Stay Informed:

COVID-19 (coronavirus) information
Zoom Links: Zoom Help | Teaching with Zoom | Zoom Quick Guide

ECE Seminar: Nano-porous Gold: A New Material for Multifunctional Biomedical Device Coatings

Speaker Name: 
Dr. Erkin Şeker
Speaker Title: 
Associate Professor and Graduate Program Chair of Electrical & Computer Engineering
Speaker Organization: 
UC Davis
Start Time: 
Monday, January 13, 2020 - 10:40am
End Time: 
Monday, January 13, 2020 - 11:40am
E2 192


 Nanostructured materials offer tremendous opportunities for engineering advanced device components for diagnostic and therapeutic applications. Nano-porous gold (np-Au), produced by a nano-scale self-assembly process, is a relatively new material and has mostly attracted attention for catalyst applications due to its high effective surface area, electrical conductivity, and ease of surface functionalization. Surprisingly, the biomedical potential of this material has remained largely untapped. For the first part of the talk, I will discuss my research group’s efforts to control nano-/micro-scale properties of np-Au and the application of micropatterning techniques for fabricating high-sensitivity multiple electrode arrays for neural electrophysiology studies. In the context of biocompatibility of such devices, I will illustrate how tunable properties of np-Au may be utilized to alleviate adverse biological response to device coatings. To that end, I will specifically focus on np-Au’s drug delivery performance and its interaction with neural tissue as a function of its geometric features and surface chemistry. For the second part of the talk, I will illustrate np-Au’s diagnostic potential within an electrochemical platform in detecting and purifying nucleic acid biomarkers in complex biological samples. I will conclude the talk with our ongoing efforts toward constructing high-throughput material screening platforms for identifying optimal material properties for emerging applications of nano-porous metals.


 Dr. Erkin Şeker is an Associate Professor and Graduate Program Chair of Electrical & Computer Engineering at University of California, Davis and is faculty member in Biomedical Engineering, Materials Science & Chemical Engineering, and Biophysics Graduate Groups. He joined the Department of Electrical and Computer Engineering at UC Davis in 2011. He received his PhD degree in Electrical Engineering from the University of Virginia (UVA) in 2007, where he developed techniques to control mechanical and morphological properties of nano-porous gold. During his postdoctoral appointment in the Department of Chemistry at UVA, he investigated material-biomolecule interactions and developed microfluidic flow control schemes. Between 2009 and 2011, as a research associate at the Center for Engineering in Medicine at Harvard Medical School, he developed multiple electrode arrays for neural electrophysiology applications and spearheaded the development of microsystems for monitoring transcriptional and secretory dynamics at a cellular-level in the context of metabolic dysregulation. At UC Davis, he is leading the interdisciplinary Multifunctional Nano-porous Metals research group with the overarching goal of understanding and controlling nanostructured material properties and their interaction with biological systems to develop effective biomedical tools for both basic and clinical applications. He is the recipient of Fund for Medical Discovery Award from Massachusetts General Hospital, a University of California Lab Fees Research Grant, a NSF CAREER Award, a NIH NIBIB Trailblazer Award, and a BMES Cellular and Molecular Bioengineering Young Innovator Award. He served as an Associate Scientific Advisor for Science Translational Medicine journal and was selected to participate in National Academy of Engineering’s Annual Frontiers of Engineering Education Symposium.


Event Type: