CMPS 201
Final Review Problems

Be sure to review all prior homework assignments, midterm exams, and their solutions. Review all examples
covered in class.

1. Suppose T (n) satisfies the recurrence T(n) = 3T (n/4) + F(n), where F (n) itself satisfies the recurrence
F(n) = 5F (n/9) + n3/*. Find a tight asymptotic bound for T(n) . Be sure to fully justify each use of the
Master Theorem. (Hint: loge(5) < 3/4 < log,(3).)

2. Recall that {0, 1}* denotes the set of all bit-strings of any finite length. A language L is a collection of bit-
strings, i.e. a subset L < {0,1}*. Let A(x) be an algorithm whose input is a bit-string x € {0,1}*, and
whose output is 0 or 1,

a. Define what it means for a language L to be accepted by A.
b. Define what it means for a language L to be decided by A.

3. Show that any polynomial time algorithm for the optimization problem SP (SHORTEST-PATH) can be
converted to a polynomial time algorithm for the decision problem PATH. (Input: a graph G, two vertices
u, v and an integer k. Output: Yes if G contains a u-v path of length at most k, No otherwise.) Also show
how to convert in the other direction, i.e. starting with a polynomial time algorithm for PATH, construct a
polynomial time algorithm for SP.

4. Recall the decision problems HAMILTONIAN-CYCLE (HC) and TRAVELING-SALSEMAN-
PROBLEM (TSP).

HC: Given a graph G, determine whether or not G contains a Hamiltonian cycle
(a cycle that visits every vertex in G).

TSP: Given a complete graph K,,, a weight function d: E (K,,) —» R, and a bound
b > 0, determine whether or not K,, contains a Hamiltonian cycle of total
weight no more than b.

Recall also the mapping f:HC — TSP that takes instances of HC to instances of TSP, defined as follows.
Given a graph G with |V (G)| = n, identify V(G) with V(K,,), define d: E(K,,) = R by

1 if{u,v} € E(G)

d(wv) = {2 if (u, v} & E(G),

and let b = n.

a. Provethatif G is a Yes instance of HC, then f(G) is a Yes instance of TSP.

Prove that if £(G) is a Yes instance of TSP, then G is a Yes instance of HC.

c. Explain how f(G) can be computed in polynomial time. (Make some assumption as to how G will
be represented, such as adjacency-list, adjacency-matrix, or incidence-matrix.)

o

5. Suppose we are given 4 gold bars (labeled 1, 2, 3, 4), one of which may be counterfeit: gold-plated tin
(lighter than gold) or gold-plated lead (heavier than gold). Again the problem is to determine which bar,
if any, is counterfeit and what it is made of. The only tool at your disposal is a balance scale, each use of
which produces one of three outcomes: tilt left, balance, or tilt right.

a. Use a decision tree argument to prove that at least 2 weighings must be performed (in worst case) by
any algorithm that solves this problem. Carefully enumerate the set of possible verdicts.

b. Determine an algorithm that solves this problem using 3 weighings (in worst case). EXxpress your
algorithm as a decision tree.

c. Find an adversary argument that proves 3 weighings are necessary (in worst case), and therefore the
algorithm you found in (b) is best possible. (Hint: study the adversary argument for the min-max
problem discussed in class to gain some insight into this problem. Further hint: put some marks on the
4 bars and design an adversary strategy that, on each weighing, removes the fewest possible marks,
then show that if the balance scale is only used 2 times, not enough marks will be removed.)

6. (This is Problem 34.1-6 page 1061 of CLRS, see pages 1057-58 for definitions.) Show that the class P,
viewed as a set of languages, is closed under union, intersection, concatenation, complement, and Kleene
star. Thatis, ifL,,L, € P,thenL, UL, € P,LyNL, € P, L L, € P,L; € P,and L] € P.

7. Recall the coin changing problem again. Given denominations d = (d,,d,, ..., d,) and an amount N,
determine the number of coins in each denomination necessary to disburse N units using the fewest possible
coins. Assume that there is an unlimited supply of coins in each denomination. Prove that the greedy
strategy works for any amount N with the coin system d = (1,5, 10, 25).

8. Scheduling to Minimize Average Completion Time: (This is problem 16-2a on page 402 of CLRS.)
Suppose you are given aset S = {a,, a,, ..., a, } of tasks, where task a; requires p; units of processing time
to complete, once it has started. You have one computer on which to run these tasks, and the computer
can run only one task at a time. Let ¢; be the completion time of task a;, that is, the time at which task a;
completes processing. Your goal is to minimize the average completion time, that is to minimize the
quantity (1/n) Y;i=, ¢;. For example, suppose there are two tasks, a; and a,, with p, = 3 and p, = 5, and
consider the schedule in which a, runs first, followed by a;. Then ¢, =5, ¢; = 8, and the average
completion time is (5 + 8)/2 = 6.5.

Give an algorithm that schedules the tasks so as to minimize the average completion time. Each task must
run non-preemptively, that is, once task a; is started, it must run continuously for p; units of time. Prove
that your algorithm minimizes the average completion time, and state the running time of your algorithm.

9. LetB = b,b, ... b, be abit string of length n. Consider the following problem: determine whether or not
B contains 3 consecutive 1's, i.e. whether B contains the substring "111". Consider algorithms that solve
this problem whose only allowable operation is to peek at a bit.

a. Supposen = 4. Obviously 4 peeks are sufficient. Give an adversary argument showing that in general,
4 peeks are also necessary. (Hint: this is similar to problem 5 on hw7, and has a similar solution.)

b. Supposen > 5. Give an adversary argument showing that 4 - |[n/5] peeks are necessary. (Hint: divide
B into [n/5] 4-bit blocks separated by 1-bit gaps between them. Thus bits 1-4 form the first block, and
bit 5 is the first gap. Bits 6-9 form the next block and bit 10 is the next gap, etc.. Any leftover bits
form a separate block. Now run the adversary from part (a) on each of the 4-bit blocks.)

