A Bayesian Nonparametric Approach to Inference for Quantile Regression

Matthew TADDY
The University of Chicago Booth School of Business, Chicago, IL 60637 (matt.taddy@chicagogsb.edu)

Athanasios KOTTAS
Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (thanos@ams.ucsc.edu)

In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by traditional mean regression. We develop a Bayesian method for fully nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional distribution of the response given the covariates. Inference is implemented using a combination of posterior simulation methods for Dirichlet process mixtures. Partially observed responses can also be handled within the proposed modeling framework leading to a novel nonparametric method for Tobit quantile regression. We use simulated data sets as well as two data examples from the literature to illustrate the utility of the model, in particular, its capacity to uncover non-linearities in quantile regression curves as well as non-standard features in the response distribution.

KEY WORDS: Dirichlet process mixture models; Markov chain Monte Carlo; Multivariate normal mixtures; Tobit quantile regression.
Quantile regression can be used for inference about the relationship between quantiles of the response distribution and available covariates. It offers a practically important alternative to traditional mean regression, since, in general, a set of quantiles provides a more complete description of the response distribution than the mean. In many regression examples (e.g., in econometrics, educational studies, and environmental applications), we might expect a different structural relationship for the higher (or lower) responses than the average responses. In such applications, mean, or median, regression approaches would likely overlook important features that could be uncovered by a more general quantile regression analysis.

There is a fairly extensive literature on classical estimation for the standard \(p \)-th quantile regression model, \(y_i = \mathbf{x}_i^T \beta + \epsilon_i \), where \(y_i \) denotes the response observations, \(\mathbf{x}_i \) the corresponding covariate vectors, and \(\epsilon_i \) the errors, which are typically assumed independent from a distribution (with density, say, \(f_p(\cdot) \)) that has \(p \)-th quantile equal to 0 (see, e.g., Koenker, 2005). This literature is dominated by semiparametric techniques where the error density \(f_p(\cdot) \) is left unspecified (apart from the restriction \(\int_{-\infty}^{0} f_p(\epsilon) d\epsilon = p \)). Hence, since there is no probability model for the response distribution, point estimation for \(\beta \) proceeds by optimization of some loss function. For instance, under the standard setting with independent and uncensored responses, the point estimates for \(\beta \) minimize \(\sum \rho_p(y_i - \mathbf{x}_i^T \beta) \), where \(\rho_p(u) = up - u1_{(-\infty,0)}(u) \); this form yields the least absolute deviations criterion for \(p = 0.5 \), i.e., for the special case of median regression. Any inference beyond point estimation is based on asymptotic arguments or resampling methods. The classical literature includes also work that relaxes the parametric (linear) regression form for the quantile regression function (see, e.g., He, Ng and Portnoy, 1998; Horowitz and Lee, 2005).

By comparison with the existing volume of classical work, the Bayesian literature on quantile regression is relatively limited. The special case of median regression has been considered in Walker and Mallick (1999), Kottas and Gelfand (2001), and Hanson and Johnson (2002).
work is based on a parametric form for the median regression function and nonparametric modeling for the error distribution, using either Pólya tree or Dirichlet process (DP) priors. (See, e.g., Müller and Quintana, 2004, and Hanson, Branscum and Johnson, 2005, for reviews of these nonparametric prior models.) Regarding quantile regression, Yu and Moyeed (2001) and Tsionas (2003) discuss parametric inference based on linear regression functions and the asymmetric Laplace distribution for the errors; Kottas and Krnjajić (2009) develop Bayesian semiparametric models using DP mixtures for the error distribution; and Hjort and Petrone (2007) study nonparametric inference for the quantile function based on DP priors, including brief discussion of the semiparametric extension to quantile regression. Moreover, Chamberlain and Imbens (2003) and Dunson and Taylor (2005) propose semi-Bayesian inference methods for linear quantile regression, which, in contrast to the work discussed above, do not involve probabilistic modeling for the response distribution.

A practical limitation of the Bayesian semiparametric models developed in Walker and Mallick (1999), Kottas and Gelfand (2001), Hanson and Johnson (2002), and Kottas and Krnjajić (2009) is that, although they provide flexible shapes for the error distribution, they are based on linear quantile regression functions. Regarding inference for non-linear quantile regression functions, Scaccia and Green (2003) model the conditional distribution of the response given a single continuous covariate with a discrete normal mixture with covariate-dependent weights. Moreover, Yu (2002) discusses a semi-Bayesian estimation method based on a piecewise polynomial representation for the quantile regression function corresponding, again, to a single continuous covariate, but without a probability model for the error distribution. Finally, Kottas, Krnjajić and Taddy (2007) present an approach that combines the nonparametric prior model for the errors from Kottas and Krnjajić (2009) with a Gaussian process prior for the quantile regression function. We note that these approaches involve relatively complex Markov chain Monte Carlo (MCMC) methods for inference, and, most importantly, their extension to handle problems with more than one covariate appears to be non-trivial.
To our knowledge, this paper presents the first attempt to develop a model-based, fully inferential framework for Bayesian nonparametric quantile regression. We argue for the utility of Bayesian modeling, since it enables exact and full inference for the quantile regression function as well as for any functional of the response distribution that may be of interest. But then the flexibility of such inference under nonparametric prior models becomes attractive. We propose an approach to inference for nonparametric quantile regression, which is founded on probabilistic modeling for the underlying unknown (random) distributions. In particular, we model the joint distribution of the response and the covariates with a flexible nonparametric mixture, and then develop inference for different quantile curves based on the induced conditional distribution of the response given the covariates. The modeling framework can readily incorporate partially observed responses and, in particular, can be utilized to provide flexible inference for Tobit quantile regression. We present a method for MCMC posterior simulation, and illustrate inferences with simulated data and two data sets that have been previously considered in the econometrics literature.

The outline of the paper is as follows. In Sections 2 and 3 we formulate the probability model and the approach to inference for quantile regression (with technical details given in the Appendix). Section 4 provides applications of the modeling approach to simulated data sets, and data on moral hazard from industrial chemical firms listed on the Tokyo stock exchange. In Section 5 we develop a nonparametric modeling approach for Tobit quantile regression, and illustrate it with an example involving data on the labor supply of married women. Finally, Section 6 concludes with a summary.

2. BAYESIAN MIXTURE MODELING FOR FULLY NONPARAMETRIC REGRESSION

Section 2.1 presents the mixture modeling framework that forms the basis of the proposed approach for nonparametric quantile regression. Specific model formulations for categorical and/or continuous covariates are discussed in Section 2.2. Details on the choice of priors are
given in Section 2.3.

2.1 Modeling Framework

The starting point for most existing approaches to quantile regression is the traditional additive regression framework, \(y = h(x) + \epsilon \), where the errors \(\epsilon \) are assumed independent from a distribution with \(p \)-th quantile equal to 0. Note that, under this framework (and regardless of the formulation for the regression function), if inference is sought for more than one quantile regression, the particular model needs to be fitted separately for each corresponding \(p \). In particular, note that estimated quantile regression functions for nearby values of \(p \) might not satisfy the explicit ordering of the corresponding percentiles, especially, with small sample sizes and/or for extreme percentiles. And this attribute of the additive formulation is shared by any approach that utilizes a probability model for the error distribution, regardless of the estimation method (likelihood or Bayesian).

This limitation of the standard additive quantile regression framework provides the impetus for our methodology. We develop an alternative approach to inference for quantile regression that does not build on a structured regression model formulation, and yields flexible, fully non-parametric inference for quantile regression. In particular, it enables simultaneous inference for any set of quantile curves resulting in estimates that satisfy the explicit ordering of percentiles of the response distribution.

The starting point for this approach is to consider a model for the joint distribution of the response, \(y \), and the vector of covariates, \(x \), which, in general, comprises both continuous covariates, \(x_c \), and categorical covariates, \(x_d \), and thus \(x = (x_c, x_d) \). (We use lowercase letters for random variables as well as for their values, since, throughout the paper, the distinction is clear from the context.) Based on the joint model for \(z = (y, x) \), inference for any set of quantile curves can be obtained from the posterior of the implied conditional response distribution given the covariates. Clearly, the richness of the resulting inference relies on the flexibility of the prior
probability model for the distribution of \(z \). We employ a nonparametric mixture model,

\[
f(z; G) = \int k(z; \theta) dG(\theta)
\]

for the density of \(z \), with a parametric kernel density, \(k(z; \theta) \), and a random mixing distribution \(G \) that is modeled nonparametrically. In this context, a flexible choice for the nonparametric prior for \(G \) is given by the DP, resulting in a DP mixture model for \(f(z; G) \).

Recall that the DP was developed by Ferguson (1973) as a prior probability model for random distributions (equivalently, distribution functions) \(G \). A DP(\(\alpha \), \(G_0 \)) prior for \(G \) is defined in terms of two parameters, a parametric base distribution \(G_0 \) (the mean of the process) and a positive scalar parameter \(\alpha \), which can be interpreted as a precision parameter; larger values of \(\alpha \) result in realizations \(G \) that are closer to \(G_0 \). We will write \(G \sim \text{DP}(\alpha, G_0) \) to indicate that a DP prior is used for the random distribution \(G \). In fact, DP-based modeling typically utilizes mixtures of DPs (Antoniak, 1974), i.e., a more general version of the DP prior that involves hyperpriors for \(\alpha \) and/or the parameters of \(G_0 \). The most commonly used DP definition is its constructive definition (Sethuraman, 1994), which characterizes DP realizations as countable mixtures of point masses (and thus as random discrete distributions). Specifically, a random distribution \(G \) generated from \(\text{DP}(\alpha, G_0) \) is (almost surely) of the form

\[
G(\cdot) = \sum_{\ell=1}^{\infty} \omega_\ell \delta_{\theta_\ell}(\cdot)
\]

where \(\delta_\theta(\cdot) \) denotes a point mass at \(\theta \). The locations of the point masses, \(\theta_\ell \), are i.i.d. realizations from \(G_0 \); the corresponding weights, \(\omega_\ell \), arise from a stick-breaking mechanism based on i.i.d. draws \(\{\zeta_k : k = 1, 2, \ldots\} \) from a Beta(1, \(\alpha \)) distribution. In particular, \(\omega_1 = \zeta_1 \), and, for each \(\ell = 2, 3, \ldots \), \(\omega_\ell = \zeta_\ell \prod_{k=1}^{\ell-1} (1 - \zeta_k) \). Moreover, the sequences \(\{\theta_\ell, \ell = 1, 2, \ldots\} \) and \(\{\zeta_k : k = 1, 2, \ldots\} \) are independent.

The hierarchical model for the data, \(\{z_i = (y_i, x_i) : i = 1, \ldots, n\} \), corresponding to the
DP mixture in (1), involves latent mixing parameters, θ_i, associated with each vector of response/covariate observations, z_i, and can be written as follows

$$z_i \mid \theta_i \overset{\text{ind}}{\sim} k(z_i; \theta_i), \ i = 1, \ldots, n$$

$$\theta_i \mid G \overset{\text{iid}}{\sim} G, \ i = 1, \ldots, n$$

(3) $$G \mid \alpha, \psi \sim \text{DP}(\alpha, G_0(\psi)).$$

We place a gamma(a_α, b_α) prior (with mean a_α/b_α) on the DP precision parameter α, and further hyperpriors on the parameters, ψ, of the base distribution G_0. The form of G_0 and of the priors for ψ depends on the choice of the mixture kernel $k(\cdot; \theta)$, as discussed in Section 2.2. Specification of the model hyperpriors is addressed in Section 2.3.

Under the modeling framework defined by (1) – (3), the discreteness of G, induced by its DP prior, is a key feature as it enables flexible shapes for the joint distribution of the response and covariates through data-driven clustering of the mixing parameters θ_i. Note, however, that we employ the DP mixture setting to model random distributions and not, merely, as a clustering mechanism (as used, to some extent, in the recent literature).

2.2 Choice of the mixture kernel

When the covariate vector consists of continuous covariates (as in the data example of Section 4.2), a natural choice for the kernel of the DP mixture model in (1) is the $(L+1)$-variate normal distribution (perhaps, after transformation for the values of some of the components of z). In this case, L is the dimension of $x_c \equiv x$. Therefore, we model the joint density for z through a DP mixture of multivariate normals,

$$f(z; G) = \int N_{L+1}(y, x_c; \mu, \Sigma) dG(\mu, \Sigma), \quad G \mid \alpha, \psi \sim \text{DP}(\alpha, G_0(\psi))$$

(4) with G_0 built from independent $N_{L+1}(m, V)$ and IWish(ν, S) components for the mean vector μ and the covariance matrix Σ of the normal mixture kernel. Here, IWish(ν, S) denotes the
inverse Wishart distribution for the \((L + 1) \times (L + 1)\) (positive definite) matrix \(\Sigma\) with density proportional to \(|\Sigma|^{-\left(\nu + L + 2\right)/2} \exp\{-0.5\text{tr}(\Sigma\Sigma^{-1})\}\). We work with fixed \(\nu\) and place hyperpriors on \(\psi = (m, V, S)\). In particular, we use a \(N_{L+1}(a_m, B_m)\) prior for \(m\), an \(\text{IWish}(a_V, B_V)\) prior for \(V\), and a \(\text{Wish}(a_S, B_S)\) prior for the \((L + 1) \times (L + 1)\) positive definite matrix \(S\), with density proportional to \(|S|^{(a_S - L - 2)/2} \exp\{-0.5\text{tr}(SB_S^{-1})\}\) (provided \(a_S \geq L + 1\)).

Model (4) has been applied in various settings following the work of Müller, Erkanli and West (1996) on multivariate density estimation and curve fitting. However, the scope of inference has been typically limited to posterior point estimates, obtained through posterior predictive densities, \(p(z_0 \mid \text{data}) \equiv \mathbb{E}(f(z_0; G) \mid \text{data})\), where \(z_0\) is a specified support point. Our application to quantile regression requires the entire posterior of \(f(z_0; G)\) at any \(z_0\), and we thus employ a more general approach to MCMC inference (discussed in Section 3) that includes sampling from the posterior of \(G\).

The DP mixture model in (4) can be extended to incorporate both continuous and categorical covariates through replacement of the multivariate normal distribution with a mixed continuous/discrete specification for the mixture kernel \(k(y, x_c, x_d; \theta)\). One possible specification emerges from independent components for \((y, x_c)\) and \(x_d\). The former can be a multivariate normal distribution, as in (4), whereas the latter would be assigned an appropriate discrete distribution. For instance, with a single binary covariate \(x_d\) (as in the simulated data set of Section 4.1), the DP mixture model is based on a mixed normal/Bernoulli kernel,

\[
f(z; G) = \int N_{L+1}(y, x_c; \mu, \Sigma) \pi^{x_d} (1 - \pi)^{1-x_d} \, dG(\mu, \Sigma, \pi), \quad G \mid \alpha, \psi \sim \text{DP}(\alpha, G_0(\psi)). \quad (5)
\]

Here, \(G_0\) comprises independent components for \((\mu, \Sigma)\) and \(\pi\), the former as in model (4), with the corresponding hyperpriors for \((m, V, S)\), and the latter given by a beta\((a_\pi, b_\pi)\) distribution (with fixed shape parameters). This approach is easily extended to general categorical \(x_d\) by replacing the Bernoulli kernel with a multinomial component and a Dirichlet base distribution for the multinomial mean vector.
As a further example, consider again a single categorical covariate x_d, involving in this case counts (as in the Tobit quantile regression data example of Section 5.2). Then, a possible form for the DP mixture arises from a mixed normal/Poisson kernel,

$$f(z; G) = \int N_{L+1}(y, x_c; \mu, \Sigma) \text{Po}(x_d; \lambda) \, \text{d}G(\mu, \Sigma, \lambda), \quad G \mid \alpha, \psi \sim \text{DP}(\alpha, G_0(\psi)), \quad (6)$$

where $\text{Po}(\cdot; \lambda)$ denotes the probability mass function of the Poisson distribution with mean λ. (A similar model replacing the Poisson component with a negative binomial could be considered as a robust alternative.) Again, G_0 can be built from independent components for (μ, Σ) and λ, where, now, the latter could be a gamma distribution with fixed shape parameter and random scale parameter, which is assigned a gamma hyperprior.

In general, with a vector of categorical covariates, we would need a multivariate discrete distribution for the kernel component corresponding to x_d. In its simplest form, this discrete distribution would comprise independent components for the individual elements of x_d. More structured versions for $k(y, x_c, x_d; \theta)$ can be built from a conditional distribution for either the categorical or continuous part given the other variables. Dropping the kernel parameters from the notation, in the former case, $k(y, x_c, x_d) = \Pr(x_d \mid y, x_c)k(y, x_c)$, where, for example, with one binary covariate x_d, a (linear) logistic form could be used for $\Pr(x_d = 1 \mid y, x_c)$. The latter setting will perhaps be more appropriate given the direction of conditioning involving the response variable. In this case, we could have $k(y, x_c, x_d) = k(y, x_c \mid x_d) \Pr(x_d)$, and use a multivariate normal density for $k(y, x_c \mid x_d)$ with parameters that are functions of x_d. A simpler formulation would be $k(y, x_c, x_d) = k(y \mid x_c, x_d)k(x_c)\Pr(x_d)$, using, say, a normal density for $k(y \mid x_c, x_d)$ with mean that is a function of x_c and x_d.

We note that there is nothing ad hoc about our choices for kernel or base distribution in these DP mixture models. Each independent mixture kernel component is a member of a parametric family of densities which forms a standard Bayesian model for the respective type of data. Efficient posterior simulation is aided by the analytical convenience and intuition made...
possible through these conditionally conjugate component choices. The modeling approach allows for flexibility through nonparametric mixing despite the choice of such convenient kernel densities and the possible assumption of independence between kernel components.

Finally, the modeling approach needs to be modified for applications involving fixed categorical covariates, such as treatment-control settings in survival analysis problems. For such applications, a more appropriate modeling strategy arises by retaining the multivariate normal mixture structure for the response and continuous covariate variables and placing a version of a dependent DP prior (MacEachern, 2000) on the collection of mixing distributions corresponding to the different levels of the categorical covariates. For instance, consider a setting with a single binary categorical covariate (say, with values indicating treatment or control groups) and a vector \mathbf{x} of continuous covariates. Hence, the data vector can be decomposed into two groups, $\{z_{ij} = (y_{ij}, x_{ij}) : i = 1, ..., n_j, j = 1, 2\}$, associated with the two levels of the categorical covariate. Then, for $j = 1, 2$, the z_{ij} are assumed to arise from the DP mixture in (4) given group-specific mixing distributions G_j. The model is completed with a dependent DP prior for (G_1, G_2), say, in the spirit of Tomlinson and Escobar (1999) or De Iorio et al. (2004). Results from this line of research in the context of regression modeling for survival analysis problems will be reported in a future article.

2.3 Prior Specification

Here, we discuss the choice of hyperpriors for the DP mixture models of Section 2.2. We propose an approach that requires a small amount of prior information, in particular, only rough prior guesses at the center of the response and covariate variables, say, h_y and h_{x_l}, $l = 1, ..., L$, as well as at their corresponding ranges, say, r_y and r_{x_l}, $l = 1, ..., L$. Let $h = (h_y, h_{x_1}, ..., h_{x_L})$ and denote by H the $(L+1) \times (L+1)$ diagonal matrix with diagonal elements $(r_y/4)^2$ and $(r_{x_l}/4)^2$, $l = 1, ..., L$, which are prior estimates for the variability of the response and covariates. Then, for a default prior specification for model (4) we consider a single component in the mixture,
\(N_{L+1}(\cdot; \mu, \Sigma)\), i.e., the limiting case of the model with \(\alpha \to 0^+\). Therefore, we effectively seek to roughly center and scale the mixture model, using prior information that identifies the subset of \(R^{L+1}\) where the data are expected to be supported. Next, based on the form of \(G_0\) and the hyperpriors for its parameters \(\psi\), we can obtain marginal prior moments for \(\mu\), i.e., \(E(\mu) = a_m\), and \(\text{Cov}(\mu) = (a_V - L - 2)^{-1}B_V + B_m\), which are matched with \(h\) and \(H\). Specifically, we take \(a_m = h\), and, using a variance inflation factor of 2, set \(B_m = H\) and \((a_V - L - 2)^{-1}B_V = H\).

We use \(H\) to specify also the prior for \(S\) through \(H = E(\Sigma) = (\nu - L - 2)^{-1}aSB_S\). Finally, \(\nu\), \(a_V\), and \(a_S\) are chosen to scale appropriately the hyperpriors, e.g., note that smaller values of \((\nu - L - 2)^{-1}a_S\) yield more dispersed priors for \(S\), and that \(a_V = L + 3\) is the (integer) value that yields the largest possible dispersion while ensuring finite prior expectation for \(V\). For the data analyses presented in Section 4, we used \(\nu = a_V = a_S = 2(L + 2)\); we have also empirically observed this choice to work well for other data sets that we have studied with model (4).

This general approach to default prior specification – placing a hyperprior on the base distribution that would be an appropriate prior for the single component model – is also applicable to other kernel forms. In the normal/Bernoulli mixture model of (5), the expectation of \(\pi\) with respect to \(G_0\) will be a prior guess for the marginal probability of \(x_d = 1\). In the case of model (6), where \(x_d\) consists of count data, the base distribution mean for \(\lambda\) is set to a prior guess of the mean for marginal counts.

Regarding the prior choice for the DP precision \(\alpha\), guidelines are available based on the role this parameter plays with regard to the number of distinct components in the DP mixture model. Note that, marginalizing \(G\) over its DP prior, the second and third stages of model (3) collapse into a joint prior distribution for the mixing parameters \(\Theta = \{\theta_i : i = 1, \ldots, n\}\), which arises according to a particular Pólya urn scheme. Specifically, as shown by Blackwell and MacQueen (1973), conditional on the DP hyperparameters,

\[
p(\Theta | \alpha, \psi) = g_0(\theta_1; \psi) \prod_{i=2}^{n} \left\{ \frac{\alpha}{\alpha + i - 1} g_0(\theta_i; \psi) + \frac{1}{\alpha + i - 1} \sum_{\ell=1}^{i-1} \delta_{\theta_{\ell}}(\theta_i) \right\}
\]

(7)
where g_0 is the density of G_0. This expression indicates the DP-induced clustering of the mixing parameters. In particular, Θ is partitioned into $n^* (\leq n)$ distinct components, where the prior distribution for n^* is controlled by α (see, e.g., Antoniak, 1974; Escobar and West, 1995). In practice, larger values of α yield higher prior probabilities for larger n^*. For instance, for moderately large n, $\mathbb{E}(n^* | \alpha) \approx \alpha \log \{ (\alpha + n) / \alpha \}$, which can be averaged over the gamma prior for α to obtain an approximation to $\mathbb{E}(n^*)$.

3. POSTERIOR INFERENCE FOR QUANTILE REGRESSION

We develop here the general approach to estimate quantile curves based on the posterior for the conditional response density implied by the mixture modeling framework of Section 2.

The full posterior corresponding to the generic DP mixture model in (3) comprises the mixing distribution G, the vector of mixing parameters $\Theta = \{\theta_i : i = 1, ..., n\}$, and the DP hyperparameters α and ψ. Recall from Section 2.3 that the DP induces a partition of Θ into n^* distinct components, say, $\theta_j^*, j = 1, ..., n^*$. The θ_j^*, along with configuration indicators $w = (w_1, ..., w_n)$ defined such that $w_i = j$ if and only if $\theta_i = \theta_j^*$, determine Θ. Hence, an equivalent representation for Θ is given by $(n^*, \{\theta_j^* : j = 1, ..., n^*\}, w)$.

Based on Antoniak (1974), the full posterior can be expressed as

$$p(G, \Theta, \alpha, \psi | \text{data}) = p(G | \Theta, \alpha, \psi)p(\Theta, \alpha, \psi | \text{data}). \quad (8)$$

Here, the distribution for $G | \Theta, \alpha, \psi$ corresponds to a DP with precision parameter $\alpha + n$ and mean $\tilde{G}_0(\cdot; \Theta, \alpha, \psi)$, which is a mixed distribution with continuous mass $\alpha (\alpha + n)^{-1}$ on $G_0(\psi)$, and point masses $n_j (\alpha + n)^{-1}$ at θ_j^*, $j = 1, ..., n^*$, where $n_j = |\{i : w_i = j\}|$ is the size of the j-th distinct component. Moreover,

$$p(\Theta, \alpha, \psi | \text{data}) \propto p(\alpha)p(\psi)p(\Theta | \alpha, \psi) \prod_{i=1}^{n} k(z_i; \theta_i)$$

is the posterior of the finite-dimensional parameter vector that results by marginalizing G over
its DP prior; in particular, $p(\Theta \mid \alpha, \psi)$ is given by (7), and $p(\alpha)$ and $p(\psi)$ are the (independent) hyperpriors for α and ψ.

Hence, sampling from (8) involves MCMC posterior simulation from $p(\Theta, \alpha, \psi \mid \text{data})$ and then direct sampling from $p(G \mid \Theta, \alpha, \psi)$. A general outline of the MCMC algorithm to sample from $p(\Theta, \alpha, \psi \mid \text{data})$ is the following.

(i) Update each θ_i, $i = 1, ..., n$, by drawing from its posterior full conditional

$$p(\theta_i \mid \{\theta_{\ell} : \ell \neq i\}, \alpha, \psi, \text{data}) \propto p(\theta_i \mid \{\theta_{\ell} : \ell \neq i\}, \alpha, \psi) k(z_i; \theta_i)$$

where the prior full conditional, $p(\theta_i \mid \{\theta_{\ell} : \ell \neq i\}, \alpha, \psi)$, corresponding to the joint prior in (7), is a mixed distribution with point masses $(\alpha + n - 1)^{-1}$ at the θ_{ℓ}, for $\ell \neq i$, and continuous mass $\alpha(\alpha + n - 1)^{-1}$ on $G_0(\psi)$. Note that updating all the θ_i provides implicitly posterior samples for n^*, for the θ_j^*, $j = 1, ..., n^*$, and for w.

(ii) To improve mixing of the MCMC algorithm (Bush and MacEachern, 1996), resample each θ_j^*, $j = 1, ..., n^*$, from its posterior full conditional

$$p(\theta_j^* \mid n^*, w, \psi, \text{data}) \propto g_0(\theta_j^*; \psi) \prod_{\{i: w_i = j\}} k(z_i; \theta_j^*).$$

(iii) Update hyperparameters ψ based on their posterior full conditional

$$p(\psi \mid n^*, \{\theta_j^* : j = 1, ..., n^*\}) \propto p(\psi) \prod_{j=1}^{n^*} g_0(\theta_j^*; \psi).$$

(iv) Update α using, for instance, the auxiliary variable method from Escobar and West (1995) (see Appendix A.1 for details).

Except for step (iv), details of the MCMC algorithm depend on the choice of DP mixture kernel and the form of G_0. The Appendix provides further details for the specific DP mixture models.
in (4) – (6) used for the data examples of Sections 4 and 5.2. Sampling from the conditional posterior \(p(G \mid \Theta, \alpha, \psi) = DP(\alpha + n, \tilde{G}_0) \) is more generic and we can present an approach which does not depend upon specifics of the DP mixture model choice.

Given each posterior sample \(\{\Theta_b, \alpha_b, \psi_b : b = 1, \ldots, B\} \) from \(p(\Theta, \alpha, \psi \mid \text{data}) \), it is possible to sample a posterior realization \(G_b \) from \(p(G \mid \Theta, \alpha, \psi) \) using the DP constructive definition in (2) with a truncation approximation (e.g., Kottas, 2006). Each \(G_b \) is a discrete distribution with point masses \(\{\theta_{rb} : r = 1, \ldots, R_b\} \), drawn i.i.d. from \(\tilde{G}_0(\cdot; \Theta_b, \alpha_b, \psi_b) \) as defined following equation (8), and corresponding weights \(\{\omega_{rb} : r = 1, \ldots, R_b\} \), generated using the stick-breaking construction based on i.i.d. Beta(1, \(\alpha_b + n \)) draws, and normalized so that \(\sum_{r=1}^{R_b} \omega_{rb} = 1 \). Here, \(R_b \) is the number of terms used in the truncation series approximation to the countable series representation for the DP. In general, \(R_b \) may depend on the particular posterior realization, though, in practice, it suffices to consider a common value \(R \). Regardless, the approximation can be specified up to any desired accuracy. For instance, it can be shown that \(\text{E}(\sum_{r=1}^{R_b-1} \omega_{rb} \mid \alpha_b) = 1 - \left\{(\alpha_b + n)/(\alpha_b + n + 1)\right\}^{R_b-1} \), and thus a (conservative) approach to choose a common truncation level \(R \) would be to make \(\{(n + \max_b \alpha_b)/(n + 1 + \max_b \alpha_b)\}^{R-1} \) small to any desired accuracy.

For any specific combination of response and covariate values, say, \(z_0 = (y_0, x_0) \),

\[
 f(y_0, x_0; G_b) = \int k(y_0, x_0; \theta)dG_b(\theta) = \sum_{r=1}^{R} \omega_{rb}k(y_0, x_0; \tilde{\theta}_{rb})
\]

is a realization from the posterior of the random mixture density \(f(z; G) \) in (1) at point \(z = (y_0, x_0) \). Analogously, we can obtain the draw from the posterior of the marginal density \(f(x; G) \) at point \(x = x_0 \) by computing \(f(x_0; G_b) = \int k_x(x_0; \theta)dG_b(\theta) \), where \(k_x(\cdot; \theta) \) denotes the marginal density for \(x \) corresponding to the joint kernel density \(k(y, x; \theta) \). For instance, under model (4), \(f(x_0; G_b) = \int N_L(x_0; \mu^x, \Sigma^x)dG_b(\mu, \Sigma) \), where \((\mu^x, \Sigma^x) \) are the parameters of the marginal for \(x \) induced by the joint \(N_{L+1}(y, x; \mu, \Sigma) \) distribution.

Hence, we obtain \(f(y_0 \mid x_0; G_b) = f(y_0, x_0; G_b)/f(x_0; G_b) \), which is a realization from
the posterior of the conditional density \(f(y \mid x; G) \), at point \((y, x) = (y_0, x_0) \). Repeating over a grid in \(y \) that covers the range of response values of interest, we obtain a posterior realization from the random conditional density function \(f(\cdot \mid x_0; G) \) for the specific covariate values \(x_0 \). For any \(0 < p < 1 \), the conditional quantile \(q_p(x_0) \equiv q_p(x_0; G) \) satisfies
\[
\int_{q_p(x_0)} f(y \mid x_0; G) \, dy = F(q_p(x_0) \mid x_0; G) = p.
\]
Numerical integration of the posterior realizations from the conditional response density, \(f(\cdot \mid x_0; G) \), yields draws from the posterior of \(q_p(x_0) \) for any set of percentiles that might be of interest. Alternatively, certain kernel choices allow for direct calculation of the conditional response distribution function, \(F(\cdot \mid x_0; G) \), removing the need for numerical integration. For example, consider model (4) with the partition of kernel parameters, \(\tilde{\theta}_{rb} = (\tilde{\mu}_{rb}, \tilde{\Sigma}_{rb}) \), into components for \(y \) and \(x \). Specifically, \(\tilde{\mu}_{rb} \) comprises \(L \times 1 \) vector \(\tilde{\mu}_{rb}^{x} \) and scalar \(\tilde{\mu}_{rb}^{y} \), and \(\tilde{\Sigma}_{rb} \) is a square block matrix with diagonal elements given by \(L \times L \) covariance matrix \(\tilde{\Sigma}_{rb}^{x} \) and scalar variance \(\tilde{\Sigma}_{rb}^{y} \), and above and below diagonal vectors \(\tilde{\Sigma}_{rb}^{xy} \) and \(\tilde{\Sigma}_{rb}^{yx} \). Then, a posterior realization for \(F(y_0 \mid x_0; G_b) \) is calculated as
\[
\sum_{r=1}^{R} \omega_{rb} N_L(x_0; \tilde{\mu}_{rb}^{x}, \tilde{\Sigma}_{rb}^{x}) \Phi((y_0 - m(x_0))/s(x_0)) / f(x_0; G_b),
\]
where \(\Phi(\cdot) \) is the standard normal distribution function, \(m(x_0) = \tilde{\mu}_{rb}^{y} + \tilde{\Sigma}_{rb}^{y}(\tilde{\Sigma}_{rb}^{x})^{-1}(x_0 - \tilde{\mu}_{rb}^{x}) \), and \(s^2(x_0) = \tilde{\Sigma}_{rb}^{y} - \tilde{\Sigma}_{rb}^{yx}(\tilde{\Sigma}_{rb}^{x})^{-1} \tilde{\Sigma}_{rb}^{xy} \).

Because of the need to obtain the posterior of \(f(\cdot \mid x_0; G) \) (or \(F(\cdot \mid x_0; G) \)) over a sufficiently dense grid of \(x_0 \) values, implementation of inference becomes computationally intensive for high-dimensional covariate spaces. However, it is only ever possible to plot estimates for quantile regression functions given one- or two-variable subsets of the covariate vector (e.g., Figures 2 and 3). In these cases, the input grid is over a lower dimensional space and the computational expense is reduced. Note that inference for a marginal \(p(q_p(x_{0i}) \mid \text{data}) \), where \(x_{0i} \in x_0 \), is exactly the same as inference for the full conditional quantile except based on marginal kernel densities. Moreover, if interest focuses on the posterior of conditional response densities \(f(y \mid x_0; G) \) (e.g., Figure 4), or corresponding conditional quantiles, for a small number of specified \(x_0 \) values, the approach is feasible in higher dimensions.
We can thus obtain samples from $p(q_p(x_0) \mid \text{data})$ for any x_0 and for any $0 < p < 1$. For any set of p values, working with a grid over the covariate space, we can compute simultaneous point and interval estimates for the corresponding quantile curves $q_p(\cdot; G)$. And, since inference for all quantiles is based on a single density function, these estimates necessarily satisfy the ordering of percentiles of the response distribution. Hence, while providing a flexible framework for quantile regression inference, our model-based nonparametric approach avoids any issues with crossing quantiles. Estimated crossing quantiles may arise under classical nonparametric methods for quantile regression, and the related literature includes various techniques for addressing this problem (see, e.g., Dette and Volgushev, 2008, and further references therein).

The proposed approach to inference for quantile regression is well-suited for problems with a moderate number of covariates, and there is indeed a wide variety of such regression problems that are of interest in economics. The methodology is very flexible as it allows both non-linear quantile curves as well as non-standard shapes for the conditional response distribution. Moreover, the model does not rely on the additive nonparametric regression formulation and therefore can uncover interactions between covariates that might influence certain quantile regression curves.

4. DATA ILLUSTRATIONS

Section 4.1 presents results from a small simulation experiment, whereas Section 4.2 considers an example involving data on moral hazard from Japanese industrial chemical firms.

4.1 Simulation Experiment

We consider synthetic data to study empirically some key aspects of the performance of the modeling approach developed in Sections 2 and 3. While an extensive simulation study is beyond the scope of this paper, these examples serve to indicate the effect of the sample size and prior choice on the resulting posterior inference under a setting where the true regression function and response distribution are known.
Two datasets, of size $n = 200$ and $n = 2000$, consist of realizations of a continuous response y, a binary covariate x_d, and a continuous covariate x_c. The data were generated such that

$$
x_c \sim N(0, 1), \quad x_d \mid x_c \sim \text{Bernoulli}(\Phi(x_c)), \quad y \mid x_c, x_d \sim N(h(x_c), \sigma^2(x_d)),
$$

where $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2; $\sigma(0) = 0.25$, $\sigma(1) = 0.5$; and $h(x_c) = 0.3 + 0.4x_c + 0.5 \sin(2.7x_c) + 1.1(1 + x_c^2)^{-1}$. The marginal conditional distribution for y given x_c is defined by heteroskedastic normal errors around a mean/median function (taken from Neal, 1997) that is nonlinear within the likely range for x_c. Note that the data are generated through an additive error mechanism, as assumed by the majority of quantile regression models, even though this is not the setting under which our model was developed.

The model specification follows the outline of Section 2. In particular, the mixed normal/Bernoulli kernel of model (5) is assumed. The base distribution is the product of normal and inverse Wishart components for the kernel parameters related to (y, x_c), and a uniform component for π, such that $G_0(\mu, \Sigma, \pi; m, V, S) = N_2(\mu; m, V) \text{IWish}(\Sigma; \nu, S) \text{beta}(\pi; 1, 1)$. To study prior sensitivity, we considered two dramatically different prior specifications. Both have the same mean for m at $(0, 1.5)$, corresponding to the approximate mean for (x_c, y), and in both cases the required priors for variance matrices are specified in terms of a single matrix H and the appropriate number of degrees of freedom, following the procedure in Section 2.3. In the first specification, referred to as the default prior, H is set to I, the identity matrix, such that (with variance of about one for x_c and y) the prior variance matrices are the approximate expectation of the data dependent hyperparameters proposed in Section 2.3. Moreover, under the default specification, $\pi(\alpha) = \text{gamma}(2, 0.2)$. The second (alternative) prior specification is based on $H = 10I$ and $\pi(\alpha) = \text{gamma}(2, 2)$. Hence, the alternative specification inflates the prior expectation for variance matrices by a factor of 10, and deflates the prior expectation for α by a factor of 10 (thus, e.g., under $n = 200$, decreasing the approximate prior expectation for n^* from about 28 to 5). These two priors represent very different (but still plausible)
representations of uncertainty about the DP mixture prior parameters.

All the results are based on MCMC samples of 80000 draws, recorded on every tenth iteration, following a burn-in period of 20000 iterations. Inference for the median and 90-th percentile regression functions is shown in the two left hand columns of Figure 1, and the results are encouraging. There is a striking similarity between posterior mean and interval estimates corresponding to the two very different prior specifications. Compared to inference under the small sample, posterior means informed by the larger sample are closer to the truth and the 90% intervals are tighter, such that an increase in information leads to a corresponding increase in posterior precision. Since inference for extreme quantile functions is notoriously challenging, it is notable that accurate estimation and quantification of uncertainty holds in the case of the 90-th percentile as well as for the median.

Figure 1 (far right hand column) also plots posterior estimates for the conditional response density \(f(y|x_c = 0, x_d = 1; G) \). Again, there is a desirable uniformity among results corresponding to the different prior choices. Moreover, as the sample size increases to 2000, the posterior mean estimates approach the true conditional density function. For the 200 point sample, inference relies heavily on a small number of local observations (i.e., response observations associated with \(x_c \) around 0) and shows posterior mean density functions that are shifted to the right of the true density. The wide posterior 90% interval reflects this uncertainty, although the default prior analysis appears to provide a better quantification of uncertainty than that based upon the alternative prior. Results for the larger sample show a substantial improvement with the posterior distribution effectively capturing the truth under both prior choices. This is achieved despite the still limited amount of information provided about the entire response density corresponding to any specific conditioning.

4.2 Moral Hazard Data

Here, we illustrate the methodology with real data used by Yafeh and Yoshua (2003) to
Figure 1: Simulated data. Each row shows posterior estimates for (from left to right) the marginal conditional median and 90-th percentile for y given x_c ($x_c \equiv x$ in the plot labels), and the conditional density $f(y \mid x_c = 0, x_d = 1; G)$. The solid lines are truth, dashed lines are posterior mean estimates, and dotted lines contain a 90% interval. The rows correspond to the sample with $n = 200$ with the default prior (top) and with the alternative prior (second from top), and to the sample with $n = 2000$ under the default prior (third from top) and the alternative prior (bottom).
investigate the relationship between shareholder concentration and several indices for managerial moral hazard in the form of expenditure with scope for private benefit. The data set includes a variety of variables describing 185 Japanese industrial chemical firms listed on the Tokyo stock exchange. (The data set is available online through the Economic Journal at http://www.res.org.uk.) A subset of these data was also considered by Horowitz and Lee (2005) in application of their classical nonparametric estimation technique for an additive quantile regression model. As was done there, we consider a single model proposed by Yafeh and Yoshua (2003) in which index \(MH5 \), consisting of general sales and administrative expenses deflated by sales, is the response \(y \) related to a four-dimensional covariate vector \(\mathbf{x} \), which includes \(\text{Leverage} \) (ratio of debt to total assets), \(\log(\text{Assets}) \), the \(\text{Age} \) of the firm, and \(\text{TOPTEN} \), the percent of ownership held by the ten largest shareholders. The response and all four covariates are continuous and, although \(\text{Leverage} \) and \(\text{TOPTEN} \) occur over subsets of the real line, the data lies far enough from support boundaries to render the DP mixture of multivariate normals in (4) a suitable choice for the analysis.

The model is implemented using the prior specification approach outlined in Section 2.3. In the absence of genuine prior information in our illustrative analysis, we take values from the data for the prior guesses of the center and range for the response and four covariates. Results were insensitive to reasonable changes in the prior specification, e.g., doubling the observed data range for the response and covariates did not affect the posterior estimates in Figures 2 – 4. A gamma\((1, 0.2)\) prior is placed on the DP precision parameter \(\alpha \), implying \(E(n^*) \approx 16 \). Experimentation with alternative gamma priors, yielding smaller prior estimates for the number of distinct mixture components, has resulted in essentially identical posterior inference. Results are based on an MCMC sample of 150000 parameter draws, recorded on every tenth iteration, following a (conservative) burn-in of 50000 iterations.

Although it is not possible to show the response quantile functions over all four variables, as discussed in Section 3, it is straightforward to obtain quantile curves for the response given any
one-dimensional or two-dimensional subset of the covariates. In Figure 2, we plot posterior point and 90\% interval estimates for the response median and 90-th percentile as a function of each individual covariate. In addition, Figure 3 provides inference for the response median and 90-th percentile surfaces over the two-dimensional covariate space defined by \textit{Leverage} and \textit{TOPTEN}. (Note that Yafeh and Yoshua, 2003, found these two covariates to be the most significant.) In particular, shown are point estimates, through the posterior mean, and a measure of the related uncertainty, through the posterior interquartile range.

These two figures indicate the capacity of the model to capture non-linear shapes in the estimated quantile curves as well as to quantify the associated uncertainty. Figure 2 shows that the marginal relationship between each covariate and \textit{MH5} may differ significantly depending upon the quantile of interest; this is particularly clear in the contrast between median and 90-th percentile curves for \textit{MH5} conditional on \textit{TOPTEN}. The inference results displayed in Figure 3 show an interaction between the effects of \textit{Leverage} and \textit{TOPTEN} in both the median and 90-th percentile surfaces, suggesting that it is useful to relax the assumption of additivity over the covariate space (which forms the basis of the method in Horowitz and Lee, 2005). Moreover, Figure 3 indicates that posterior uncertainty about the quantile functions is highly variable throughout the covariate space; for each quantile, regions of steep change in the quantile function correspond to significantly higher uncertainty around the function estimate.

Figure 4 illustrates inference for the conditional response density \(f(y \mid x_0; G)\). Included are results for four values, \(x_0\), of the covariate vector \(x = (TOPTEN, Leverage, Age, \log(Assets))\), specifically, clockwise from top left, \(x_0 = (40, 0.3, 55, 11), (35, 0.6, 55, 11), (40, 0.3, 70, 13), \) and \((70, 0.8, 55, 11)\). This type of inference highlights the ability of the model to capture non-standard distributional features such as heavy tails, skewness, and multimodality. The posterior estimates in Figure 4 clearly indicate that the response distribution changes significantly throughout the covariate space in ways that can not be modeled with standard parametric forms. Inspection of the data scatterplots in Figure 2 makes it clear that the non-standard
Figure 2: Moral hazard data. Posterior estimates for median regression (left column) and 90-th percentile regression (right column) for $MH5$ conditional on each individual covariate. The solid lines are posterior mean estimates and dashed lines contain a 90% posterior interval. Data scatterplots are shown in grey.
Figure 3: Moral hazard data. Posterior estimates of median surfaces (left column) and 90-th percentile surfaces (right column) for MH5 conditional on Leverage and TOPTEN. The posterior mean is shown on the top row and the posterior interquartile range on the bottom.

Figure 4: Moral hazard data. Posterior mean estimates (solid lines) and 90% interval estimates (dashed lines) for four conditional densities $f(y \mid x_0; G)$ (see Section 4 for the values of x_0).
features captured in the posterior estimates from the DP mixture model are driven by the data and are not simply an artifact of the flexible nonparametric prior mixture model. In this regard, note also that for the simulated data of Section 4.1, arising from a normal response distribution, the DP mixture model yields unimodal, roughly symmetric, estimates for conditional response densities (refer again to Figure 1 for results under a specific combination of covariate values).

Finally, given the results of this section, it is worth drawing some comparison between the proposed modeling approach with existing methods for quantile regression discussed in the Introduction. First, given the non-linearities in regression relationships (Figure 2) and non-standard response density shapes (Figure 4), it is evident that the standard linear quantile regression model would be outperformed by the DP mixture model. And, to a smaller or larger extent, this would be the case regardless of the estimation approach, classical semiparametric, Bayesian parametric (e.g., Yu and Moyeed, 2001) or Bayesian semiparametric (e.g., Hjort and Petrone, 2007; Kottas and Krnjajić, 2009). Classical nonparametric estimation methods would likely fare better with regard to capturing non-linear quantile regression relationships. However, such estimation techniques are limited with respect to inference for the response distribution, e.g., the results reported in Figure 4 would not be possible under these approaches. Although comparison with Bayesian nonparametric methods for non-linear quantile regression is more relevant, there is very little work in this direction. Moreover, as discussed in the Introduction, extensions of the existing work (e.g., Scaccia and Green, 2003; Kottas, Krnjajić and Taddy, 2007) to incorporate more than one covariate is challenging.

5. NONPARAMETRIC TOBIT QUANTILE REGRESSION

Section 5.1 develops the extension to nonparametric Tobit quantile regression. A data example that illustrates this extension is presented in Section 5.2.

5.1 The Modeling Approach

There are several regression applications that involve constrained observations for the re-
response variable, and possibly also for the covariates. For instance, different types of censoring or truncation are commonly present in survival analysis data. In econometrics applications, a standard scenario involves certain forms of partially observed responses leading to what is typically referred to as Tobit regression models, after the work by Tobin (1958) (see, e.g., Amemiya, 1984, for a thorough review of various types of Tobit models).

The standard Tobit model is formulated through latent random variables \(y^*_i \), which are assumed independent and normally distributed with mean \(\mathbf{x}_i^T \beta \) and variance \(\sigma^2 \). Tobit quantile regression arises by modeling a specific quantile of the latent response distribution as a function of the covariates. The covariate vectors \(\mathbf{x}_i \) are observed for all subjects in the data. However, the observed responses, \(y_i \), are constrained according to \(y_i = \max\{y^*_i, y^0_i\} \), where the \(y^0_i \) are fixed threshold points. In applications, the threshold value is typically the same for all data subjects, and we can thus set without loss of generality \(y^0_i = 0 \) (as in our data example of Section 5.2). Formally, this data structure corresponds to (fixed) left censoring. However, there is a subtle difference with more traditional survival analysis applications, since in economics settings, the latent variable \(y^* \) may exist only conceptually, e.g., as a particular utility functional formulated based on empirical and/or theoretical studies.

The classical semiparametric literature includes several estimation techniques for both the mean regression and quantile regression Tobit models (see, e.g., Buchinsky and Hahn, 1998, and further references therein). Again, these approaches do not include probabilistic modeling for the latent response distribution and are thus limited in terms of the range of inferences that they can provide. Bayesian approaches to Tobit regression for econometrics applications appear to have focused on parametric modeling with linear regression functions. For instance, the early work of Chib (1992) developed Bayesian inference for linear Tobit regression with normal errors whereas, more recently, Yu and Stander (2007) studied linear Tobit quantile regression with asymmetric Laplace errors.

The modeling framework developed in Sections 2 and 3 can be utilized to provide a flexible
nonparametric approach to inference for Tobit quantile regression. Again, we start with a
DP mixture model, \(f(y^*, x; G) = \int k(y^*, x; \theta)dG(\theta), G | \alpha, \psi \sim \text{DP}(\alpha, G_0(\psi)) \), for the joint
distribution of the latent response variable \(y^* \) and the vector of covariates \(x \). The mixture
kernel can be specified following one of the approaches of Section 2.2. The first stage of the
hierarchical model for the data, \((y_i, x_i), i = 1, ..., n \), is built again from conditional independence
given the mixing parameters \(\theta_i, i = 1, ..., n \), but is modified with respect to (3) by replacing
the (conditional) response kernel density with its corresponding distribution function for all \(i \)
with \(y_i = 0 \).

The analogous modifications to the MCMC posterior simulation method of Section 3 yield
the full posterior for \(G, \alpha, \psi \) and the \(\theta_i, i = 1, ..., n \). (We provide specific details in Appendix
A.3 in the context of the DP mixture model used in Section 5.2.) In particular, full and exact
inference for any set of quantile regression curves emerges from the posterior realizations for
the conditional response density \(f(\cdot | x_0; G) \) over grid values \(x_0 \) in the covariate space. Note
that here, for any specified point \(y_0 > 0 \) associated with fully observed responses, \(f(y_0 | x_0; G) \)
in the notation of Section 3 is given through \(f(y_0 | y^* = y_0 > 0, x_0; G) \). Hence, inference for
Tobit quantile regression is based on the conditional response density, given \(x \), arising from
the underlying DP mixture \(f(y^*, x; G) \), conditionally also on \(y^* > 0 \). Moreover, using the
posterior realizations for \(f(y^* | x; G) \), we can obtain the posterior for \(\text{Pr}(y^* \leq 0 | x_0; G) \). A
collection of these posteriors for a set of specified \(x_0 \) provides information on the relationship
between the covariates and the censoring mechanism for the response. Because of the flexibility
of the mixture model for the joint distribution of \(y^* \) and \(x \), the proposed modeling approach en-
ables potentially different structure for the relationship between the response and the covariates
across different quantile regression curves as well as for the relationship between the covariates
and the underlying mechanism that constrains the response. This is a practically important
advantage over parametric formulations (as in, e.g., Yu and Stander, 2007) that postulate a
linear regression form for all the relationships above.
5.2 Data Example

We consider a subset of the data on female labor supply corresponding to the University of Michigan Panel Study of Income Dynamics for year 1975. Using this data set, Mroz (1987) presents a systematic analysis of theoretical and statistical assumptions used in empirical models of female labor supply. The sample considered by Mroz (1987) consists of 753 married white women between the ages of 30 and 60, with 428 of them working at some time during year 1975. The 428 fully observed responses, \(y_i \), are given by the wife’s work (in 100 hours) during year 1975. For the remaining 325 women, the observed work of \(y_i = 0 \) corresponds to negative values for the latent labor supply response, \(y^* \). The response variable can be treated as continuous (non-zero observed responses range from 12 to 4950 hours). The data set includes covariate information on family income, wife’s wage, education, age, number of children of different age groups, and mother’s and father’s educational attainment, as well as on husband’s age, education, wage, and hours of work. For our illustrative analysis, we consider number of children as the single categorical covariate, \(x_d \equiv x \). This covariate combines observations from two variables in the data set, “number of children less than 6 years old in household” and “number of children between ages 6 and 18 in household”; the observed values range from 0 to 8 children.

To model the joint distribution of the covariate and the latent labor supply response, we work with the special case of DP mixture (6) given by

\[
f(y^*, x; G) = \int N(y^*; \mu, \sigma^2) Po(x; \lambda) dG(\mu, \sigma^2, \lambda), \quad G \mid \alpha, \psi \sim DP(\alpha, G_0(\psi)). \tag{9}
\]

Here, \(G_0 \) is built from independent components, specifically, \(N(\psi_1, \psi_2) \) for \(\mu \), \(\text{gamma}(c, \psi_3) \) for \(\sigma^{-2} \), and \(\text{gamma}(d, \psi_4) \) for \(\lambda \), with hyperpriors placed on \(\psi = (\psi_1, \psi_2, \psi_3, \psi_4) \).

Posterior inference under model (9) is implemented using the MCMC method detailed in Appendix A.3. The results reported below are based on a gamma(1,0.2) prior for \(\alpha \), and \(N(10,40) \), \(\text{gamma}(2,40) \), \(\text{gamma}(2,0.2) \), and \(\text{gamma}(3,3) \) priors for \(\psi_1, \psi_2^{-1}, \psi_3 \), and \(\psi_4 \), re-
pectively. The remaining parameters of G_0 are set to $c = 2$ and $d = 1$. We have experimented increasing and decreasing the variability around α and ψ_1 and the prior expectations for ψ_2 and ψ_3, as well as with alternative specifications for ψ_4, and have not found this to affect the analysis. Results are based on an MCMC sample of 100000 parameter draws, recorded on every fifth iteration, following a (conservative) burn-in period of 50000 iterations.

![Conditional density for labor supply](image)

Figure 5: Female labor supply data. Posterior estimates for $f(y^* | x; G)$ given $x = 0, \ldots, 5$ children. Solid and dashed lines correspond to posterior mean and 90% posterior interval estimates, respectively.

The posterior samples for G can be used to obtain the posterior of the conditional distribution for the latent labor supply response given a specific value for the number of children covariate. Posterior estimates for the conditional densities $f(y^* | x; G)$, corresponding to $x = 0, \ldots, 5$ children, are shown in Figure 5. The estimated latent response densities have non-standard
Figure 6: Female labor supply data. Posterior mean estimates for Pr($y^* < u \mid y^* > 0, x; G$) for (progressing from black to light grey) $x = 0, ..., 5$ children.

shapes that change with the covariate value in a fashion that is difficult to describe with a parametric regression relationship. The peak around 2000 hours of work, which is seen in conditional response densities for lower numbers of children, corresponds to a traditional full-time job (50 weeks of 40 hours). The nonparametric DP mixture model is exposing density structure that would have been missed under standard parametric assumptions for the latent response distribution, e.g., the models developed by Chib (1992) and Yu and Stander (2007) based on normal and asymmetric Laplace distributions, respectively. In particular, the density mode corresponding to full-time labor decreases in magnitude as the number of children increases and the probability mass is redistributed in the region with $y^* < 2000$ hours of work. From an economic perspective, this suggests that the main effect of an increase in offspring on labor supply is to reduce the proportion of women working full-time.

Non-standard features are also seen in response distributions for positive observed work. This is illustrated in Figure 6 through posterior mean estimates for $\Pr(y^* < u \mid y^* > 0, x; G) = \Pr(0 < y^* < u, x; G)/\Pr(y^* > 0, x; G)$, i.e., the conditional distribution function at $u > 0$, given
Figure 7: Female labor supply data. Posterior samples of positive observed work median (left panel) and 90-th percentile (right panel) given the realized values of the covariate. The positive data observations are shown in grey.

Figure 8: Female labor supply data. Posterior samples for $\Pr(y^* \leq 0 \mid x; G)$.
positive observed work and given x; results are plotted for $x = 0, \ldots, 5$ children. For any value of x, working with a grid of u values, posterior realizations for $\Pr(y^* < u \mid y^* > 0, x; G)$ are given by

$$\Pr(y^* < u \mid y^* > 0, x; G_b) = \frac{\sum_{r=1}^{R} \omega_{rb} \Phi((u - \tilde{\mu}_{rb}) / \tilde{\sigma}_{rb}) - \Phi(-\tilde{\mu}_{rb} / \tilde{\sigma}_{rb})}{\sum_{r=1}^{R} \omega_{rb} \Phi(1 - \Phi(-\tilde{\mu}_{rb} / \tilde{\sigma}_{rb}))},$$

where, following the notation of Section 3, $G_b = \{\omega_{rb}, (\tilde{\mu}_{rb}, \tilde{\sigma}_{rb}^2, \tilde{\lambda}_{rb}) : r = 1, \ldots, R\}$ is the b-th posterior realization for G, with $b = 1, \ldots, B (= 10000)$.

Next, inference about conditional quantiles $q_p(x)$ for positive observed work proceeds based on these posterior realizations. In particular, for any specified p and any value x for the number of children, the posterior samples \{q_{pb}(x) : b = 1, \ldots, B\} for $q_p(x)$ are obtained (with interpolation) from $p = \Pr(y^* < q_{pb}(x) \mid y^* > 0, x; G_b)$. As an illustration, Figure 7 plots boxplots of the posterior samples for $q_{0.5}(x)$ and $q_{0.9}(x)$. (Boxplots are constructed such that the boxes contain the interquartile sample range and the whiskers extend to the most extreme sample point that is no more than 1.5 times the interquartile range outside the central box.) Noteworthy is the different rate of decrease in the median and 90-th percentile regression relationships between positive observed work and number of children. Note also that the posteriors for $q_{0.9}(x)$ at $x = 1, 2, 3, 4$ children are more concentrated than the posterior for $q_{0.9}(0)$, whereas such a difference is substantially less pronounced in the posteriors for $q_{0.5}(x)$.

Finally, as discussed in Section 5.1, of interest might be inference for $\Pr(y^* \leq 0 \mid x; G)$, i.e., the probability of zero hours of observed work given the number of children. For any value of $x = 0, \ldots, 8$, posterior samples for this probability arise from $\Pr(y^* \leq 0 \mid x; G_b) = \left[\sum_{r=1}^{R} \omega_{rb} \Phi(-\tilde{\mu}_{rb} / \tilde{\sigma}_{rb})\right] / \sum_{r=1}^{R} \omega_{rb} \Phi(x; \tilde{\lambda}_{rb})$, for $b = 1, \ldots, B$. Boxplots of these posterior samples are shown in Figure 8, indicating fairly similar relationship between the covariate and the censoring mechanism for the response when $x = 0, 1$ children; a noticeable increase in the probability of zero hours of observed work with $x = 2, 3, 4$ children; and similar probabilities,
albeit with increased posterior uncertainty, for \(x = 5, 6, 7, 8 \) children.

6. SUMMARY

We have developed a fully inferential Bayesian approach for quantile regression. The modeling approach utilizes flexible Dirichlet process mixtures for the joint distribution of the response and covariates, with inference for quantile curves emerging from the posterior of the induced conditional distribution of the response given the covariates. We have discussed Markov chain Monte Carlo posterior simulation methods for such inference. The modeling framework allows incorporation of both categorical and continuous covariates as well as partially observed responses. In particular, we have presented an approach to fully nonparametric Tobit quantile regression. Finally, we have provided illustrations of the methodology with simulated and real data examples.

ACKNOWLEDGMENTS

This research is part of the first author’s Ph.D. dissertation, completed at University of California, Santa Cruz, and was supported in part by the National Science Foundation under Awards DMS-0505085 and DEB-0727543. The authors wish to thank an Associate Editor and two referees for helpful comments that improved the presentation of the methodology.

APPENDIX: MCMC POSTERIOR SIMULATION DETAILS

A.1 DP Mixture of Multivariate Normals Model

Here, we provide details for the MCMC algorithm, outlined in Section 3, to sample from \(p(\Theta, \alpha, \psi \mid \text{data}) \) under DP mixture model (4). Regarding step (i), we update each \(\theta_i = (\mu_i, \Sigma_i) \) using algorithm 5 from Neal (2000), which is based on Metropolis-Hastings steps with proposal distribution given by the prior full conditional of \((\mu_i, \Sigma_i) \), \(p((\mu_i, \Sigma_i) \mid \{(\mu_\ell, \Sigma_\ell) : \ell \neq i\}, \alpha, \psi) \), implied by (7). Updating all the \((\mu_i, \Sigma_i), i = 1, ..., n \), generates a posterior realization for the
partition of Θ comprising n^* distinct components $\theta_j^* = (\mu_j^*, \Sigma_j^*)$, $j = 1, \ldots, n^*$. The Metropolis-Hastings approach to update the (μ_i, Σ_i) can potentially lead to poor mixing. However, it is straightforward to implement and, combined with step (ii) that resamples the (μ_j^*, Σ_j^*), yields an efficient MCMC method. For each $j = 1, \ldots, n^*$, the posterior full conditional for (μ_j^*, Σ_j^*) is proportional to $g_0(\mu_j^*, \Sigma_j^*; \psi) \prod_{i : w_i = j} \text{N}_{L+1}(z_i; \mu_j^*, \Sigma_j^*)$, and is sampled by drawing from the full conditionals for μ_j^* and Σ_j^*. The former is $(L + 1)$-variate normal with mean vector $(V^{-1} + n_j \Sigma_j^{*-1})^{-1}(V^{-1} m + n_j \Sigma_j^{*-1} \bar{z}_j)$ and covariance matrix $(V^{-1} + n_j \Sigma_j^{*-1})^{-1}$, where $n_j = |\{i : w_i = j\}|$ and $\bar{z}_j = n_j^{-1} \sum_{i : w_i = j} z_i$. The latter is inverse Wishart with scalar parameter $\nu + n_j$ and matrix parameter $S + \sum_{i : w_i = j} (z_i - \mu_j^*)(z_i - \mu_j^*)^T$.

Regarding the hyperparameters $\psi = (m, V, S)$ of G_0 (step (iii)), the posterior full conditional for m is $(L + 1)$-variate normal with mean vector $(B_m^{-1} + n^*V^{-1})^{-1}(B_m^{-1} a_m + n^*V^{-1} \bar{m})$, with $\bar{m}^* = n^*^{-1} \sum_{j=1}^{n^*} \mu_j^*$, and covariance matrix $(B_m^{-1} + n^*V^{-1})^{-1}$. The full conditional for V is inverse Wishart with scalar parameter $a_V + n^*$ and matrix parameter $B_V + \sum_{j=1}^{n^*} (\mu_j^* - m)(\mu_j^* - m)^T$, and the full conditional for S is given by a Wishart distribution with scalar parameter $a_S + \nu n^*$ and matrix parameter $(B_S^{-1} + \sum_{j=1}^{n^*} \Sigma_j^{*-1})^{-1}$.

Finally, we update the DP precision parameter α (step (iv)) using the augmentation method from Escobar and West (1995). Specifically, an auxiliary variable u is introduced such that the joint density of α and u has full conditionals $p(u \mid \alpha, \text{data}) = \text{Beta}(\alpha + 1, n)$ and $p(\alpha \mid u, n^*, \text{data}) = p\text{gamma}(\alpha + n^*, b_\alpha - \log(u)) + (1 - p)\text{gamma}(\alpha + n^* - 1, b_\alpha - \log(u))$, where $p = (a_\alpha + n^* - 1) / \{n(b_\alpha - \log(u)) + a_\alpha + n^* - 1\}$.

A.2 DP Mixture Model for the Simulation Example of Section 4.1

The MCMC posterior sampling algorithm for DP mixture model (5) involves only minor differences from the approach described in Appendix A.1. Each $\theta_i = (\mu_i, \Sigma_i, \pi_i)$ is again updated using algorithm 5 from Neal (2000), in this case sampling each proposed (μ_i, Σ_i, π_i) from $p((\mu_i, \Sigma_i, \pi_i) \mid \{(\mu_\ell, \Sigma_\ell, \pi_\ell) : \ell \neq i\}, \alpha, \psi)$ as implied by (7). The algorithm is again
augmented by a re-sampling step from the posterior full conditional for each \(\theta_j^* = (\mu_j^*, \Sigma_j^*, \pi_j^*) \), \(j = 1, ..., n^* \). This step is aided by noticing that, given the allocation of observations to each unique kernel component, \((\mu_j^*, \Sigma_j^*) \) is conditionally independent of \(\pi_j^* \). Thus, re-sampling for \((\mu_j^*, \Sigma_j^*) \) proceeds exactly as described in Appendix A.1. The posterior full conditional for \(\pi_j^* \) is proportional to \(g_0(\pi_j^*) \prod_{i:w_i=j} \pi_j^{s_{x_i}} (1 - \pi_j^*)^{(1-x_{di})} \), and thus \(\pi_j^* \) is drawn from a beta\((a + \sum_{i:w_i=j} x_{di}, b + \sum_{i:w_i=j} (1-x_{di}))\) distribution. Sampling for \(\alpha \) and \(\psi \) is the same with Appendix A.1.

A.3 DP Mixture Model for Tobit Quantile Regression Example of Section 5.2

Here, we describe the MCMC approach to sampling from \(p(\Theta, \alpha, \psi \mid \text{data}) \) for model (9), where \(\Theta = (\theta_1, ..., \theta_n) \), with \(\theta_i = (\mu_i, \sigma_i^2, \lambda_i) \). We have

\[
p(\Theta, \alpha, \psi \mid \text{data}) \propto p(\alpha)p(\psi)p(\Theta \mid \alpha, \psi) \prod_{i \in I_0} \Phi(-\mu_i/\sigma_i) \prod_{i \in I_1} \Phi(-\mu_i/\sigma_i) \prod_{i=1}^n \text{Po}(x_i; \lambda_i)
\]

where \(I_0 = \{i : y_i = 0\} \), \(I_1 = \{i : y_i > 0\} \), and \(p(\Theta \mid \alpha, \psi) \) is given by (7). The structure of the Metropolis-Hastings steps for the \(\theta_i \) (step (i)) is the same with the models discussed in Appendixes A.1 and A.2. However, when resampling, for \(j = 1, ..., n^* \), the distinct components (step (ii)) from

\[
g_0(\mu_j^*, \sigma_j^{2*}, \lambda_j^*; \psi) \prod_{i:w_i=j} \text{Po}(x_i; \lambda_j^*) \prod_{i \in I_0 \cap \{i:w_i=j\}} \Phi(-\mu_j^*/\sigma_j^*) \prod_{i \in I_1 \cap \{i:w_i=j\}} \text{N}(y_i; \mu_j^*, \sigma_j^{2*})
\]

the posterior full conditionals for \(\mu_j^* \) and \(\sigma_j^{2*} \) are no longer available in a form from which it is easy to draw. Sampling proceeds through Metropolis-Hastings steps with normal proposals for \(\mu_j^* \) and gamma proposals for \(\sigma_j^{2*} \). The posterior full conditional for \(\lambda_j^* \) is a gamma distribution with shape parameter \(d + \sum_{i:w_i=j} x_i \) and rate parameter \(\psi_4 + n_j \). The posterior full conditionals for all four hyperparameters in \(\psi \) have standard forms, specifically, they are given by a normal distribution for \(\psi_1 \), and by gamma distributions for \(\psi_2^{-1}, \psi_3 \) and \(\psi_4 \).
REFERENCES

