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The purpose of this paper is to demonstrate the application of a recently developed theory for distributed
nonlinear model predictive control (NMPC) to a promising and exciting future domain for NMPC: dy-
namic management of supply chain networks. Recent work by the first author provides a distributed
implementation of NMPC for application in large scale systems comprised of cooperative dynamic sub-
systems. By the implementation, each subsystem optimizes locally for its own policy, and communicates
the most recent policy to those subsystems to which it is coupled. Stabilization and feasibility are guar-
anteed for arbitrary interconnection topologies, provided each subsystem not deviate too far from the
previous policy, consistent with traditional MPC move suppression penalties. In this paper, we demon-
strate the scalability and stability properties of the distributed implementation in a realistic supply chain
simulation example, where stages in the chain update in parallel and in the presence of cycles in the
interconnection network topology. Using anticipative action, the implementation shows improved per-
formance when compared to a nominal management policy that is derived in the supply chain literature
and verified by real supply chain data.

1 Introduction

A supply chain can be defined as the interconnection (coupling) and evolution (dynamics) of a demand
network. Example subsystems, referred to as stages, include raw materials, distributors of the raw
materials, manufacturers, distributors of the manufactured products, retailers, and customers. Between
interconnected stages, there are two types of process flows: information flows, e.g., an order requesting
goods, and material flows, i.e., the actual shipment of goods. Key elements to an efficient supply chain
are accurate pinpointing of process flows and timing of supply needs at each stage, both of which enable
stages to request items as they are needed, thereby reducing safety stock levels to free space and capital
[4]. Recently, Braun et al. [3, 2] demonstrated the effectiveness of model predictive control (MPC) in
realizing these elements for management of a dynamic semiconductor chain, citing benefits over traditional
approaches and robustness to model and demand forecast uncertainties. In this context, the chain is
isolated from competition, and so a cooperative approach is appropriate. Limitations of their approach
are that it requires acyclic interconnection network topologies, and sequential updates from downstream
to upstream stages. Realistic supply chains contain cycles in the interconnection network, and generally
do not operate sequentially, i.e., stages typically update their policies in parallel, often asynchronously.
To be effective in the general case, a distributed MPC approach should demonstrate scalability (stages
are locally managed), stability, permit parallel updates, as well as cycles in the interconnection network
topology.

The purpose of this paper is to demonstrate the application of a recently developed distributed imple-
mentation of nonlinear MPC (NMPC) to the problem of dynamic management of supply chain networks.
The theory behind the implementation for generic decoupled nonlinear dynamics and constraints and
coupling in a quadratic cost function is presented by Dunbar and Murray in [6]. The theory is also
extended to the case of dynamically coupled nonlinear systems [5]. By this implementation, each subsys-
tem optimizes locally for its own policy, and communicates the most recent policy to those subsystems
to which it is coupled. Stabilization is guaranteed for arbitrary interconnection topologies (permitting
cycles), provided each subsystem not deviate too far from the previous policy (consistent with traditional
MPC control move suppression penalties), and that the updates happen sufficiently fast. Simulations
have demonstrated performance comparable to a centralized implementation [6]. A contribution of this
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paper will be to demonstrate the relevance and efficacy of the distributed NMPC approach in the venue
of supply chain management. In fact, Braun et al. employ a heuristic version of our distributed imple-
mentation by sharing policies with downstream echelons in an acyclic interconnection network topology.
In the presence of uncertainty, control deviation penalties are critical to their approach, a fact consistent
with the theory in [6]. Once the supply chain problem has been defined in Section 2, other MPC-based
alternative approaches will be cited and compared with our approach.

In Section 2, we define the supply chain management problem, using the classic MIT “Beer Game” [9]
as the example three stage supply chain. The control approaches are then presented in Section 3, detailing
a nominal feedback policy derived and studied in the supply chain literature [9], and our distributed MPC
policy. Numerical experiments comparing the two approaches are then presented in Section 4, examining
the response of a single stage and the full three stage chain. Finally, conclusions and extensions are then
discussed in Section 5.

2 Problem Description

A supply chain consists of all the stages involved directly, or indirectly, in fulfilling a customer request
[4]. A three stage supply chain network consisting of a supplier S, a manufacturer M, and a retailer R is
shown in Figure 1, and will be the focus of this paper. Dell’s “build-to-order” management strategy is
based on a version of the chain in Figure 1, where R is the customer, M is Dell, S is a chip supplier [4].

Figure 1: Block diagram of a three stage supply chain comprised of a supplier S, a manufacturer M, and
a retailer R. Direct arrows depict information flows (orders) and arrows through a delay block, with time
delay parameter 7o, depict material flows (transport of goods). An exception is at left end of the chain,
where the information flow from the supplier S is converted through fabrication into goods, which then
flows back into the supplier S. For simplicity, this conversion is modeled as a delay.

The variables shown in the figure are defined below, and each will have a superscript denoting the
corresponding stage it is associated with, e.g., oM is the order rate of stock from the manufacturer stage.

We will use the classic MIT “Beer Game” [9] to provide a concrete context for visualizing the three
stage supply chain in Figure 1. For this case, the supplier S may be thought of as the supplier of bottles
to the manufacturer M, who brews and “bottles” the beer, and then ships it to the retailer R for sale
to customers. The supply chain is therefore driven by customer demand (number of units or goods sold
per day), which then triggers a series of information flows and material flows, as shown in Figure 1.
The information flows are assumed to have no (or negligible) time delays, and are represented by the
three left pointing arrows in Figure 1. The material flows are assumed to have shipment delays, and are
represented by the arrows that pass through blocks labeled 75, where 75 is a constant representing the
amount of delay in days to move the goods. In the case of the supplier, the outgoing information flow
(03) is converted through fabrication into materials, and this conversion process is modeled as a simple
delay. Since material flows downstream, we say that R is downstream from M (likewise, M is downstream
from S), while M is upstream from R (likewise, S is upstream from M). The customer can be thought of
as a stage downstream from R in our model.

An important variable in the supply chain is the inventory, or stock, in each stage of the supply chain,
and a important objective in the management and control of a supply chain is to rapidly fulfill customer
demand while keeping the inventory (stock) level in each stage as low as possible. For example, consider
the manufacturer stage M in the supply chain. The manufacturer must respond to a demand from the
retailer R from his current inventory and by ordering goods (an information flow) from the supplier S.
The supplier attempts to fulfill the manufacturers order (from his inventory or by fabrication), and ships
the goods (a material flow) to the manufacturer who receives (or acquires) them after a time delay that
depends on the method of shipment.
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While the supply chain is really a discrete-time system, for the purposes of the present paper we will
follow the practice of Sterman [9] by modeling the supply chain as a continuous time system. Each stage
x € {S,M,R} in Figure 1 is characterized by 3 state variables, defined as follows. The stock level s* is
the number of items currently available in stage x for shipment to the downstream stage. The unfulfilled
order of stock of is the number of items that stage = has yet to receive from the upstream stage. The
backlog of stock b* is the number of committed items that stage x has yet to ship to the downstream
stage. The exogenous inputs (assumed measureable) are the demand rate d¥, defined as the number of
items per day ordered by the downstream stage, and the acquisition rate af, defined as the number of
items per day acquired from the upstream stage. The outputs are the order rate o7, defined as the number
of items per day ordered from the upstream stage, and the shipment rate [, defined as the number of
items per day shipped to the downstream stage. The order rate is the decision variable (control). By our
notation, all rate variables are denoted by an r subscript.

The model, state and control constraints for any stage x € {S,M,R} are

§°(t) = ay (t) — 17 (t)
o, (t) = o7 (t) —ay(t) o, t>0, (1)
be(t) = dy(t) — 17 (t)

subject to 8 i 0?755)7 0u(t),b°(1)) é z‘::‘ax } , t>0, (2)
where I7(t) = dF(t — 1) + b°(¢) /. (3)

The dynamics of the supply chain in the present work arise either from rates of accumulation, or from
one of two types of material flow delay ([9], Chapter 11). As an example of a rate of accumulation, the
time rate-of-change (accumulation rate) of stock $*(t) is the difference between the rate at which goods
are acquired (acquisition rate a¥(t)) and the rate at which they are shipped to the customer I¥(¢). Two
other accumulation variables are the rate of change of unfulfilled orders 6% (t) (at the upstream end of
each stage) and the rate of change of backlogged orders b*(t) (at the downstream end of each stage).
Equation (1) describes the first-order dynamics for stock, unfulfilled orders, and backlog, each arising
from rates of accumulation. The constraints on the state and control in (2) reflect that stock, unfulfilled
order and backlog are independently bounded from below by zero and from above by a common constant
Smax, and that the control (order rate) is non-negative and bounded by the positive constant o, max-

As stated, the dynamics of the supply chain can also arise from one of two types of material flow
delay. The first type of delay, known as “pipeline” delay, occurs when the outflow of a block is the inflow
with a time lag. For example, as indicated by the delay block in Figure 1, the acquisition rate a at any
stage is the shipment rate (¥ from the previous (source) stage delayed by the time it takes to ship the
goods from source stage to destination stage. The second type of delay, known as the first-order material
delay, occurs when there is an average delay (or flow) time associated with the outflow from a stage of
material accumulated in that stage, and is equal to the accumulated material (number of units) divided
by the average flow time.

The shipment rate equation (3) employs both examples of material flow delay models. A qualitative
explanation of this equation is the following: orders are fulfilled based on satisfying incoming customer
demand as well as clearing backlogged orders. Because of delays in both fulfilling customer demand
and clearing backlog, the shipment (order fulfillment) rate is the sum of (i) a time-delayed demand rate,
delayed by the time 71 required for processing the order (a pipeline delay), and (ii) the backlog clearance
rate, which is equal to the backlog divided by the average backlog-clearance flow time (a first-order delay).
On a more quantitative note, after substitution of (3) into the model for backlog in (1), it is clear that
the backlog is uncontrollable. If the demand rate converges to a steady value, the backlog will converge
to zero, implying stabilizability.

The objective of supply chain management is to minimize total costs, which includes avoiding backlog
(keep near zero) and keeping unfulfilled orders and stock near desired (typically low) levels ([9], pg. 686).
Specifically, the control objective for each stage is (s%(t),0%(t)) — (sa,0%,4(t)), where s4 is a constant
desired stock (common to every stage) and of,(t) = #;I7(t) is the desired unfulfilled order. The flow
constant ¢; represents the lead time from the downstream stage. Note that if the demand rate converges
to a steady value d*(t) — d,., then backlog will converge to zero, the shipment rate converges I*(t) — d,.,
and the desired unfulfilled order becomes the constant of ; = tid,.
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For each stage x € {S,M,R}, the acquisition rate a®(t) and the demand rate d¥(t) are
St ap(t) = oi(t — ), dX(t) = oy (1) | Mz @) () = [3(t — 72), (1) = 07" (1) | R @' (1) = ' (t —72) (4)

and the demand rate at the retailer d%(¢) is an input defined as the current /projected customer demand.
For stages M and R, the acquisition rate is the shipment rate delayed by the time required to ship material
from source to destination. The demand rate at stages M and S is simply the downstream order rate
from R and M, respectively.

In light of the discussion above regarding the backlog dynamics in (1), and from the demand rates
defined in (4), we make the following observation. By requesting order rates that are less aggressive,
stages R and M can keep the backlog levels of stages M and S, respectively, lower than when more
aggressive order rates are requested, where by “aggressive” we mean order rates that are fast compared
to the processing delay constant 7;. Thus, loosely speaking, less aggressive order rates are consistent
with the objective of keeping backlog levels low.

After substitutions, we have the following models for each of the three stages. For the supplier stage,

S(t) =0 (t — 1) — Mt — 1) —b3(t) /ty
o5(t) = 0 (t) — 0} (t — ) . (5)

M) = oMt — 11 — 72) +05(t — Ta) [ty — OR(t — 1) — BM(¢) /ty
oM(t) = oM(t) —M(t — 1 — ) — b5 (t — 7o) ) (6)
DM (t) = o (t) — ot (t — 1) — M(t) [ty

For the retailer stage,

§%(t) = o (t =1 — ) + WM (t — 72) [ty — dF(t — 1) — bR(t) [t
SR (1) = ol () — o (t — 71 — 1) — BN (t — ) [ty - @
BR(t) = dR(t) — d2(t — ) — bR() [ty

We say that two stages have bidirectional coupling if both of the differential equation models of each
stage depend upon the state and/or input of the other stage. Equations (5)—(7) demonstrate the dynamic
bidirectional coupling between stages S and M, and stages M and R. Due to the bidirectional coupling,
there are two cycles of information dependence present in this chain. Cycle one: the model (5) for S
requires the order rate oM from M, and the model (6) for M requires the backlog b from S. Cycle two:
the model (6) for M requires the order rate ol from R, and the model (7) for R requires the backlog b™
from M.

Cycles complicate decentralized/distributed MPC implementations, since at any MPC update, cou-
pled stages in each cycle must assume predictions for the states/inputs of one another. Such predictions
are different in general than the actual locally computed predictions for those states/inputs. When cycles
are not present, life is easier, as the stages can update sequentially, i.e., stages update in order from down-
stream to upstream, and the actual predictions from downstream stages can be transmitted to upstream
stages at each update. In accordance with the MPC approach, the first portion of these actual predic-
tions is implemented by each stage. Thus, the absence of cycles implies that stages can transmit policies
that will be implemented. The sequential update approach is taken by Braun et al. [3, 2], whose supply
chain example contains no cycles. When cycles are present, on the other hand, actual predictions are
not mutually available. Thus, some predictions must be assumed, incurring an unavoidable discrepancy
between what a stage will do and what coupled stages assume it will do. One way to address this issue is
to assume that the other stages react worst case, i.e., as bounded contracting disturbances, as done first
by Jia and Krogh [7] and later by Richards and How [8] (not in the context of supply chains), although
the performance of such schemes has not been extensively evaluated.

The implementation employed here address the cycle issue in another way [5, 6]. Coupled stages
receive the previously computed predictions from one another prior to each update, and rely on the
remainder of these predictions as the assumed prediction at each update. To bound the unavoidable
discrepancy between assumed and actual predictions, each stage includes a local penalty on the deviation
between the current (actual) prediction and the remainder of the previous prediction. A motivation
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for this paper is to examine the performance of this implementation when subsystems are dynamically
coupled. When subsystem are coupled through performance objective, the performance was shown to
be comparable to a centralized implementation [6]. An interesting distributed MPC alternative to our
implementation for dynamically coupled subsystems is given by Venket et al. [10, 11], though it requires
that subsystems be LTI and coupled solely through the control inputs.

In the implementation and simulations here, the penalty on the deviation between the current and
assumed prediction, locally within each stage, will be in the form of a move suppression term in the cost
function. While proof of convergence of our implementation requires that the penalty take the form of
a constraint, the simulations show excellent results while using move suppression instead of a constraint.
It is well known in the MPC community that the move suppression term has the effect of making the
controller less sensitive to prediction inaccuracies, although usually at the price of degrading set point
tracking performance [1]. Such reduced sensitivity is precisely how one can mitigate the discrepancy
between assumed and actual predictions that is intrinsic to the MPC problem for distributed systems
over networks containing cycles.

To conclude this section, note that for this example supply chain, the cycles could be eliminated.
Specifically, if M has the initial condition and model for b, then M can compute a prediction for b°
locally. Likewise, if R has the initial condition and model for b, then R can compute b™ locally. In that
case, for distributed MPC, R would not need a prediction from M, but merely the initial backlog at each
update. As such, a sequential MPC could be implemented. However, from a supply chain management
perspective, as well as a systems perspective in general, it is better to make backlog predictions of any
stage from within that stage. One reason for this is that since the true backlog is evolving locally, that
evolution can be used to detect and correct model errors. Such errors would likely be harder to detect
and manage from a downstream stage, at least not without more extensive communication between the
stages. As such, we treat backlogs as locally computed states within each stage. Of course, for comparison
purposes, it would be useful to perform the elimination and compare the sequential approach with our
approach, since no model error is assumed in this example. For space reasons, we save this for a future
exercise. We now define the control approaches that will be compared in simulations.

3 Control Approaches

3.1 Nominal Feedback Control

The nominal feedback policy, derived in [9], is given by
0y (t) = 17 (t) + ki[sa — s* ()] + k2[0jq(t) — 05 (t)], k1, k2 € (0,00).

In the simulations in Section 4, the state and control constraints (2) are enforced by using saturation
functions. The nominal control is decentralized in that the feedback for each stage depends only on the
states of that stage. Only simulation based analysis and comparisons with real data from actual supply
chains has been presented as a justification for this choice of control [9].

3.2 Distributed Model Predictive Control

For the MPC approach, the continuous time models are first discretized, using the discrete time samples
ty = k0, with 6 = 0.2 days as the sample period, and k¥ € N = {0,1,2,...}. Each model (5)—(7)
is cast in the Laplace domain, and each delay is replaced by its 4th order Padé approximation. Each
continuous time transfer function is then transformed into state space and discretized using the § sample
period. In the MPC problem we will refer to these models as the discrete-time versions of (5)—(7),
although technically they are the delay-free discrete-time state space versions of the original models. The
prediction horizon is T}, = P * § days, with P = 75, and the control horizon is T}, = M * ¢ days, with
M = 10.

For all three stages, the stock s* and unfulfilled order of discrete time models are included in the
MPC optimization problem. The backlog b®, on the other hand, is not included in the optimization
problem, as it is uncontrollable. Instead, the backlog is computed locally at each stage using the dis-
cretized model, the appropriate exogenous inputs that the model requires, and the saturation constraint
in (2). For update time t, the actual locally predicted stock defined at times {t,...,tx+p} is denoted
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{8%(tg;tr), -y 8 (tptp; tr) }, using likewise notation for all other variables. The true stock at any time
is simply denoted s*(t), and so s*(tx) = s*(tr; tr), again using likewise notation for all other variables.

For each model in the MPC problem, there are two states (s%,0%), the control of and a set of other
measurable inputs, depending on the stage. In line with the MPC framework presented in the MATLAB
MPC toolbox manual [1], this set of measurable inputs are termed measured disturbances (MDs). By
our distributed MPC algorithm, the MDs are assumed predictions. The set of MDs for each stage
x € {SM,R} is denoted D*(tj), associated with any update time ¢;. The MDs for the three stages
are D8(ty) = {b3(k), 00l (k)}, DM = {bii(k), bl (k), 07 s(k)} and DY = {bii(k), byi(k),d;'}, where
0y as(k) = {0 o5 (trstr), s OF s (trypitr)} and b as(k) is defined similarly using the assumed predicted
backlog. The (+)as subscript notation refers to the fact that, except for the demand rate at the retailer
d®, all of the MDs contain assumed predictions for each of the associated variables. It is assumed
at the outset that a customer demand dR®(-) : [0,00) — R is known well into the future and without
error. Although it is locally computed, each stage’s backlog is treated as an MD since it relies on the
assumed demand rate prediction from the downstream stage. Note that the initial backlog is always
the true backlog, i.e., b¥ . (tr;tr) = b (tx) for each stage x and at any update time ¢;. Let the set
X2 (t) = {84, 0% 4(tr; t), -y 054 (tey p; t)} denote the desired states associated with stage # and update
time t;. Using the equations from the previous section, the desired unfulfilled order prediction of ,(-;tx)
in X*(t) can be computed locally for each stage x given the MDs D* ().

By our distributed MPC implementation, stages update their control in parallel at each update time
ty. The MPC problem for any stage is as follows.

Problem 1. For any stage x € {S,M,R}, and at any update time ¢, k € N:

Given: the current state (s%(tx), 0% (tx)), the MDs D*(t)), the desired states X*(t)), the non-negative
weighting constants (W, W, , W, Wsy), and a non-negative target order rate of®'8,

Find: the optimal control sequence of. , (k = {05 «(trs th), oF L (tkg15 k), oo r,*(tk+]V[71§tk)} satisfying

P
o (k) = argmin { D W [ (i tn) = sal® + Wo, 05 (s ti) — 05 (tyris )
=1
M —
+ 3 W [0 (trgs tr) — 088] ™ 4 W [0F (thgs th) — 0 (tsjmr; )] }
7=0

S
>_-

where 0f (tg_1;tk) £ 0Z , (te—1;tk—1), subject to the discrete-time version of the appropriate model (equa-
tion (5), (6) or (7)), and the constraints in equation (2). |

The W;,, weighted term in the cost is the move suppression penalty referred to above. The distributed
MPC algorithm is now stated.

Algorithm 1. The distributed MPC law for any stage « € {S,M,R} is as follows:

Data: Current state: (s%(to),0%(to),b*(to)). Parameters: §, M, P, (W, W, , Wy, Ws,,), and 0t2*8.
Initialization: At initial time to = 0, generate D?(ty) as follows: (a) Choose a nominal constant order
rate op "™, set of (tisto) = op "™, for i = 0,..., P, and if z = R or M, transmit of ,;(0) to M or S,
respectively; (b) Compute by (0), and if z = S or 1\/[7 transmit to M or R, respectively. Compute X7 (to)
and solve Problem 1 for of. , (0)

Controller:

1. Between updates t; and ti41, implement the current control action of,*(tk; tr).

2. At update time tj4q:

(a) Obtain (s"(tx41), 05 (trt1), 0" (ter1))-
(b) Generate D*(ty41) as follows:
i. Set of \s(tjrrt1ithr1) = of (Liyrt1ite), for j = 0,..., M — 2 and of ,((tjrkt1;thr1) =
oy w(tkym—15ty) for i = M —1,...,P. If x = R or M, transmit of ,,(k + 1) to M or S,
respectively.
ii. Compute by (k+ 1), and if x = S or M, transmit to M or R, respectively.

(c) Compute X*(ty41) and solve Problem 1 for of , (k + 1). [ |
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3. Set k=Fk+ 1.

By this algorithm, each stage initially computes an optimal order rate policy assuming neighboring
stages employ a nominal constant order rate. Then, each stage computes an optimal order rate policy at
each update, assuming that the MDs are based on the remainder of the policies computed by neighboring
stages at the previous update.

4 Numerical Experiments

The simulations were carried out in MATLAB 7.0, using Simulink 6.2 and the Model Predictive Control
Toolbox 2.2. First, we compare the nominal and MPC approaches looking only at a single stage (the
supplier S) responding to an initial deviation between the actual and desired stock, and then to a step
increase in the demand rate d5. Then, the nominal and distributed MPC approaches are compared on the
full three stage problem, given a step increase and decrease in the customer demand rate at the retailer.

4.1 Single Stage Supply Chain

The two approaches show nearly identical responses, given an initial deviation between the actual and
desired stock. The simulation comparison is shown in Figure 2. The control gains in the nominal approach

Comparison of State and Control Responses

400 ‘ U S
7 o ’sd
350 : ——Nom s(t)
300— ‘ ‘ C---mPest)|
0 5 10 15 20 25 30
680
6601 7\ —®
640F £\ Nomo () |
620}, o 1
620 ~ MPCo (1)|]
580 i i i i ‘
0 5 10 15 20 25 30
250 dr(l) ]
N Nom or(t)
200 e ,,,MPCOr(t).—
0 5 10 20 25 30

15
days
Figure 2: Response to initial deviation in stock with comparable performance between the approaches.

are k1 = 0.5 and ky = 0.5. The weights used in MPC are (W,,, Ws,,, W5, W,,,) = (2,1,1,1). The initial
and desired stock are s5(0) = 300 and s; = 400 cases.

Next, consider a step increase in the demand rate: dP(t) = 200 cases per day for ¢t € [0,5) and
d®(t) = 300 for t € [5,00). Observe the comparison in Figure 3. The weights used in MPC without
anticipation (subfigure (a)) are (W,,, Ws,,, W5, W, ) = (2,1, 1, 1), demonstrating comparable performance,
although the MPC order rate is substantially more aggressive during days 7-9. We then turn on the
anticipation option, meaning the MPC problem uses full future knowledge of the demand rate in predicting
the stock and unfulfilled order states. The weights used in MPC with anticipation (subfigure (b)) are
(Wa, Wi, Ws, W,,) = (0,0.5,10, 1), showing a substantial improvement in the performance of stock and
unfulfilled order, with a much less aggressive order rate resulting in substantially reduced backlog levels
(not shown). Thus, MPC can be tuned to be quite comparable to the nominal approach in this single
stage example. Moreover, if a reliable prediction of the demand rate is available, MPC with anticipation
shows substantial improvement in meeting the control objective, i.e., keeping the stock and unfulfilled
orders at desired levels, while requesting orders at a rate that is not too aggressive. In a sense, figure (b) is
comparing apples to oranges. A more appropriate comparison would be between MPC with anticipation
and the nominal approach redefined to also incorporate a forecasted demand rate, e.g., by including an
internal model that generates open-loop order-rates from the forecast. Such a comparison will be part of
our future work. For now, and in the three stage experiment that follows, we demonstrate the advantage
of using full knowledge of a forecast through MPC.
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Comparison of State and Control Responses Comparison of State and Control Responses
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Figure 3: State and control responses to step input in demand rate from 200 to 300 cases/day at day
5. Plot (a) shows comparable state performance between the approaches, although the MPC order rate
is more aggressive during days 7 through 9. Plot (b) shows improved MPC performance as anticipative
action is turned on for both the desired unfulfilled order and the demand rate. The MPC stock is observed
to remain within 5 cases of the desired value of s; = 300 cases.

4.2 Three Stage Supply Chain

For simulation purposes, we choose dX(t) = 200 cases/day for ¢ € [0,00) \ [5,15) and d®(¢) = 300 for
t € [5,15) in the three stage experiments. The response for the three stages under the nominal control
policy is shown in Figure 4.

To implement the distributed MPC Algorithm 1, the anticipative action of the MPC Toolbox is
employed so that each entire assumed prediction can be used. Recall that the assumed predictions
are not the actual predictions, although the move suppression terms in the cost are used to ensure
that these predictions are not too far apart. The forecasted demand rate at the retailer is also used
with the anticipation option turned on. Again, a more “apples-to-apples” comparison with the nominal
approach would be to redefine the nominal approach to include internal models that would make use of
the forecasted customer demand rate. The response for the three stages under the distributed MPC policy
with anticipation is shown in Figure 5. The weights used in MPC for each stage are (W,,, Ws,,, Ws, W, ) =
(1,5,5,1). The stock and unfulfilled order state responses are an improvement over the nominal approach,
both in keeping close to their desired values and in displaying shorter settling times. Note the nonzero
steady-state error in the unfulfilled order of stages M and R using either control approach. It is also
interesting to note that the familiar “bullwhip effect” [4, 9] encountered in the coordination of a multi-
stage supply chain can be seen in both Figures 4 and 5. Specifically, this effect is demonstrated by the
fact that the magnitude of the maximum excursion of the order rate gets larger as we move upstream in
the supply chain, from retailer to supplier.

5 Conclusions and Extensions

In this paper, a realistic supply chain management problem was defined using the classic MIT “Beer
Game” [9]. A nominal feedback policy, derived and experimentally validated in the supply chain lit-
erature, was then compared to a distributed MPC algorithm. The numerical experiments showed that
the algorithm yielded improved performance over the nominal policy, particularly when the customer
demand, an exogenous input to the supply chain, can be reliably forecasted. An appropriate extension of
these results that would yield a better comparison would be to redefine the nominal approach to include
internal models that would make use of the forecasted customer demand rate, while maintaining a decen-
tralized structure. While we are not immediately aware of any literature supporting such an extension,
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Figure 4: Nominal response to step increase at 5 days and decrease at 15 days in customer demand at
the retailer. The control gains are k1 = 1/15 and kg = 1/30, resulting in a feedback dominated by the
shipment rate. Using higher gains, such as those used in the single stage results, gave large transients and
under damped oscillations. Nonzero steady-state errors exist for the stock and unfulfilled order variables
at the manufacturer and retailer, and order rates are moderately aggressive.
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Figure 5: Distributed MPC response to the forecasted customer demand at the retailer. In comparison to
the nominal response in Figure 4, the state responses are improved, and the order rates are less aggressive
overall.
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the ability of our implementation to make use of forecasts in a distributed way is straightforward.

For the models derived here, under both control approaches, it was found that the unfulfilled order
in stages M and R exhibited nonzero steady-state error. A detailed relative degree, controllability and
stabilizability analysis on the system models should reveal the source of this bias, as well as other
fundamental characteristics of the system. Although the models were here presented in continuous time,
in the supply chain literature, modeling is typically undertaken in the discrete time domain, a domain
consistent with the MPC approach in general and the MPC Toolbox utilized in the simulation results.
As part of our on going work, we will explore multi-echelon chains [4], in which at least two (and
possibly many) players operate within each stage, e.g., the S stage in Dell’s “build-to-order” supply chain
management strategy might contain several chip suppliers such as Samsung, Intel and Micron. The
decision problem becomes more complicated in these chains, since the update rates of different players in
a stage are different in general. This requires an extension of the theory of distributed MPC to operate
under asynchronous timing conditions.
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