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Abstract
Preserving data for a long period of time in the face of faults,
large and small, is crucial for designing reliable archival
storage systems. However, the survivability of data is dif-
ferent from the reliability of storage because typically, data
are stored in more than one storage at a given moment. Pre-
vious studies of reliability ignore the former. We present a
framework for relating data survivability and storage relia-
bility, and use the framework to gauge the impact of rare
but large-scale events on data survivability. We also present
a method to track all copies of data and the condition of all
the online and offline media, devices and systems on which
they are stored uninterruptedly over the whole lifetime of the
data. With this method, the survivability of the data can be
closely monitored, and potential dangers can be handled in
a timely manner. A better understanding of data survivabil-
ity can be used in reducing unnecessary data replicas, thus
reducing the cost.

1. Introduction
As computer systems are taking more and more responsi-
bility in processing critical information and data, the need
for reliable data storage is ever-increasing. However, from
time to time we hear of high profile data loss accidents,
such as NASA’s missing Apollo project tapes that contained
the original footage of the Apollo 11 moonwalk [16], on-
line backup provider Carbonite’s 2004 accident [32] that
damaged over 7,500 customers’ data, and the recent acci-
dent in which cloud computing provider Amazon lost data
in one of its Availability Zones within the US East Region
in 2011 [31]. These accidents indicate that we need a bet-
ter understanding of data survivability as well as improved
methods for calculating it in large-scale and complex sys-
tems.
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There has been a great deal of research in improving
the understanding of storage reliability by using reliability
metrics, measurement of failure trends in the field, and error
detection and recovery. However, the storage solutions in
the real world are often so complex that calculating data
survivability is difficult, to the degree that people believe
“our inability to compute how many backup copies we need
to achieve a reliability target is something we are just going
to have to live with.” [24]

Previous research on storage reliability falls short in sev-
eral aspects. First, it fails to differentiate survivability of data
from reliability of storage, even though in most cases these
two measures are not the same. In most archival storage sys-
tems, data are replicated across several systems, sites, and
backup media, so the survivability of the data is based on the
combined reliability of these storage. However, a systematic
study on data survivability in complex storage is absent.

Second, there’s still no easy way to answer a question like
“Is our data safe enough?” People try to increase the safety
of their data by following practices like deploying more
backup servers and creating offsite replicas. But quite often
these practices are carried out without having a quantitative
analysis of their contribution to data survivability versus
their cost; thus, data loss (safety lower than expectation)
and overspending (safety higher than necessary) are still
common.

Third, the correlation between failures, especially those
caused by rare but large-scale events, are not taken seriously
enough. There has been some work on the impact of corre-
lated failures in wide-area systems [19], but little work on
quantifying this problem and providing a framework to min-
imize its impact. Events that impact many replicas at once,
such as human errors and earthquakes, can greatly reduce
data surviviability. To address this issue, system designers
and maintainers have developed conventions, such as acquir-
ing devices from multiple vendor, and keeping replicas geo-
logically distributed. There are few if any quantified analysis
of them; thus, people are not sure if these practices are suffi-
ciently good for archival storage, which must preserve data
for a very long time.

There are some other situations that are often overlooked
in reliability studies, such as data safety during transporta-



tion. Suppose a data center is to be relocated, and storage and
media must be put on a vehicle and transferred to another
location. The chance for a vehicle to crash on the road is
much higher than that of storage safely kept in a data center;
thus, during transportation, the data’s safety is very likely to
be lower than the requirement. Shall we create extra repli-
cas before transportation? Or shall we plan the transporta-
tion carefully so that no two replicas of one data object are
transported at the same time?

This paper proposes a systematic way to solve these prob-
lems. Instead of using a microscope and studying the relia-
bility of a device or a system, we step back to have a broader
view, in order to quantify the survivability of data objects
stored in heterogeneous storage systems. The contribution
of this paper includes:

1. A model to calculate the survivability of data objects
stored on heterogeneous storage systems. This model is
easy to understand and use, targeting real world data
center management.

2. The use of a Reliability Transition Function to calculate
reliability of a storage system from the reliability of un-
derlying devices.

3. Combining the device’s reliability model and S.M.A.R.T.
events in calculating the reliability of devices.

4. Quantifying the impact of large-scale events, such as
earthquakes, on the survivability of data.

5. Using the result from this model to reduce the cost of
storage systems and achieve better data survivability by
techniques such as improving data layout algorithm and
scrubbing planning.

2. Background
2.1 Demand and Regulations
In the storage system research area, there is a rising trend
to take reliability of storage more and more seriously. One
reason is that much of the culturally and historically signif-
icant information is born digital these days and, if not pre-
served correctly, is easily lost forever. To address this con-
cern, a lot of effort is going into designing archival storage
systems for organizations such as libraries and the govern-
ment [10, 11, 18]. Understanding the survivability of data
is paramount for archival storage systems because the most
important design goal for such systems is to ensure the sur-
vival of the data for a very long period of time—the whole
idea of archival storage would be meaningless if the safety
of the data can’t be guaranteed.

On the industrial and business side, regulations such as
the Health Insurance Portability and Accountability Act of
1996 (HIPAA) and Sarbanes-Oxley Act of 2002 demand
that important business and medical data must be retained
for varying period of time, requiring better data preservation
methods.

2.2 Metrics and Models
Since Patterson and Gibson’s work on RAID [22], MTTDL
(Mean Time To Data Loss) has been widely used in both re-
search and industry as a standard metric for analyzing the re-
liability of storage systems. However, as Greenan et al. [15]
point out, MTTDL is an expectation of time to fail over an
infinite interval, which is good for quick, relative compar-
ison, but not meaningful for understanding the real surviv-
ability of data. To address this issue, he proposed to use Nor-
malized Magnitude of Data Loss (NOMDL) for measuring
the reliability of systems. NOMDLt is the expected amount
of data lost (in bytes) in a system within time t normalized
to the system’s usable capacity. The importance of this study
is that it quantified data loss rate per unit time, broaching the
idea that different data objects stored on the same devices
can have drastically different survivability.

At the lowest level of a storage solution lies the devices,
such as hard drives, tapes, and solid-state drives (SSD). A
traditional rotating magnetic platter hard drive is a complex
system, and many studies have revealed its reliability charac-
teristics, including the Mean Time Between Failure (MTBF)
and Annual Failure Rate (AFR) often given by vendors.
However, MTBF and AFR are population statistics and are
not relevant to individual units. A vendor-quoted MTBF im-
plies that half the drives in a large population will fail within
that time of operation. Several studies [23, 25] provide real
world data of hard drive failure patterns. Tape is still widely
used in enterprise data center and as archival storage. Gart-
ner and Storage Magazine reported that about 34% of com-
panies never test a restore from tape. Of those that do test,
77% experienced failures in their tape backups [7]. SSD is
still a comparatively new kind of device, so research and
statistics about their reliability are scarce. However, consid-
ering the high complexity in both the manufacturing process
and control software algorithms, the current generation of
SSD products is not expected to be as reliable as the old ro-
tating platter hard drives in data center usage [27].

At the system level, Markov models are used widely for
modeling, since they are suitable for analyzing systems that
can be precisely defined as transitions between finite states,
where the transitions follow some known distribution that
can be expressed in closed-form expressions. Within this
category, a lot of study has been done using both analytical
and simulation methods [5, 12, 13, 15]. Markov model-
based analysis and simulation can give useful information
for understanding a specific device given all the detailed
internal information of that device, and can also be used
to describe simple replica and erasure code-based systems
like RAID. However, its usage in analyzing complex devices
with unknown properties is limited.

When it comes to storage algorithms and system designs
that are of high complexity, people tend to withdraw from
these formal mathematical tools and simply assume that cre-
ating more replicas means higher safety. There’s a disparity



between studies that model a specific storage medium or de-
vice and studies that introduce new storage algorithms or
systems. For the former, the designer normally uses some
kind of probability distribution model to describe the failure
of components, which is based upon the observation that as
devices grow older, they will become more and more unre-
liable [3, 9, 12, 13, 15, 22]. For the later category of stud-
ies, people simply assume that creating more copies means
higher safety for the data, largely due to that fact that a pre-
cise mathematical model is so hard to build due to the sheer
complexity of the new algorithm or system [18, 28, 30, 33].

2.3 Increasingly Heterogeneous Storage
Broadly speaking, most data in mid-scale to large-scale or-
ganizations are stored in heterogeneous storage solutions, as
illustrated in Figure 1.

Gladney [11] and Giaretta [10] studied the motivation be-
hind using heterogeneous archival storage systems. Gener-
ally speaking, factors that contribute to the evolution of a
storage solution into a heterogeneous system include:

• Technology obsolescence: old vendors may go away, and
spare parts for old devices are no longer produced.

• Leveraging new technology for better performance and
total cost of ownership: new storage products are intro-
duced to the market every day, so it’s natural for users to
pick up the most cost-effective device when replacing old
parts. [23].

• Budget and resource changes may introduce new con-
straints: budget, power, rack space, staff, etc.

• To avoid spike correlated failures among devices, it’s a
common practice for data centers to procure devices from
competing vendors from the market [23].

A given piece of data in such a heterogeneous environ-
ment can be stored on one or more of those systems at a
given moment. Systems such as Logan [29] can help au-
tomate management of heterogeneous archival storage sys-
tems, alleviating the management overhead of data migra-
tion and device upgrading. However, there’s no easy way to
understand the survivability of data in such a complex solu-
tion.

2.4 Large-scale Disasters
Since archival storage is expected to survive for a very long
time, it is likely that during their lifetime some rare but large-
scale events may eventually occur. These events include
intrusion, malware infection, earthquakes, terrorist attack,
theft, fire, war, or even just a power surge. Such disasters can
trigger other types of threat, such as media, hardware, and
organizational faults [3]. Unfortunately, quantitative analysis
of these rare events are scarce.

3. The Model
This model is an analytical model of data survivability. Gen-
erally speaking, it examines all devices used in an organiza-
tion in a bottom-up manner. Each data object is treated in-
dividually according to its storage allocation on physical de-
vices. First, for each object, the underlying devices on which
it is stored are examined and the reliability of each device is
calculated. Second, the reliability information of each device
is merged together at the system level, taking into consider-
ation the system’s design and the storage algorithm’s char-
acteristics. Third, the effect of large-scale events that may
affect more than one storage systems are calculated. Fourth,
all the information above is combined to give an estimation
of the data’s current survivability, as well as the projection
for survivability into future. The survivability can also be
checked against set policies and standards, raising an alert if
it is below the desired level.

3.1 Terminology
In the remainder of this paper, we use the following terms:

Data object (DO) The smallest unit of information. In pop-
ular file based systems, files can be directly treated as
DOs. A DO is itself meaningful and can’t be broken
down further. For a DO without error-correcting code
(ECC) protection, flipping one random bit can corrupt it
and render it useless. Objects that contain ECC can toler-
ate some degree of damage.

Device A physical device that stores bits. Common storage
devices include hard drive, SSD, tape, compact disc, etc.
It’s worth noting that in this paper’s context, removable
media are also devices. Since it’s a common practice
to store DOs on both online and offline backup media,
unifying both kinds of storage under the name “device”
helps us address the calculation of reliability in a coher-
ent way. Because removable media can be stored, read
and written separately, one piece of removable media is
treated as one device in the following discussion.

Device property A physical property of a device that can
be measured and tracked. For a rotating-platter hard
drive, the properties may include: power cycle count,
head load/unload count, seek error rate, read error rate,
power on hours, etc. Device properties vary from device
to device; for example, an SSD device can also have the
property Power On Time, but Head Seek Error rate is
meaningless for it.

Storage system A storage system consists of storage de-
vices. A storage system can be roughly seen as one or
more controlling units plus one or more devices. A desk-
top RAID network-attached storage system (NAS) is a
storage system. A large storage cluster that has hundreds
of boxes and thousands of disks is also a storage system.
Distributed systems that span multiple sites are conceptu-
ally divided into one or more system per site for easy cal-
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Figure 1. A Heterogeneous Storage Solution

culation when we talk about large-scale events later. An
online storage service provider is also seen as a storage
system in this paper, though it may not have any physical
device that we can track. Storage system is abbreviated
as “system” in most cases.

Storage solution A storage solution consists of storage sys-
tems. It is the whole solution an organization (or an in-
dividual) deploys to store its data. In the context of this
paper, a storage solution is distinguished from a storage
system in the sense that for one organization, there is only
one storage solution, which includes all deployed stor-
age systems. For example, a large organization may have
one storage solution that consists of large storage clus-
ters with hundreds of boxes and spans multiple sites, plus
nearline storage and offline tape/CD backup, as we have
shown in Figure 1. No matter how complex it may be, it is
still one storage solution. Storage solution is abbreviated
as “solution” in the following text.

Time Time in this paper flows continually from 0. The vari-
able’s unit is hour in practical calculations and charts.

The relationship between storage devices, systems and
solution can be expressed as:

1. DOs are kept in one storage solution.

2. A storage solution consists of one or more storage sys-
tems, which can be from one or more vendors.

3. A storage system consists of one or more storage devices.

There’s no perfect model that can precisely reflect the
complex world of long-term storage, but in order to make
our model useful for guiding the management of DOs and
systems, we make this first assumption for the calculation of
survivability: we always aim at the theoretical lower bound.
Instead of trying to get a precise figure for survivability
by using complex simulation models, we use an analytical
model to get the theoretical lower bound of survivability.
Since the goal of calculating survivability in this paper is
to guide solution design and deployment, it’s not bad if the
system performs better than the model predicted. However, it

will be a disaster if the model predicts that data is safer than
it really is, since this may result in a much higher likelihood
of unexpected system failure. Therefore, instead of using
simulation methods that require too much simplification and
may ignore the complexity of the problem, we choose to use
the analytical method and aim at getting the theoretical lower
bound of the survivability.

We also note that, even though we are aiming at a “lower
bound”, there’s no way to guarantee that we can achieve
it, because the more threats are considered, the lower the
calculated survivability is, and it is impossible to cover all
threats. This is the reason we we call it “theoretical lower
bound”. In order to get a better lower bound, we should cover
all major threats and carefully choose the calculation method
we use.

The second assumption is that a Data Object (DO) is the
basic unit of stored digital data. As described above, DO
is the smallest unit of data that preserves the meaning and
further dividing a DO is meaningless. Although some DOs
have built-in ECC and can recover from minor damage, in
this analysis it doesn’t matter whether ECC is stored at DO
or file system level; thus, both approaches can be treated
identically mathematically. For the sake of model simplicity,
we assume ECC is always done at file system level, and that
a DO has no built-in ECC, so changing one bit of a DO
corrupts it. This assumption simplifies matters, since ECC
implemented as part of the DO format may cover different
parts of the DO at different levels. For example, an archive
may suffer only minor damage if a sector within an archived
object is damaged, but may be totally unrecoverable if the
file header or table of contents is corrupted.

3.2 Data Object’s Survivability
Most users care more about their data than about the reliabil-
ity and lifetime of a storage system. Thus, if a storage system
goes down, as long as the data is backed up somewhere else,
the user just needs to fix or replace the broken system. On
the other hand, loss of a data object might be a big threat to
the user’s business goals. This drives our first major objec-



tive: calculating the likelihood that a data object will survive
over time.

In existing literature, the survivability (survival rate) of
a data object is often treated as equal to the reliability of a
storage system, as described in the introduction and back-
ground section. For most storage solutions, however, that is
not the case. In this section, we derive a basic model for the
survivability of a Data Object.

We begin by giving the formal definition of Data Object’s
Survivability (DOS) used in this paper. The DOS of a data
object is defined as:

the probability that a data object will survive during a
specified period of time (t) under stated conditions.

Mathematically, this can be expressed as the cumulative
distribution function (CDF) of the failure probability density
function of the devices on which it’s stored:

DOS(t) = Pr{T > t} =
∫ ∞
t

f(x) dx

= 1− Pr{0 < T ≤ t} = 1−
∫ t

0

f(x) dx (1)

t is the length of the period of time (assumed to start from 0),
f(x) is the failure probability density function, and random
variable T is the DO’s lifetime.

If the user has only one copy of an object stored in one
storage system, then the upper bound of the survivability of
the data object is the reliability of that storage system. It’s an
upper bound because the object isn’t expected to survive if
the storage system fails. And in reality, this upper bound can
never be achieved because there are many events that can
destroy the storage device, such as device loss and an earth-
quake. Storage device designers won’t consider these events
when calculating their system’s reliability, even though they
all contribute to the lowering the DOS to below the storage
system’s reliability. Section 3.5 discusses the modeling of
large-scale events.

When one storage system cannot meet the increasing de-
mand of the user, it will be expanded or new systems will
be deployed along with the old system. In that process, data
objects will be migrated from the old system to the new or
expanded system, potentially meaning that they will reside
on more than one storage system. For a solution consisting
of n storage systems, its failure rate (DOSn(t)) can be ex-
pressed as a function of the CDF of the underlying systems’
failure rates:

DOSn(t) = g(F1(t), F2(t), · · · , Fn(t)) (2)

In the simplest form, using only plain replicas without
erasure code, the failure of these systems are uncorrelated—
we will discuss large-scale events that can affect more than
one system in Section 3.5 later—and the object will only be
lost if ALL of these n storage systems fail. The probability
for this loss event to occur (the CDF of it, Flost(t)) can be

expressed as:

Flost(t) =

n∏
i=1

Fi(t) (3)

The DOS in this case is the probability that Flost doesn’t
occur, and it can be expressed as

DOSn(t) = 1− Flost(t)

= 1−
n∏
i=1

Fi(t) (4)

= 1−
n∏
i=1

(
1−Ri(t)

)
(5)

For one device, the CDF of failure rate F (t) and the surviv-
ability R(t) have this simple relation: F (t) = 1−R(t), and
both of them will be used in the following discussion.

3.3 Reliability Transition Function
Models that assume only simple replication are not sufficient
for long-term storage because, in practice, storage systems
employ algorithms such as n/m erasure codes to reduce
the space and time overhead of creating simple replicas.
Therefore, we introduce the Reliability Transition Function
(RTF) to cover these designs.

Consider the storage system configuration shown in Fig-
ure 1. The DOS depends on the reliability of Storage System
Controller A (RsysA), which in turn depends on the reliabil-
ities of underlying devices. We propose to use the RTF to
denote this relationship. Suppose the reliability of the un-
derlying devices are Rdev1(t), Rdev2(t), · · · , RdevN(t). The
RTF can be defined as:

RsysA(ObjID, t) =

RTFsysA

(
ObjID, Rdev1(t), Rdev2(t), · · · , RdevN(t)

)
(6)

In the above equation, ObjID is the DO’s ID, which can
be used by the storage system to identify a DO. It is needed
because different DOs can be stored on different devices
even within the same system. In calculation, only the devices
where the DO resides are considered; the other devices will
be ignored by the RTF.

RTF describes the reliability of a single storage system
and it can be implemented either analytically or by simu-
lation. Greenan et al. [14] show that this task can be com-
plex for even relatively simple systems, and, in order to get
the precise reliability of a storage system, some simulation
methods must be used. With simulation, however, the pre-
cise reliability of a system can’t be expressed in a closed-
form expression; rather, the simulation must be run for each
point in time. In practice, it’s not unusual that the DOS of
millions objects have to be tracked and calculated, making
the simulation method impractical if not impossible for large
systems.

For commercial storage systems that use proprietary al-
gorithms, we expect the storage system vendor to provide



this RTF to enable end-users to calculate the DOS. We pro-
pose that, before a new storage system is purchased and de-
ployed, the user should require the system vendor to provide
an RTF for this specific system. Even better, the vendor can
provide two or more RTFs: one of them can use simulation
methods and be precise and the other can be fast using some
form of approximation.

Jiang et al. [17] discovered that “disk failures contribute
to 20–55% of storage system failures,” and other impor-
tant factors that shouldn’t be overlooked include failures of
the system controller, physical interconnects, and protocol
stacks. There are two ways to cover these non-device failures
in the analytical model. The first is to include them into the
RTF, and the second is to handle them at a higher level, when
we later aggregate the RTF from many systems to calculate
DOS. We expect the device vendors to provide the RTF of
commercial storage systems, and they should include in the
RTF the analyses results for the non-device related failures.
If not, these failures must be handled at a high level.

Here’s a sample showing the RTF of a DO that is stored
on an erasure code-based system that divides the object into
m fragments and recodes them into n copies (n > m), as is
done for most RAID systems. For the data to survive, at least
m devices must survive, which means in order to destroy the
data, at least n−m+ 1 drives must fail. Remember that we
are looking at the storage system as a dynamic system, of
which one drive might fail and a new drive might be added
at any time. Therefore the R(t) of the system’s drives are
not identical. Our task to get the DOS has not become much
harder with this dynamic view because we are only aiming
at the lower bound. The RTF for an n/m erasure code based
system can be expressed as:

RTF(ObjID, t) =(
1−

n−m+1∏
k=1

(
1−Rk(t)

))(
1− Fsys(t)

)
(7)

Rk(t) denotes the n − m + 1 devices that have the lowest
R(t). Fsys(t) is the combined failure rate of non-device
causes as we have discussed above. In order to get the lower
bound of the system’s reliability, the key point here is that we
pick out n−m+1 devices that has the lowest reliability from
all the n devices installed. This can be done by calculating
R(t) of all the n devices and sort the result, using only the
least reliable n − m + 1 devices in the above equation.
The reason we need to use those least reliable devices is
that, even though erasure codes are normally designed for
being used with identical devices, in reality devices within
one system usually have different reliabilities due to reasons
like failed device will be replaced by new one so they end
up with difference power-on times, and reading may not be
well-balanced so some of the devices receive more wear than
the others.

If de-duplication is used in the storage system, the surviv-
ability of DO will be affected because the ability to recover
a DO now depends on many chunks, each of which might be
stored on a different set of devices. Due to the normally pro-
prietary nature and subtleties in de-duplication implementa-
tions, the requirement for the storage system vendor to pro-
vide the RTF is overwhelming. Again, here our goal is to
get the lower bound of these systems, so that we can use a
simple form of the equations. If the precise survivability is
expected, simulation based methods might have to be used.

With RTF, we can expand our previous DOS equation (5)
to:

DOS(ObjID, t) =

1−
n∏
i=1

(
1− RTFi

(
ObjID, Rdevi(t)

))
(8)

Next, we continue to the lower level of the storage solu-
tion and derive a good expression for Rdev(t).

3.4 Modeling Devices
Different devices have drastically different reliability mod-
els. As shown in Equation (8), each Rdev(t) is an indepen-
dent function and can be expressed separately by using re-
sults from previous research. Therefore, for storage solutions
such as the one shown in Figure 1, the reliability models of
hard drive, tape and cloud storage will have to be figured
out. Here we are using a hard drive as a sample subject for
the analysis.

Among the reasons that lead to the failures of devices in
a data center, aging is the biggest contributor, as described
by the extensive analyses of hard drive reliability [8, 23, 25].
Recent research shows that a Weibull reliability model gives
good results [12, 25], and it reflects both failures from infant
mortality and aging. With the Weibull model, the reliabil-
ity function of a hard drive is R(t) = e−(t/η)

β

, where β
is the shape parameter and η is the scale parameter. Pre-
vious analyses of large deployments of hard drives produce
Weibull distributions with slightly different parameters.

For this study, the specific value of these two parame-
ters is not of great importance for three reasons. First, the
model we are discussing here is agnostic of the underlying
reliability model of devices. Here, we choose the Weibull
distribution for demonstrating analysis of hard drive-based
systems, but, for other devices, it’s possible that other mod-
els are more suitable. Second, these are empirical values and
are highly brand and model correlated, so they should be
picked according to the particular devices deployed. There
is no expectation that different hard drive models from a
single vendor, let alone those from different vendors, will
have the same values for η and β. Third, we will be able
to use Equation (15) to adjust these parameters dynamically
as shown later. Therefore for simplicity, we use β = 1.12,
η = 100, 000 in the following discussion. These parameters



align with values cited in a previous study on failure rates of
large numbers of hard drives [25].

In the following sample, we apply Weibull reliability
model to the n/m erasure code system and expand Equa-
tion (7), without considering the possibility of Fsys:

DOSn(t) = 1−
n−m+1∏
i=1

(
1− e−(

t
η )
β
)

(9)

Figure 2 illustrates the effect of device aging. The solid
blue curve shows DOS of an object stored in a two-drive
mirrored RAID 1 system using two new hard drives, and for
comparison, the dashed red curve shows the DOS if one of
these two hard drives is four years old at the beginning of the
experiment.
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Figure 2. DOS of object stored in mixed old and new hard
drives, Weibull model, β = 1.12, η = 100, 000 hr

The survivability described by Equation (9) is only an up-
per bound that can never be reached because we have not
considered many other failure events.

It is possible to use more complex methods than that of
Equation (5) to get a more precise DOS, as proposed by
Greenan [13], but they are much more difficult to model than
the analytical model used here. In order to use the Markov
model, the time to recover from a system failure must be
constant or follow a known possibility distribution that can
be handled analytically. For some well engineered storage
systems, this estimation is possible. However, if a whole
storage system in a company’s data center goes down, nor-
mally the system adminstrator has to rely on the vendor’s
customer support staff to diagnose and repair the failed sys-
tem, resulting in difficult-to-predict resolution times. Thus,
instead of focusing on the precise modeling of the internal
of a complex storage system, we use a simple but effective
way to get the lower bound of survivability of DOs stored in
more than one systems.

3.5 Modeling Events
An “event” is a thing that occurs and has an impact on sys-
tem and device reliability. We observe and study events and
how they change systems and devices, helping us to un-
derstand the storage solution during its whole lifetime. We
classify events into two categories: failure events and oper-
ational events. Failure events are those that lead to data loss
(not necessarily the loss of all replicas), such as device fail-
ures, bit rot, natural disasters, critical software and hardware
failures, human errors, and even organizational failures. Op-
erational events include normal and abnormal operations of
devices and systems that affect their life, such as power cy-
cles, disk head load/unload, surface scan errors and erasing
a block of SSD memory.

3.5.1 Failure events
The failures of devices have been studied extensively in lit-
erature and are covered by the reliability CDF functions we
described above. Thus, we start from quantifying events that
fall out of normal device and system vendors’ consideration.

There are many kinds of disastrous large-scale events
that could destroy all storage systems located in one place,
such as earthquakes, fire, flood, military actions, etc. Among
them, earthquakes are a relatively well studied and power-
ful disaster that can easily destroy the entire building where
all of the devices are located. Whether the earthquake at a
location is a memoryless event or not is still debatable, but
for analyzing the risk of future earthquakes, it’s sufficient
to treat earthquakes as events in a memoryless Poisson pro-
cess [6]. This assumption leads to the exponential distribu-
tion P(t) = 1 − et/M , where M is the mean time between
earthquakes. In order for a DO loss to happen, either all stor-
age systems the object resides on go bad (described by Equa-
tion (9)) or one earthquake occurs, destroying all of the stor-
age systems. The possibility for either of them to happen
can be calculated by using the inclusion-exclusion principle
P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2). Applying
Equation (3) and the possibility distribution of earthquakes,
we can get the DOS when we take the impact of earthquakes
into consideration:

DOSn(t) = 1−
(
Fn(t) + Feq(t)− Fn(t)× Feq(t)

)
(10)

where Fn(t) is the combined failure rate of all devices and
Feq(t) is the happen rate of earthquake.

An earthquake seems to be a very rare event. In order to
show its impact, we use the sample configuration we have
discussed above in section 3.4, a two-drive mirrored RAID 1
system stored in one building that can be destroyed by a sin-
gle earthquake, and assume these devices are located some-
where in a coastal city in southern California. According to
Akçiz et al. [1], the average time interval between the last six
earthquakes that ruptured the San Andreas fault in the Car-
rizo Plain is 88± 41 years. Using Equation (10), the impact
of earthquakes on data survivability is shown in Figure 3.
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Figure 3. Impact of earthquake on DOS

The solid blue line curve shows the DOS without consid-
ering the impact of the earthquake, and the dashed red curve
shows the result of Equation (10) after considering the im-
pact of earthquakes. To mitigate the threat to data of a large
earthquake, the most straightforward practice is to deploy
the storage systems in a geologically distributed way, such
as keeping one storage server in San Francisco and the other
in New York. Then, if we assume that a single earthquake
can only destroy a single storage system, the data loss can
only happen if one of the following four events happens:

1. Both hard drives fail.

2. Hard drive A fails and B is destroyed by an earthquake in
New York.

3. Hard drive A is destroyed by an earthquake in California
and B fails.

4. Both hard drives are destroyed by two (separate) earth-
quakes.

The overall possibility is calculated by using the inclusion-
exclusion principle, with the result shown in Figure 3 by the
green dashed dot line curve. As the figure shows, it’s slightly
safer than the red dashed line curve, but still the impact on
the DOS even when the storage systems are geologically
distributed can’t be ignored.

Besides earthquakes, there are many kinds of failure
events that should be modeled: notably hardware and soft-
ware defects, human errors, malware infections, and security
breaches. Hardware and software may cause data corruption
or loss if they have some hidden defect in their design, and
tend to show correlated failure patterns if they are from the
same vendor [21]. Human errors, such as system misconfig-
uration, accidental data deletion and data mislabeling, may
cause unrecoverable data loss no matter how many replicas
are created. How these events can be modeled has been stud-
ied by prior research to some degree, but is still not enough.

To generalize the equation into calculating the DOS when
we consider m kinds of events that can wipe out all stor-
age devices, we can use the general case for the inclusion-
exclusion principle and write it in this closed form:

DOSm(t) = 1−
m∑
k=1

(−1)k−1
∑

I⊂{1,...,m}
|I|=k

FI(t) (11)

3.5.2 Operational events
While events that can destroy entire storage systems are
catastrophic and have a major impact on data survivability,
smaller events that are not that serious are far more com-
mon. For example, most modern hard drives are shipped
with the “Self-Monitoring, Analysis and Reporting Technol-
ogy” (S.M.A.R.T.) monitoring system, which collects inter-
nal events and running status that can be queried by the sys-
tem. S.M.A.R.T. records events that have been found to cor-
relate with the reliability of the storage device in a previous
study [23].

S.M.A.R.T. collects a plethora of raw information, so
we should first try to identify those that are useful for our
analyses and use them to define some polices, hoping this
can reduce the cost and/or improve the precision of the
calculated system reliability. For example, one of the most
conspicuous events is sector error. A previous study showed
that even a small number of sector failures presages the
overall drive failure [2].

Another interesting S.M.A.R.T. event is the Scan Error.
Modern hard drives scan the disk surface during idle time,
looking for bad sectors. Getting a Scan Error doesn’t mean
that the drive is broken or data is lost because most Scan
Errors can be automatically recovered (by repeatedly read-
ing the bad sector). But a large number of Scan Errors is a
good indicator of surface defects and are believed to lower
the predicted device reliability. One study [23] found that a
group of drives with Scan Errors are ten times more likely to
fail than the group with no such error. With this knowledge,
when a Scan Error event is detected on a hard drive, the reli-
ability CDF F (t) of which should be adjusted to 1/10 of its
previous value; thus, its new CDF is:

Fnew(t) = 1− R(t)

10

= 1− 1− F (t)
10

It is worth noting that, according to previous studies,
S.M.A.R.T. data alone can’t be used effectively to predict
future failures [23]. Since we are calculating the lower bound
of DOS, S.M.A.R.T. events are still a good indicator because
there’s a sufficiently high correlation between device failure
rate and some of the error events listed above.

Generally speaking, this category of events contains
many kinds of operations that can be tracked and used in the
calculation of DOS. Given that we know event K’s effect on



the device’s reliability can be calculated by EK(), and the
CDF of the device is F (t), the new CDF of the device after
event K happens is:

Fnew(t) = 1− Ek(1− F (t))) (12)

And after a series of event from 1 to K, their whole effect
on F (t) can be calculated by using:

Fnew(t) = 1− Ek(Ek−1(· · ·E1(1− F (t))) (13)

Equation (13) can be combined with our previous DOS,
Equation (8), resulting in:

DOS(ObjID, t) =

1−
n∏
i=1

(
1− RTFi

(
ObjID, Ei

(
Ri(t)

)))
(14)

Equation (14) is our final equation for computing DOS.
It covers both the aging of devices and the impact of two
categories of events to the DOS. Additional events can be
included in the model in similar ways.

3.5.3 Events that should be omitted
The nature of analyzing the DOS for objects that are stored
on more than one storage system leads to the reconsideration
of some common events used in survivability analyses.

Bit rot is an event that falls within this category. In the
study of any storage system that runs for more than a few
years or employs more than a few dozens of devices, the
impact of bit rot must be taken seriously. However, the im-
pact of bit rot event should already be covered by the Relia-
bility Transition Function as described in section 3.3. Obvi-
ously, for the rare cases when the DOs are stored directly on
bare metal drives (and there’s no RTF), the bit rot event must
be taken into consideration when calculating the DOS. Nor-
mally, however, archival storage systems have higher-level
mechanisms for mitigating the impact of bit rot errors.

3.6 Tracking Events
In this model of events, tracking events is an important
task. By incorporating the knowledge of every event that
happened we can have a better understanding of the DOS.

Suppose we have a DO that is stored in two (or three) sys-
tems, and at time t1 one of the systems failed. If the system’s
reliability follows the Weibull distribution, the DOS of this
object can be calculated by using Equation (9), as shown in
Figure 4.

Now, if the failed system is replaced at time t2 (t2 >
t1), what would the DOS look like? We know that if the
newly installed system is a brand new system, its reliability
function should take t− t2 as parameter. Therefore the DOS
after the new system is installed is:

DOS(t) = 1− F1(t)× F2(t− t2)
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Figure 4. Effect of a system failure that is later repaired.

As can be observed in Figure 4, the DOS drops more
quickly after t2 than at the beginning because after t2 the
system becomes a heterogeneous system that consists of
one old system and one new system, and the new combined
survivability isn’t as high as that of two brand new systems.
With a chart like this, system implementers and users will
have a better understanding of the survivability of their data
after a series of events.

3.7 Refining DOS Models Using Failure Statistics
A key factor for calculating a correct DOS lies in obtaining
the correct lower bound of reliability of a device (the R(t)
function). In previous examples, we used the empirical value
for the Weibull distribution parameters. However, other re-
search on the failure patterns of large numbers of hard drives
shows that a hard drive’s reliability differs greatly from one
brand to another, or even from one shipment to another [17,
23]. In this section we propose that data can be gathered from
the field during a storage system’s or device’s lifetime to fine
tune our DOS calculation.

When a storage system is deployed and the initial DOS
is to be calculated, we can normally get the “Mean Time to
Failure” value straight from a device’s specification. How-
ever, in most cases vendors fail to specify what kind of fail-
ures they considered when calculating MTTF. More trou-
bling is the observation that, in the field, the replacement
rate of hard drives is generally much higher than the value
calculated from the vendor’s MTTF [25].

With these considerations in mind, we propose the fol-
lowing method to tune the reliability function of a device.
We divide the devices into groups by their manufacturing
batch (or shipment) because previous studies show that hard
drives from the same shipment show similar failure pat-
terns [17, 23]. Let N be the count of failures we observed,
and Ti (1 < i ≤ N ) be the lives of these N failed devices.
Using the Weibull model as described in Equation (9), we



adjust the scale parameter η in this way:

η =
100, 000× α+

∑N
i=1 Ti

α+N
(15)

where α (α ≥ 1) is the weight parameter of the empirical
value. The larger α is, the more weight the empirical value
has over the field gathered data.

In this example, we demonstrated how we calibrate the
R(t) for rotating platter hard drives using real-world failure
statistics that can be gathered for any moderate to large-scale
installation. Similar analysis can also be done for other stor-
age devices such as SSD; we just need the CDF and initial
empirical values for MTTF. This technique is thus particu-
larly useful for new technologies for which good estimates
of longer-term MTTF may not exist.

4. Applications and Future Work
While we have only provided simple examples, the model
described in this paper allows the inclusion of increasingly
detailed information about failure characteristics as well as
real-world failure information. At the same time, we also
perceive that it is impossible to model all large events and
there must be some big events that fall through the cracks of
the analysis. Another problem is that some storage system
vendors might not be willing to provide an RTF for their
systems; thus, building a model around their devices can be
difficult or impractical.

We are currently studying the possibility of designing
a smart data layout algorithm. Greenan [14] proposed that
when designing an erasure code-based system to be imple-
mented on a system with a mixture of heterogeneous devices
with different reliabilities, the survivability of data varies
among different layout algorithms. Similarly, systems for
de-duplicated data may require higher reliability for chunks
that are components of many objects [4]; our models allow
system designers to optimize placement to achieve this goal.

Similar phenomena also exist when not only hetero-
geneous devices but also heterogeneous systems are de-
ployed. Therefore, one of our future goals is a more general
“survivability-aware layout algorithm” which not only con-
siders the survivability of data but also cost constraints. DOs
will be grouped according to their importance. For example,
metadata are normally more important than normal data ob-
jects. In the simplest form, for better survivability, we can
store the high priority DOs to mid-age devices, which are
supposed to have better reliability. Less important DOs will
be kept on brand new or old devices or with fewer replicas.
This new layout algorithm can also help to lower cost: un-
reliable devices can be used safely because we can control
the amount of important data stored on them, limiting the
risk of loss. By allowing the use of less-reliable devices and
systems, implementers can extend device replacement cycle,
reducing cost.

Another application is adjusting the scrubbing inter-
val [26] for various devices and systems to optimize DOS.

Scrubbing is very important for preventing bit rot in archival
storage systems, but too much scrubbing may also be harm-
ful [20]. DOS models can help designers balance the need
for shorter scrubbing intervals for aging, less-reliable de-
vices and systems against the damage that increased scrub-
bing may cause them and fine-tune the scrubbing intervals.

The result of the study can also improve the planning and
designing of storage solutions. For example, consider the de-
sign of a storage solution for a government archive where
the budget permits us to make either three local replicas, or
two geologically distributed replicas. Which design is bet-
ter? Per previous discussion, many factors will have to be
considered. Distributed replicas might be safer considering
the impact of earthquakes, but at the same time it normally
requires longer recovery time in case of media failure. The
method discussed in this paper can help quantify these fac-
tors and help the decision making process.

We are also planning to build a Survivability-Aware Stor-
age System Manager. The Storage System Manager plays a
very important role in today’s enterprises for helping more
efficient usage of the storage systems and reducing both cost
and downtime. However, current designs haven’t taken sur-
vivability into consideration. To let the user have a better un-
derstanding of the DOS, an interface that can display a graph
of DOS is needed. When all the methods we proposed above
are used in the calculation, even getting the graph of one
DOS can be tedious. Therefore a computer system should be
designed and built to automate this task. Our initial design is
shown in Figure 5.

Simply speaking, the “Survivability Monitor” should im-
plement the algorithms we have discussed in previous sec-
tion. It monitors and collects field data from each device in
use, sends them through Reliability Transition Functions of
the component storage systems and applies events’ proba-
bilities, and finally generates a continually updating “Sur-
vivability View”, which can be used to monitor the dynamic
changes of the survivability of data objects. When an event
occurs, the event data will be automatically retrieved by the
Survivability Monitor from the device if they are device-
related events, or input by system admin if they are exter-
nal events, and the survivability view will be updated in real
time.

The Survivability Monitor can also handle predctions of
data survivability for future events. For example, when one
data center is planned to be taken offline and transported
to somewhere else, the possibility for device damage dur-
ing transportation is much higher than when the systems are
maintained in-place. Therefore, this planned action and re-
lated events should be inputted into the Survivability Moni-
tor as part of the planning process, to ensure the DOS is kept
at the expected level during the duration of the transporta-
tion.



Long-term View of  the Reliability of  Archival Storage Systems
First Step Towards a Reliability-aware Storage System Manager 

Aging of Devices Affects Data Object’s Reliability (DOR)

Reliability of data 
stored on a mirrored 
two-HD system. 
You can see how 
the reliability 
changes if one of 
these two HDs is a 
4-year old one.

(Both tests use the 
same Weibull 
distribution and 
empirical 
parameters)

Definition of DOR: the probability that a data object will survive during a 
specified period of time under stated conditions.

Ongoing Work
• Building reliability-aware archival storage systems
• Integrate events tracking and reliability-aware data layout algorithm into 

Ceph[2]

• Provide future reliability prediction to help choosing between new devices
• Smart scrubbing based on event history
[2] Ceph is a distributed file system with high scalability: http://ceph.newdream.net/

Conclusion
• Understanding the reliability of data is more important than understanding 

the reliability of systems or devices
• Reliability of data is always changing and must be tracked systematically
• A large amount of device information, which should be useful in 

understanding the storage systems is lost everyday because there is no 
systematic effort on gathering and processing them

Reliability-aware Storage Manager
Layout of data affects its reliability
• Prioritizing data objects according to their importance
• High priority objects should be stored on new systems/devices
We propose a storage solution manager that tracks events, reports the 
reliability of data objects and arranges layout accordingly. It can be part of a 
larger storage system manager, and a foundation for future works.
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The Problem
Storage systems evolve over time. No company would use only a single 
storage system to store its business data, instead, people use storage 
systems from many vendors and these systems tend to change over time.

Do you know the reliability of your data in this always changing

storage solution?
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Figure 1 A Modern Storage Solution
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Three Tenets of This Research
The idea in this poster is based on these three key observations:
• Reliability of Data ≠ Reliability of Storage System 
• Devices and systems age and their reliabilities decline, which is a very 

important factor for the reliability of archival storage systems
• Some large scale events can affect several or all storage systems 

simultaneously
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Getting System’s Reliability from Devices’ Reliability

• Many commercial storage systems use proprietary algorithms, which is 
hard to analysis

• Some algorithm’s reliability can’t be calculated without using simulation
BUT

They all depends on the reliability of the underlying Storage Devices.
We propose to use Reliability Transition Function (RTF) to reflect this 
relationship.

DOR
Reliability of DeviceRTF

Time

Reliability of Device

Events

Figure 2 How the Reliability is calculated

Modeling Large Scale Events
Large events such as earthquake can affect more than one systems at the 
same time. We assume one earthquake can destroy all storage systems. 

Left graph shows how 
earthquake affects 
reliability. In a geo-
distributed system (green 
dash-dot line), two HDs 
are stored at two locations 
that won’t be affected by 
one earthquake.

Mean time between earthquake is 88 yr of 
San Andreas fault in California, source: 
Akçiz et al. Century-long average time 
intervals between earthquake ruptures of 
the San Andreas fault in the Carrizo Plain, 
California 

A Feedback System that Decides the Impact of Age of Devices 
and Frequency of Large Scale Events

Devices’ error pattern is similar among the same vintage of devices. Therefore 
a failure observed from one device affects the reliability of devices from the 
same shipment.

S.M.A.R.T. Event’s Affect on Reliability 

Pinheiro et al. [1] presented the correlation between some SMART events and 
the failure of hard drives. For example, the group of drivers with “Scan Error” 
is ten times more likely to fail than the group with no error. This effect is 
shown in Figure 3 at the right.

[1] Eduardo Pinheiro, Wolf-Dietrich Weber, Luiz André Barroso, Failure Trends in a Large Disk 
Drive Population
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Figure 5. Survivability-aware Storage System Manager

5. Conclusions
Data survivability, not reliability, is the best metric for sys-
tems preserving data for the long-term, since it better en-
capsulates the desire for information to be available in the
future. The models we have developed better capture the no-
tion of data survivability for individual data objects than ex-
isting models, which focus on system reliability. Our mod-
eling techniques allow for heterogeneous systems with geo-
graphic diversity, and can model the impacts of both com-
mon and uncommon events on long-term data viability.

We showed that uncommon events that are often omitted
in long-term storage modeling, such as earthquakes, can
have a real impact on data survivability. Even effects such
as the replacement of a middle-aged system with a new
one whose reliability is less well-understood can affect data
survivability.

Our modeling approach also allows system designers to
better plan for handling of objects whose importance may
vary. By taking device aging, system configuration, and
field-measured reliability metrics into account, we can pro-
vide better estimates of long-term data survivability, allow-
ing system designers to provide effective archival storage at
lower cost.
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