CMPS 201

Final Review Problems

Be sure to review all prior homework assignments, midterm exams, and their solutions. Review all examples covered in class.

1. Suppose $T(n)$ satisfies the recurrence $T(n)=3 T(n / 4)+F(n)$, where $F(n)$ itself satisfies the recurrence $F(n)=5 F(n / 9)+n^{3 / 4}$. Find a tight asymptotic bound for $T(n)$. Be sure to fully justify each use of the Master Theorem. (Hint: $\log _{9}(5)<3 / 4<\log _{4}$ (3).)
2. Recall that $\{0,1\}^{*}$ denotes the set of all bit-strings of any finite length. A language L is a collection of bitstrings, i.e. a subset $L \subseteq\{0,1\}^{*}$. Let $A(x)$ be an algorithm whose input is a bit-string $x \in\{0,1\}^{*}$, and whose output is 0 or 1 .
a. Define what it means for a language L to be accepted by A.
b. Define what it means for a language L to be decided by A.
3. Show that any polynomial time algorithm for the optimization problem SP (SHORTEST-PATH) can be converted to a polynomial time algorithm for the decision problem PATH. (Input: a graph G, two vertices u, v and an integer k. Output: Yes if G contains a $u-v$ path of length at most k, No otherwise.) Also show how to convert in the other direction, i.e. starting with a polynomial time algorithm for PATH, construct a polynomial time algorithm for SP.
4. Recall the decision problems HAMILTONIAN-CYCLE (HC) and TRAVELING-SALSEMANPROBLEM (TSP).

HC: Given a graph G, determine whether or not G contains a Hamiltonian cycle (a cycle that visits every vertex in G).
TSP: Given a complete graph K_{n}, a weight function $d: E\left(K_{n}\right) \rightarrow \mathbb{R}$, and a bound $b \geq 0$, determine whether or not K_{n} contains a Hamiltonian cycle of total weight no more than b.

Recall also the mapping $f: \mathrm{HC} \rightarrow$ TSP that takes instances of HC to instances of TSP, defined as follows. Given a graph G with $|V(G)|=n$, identify $V(G)$ with $V\left(K_{n}\right)$, define $d: E\left(K_{n}\right) \rightarrow \mathbb{R}$ by

$$
d(u, v)= \begin{cases}1 & \text { if }\{u, v\} \in E(G) \\ 2 & \text { if }\{u, v\} \notin E(G)\end{cases}
$$

and let $b=n$.
a. Prove that if G is a Yes instance of HC, then $f(G)$ is a Yes instance of TSP.
b. Prove that if $f(G)$ is a Yes instance of TSP, then G is a Yes instance of HC.
c. Explain how $f(G)$ can be computed in polynomial time. (Make some assumption as to how G will be represented, such as adjacency-list, adjacency-matrix, or incidence-matrix.)
5. Suppose we are given 4 gold bars (labeled 1, 2, 3, 4), one of which may be counterfeit: gold-plated tin (lighter than gold) or gold-plated lead (heavier than gold). Again the problem is to determine which bar, if any, is counterfeit and what it is made of. The only tool at your disposal is a balance scale, each use of which produces one of three outcomes: tilt left, balance, or tilt right.
a. Use a decision tree argument to prove that at least 2 weighings must be performed (in worst case) by any algorithm that solves this problem. Carefully enumerate the set of possible verdicts.
b. Determine an algorithm that solves this problem using 3 weighings (in worst case). Express your algorithm as a decision tree.
c. Find an adversary argument that proves 3 weighings are necessary (in worst case), and therefore the algorithm you found in (b) is best possible. (Hint: study the adversary argument for the min-max problem discussed in class to gain some insight into this problem. Further hint: put some marks on the 4 bars and design an adversary strategy that, on each weighing, removes the fewest possible marks, then show that if the balance scale is only used 2 times, not enough marks will be removed.)
6. (This is Problem 34.1-6 page 1061 of CLRS, see pages $1057-58$ for definitions.) Show that the class P, viewed as a set of languages, is closed under union, intersection, concatenation, complement, and Kleene star. That is, if $L_{1}, L_{2} \in P$, then $L_{1} \cup L_{2} \in P, L_{1} \cap L_{2} \in P, L_{1} L_{2} \in P, \overline{L_{1}} \in P$, and $L_{1}^{*} \in P$.
7. Recall the coin changing problem again. Given denominations $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and an amount N, determine the number of coins in each denomination necessary to disburse N units using the fewest possible coins. Assume that there is an unlimited supply of coins in each denomination. Prove that the greedy strategy works for any amount N with the coin system $d=(1,5,10,25)$.
8. Scheduling to Minimize Average Completion Time: (This is problem 16-2a on page 402 of CLRS.) Suppose you are given a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of tasks, where task a_{i} requires p_{i} units of processing time to complete, once it has started. You have one computer on which to run these tasks, and the computer can run only one task at a time. Let c_{i} be the completion time of task a_{i}, that is, the time at which task a_{i} completes processing. Your goal is to minimize the average completion time, that is to minimize the quantity $(1 / n) \sum_{i=1}^{n} c_{i}$. For example, suppose there are two tasks, a_{1} and a_{2}, with $p_{1}=3$ and $p_{2}=5$, and consider the schedule in which a_{2} runs first, followed by a_{1}. Then $c_{2}=5, c_{1}=8$, and the average completion time is $(5+8) / 2=6.5$.

Give an algorithm that schedules the tasks so as to minimize the average completion time. Each task must run non-preemptively, that is, once task a_{i} is started, it must run continuously for p_{i} units of time. Prove that your algorithm minimizes the average completion time, and state the running time of your algorithm.
9. Let $B=b_{1} b_{2} \ldots b_{n}$ be a bit string of length n. Consider the following problem: determine whether or not B contains 3 consecutive 1's, i.e. whether B contains the substring "111". Consider algorithms that solve this problem whose only allowable operation is to peek at a bit.
a. Suppose $n=4$. Obviously 4 peeks are sufficient. Give an adversary argument showing that in general, 4 peeks are also necessary. (Hint: this is similar to problem 5 on hw7, and has a similar solution.)
b. Suppose $n \geq 5$. Give an adversary argument showing that $4 \cdot[n / 5]$ peeks are necessary. (Hint: divide B into $\lfloor n / 5\rfloor$ 4-bit blocks separated by 1-bit gaps between them. Thus bits 1-4 form the first block, and bit 5 is the first gap. Bits 6-9 form the next block and bit 10 is the next gap, etc.. Any leftover bits form a separate block. Now run the adversary from part (a) on each of the 4-bit blocks.)

