CMPS 201

Final Review Problems

Be sure to review all prior homework assignments, midterm exams, and their solutions. Review all examples covered in class.

1. Suppose $T(n)$ satisfies the recurrence $T(n)=3 T(n / 4)+F(n)$, where $F(n)$ itself satisfies the recurrence $F(n)=5 F(n / 9)+n^{3 / 4}$. Find a tight asymptotic bound for $T(n)$. Be sure to fully justify each use of the Master Theorem. (Hint: $\log _{9}(5)<3 / 4<\log _{4}$ (3).)
2. Let T be a k-ary tree with n leaves and height h. Prove that $h \geq\left\lceil\log _{k}(n)\right\rceil$. (Hint: Let $L(T)$ and $H(T)$ denote the number of leaves and the height (respectively) of the tree T, then proceed by induction on $h=$ $H(T)$.)
3. Suppose you are given an unlimited supply of coins in each of the n denominations $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, and a number N of monetary units to be paid out using the least possible number of coins.
a. Write a dynamic programming algorithm that takes as input the vector d and the number N, and returns the value of an optimal solution, i.e. the least number of coins necessary to pay N units, or returns ∞ if it is not possible to disburse N units using denominations d.
b. Write a recursive procedure that, given the table of sub-instance solutions generated by the algorithm in (a), prints out a list of coins to be disbursed, i.e. print the optimum solution itself.
4. Given n objects with values $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and corresponding weights $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, a thief wishes to steal a subset of the objects of maximum total value, and whose total weight does not exceed the capacity W of his knapsack.
a. Write a dynamic programming algorithm that takes the vectors v and w and the number W, and returns the value of an optimal solution, i.e. the maximum value that can be stolen.
b. Write a recursive algorithm that, given the table of sub-instance solutions generated by the algorithm in (a), prints out the optimum solution itself, i.e. prints out a list of which objects to steal.
5. State and prove a theorem the establishes that the principle of optimality holds for the Shortest-Path (SP) problem. (Input: a graph and two vertices (G, u, v). Output: the length of a shortest $u-v$ path in G.) In other words, explain how and why a shortest path is composed of shortest paths.
6. Recall that $\{0,1\}^{*}$ denotes the set of all bit-strings of any length. A language L is simply a collection of bit-strings, i.e. a subset $L \subseteq\{0,1\}^{*}$. Let $A(x)$ be an algorithm whose input is a bit-string $x \in\{0,1\}^{*}$, and whose output is 0 or 1 .
a. Define what it means for a language L to be decided in polynomial time by the algorithm $A()$.
b. Define the complexity class P. (Hint: recall that P is a set of languages.)
c. Let $A(x, y)$ be an algorithm whose input is two bit-strings $x, y \in\{0,1\}^{*}$, and whose output is 0 or 1 . The string x represents a problem instance, any y is called a certificate. Define what it means for a language L to be verified in polynomial time by $A($,$) .$
d. Define the complexity class $N P$. (Hint: again $N P$ is a set of languages.)
7. Given languages $L_{1}, L_{2} \in P$, prove that $L_{1} \cap L_{2} \in P$ and $L_{1} L_{2} \in P$.
8. Show that any polynomial time algorithm for the optimization problem SP (defined in problem 5 above) can be converted to a polynomial time algorithm for the decision problem Path. (Input: a graph G, two vertices u, v and an integer k. Output: Yes if G contains a $u-v$ path of length at most k, No otherwise.) Also show how to convert in the other direction, i.e. starting with a polynomial time algorithm for Path, construct a polynomial time algorithm for SP.
9. Recall the decision problems Hamiltonian Cycle (HC) and Travelling Salesman (TSP).

HC: Given a graph G, determine whether or not G contains a Hamiltonian cycle (a cycle that visits every vertex in G).
TSP: Given a complete graph K_{n}, a weight function $d: E\left(K_{n}\right) \rightarrow \mathbb{R}$, and a bound $b \geq 0$, determine whether or not K_{n} contains a Hamiltonian cycle of total weight no more than b.

Recall also the mapping $f: \mathrm{HC} \rightarrow$ TSP that takes instances of HC to instances of TSP, defined as follows. Given a graph G with $|V(G)|=n$, identify $V(G)$ with $V\left(K_{n}\right)$, define $d: E\left(K_{n}\right) \rightarrow \mathbb{R}$ by

$$
d(u, v)= \begin{cases}1 & \text { if }\{u, v\} \in E(G) \\ 2 & \text { if }\{u, v\} \notin E(G)\end{cases}
$$

and let $b=n$.
a. Prove that if G is a Yes instance of HC, then $f(G)$ is a Yes instance of TSP.
b. Prove that if $f(G)$ is a Yes instance of TSP, then G is a Yes instance of HC.
c. Explain how $f(G)$ can be computed in polynomial time. (Make some assumption as to how G will be represented, such as adjacency-list, adjacency-matrix, or incidence-matrix.)

