
CMPS 201 

Final Review Problems 
 

Be sure to review all prior homework assignments, midterm exams, and their solutions.  Review all examples 

covered in class. 

 

1. Suppose 𝑇(𝑛) satisfies the recurrence 𝑇(𝑛) = 3𝑇(𝑛/4) + 𝐹(𝑛), where 𝐹(𝑛) itself satisfies the recurrence 

𝐹(𝑛) = 5𝐹(𝑛/9) + 𝑛3/4.  Find a tight asymptotic bound for )(nT .  Be sure to fully justify each use of the 

Master Theorem.  (Hint: log9(5) < 3/4 < log4(3).) 

 

2. Recall that {0, 1}∗ denotes the set of all bit-strings of any finite length.  A language 𝐿 is a collection of bit-

strings, i.e. a subset 𝐿 ⊆ {0, 1}∗.  Let 𝐴(𝑥) be an algorithm whose input is a bit-string 𝑥 ∈ {0, 1}∗, and 

whose output is 0 or 1. 

a. Define what it means for a language 𝐿 to be accepted by 𝐴. 

b. Define what it means for a language 𝐿 to be decided by 𝐴.   

 

3. Show that any polynomial time algorithm for the optimization problem SP (SHORTEST-PATH) can be 

converted to a polynomial time algorithm for the decision problem PATH. (Input: a graph G, two vertices 

u, v and an integer k.  Output: Yes if G contains a u-v path of length at most k, No otherwise.)  Also show 

how to convert in the other direction, i.e. starting with a polynomial time algorithm for PATH, construct a 

polynomial time algorithm for SP.   

 

4. Recall the decision problems HAMILTONIAN-CYCLE (HC) and TRAVELING-SALSEMAN-

PROBLEM (TSP). 

 

HC:     Given a graph G, determine whether or not G contains a Hamiltonian cycle 

(a cycle that visits every vertex in G). 

TSP:    Given a complete graph 𝐾𝑛, a weight function 𝑑: 𝐸(𝐾𝑛) → ℝ, and a bound 

𝑏 ≥ 0, determine whether or not 𝐾𝑛 contains a Hamiltonian cycle of total 

weight no more than b. 

 

Recall also the mapping 𝑓:HC → TSP that takes instances of HC to instances of TSP, defined as follows.  

Given a graph G with |𝑉(𝐺)| = 𝑛, identify 𝑉(𝐺) with 𝑉(𝐾𝑛), define 𝑑: 𝐸(𝐾𝑛) → ℝ by 

 

𝑑(𝑢, 𝑣) = {
 1  if {𝑢, 𝑣} ∈ 𝐸(𝐺)

 2   if {𝑢, 𝑣} ∉ 𝐸(𝐺),
 

 

and let 𝑏 = 𝑛. 

 

a. Prove that if 𝐺 is a Yes instance of HC, then 𝑓(𝐺) is a Yes instance of TSP. 

b. Prove that if 𝑓(𝐺) is a Yes instance of TSP, then 𝐺 is a Yes instance of HC. 

c. Explain how 𝑓(𝐺) can be computed in polynomial time.  (Make some assumption as to how 𝐺 will 

be represented, such as adjacency-list, adjacency-matrix, or incidence-matrix.) 

 

5. Suppose we are given 4 gold bars (labeled 1, 2, 3, 4), one of which may be counterfeit: gold-plated tin 

(lighter than gold) or gold-plated lead (heavier than gold).  Again the problem is to determine which bar, 

if any, is counterfeit and what it is made of.  The only tool at your disposal is a balance scale, each use of 

which produces one of three outcomes:  tilt left, balance, or tilt right. 

 



a. Use a decision tree argument to prove that at least 2 weighings must be performed (in worst case) by 

any algorithm that solves this problem.  Carefully enumerate the set of possible verdicts. 

b. Determine an algorithm that solves this problem using 3 weighings (in worst case).  Express your 

algorithm as a decision tree. 

c. Find an adversary argument that proves 3 weighings are necessary (in worst case), and therefore the 

algorithm you found in (b) is best possible.  (Hint: study the adversary argument for the min-max 

problem discussed in class to gain some insight into this problem.  Further hint: put some marks on the 

4 bars and design an adversary strategy that, on each weighing, removes the fewest possible marks, 

then show that if the balance scale is only used 2 times, not enough marks will be removed.) 

 

6. (This is Problem 34.1-6 page 1061 of CLRS, see pages 1057-58 for definitions.)  Show that the class P, 

viewed as a set of languages, is closed under union, intersection, concatenation, complement, and Kleene 

star.  That is, if 𝐿1, 𝐿2 ∈ 𝑃, then 𝐿1 ∪ 𝐿2 ∈ 𝑃, 𝐿1 ∩ 𝐿2 ∈ 𝑃, 𝐿1𝐿2 ∈ 𝑃, 𝐿1
̅̅ ̅ ∈ 𝑃, and 𝐿1

∗ ∈ 𝑃. 

 

7. Recall the coin changing problem again. Given denominations 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) and an amount N, 

determine the number of coins in each denomination necessary to disburse N units using the fewest possible 

coins.  Assume that there is an unlimited supply of coins in each denomination.  Prove that the greedy 

strategy works for any amount 𝑁 with the coin system 𝑑 = (1, 5, 10, 25).   

 

8. Scheduling to Minimize Average Completion Time: (This is problem 16-2a on page 402 of CLRS.)  

Suppose you are given a set 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} of tasks, where task 𝑎𝑖 requires 𝑝𝑖 units of processing time 

to complete, once it has started.  You have one computer on which to run these tasks, and the computer 

can run only one task at a time.  Let 𝑐𝑖 be the completion time of task 𝑎𝑖, that is, the time at which task 𝑎𝑖 

completes processing.  Your goal is to minimize the average completion time, that is  to minimize the 

quantity (1/𝑛) ∑ 𝑐𝑖
𝑛
𝑖=1 .  For example, suppose there are two tasks, 𝑎1 and 𝑎2, with 𝑝1 = 3 and 𝑝2 = 5, and 

consider the schedule in which 𝑎2 runs first, followed by 𝑎1.  Then 𝑐2 = 5, 𝑐1 = 8, and the average 

completion time is (5 + 8)/2 = 6.5. 

 

Give an algorithm that schedules the tasks so as to minimize the average completion time.  Each task must 

run non-preemptively, that is, once task 𝑎𝑖 is started, it must run continuously for 𝑝𝑖 units of time.  Prove 

that your algorithm minimizes the average completion time, and state the running time of your algorithm. 

 

9. Let 𝐵 = 𝑏1𝑏2 … 𝑏𝑛 be a bit string of length 𝑛.  Consider the following problem: determine whether or not 

𝐵 contains 3 consecutive 1's, i.e. whether 𝐵 contains the substring "111".  Consider algorithms that solve 

this problem whose only allowable operation is to peek at a bit.  

 

a. Suppose 𝑛 = 4.  Obviously 4 peeks are sufficient.  Give an adversary argument showing that in general, 

4 peeks are also necessary.  (Hint: this is similar to problem 5 on hw7, and has a similar solution.) 

b. Suppose 𝑛 ≥ 5.  Give an adversary argument showing that 4 ⋅ ⌊𝑛/5⌋ peeks are necessary.  (Hint: divide 

𝐵 into ⌊𝑛/5⌋ 4-bit blocks separated by 1-bit gaps between them.  Thus bits 1-4 form the first block, and 

bit 5 is the first gap.  Bits 6-9 form the next block and bit 10 is the next gap, etc..  Any leftover bits 

form a separate block.  Now run the adversary from part (a) on each of the 4-bit blocks.) 

 


