea.ucsc.edu

UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/
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