
CMPS 201

Midterm 1

Review Problems

1. Let 𝑇(𝑛) satisfy the recurrence 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛), where 𝑎 ≥ 1, 𝑏 > 1 and 𝑓(𝑛) is a polynomial

satisfying deg(𝑓) > log𝑏(𝑎). Prove that case (3) of the Master Theorem applies, and in particular, prove

that the regularity condition necessarily holds.

2. The 𝑛th harmonic number is defined to be 𝐻𝑛 = ∑ (
1

𝑘
)𝑛

𝑘=1 = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛−1
+

1

𝑛
. Use induction to

prove that

∑ 𝐻𝑘

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛 − 𝑛

for all 𝑛 ≥ 1. (Hint: Use the fact that 𝐻𝑛 = 𝐻𝑛−1 +
1

𝑛
.)

3. Define the sequence 𝑆𝑛 by the recurrence 𝑆𝑛 = (𝑛 − 1) +
𝑛−1

𝑛2 ⋅ ∑ 𝑆𝑘
𝑛−1
𝑘=1 . Use induction to prove 𝑆𝑛 ≤ 2𝑛

for all 𝑛 ≥ 1.

4. The following sorting algorithm, called BadSort() is a modified version of StoogeSort() from the 2nd

edition of CLRS, which seems to have been left out of the 3rd edition.

BadSort(𝐴, 𝑝, 𝑟) pre: 𝑝 ≤ 𝑟

1. if 𝐴[𝑝] > 𝐴[𝑟]
2. 𝐴[𝑝] ↔ 𝐴[𝑟] (swap)

3. if 𝑝 + 1 ≥ 𝑟

4. return

5. else

6. 𝑞 = ⌊(𝑟 − 𝑝 + 1)/3⌋
7. BadSort(𝐴, 𝑝, 𝑟 − 𝑞)

8. BadSort(𝐴, 𝑝 + 𝑞, 𝑟)

9. BadSort(𝐴, 𝑝, 𝑟 − 𝑞)

a. Use induction on the length 𝑚 = 𝑟 − 𝑝 + 1 of 𝐴[𝑝 ⋯ 𝑟] to prove the correctness of BadSort().

b. Write a recurrence relation for the number of array comparisons performed by BadSort() on an array

of length 𝑛.

c. Use the Master Theorem to find an asymptotic solution to this recurrence, and explain what is bad

about BadSort().

5. Simplify the recurrence for MergeSort() by assuming that n is an exact power of 2; 𝑛 = 2𝑘 for some integer

𝑘 ≥ 0.

𝑇(𝑛) = {
 0 𝑛 = 1

 2𝑇 (
𝑛

2
) + (𝑛 − 1) 𝑛 ≥ 2, 𝑛 = 2𝑘

Use the iteration method to find an exact solution to this recurrence.

6. Write a recursive algorithm (modeled on MergeSort()) that determines if an array is sorted, i.e. given an

array 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑛) as input, return TRUE/FALSE iff A is/is-not arranged in increasing order. Prove

the correctness of your algorithm. Write a recurrence for the number 𝑇(𝑛) of array comparisons performed

by your algorithm. Check that 𝑇(𝑛) = 𝑛 − 1 is the exact solution to your recurrence.

7. Given 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑛), a pair of indices (𝑖, 𝑗) is called an inversion iff both 𝑖 < 𝑗 and 𝐴𝑖 > 𝐴𝑗. Write

a recursive algorithm that determines the number of inversions in its input array A. Do this in such a way

that the worst case number of comparisons performed is 𝑇(𝑛) = Θ(𝑛 log 𝑛). (Hint: modify MergeSort()

so that it counts inversions as it sorts.)

