Diverse Soft Real-Time Processing in an Integrated System

Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt
Computer Science Department, University of Californiant&aCruz
{lex,kalt,apovzner,scott@cs.ucsc.edu

Abstract when faced with a new type of soft real-time constraint, a
system must under- or over-constrain its processing,tresul

Th? simple notion of sqft real-time processing has f_rac- ing in either reduced performance of the application, or re-
tured into a spectrum of diverse soft real-time types with a 4, ceq system utilization.

variety of different resource and time constraints. Sched- 5 goal is a complete integrated real-time system sup-

ulers have been developed for each of these types, but thesg, 1ing ‘ail types of real-time processing constraints. The
are essentially point solutions in the space of soft reraleti Rate-Based Earliest Deadline (RBED) scheduler [5] previ-
a.nd no single scheduler has previously been offered that Canously integrated hard real-time, (one type of) soft reueti
sw_nultan(_a_ously manage all types. _More generally, no de- and non-real-time processes. We now discuss the incorpora-
tailed unified definition of soft real-time has been provided tion of the full range of soft real-time processes into RBED.
that includes all types of soft real-time processing. We first present a complete real-time taxonomy which di-
We present a complete real-time taxonomy covering the;iges processes into nine different classes—including fou
spectrum of processes from best-effort to hard real-time. st reg|-time classes—based on their resource and timeli-
The taxonomy divides processes into nine classes basefless requirements. The taxonomy fully characterizes the
on their resource and timeliness requirements and includesyiferent processing and timeliness needs of the different
four soft real-time classes, each of which captures & group types of real-time processes and allows us to support the dif
of soft real-time applications with similar characterissi fgrent characteristics in a single system. Next, we discuss
We exploit the different features of each of the soft real- e integration of each of the soft real-time classes defined
time classe_s to mtegrate_ all of them into a single scheduler by the taxonomy into RBED and present experiments that
together with hard real-time and best-effort processes and, 3jigate the integration. The result is a single system and
present results showing their performance. scheduler that natively support a complete range of real-
time and non real-time processes, including adaptive and
) non-adaptive soft real-time, firm real-time, and rate-dase
1 Introduction processes in addition to hard real-time and best-effort.

Modern embedded, special-purpose and general-purpose Related work
computing systems are becoming increasingly complex and
powerful. At the same time, the traditional notions of best- Many different soft real-time processing models have
effort and real-time processing have fractured into a spec-been developed to support soft real-time scheduling in var-
trum of processing classes with different time constraints ious environments [10, 2, 22, 12, 13, 15, 20, 9, 26, 3, 7].
including critical hard real-time applications, non-iw In general, each of these models classifies all soft rea-tim
soft real-time applications and best-effort applicatifBis applications into a single class by considering them having
Within soft real-time, there is a large spectrum of appli- similar or same timeliness features. For example, (m,k)-
cations with different types of softened time-constraints firm real-time [10] and weakly-hard real-time [2] assume alll
meeting a minimum number of deadlines, requiring averageapplications have firm constraints which allow some num-
resource utilization, adapting to available resourets, ber of deadline misses in every fixed-size window of job in-
Although it is recognized that a variety of differenttypes stances; Reservation-based models [22, 12, 13, 15] assume
of soft real-time exist with markedly different characseri all applications requiréX units of processing over an in-
tics, no unified classification of all existing soft real-em terval of Y, thus a sharé&/Y of the CPU; Adaptive soft
applications has previously been presented. Most existingreal-time models [20, 9, 26, 3] assume all applications have
scheduling models [7, 3, 10, 12] therefore support only one the ability to adapt their qualities to the available resesr
or two classes of soft real-time processes. The result ts thaEach of these soft real-time models captures one or at most

a few of the existing types of soft real-time applications, e Other examples: Simulations of physical sys-
and none supports all the soft real-time classes. Our work tems/flight simulators, speech and image processing,
differs in that we want to classify soft real-time appliceis soft modems, ...

into a minimum number of soft real-time classes, each cap-

turing a group of soft real-time classes with similar feagyr . "
same may fail to fully utilize the system resources or pro-

and then support all of these classes. ide the best perf ible. Audio plavback
Furthermore, some of these processing models onlysup—VI € the best periormance possible. - AUdio playback ap-

port the scheduling of their defined classes of soft real- plications, for _example_, may be run as hard real'?'m.e pro-
time applications but not fully integrated scheduling ofcha cesses, bUt doing so fails to take advantgge of erX|b|I|ty_du
real-time or non-real-time (best-effort) applicationsor F to their ability to buffer decoded data during playback. Sim
instance, (m,k)-firm real-time [10] does not support hard llarly, interactive games may dropfrgmes, but better perfq
real-time applications because it cannot guarantee afl-dea mance may b? atheva}ble by reducing color depth. P_rowd—
lines in overloaded conditions. HLS [28] is a hierarchical ing each application with exactly the resources and timeli-

scheduler, which composes arbitrary hierarchies of exjsti ness requirements that it needs will glti_mately prqvidehbot

schedulers in order to execute mixed class workloads. Webef[ter perfqrmance and greater f!e?<|bllty, but dpmg SO re-
want integrated scheduling of hard real-time and besteffo quires a uniform modell characterizing the varying require-
applications and all classes of soft real-time applicatios ments of these very different types of applications. Our

ing a single scheduler (without the added complexity of un- real-time taxonomy d(_)es exac_tly t.hls’ gnn‘ylng_ the differ
. : . ent types of soft real-time applications into a single model
derstanding interactions of multiple schedulers). . S
based on their resource and timeliness needs.

Treating all of these different types of applications the

3 Realtimet 3.2 The taxonomy
eal-lime taxonom
y The Resource Allocation and Dispatching (RAD)

Soft real-time tasks are conventionally defined as tasksmodel [5], conceptually depicted in Figure 1(a), separates
with soft deadlinege., deadlines that can be missed without the two aspects of resource management implicitly handled
compromising the integrity of the system [6]. While largely by all schedulers. It represents the diverse timing needs
correct, such definitions fail to fully capture the diveysf of various applications in terms of the degree of flexibility
the timeliness features found in various soft real-time sys required with respect to resource allocation, or how much
tems and applications. For example, how many deadlinesresources are required, and dispatching, or when the re-
may be missed and by how much? If a deadline is missed,sources are required. Hard real-time (HRT) processes, for
will the task continue to execute or abort? What if an ap- example, have extremely tight resource allocation and dis-
plication changes its processing so that it no longer missespatching requirements: they must be guaranteed the re-
deadlines, but provides lower quality output? sources required to execute for their worst-case execution
time every period. Best-effort (BE) processes, by contrast
have very loose resource allocation and dispatching requir

There is a large variety of soft real-time applications. MeNts, generally being able to run as slow and sporadi-

Some commonly used soft real-time applications and their cally as necessary without being thought of as having failed
timeliness features include: However, there is variation in terms of these requirements

even within best-effort scheduling: non-interactive CPU-

e Desktop and streaming audio [23]: No fixed deadlines, bound processes need greater amounts of CPU, but within
but require continuous processing at a fixed (average)very broad parameters they can use it in any size increments
rate. and at any time, while 1/O-bound processes, especially in-

e Desktop and streaming video (such as MPEG, RM, teractive ones, use relatively littte CPU but need to rexitiv
etc): may adapt to the available resources and/or drop quickly once they have unblocked in order to provide good
late frames [3]. interactive responsiveness.

e Virtual reality games [27] and interactive graphics: Between hard real-time and best-effort lies the broad
usually adapt to available resources and vary frameclass of applications and systems referred to as soft real-
rate. time (SRT). This includes a variety of different systems

e Automatic control and monitoring systems [2]: fixed with varying properties, all of which share the common
deadlines, but oversampling techniques allow occa- property that resource allocation and/or dispatchingiregu
sional deadline misses. ments are looser relative to hard real-time. Figure 1(a) di-

e Adaptive control systems [21]: can adapt to available vides these into four broad sub-categories—Missed Dead-
resources by executing with different sampling peri- line Soft Real-Time (MDSRT), Firm Real-Time (FRT), Re-
ods. source Adaptive Soft Real-Time (RASRT) and Rate-Based

3.1 Soft real-time applications

required % of deadlines

[0,100%] | [min,100%] | 100%
| |
3 Missed Firm Hard 3 ‘ ‘
= Deadline Real-Time Real- £ . ‘ . |
£ g Missed | Firm | Hard c
5 g % 2| Deadline | Real-Time | Real-Time i o=
é“ S Soft 5 8 ! ‘ s
Real-Time g =%
ES g2 F-—-—-—-4 |- - - — — - - - o
5 2 a
= g ‘ | = 3
g 2 | o %, R f G
i b= Bound ! %, ‘ aptive c a
g Resource g ou | %, | w/minimum | £ @
= g S 5 =
= Adaptive z | ‘77777‘7 777777 i ;_:
) 53 | I
£ 3 =g | R 5
2 £ |Bound g 2 esource = 5
g g g £ Best ! 1/0- I Adaptive c a
S ~ oz Effort I Bound | w/o minimum £~
S | Best 1/0- S | | g
= | Effort Bound = | |
unconstrained constrained unconstrained constrained
Dispatching(when/ how often) Dispatching(when/ how often)
(a) RAD model and real-time classes (b) Real-time taxonomy

Figure 1. Real-time taxonomy

(RB)—depending upon which constraints are relaxed. MD- (worst-case) resource rafisrget (U for short),i.e., Us=Ux.

SRT is real-time processing in which the time constraintis This yields nine different classes of resource and time-
entirely softened such that some or even all deadlines mayliness requirements: 1) True best-effort with no procegsin
be missed by varying degrees [5, 16, 22, 23]. FRT is real- or timeliness requirements; 2) CPU-bound best-effortywit
time processing in which the time constraint is relatively some processing requirements; 3) I/O-bound best effort,
softened (compared to hard real-time processing) such thatvith some timeliness requirements; 4) Missed-Deadline
a specified number of deadlines may be missed in a givenSoft Real-Time, with fixed soft deadlines; 5) Firm Real-
window of job instances [10, 2]; jobs whose deadline has Time, with some combination of soft and hard deadlines;
been missed are considered invalid and are dropped. By6) Resource-Adaptive Soft Real-Time, with the ability to
contrast, RASRT is real-time processing in which the re- adapt to any degree of resource availability; 7) Resource
source allocation constraint is softened by adapting appli Adaptive Soft Real-Time, with a minimum amount of re-
cation processing requirements to the available resourcesources required; 8) Rate-based, with a required average re
while attempting to minimize the number and amount by source rate, but flexibility both in the timing and amount of
which deadlines are missed [3, 4, 16, 29]. Finally, in Rate- resources required at any given tfmend 9) Hard Real-
Based processing both resource allocation and dispatching@ime.

can vary, but not completely independently: if more re- The previous version of RBED supported BE, one type
sources are provided a longer time may elapse before reof SRT, and HRT. The rest of this section discusses how to
sources are once again allocated, and vice versa [25, 12]. exploit the timeliness features and properties of the wario

The conceptual diagram of Figure 1(a) is formalized in types of soft real-time tasks defined by the taxonomy.
Figure 1(b). TheX-axis defines three degrees of dispatch-

ing constraints (from softest to hardest): 1) a task may be3.3 Missed-deadline soft real-time

given the resources it requires at any tingg all jobs may

miss their deadlines, 2) a minimum percentage of the jobs Missed-deadline soft real-time is the basic non-adaptive
of a task must meet their deadlifesnd 3) all jobs of a soft real-time used by many of the scheduling frameworks
task must meet their deadlines. T¥eaxis similarly de- in the literature [16, 22, 23, 5]. Missed-deadline soft real
fines three degrees of resource allocation constraintm(fro time tasks can miss some or all of their deadlines during
softest to hardest): 1) a task may receive any resource rat@verioad. Missed-deadline jobs may complete late or be
up to and including its target resource rae, it has no dropped, depending upon the application. A missed dead-
minimum resource raté.e., Us € (0,Ut]; 2) a task may re- line soft real-time task has a target resource reg, (ess
ceive any resource rate between its minimugi, (Un for than or equal to its worst case resource rate. Since a missed
short) and its target resource ratgi.e., Us € [Up,Ut]; and deadline soft real-time task may miss all of its deadlines, i
3) a task must receive a resource fidteequal to its target

2The center of the diagram also include Resource Adaptive FSdl-

1We do not distinguish the case where all deadlines may beerhiss Time with soft deadlines, which combines the charactesstf both
by a fixed maximum amount, as this is equivalent to meeting/d @® RASRT and MDSRT and has softer requirements than rate-lpasedss-
appropriately determined pseudo-deadlines. ing.

has a zero minimum resource ratéy(= 0). Missed dead- with discrete QoS levels is adaptive control systems [21],

line soft real-time tasks include all soft real-time apglic where a control task is allowed to use different sampling pe-

tions and systems that do not have the ability to adapt theirriods. An example of resource adaptive soft real-time with

gualities to the available resources. continuous QoS levels is a chess program designed to play
in a tournament with a clock: more time will result in a bet-

3.4 Firm real-time ter move, but the program will always output a move in the

Firm real-time tasks can miss some, but not all, dead- available time.. _
lines (min> 0) when resources are limited. In firm real- ~ Resource adaptive soft real-time tasks have a target re-
time processing, jobs that are going to miss or have missedsource rately, which limits the maximum resource rate
their deadline are usually dropped because late resulés havtasks can receive. Whether continuous or discrete, the dif-
little or no value. For example, it is often better to skip a ferentalgorithms corresponding to the different resoaice
frame in video playback than to display it late. Firm real locations are |mpI|C|tIy or explicitly asso_uated W|Henef|t
time tasks are considered hard real-time for the purposes obalues [6, 3]; higher values are associated with larger re-
admission control. Examples of firm-real time applications Source allocations. For example, for adaptive control sys-
include video applications and computer-driven automatic t€ms, the benefit may be arstantaneous cost functi¢21]
control and monitoring systems using oversampling tech- ©F afinite-horizon cost functiofiL1] of the control tasks.
niques [2]. We assume that each resource adaptive soft real-time

The literature distinguishes two types of firm real-time task has a worst-case resource requirement—which may
processing: statistical firm real-time and pattern-basea fi change as resource allocations change—so that the task is
real-time. A statistical firm real-time task allows a cemtai always guaranteed to meet all of its deadlines if it adapts to
percentage of its jobs to miss their deadlines, but limiés th the available resources. The difference between resource

number of consecutive deadline misses. rv,(mn)-firm adaptive and missed deadline soft real-time tasks is that
task allowsmr percentage of jobs to miss their deadlines Missed deadline soft real-time tasks miss deadlines whenre
as long as the number of consecutive deadline misses doegources are reduced while resource adaptive soft real-time
not exceednn Pattern-based firm real-time tasks allow to tasks voluntarily adapt their performance to the available
drop jobs in user or system defined patterns, sucmgg{ resources. Hybrids are also possible, where some deadline
firm [10] also referred to as weakly-hard real-time [2]. A Misses are allowed but adaptation takes place if too many
(m, k)-firm task requires at leash out of everyk of its ~ OCcurin agiven time window.

jobs to mget their deadlines. _Am(k)-flrm qonstramt is 36 Rate-based

usually stricter than anfr, mn)-firm constraint for small

k, e.g. k <=100. Based on this assumptiomar(mr)- Rate-based tasks have constraints in the form of contin-
firm tasks can be converted tm(k)-firm with k = [150mn uous processing requiremenit) [25]. A rate-based task

andm = k— mnwithout loosening constraints. Therefore it ysyally has a buffer to hold the produced data temporarily.
is sufficient to describe firm real time processing raskj- This allows rate-based tasks to be very flexible about how

firm in an integrated system. Firm real-time applications of mych and when resources are needed. Frequent, small allo-
ten have additional constraints for their tasks, for exampl cations of resources may be used, as may infrequent, large
some jobs may be more important than others and shouldgjjocations, or any combination of the two, as long as the
not be droppede.g, MPEG | frames). buffer never underflows or overflows. If more space is filled
in the buffer a longer time may elapse before the buffer is
replenished, and if less space is filled, less time may elapse
Resource adaptive soft real-time applications adapt theirLarger buffers €.g.,the amount of RAM in an audio card)
resource usage and therefore their Quality of Service (QoS)provide more flexibility. A rate-based task with no buffer
based on the available resources. For example, a videcapacity degenerates to a hard real-time task.
stream server may gracefully reduce the video quality in sit ~ Any process that uses a buffer or a queue to communi-
uations of overload by adjusting the pixel density or frame cate with another process or a device may be considered
rate of the served video stream. In general, applicatiorys ma a rate-based task. In an audio player, a rate-based task is
change their sampling interval, frame rate, bit rate, digpl a process that reads audio data frames, decodes and writes
size, compression algorithm, or any other algorithmic pa- them to a fixed-size memory buffer, and they are consumed
rameter affecting resource usage. Resource adaptive soffrom the buffer by the sound card driver at a constant rate.
real-time tasks can be divided into sub-categories dependOther examples include real-time video recording, such as
ing upon whether they adapt continuously or via discrete burning a VCD/DVD, where a fixed buffer is used to control
QoS levels and whether or not they have a minimum re- the burning process.
source rate. An example of resource adaptive soft real-time The flexibility of rate-based tasks allows them to take ad-

3.5 Resource adaptive soft real-time

vantage of idle time in the system and, in effect, buffer exe- source ratdJs equal to its target ratdJs = U;. When the
cution time for other tasks in the system. When the systemsystem is overloaded—z—ﬂ\‘:lut,j > USRT_a proportional

is lightly loaded, a rate-based task can temporarily run at afair share resource allocation policy is used to share re-
faster rate and keep the system busy, as long as the buffesources among missed-deadline soft real-time tasks. That
does not overrun. When the system is heavily loaded, a rateis, T; will be allocated a rate proportional to its target rate:
based task can temporarily run at a slower rate as long as thej, = _NU“_ x UgrT. Each missed-deadline soft real-time
buffer does not underrun. In section 4, we discuss different 211U

ways to effectively exploit the flexibility of rate-basedkas task may have a yvelght (W) to denote |.ts right to get re-
: . source share relative to other tasks. In this case, the propo
to improve the overall performance of our integrated sys-

tem tional resource allocation for a missed-deadline soft-real
’ time taskT; with weight W should be adjusted dds =

. . . W xU
4 Integrating diverse soft real-time schedul- v w o 1(\,} ;{Jm x Ugrr. This resource allocation mechanism is
]: il

ing into RBED similar to the traditional proportional fair share algbrits,

. . . e.g.WFQ [8] and lottery scheduling [30].
RBED is an integrated scheduler supporting hard real- Once resource allocation is done, each missed-deadline

time, soft real-time and best-effort processes. It allesat soft real-time task is guaranteed to receive its allocated r
resources to processes as a percentage of CPU such thgburces although its budget and peri@,) may dif-

the total allocated rate is less than or equal to 100%, andfer from,its target onese(p). Currently We’ adjust the re-
then schedules all processes with EDF, using timers to eN-qived budget and period aB (= e P, = B) by extend-
force resource allocations. RBED dynamically changes aI-ing the period while keepings the7blsjdgeuts With this ad-
located resources and appliqation periods without v?n@ati .Justment, a missed-deadline soft real-time task may fre-
ED'.: constralnt§, guaranteglng Fhat tasks NEVer miss the'quently miss its deadlines in overload situations. Further
assigned deadiines. Previous implementations of RBEDmore, some missed-deadline soft real-time tasks may even

tref?ted la;!l SOf; rleal-t|med appl_lk():attlr:)n_s tas m;_ssedf—de_adhg miss deadlines in underloaded conditions because their tar
ZO (;?a' Im?t. el():{\' we edsi;: ethein _egra;rllon 0 mfltsse | get resource rates may not reflect their actual resource rate
cadline soft real-ime and the remaining three Sott réal- gince 3 missed-deadline soft real-time task does not have

tlm\(/evclgssTs mtotR(;SED.h ft realti | in the RBED the functionality to lower its requirement when missing the
€ implemented each soft real-ime class in the current deadline, its current job continues to run until eom

scheduler [5] in the Linux 2.6 kernel. For our experiments pletion, at which the next job will be released. As a result,

we used a1l GH_z Intel Pent_lum [l machine. All real-time it appears to run “slower” than expected in overload situa-
workloads used in the experiments were generated by a tool.

. : . _otions.
we developed for this purpose. As input it takes a period
or minimum inter-arrival time, a worst-case or average- 4.1.1 Evaluation

case execution time, and the desired process type. Basegye implemented missed-deadline soft real-time processing
on these parameters it generates periodic hard real-time ofn RBED using proportional fair sharing resource alloca-
soft real-time tasks with variable execution times in &ithe tjon. The default weight of each missed-deadline soft real-

a normal (NW) or a left half-normal (NA) distribution [19]. time task is set to 1. A system call is implemented to allow
Since we focus on the performance of real-time applicationsgynamic changes of task weights.

in a mixed environment, we arbitrarily reserve a minimum 20 , , , , , , : ,

of 2% of the CPU for best-effort tasks, enough to provide MBSRT2 ——
a functional interactive system for running command shells »r 1
during the experiments.

20 | . g

4.1 Missed-deadline soft real-time

d utilization (%)

15 | B

Ve

We use weighted proportional share to allocate resources
to missed deadline soft real-time tasks in our system. As-
suming the total rate of all hard real-time taskg/ 8?7, and st NG
the reserved minimum resource rate for all best-effortdask))))))) T
is B, the maximum available resource rate for all missed- o etones
deadline soft real-time tasksigrr=1— B —UMRT. When . .
the system is underloaded—the total target rate is less Figure 2. Proportional share among MDSRT
than the total available ratezﬂ-\‘:lut,j <= UgrT, Where tasks
N is the number of missed-deadline soft real-time tasks— The first experiment shows the proportional resource
a missed-deadline soft real-time tagkis allocated a re- share among multiple missed deadline soft real-time tasks

10 | g

Rece

with their weights equal to 1. The workload consists of A static drop mode does not prevent a firm real-time task
one HRT task and two missed-deadline soft real-time tasksfrom dropping jobs, even if no other tasks require additiona
(MDSRT1 and MDSRT2). MDSRT1 and MDSRT2 re- resources. For example, a firm real-time task will continue
guest 30% and 20% of CPU respectively and the HRT taskto drop its jobs in underloaded states, hurting its own per-
has varying resource utilization ranging from 50% to 95%. formance without benefitting any other task.
Figure 2 shows the received utilization of the two missed- Our dynamic drop mode drops jobs on demand—when
deadline soft real-time tasks as the utilization of the HRT other tasks request additional resources—as long as the
task increases. The utilization of the two missed-deadline (m, k)-firm constraint is not violated. Dynamic drop mode
soft real-time tasks decreases exactly proportional to the captures the load status (under- or over-loaded) and the
requested resource utilization. highly variable resource requirements of soft real-tinmed(a
The second experiment shows the weight impact on best-effort) tasks in the system. By doing so, it ensureis tha
the relative performance of missed-deadline soft reaétim firm real-time tasks achieve maximum performance when
tasks using proportional fair share. The workload con- no other tasks require additional resources. In order to be
sists of two missed-deadline soft real-time tasks: MDSRT1 able to drop firm real-time jobs dynamically without vio-
(75%, e=75ms, p=100ms) and MDSRT2 (75%, e=150ms, lating the (n,k)-firm constraints, a sliding window mecha-
p=200ms). Figure 3 shows the deadline miss ratio of MD- nism [10] needs to be applied. A sliding window mecha-
SRT1 and MDSRT2 as their relative Weigﬁﬁ,%() changes. nism tracking the ladt— 1 executions allows the system to
MDSRT?2 achieves better performance—in terms of smaller determine whether the current job of a firm real-time task
deadline miss ratio—by trading off MDSRT1 performance can be dropped without violating the given constraints.
as the relative weight increases.

100

MDSRTL (%) - - - - T T T)))) 4.2.1 Evaluation

MDSRT2 (%) —e—
o | R 4 We implementedr, k)-firm real-time processing [17] in the

g RBED scheduler. The experiments show the influence of
1 static and dynamic drop modes on performance of other soft
real time tasks in a loaded system. Starting from a static
early drop pattern, always dropping the maximum allowed
A number of consecutive jobs, we compare these results with
evenly distributed and drop on demand patterns.

60

40 ¢~

Deadline Miss Ratio (%)

20

o

1 12 15 17 2 225 25 27 8 825 35 The workload detailed in Table 1 is used to evaluate the
Figure 3. Weight irvrvwe;gméltogzwzerformance static early drop pattern. It consists of two hard real-time
]] processes together accounting for 20% of CPU utilization,
4.2 Firm real-time a firm real-time process witfim,5) constraints and 28%

Firm real-time tasks are treated as hard real-time for theof CPU utilization, and one missed-deadline soft real-time
purpose of admission control. That is, a firm real-time task process with 50% of CPU utilization. We measure the influ-
T with target (worst-case) resource rakewill be allocated ence of the firm real-time parametaron the performance
a rateUs = U;. Therefore, a firm real-time task will not of the missed-deadline soft real-time processes in terms of
miss any deadlines if no job is dropped. However, in order deadline misses. Using the same firm real-time parame-
to benefit other soft real-time tasks, actual resource usfaige ters, we investigate how the period length of the missed-
a firm real-time task may be less than allocated due to jobdeadline soft real-time task influences its deadline mjsses
dropout at runtime. while keeping its utilization constant.

Drop modedefines the dropout pattern for a firm real- Figure 4 shows the deadline miss ratio of the missed-
time task. A drop mode may be static or dynamic. A deadline soft real-time task as a function of its period. A
static drop mode picks the jobs to drop in a pre-defined set of four curves (FRT) shows the missed-deadline soft
way, such as early dropout (deeply red [18]) and evenly real-time performance for the case timat= 5,4,3,2 con-
(uniform dropout [24]),etc. Early dropout always drops secutive jobs of the firm real-time task are required to meet
the firstm— k jobs and execute the remainingjobs of a their deadline while the remaining— m=5—mones are
(m, k)-firm task in each static window d&fjobs. For exam- dropped. We consider the first curve (HRT = FRT-5) as
ple, dropping the 1st, 2nd, 7th, 8th, ..., (6n+1)th, (6nk2)t a baseline measure, scheduling our firm real time task as

. job of a (4,6)-firm task will not violate its constraint. hard real time without any dropped jobs. This experiment
Even dropout always drops jobs evenly as long as executiorshows that static firm real-time drop patterns always result
sequence does not violate (m,k)-firm constraint. For exam-in equal or lower deadline miss ratio for other soft realdim
ple, dropping the 1st, 4th, ..., (3n+1)th, ... job of a (4j&) tasks, compared to firm real-time tasks scheduled as hard
task will not violate its constraint. real time. The results also indicate a quantitative retatio

ship between firm real-time and other soft real-time tasks:
missed-deadline soft real-time performance improveses th
number of dropped jobs increases from 0 to 3.

Table 1. Workload 1 (unitin mg

Deadline Miss Ratio (%)

Task Task Parameters| Server Parameters Adjustment
e=fe | p [B=e|[P=p [U=F | A@ [AP
HRT NW(20) 200 20 200 10% 0 0
HRT NW(30) 300 30 300 10% 0 0
FRT (m,5) | NW(28) | 100 28 100 28% 0 [)))))
MDSRT NA(25) 50 25 50 50% +20 +40 ‘o1 0.14 0.18 0.22 0.26 0.3

SRT Load (fraction of CPU)

e r— ' , , Figure 5. FRT dropout impact on performance

to maximize the global benefit or value that the system can
achieve. Itis NP-hard in general to optimize the overaltben
efit when resource adaptive applications with discrete QoS
levels coexist in the system [20, 3], so heuristics are used
to achieve high overall utility by dynamically adjustingsth

Deadline Miss Ratio (%)

0 - = e > g e o QoS levels of each soft real-time task given the available
ST period (ms) resources in the system. Our heuristic algorithm itertive
Figure 4. Static dropout impact on MDSRT increases the level of a task which will provide the great-
performance (MDSRT: u=50%) est increase in benefit density [14, Bg., the one with the
greatesf22™eM yniil no more increases are possible within
Table 2. Workload 2 (unitin - mg the available resources. Similarly, when lowering resesrrc
Task Task Parameierd Server Parameiers Adjustment it always chooses the level whose removal decreases over-
N el\lifl(()é) 180 Bl=O€ Plzop U8=o/% A+(2éi A(;Jo/) all benefit density the least. Although the heuristic algo-
FRT(7.10) NV\/((45)) T00 45 oo+ fl%f rithm frequently finds the resource allocation that proside
FRT(7,10) | NW(45) | 100 | 45 100 5% T | —1% the highest possible benefit, this is not always guaranteed,

. . . nor is it always possible.
We further investigate the improvements that can be ysp

achieved by dropping firm real-time jobs evenly distributed .
and dynamically. Our dynamic dropout mode drops jobs if 4.3.1 Evaluation

there is a demand for resources by other tasks, otherwiséVe implemented the resource adaptive soft real-time pro-
|t drops jobs even'y' We Compare the performance Of a” CeSSing using heuriStiC resource a”ocation in RBED. A SyS-
three dropout modes: ear'y, even|y and on-demand. Thetem call is implemented to allow the application to adeSt
sample workload, detailed in Table 2, consists of two firm its benefit (similar to the weight adjustment in missed dead-
real-time tasks, both havir{gn k) = (7, 10) firm constraints line soft real-time processing) and query any resource ad-
and starting at 45% CPU utilization and a missed-deadlinejustment done by the scheduler in the kernel. We expect
soft real-time task starting at 8% CPU utilization. To inves @ better resource adjustment communication mechanism by
tigate the performance differences between the three firmusing signal notification in the future. The resource adapti
real-time dropout modes across varying workloads, we in- Processing model and its implementation in RBED were
crease the missed-deadline soft real-time task load ssepwi Validated with a real case study applied to adaptive control
by 2% and reduce the load of each firm real-time task by Systems [21]. Here we present some basic experiments that
1% correspondingly. demonstrate how the heuristic algorithm works.

Figure 5 shows the deadline miss ratio of the missed- The experiment shows the resource adaptation results as
deadline soft real-time task under the three different drop the offered workload changes. The workload consists of one
modes as its own load increases. Compared to early drogiRT task with CPU utilization of 60%, and three resource
mode, evenly drop always performs better or equal, while adaptive soft real-time tasks (RASRT-1, RASRT-2, RASRT-
the dynamic drop mode achieves the best performance. 3) with discrete QoS levels shown in Table 3. Figure 6
shows the changes of the QoS levels of RASRT-1. RASRT-
2 and RASRT-3 as the HRT task enters and leaves the sys-

As detailed in section 2, there are many resource adaptem. Initially, the HRT task uses 60% of the resource, and
tive soft real-time task models, including imprecise compu executes for 46.2 seconds. Therefore the maximum avail-
tation [20], QRAM [26], DQM [3], and [9] , all of which try ~ able resource rate for the resource adaptive soft real-time

4.3 Resource adaptive soft real-time

Table 3. Benefit Tables (RASRT-1, RASRT-2 and RASRT-3 in Figu re 6)

Number of QoS Levels: 4 Number of QoS Levels: 4 Number of QoS Levels: 4
Level Benefit Rate Period Level Benefit Rate Period Level Benefit Rate Period
1 1.0 0.35 100 ms| 1 1.0 0.45 100 ms| 1 1.0 0.60 100 ms|
2 0.7 0.30 100 ms 2 0.8 0.40 100 ms| 2 0.9 0.50 100 ms|
3 0.5 0.20 100 ms 3 0.6 0.30 100 ms| 3 0.7 0.40 100 ms|
4 0.3 0.10 100 ms 4 0.4 0.10 100 ms| 4 0.5 0.10 100 ms|
(a) RASRT-1 (b) RASRT-2 (c) RASRT-3
40 ; quired block size. To prevent buffer overrun, the maximum
HRT . .
@ 35 [RASRT-1 . value ofn is the half size of the buffer, because we need
2 30 RASRTE . 2+n bytes of unused space in the buffer to pre-fill it with
> 25r 7 bytes and then produce anothebytes in the first period.
%’; iz I] The algorithm allows any _choice _of budgay e [€min, Emax
g et and thus the corresponding periBgle [e'L]‘—;”, ef}:x], where
10 e — . . .
S 2 emin IS the worst-case execution time (WCET) needed by
S - T — ..
o bl , , , the task to produce the minimum amount of data requested
0O 10 20 30 40 50 60 70 80 by its consumer, andyaxis the WCET needed by the task
Time (s) to produce the amount of data that exactly fills half of the
Figure 6. RASRT behavior in RBED buffer.

The performance of rate-based processes is guaranteed

tasks is 100%- 60%— 2% = 38% (Note that we reserve 2% by worst-case resource reservations, but overconstitzens t
for all best-effort tasks in the system). As a result, the re- Processing, fails to take advantage of the flexibility ireTer
source adaptive soft real-time tasks each receives 10%, the in rate-based processes, thereby limiting its ability tehbo
lowest QoS levels. When the HRT task leaves, the levels ofProduce and consume slack, and ultimately limits the over-
RASRT-1, RASRT-2 and RASRT-3 are adjusted to provide all performance of the system, as will be discussed below.
a higher level of benefit within the available resources. The

result is that RASRT-1 increases to level 1, RASRT-2 in- 4.4.2 Rate-based as continuously releasable hard real-
creases to level 1, and RASRT-3 remains at level 4, shown time

as the bold rows in Table 3. In this approach, a rate-based taskmmediately releases

4.4 Rate-based its next job (if there is one) once it completes the current
job, and the time needed to empty the buffer is assigned
Our integrated system currently treats rate-based tasks aas the new deadline. If the buffer is full, the task will be
hard real-time tasks when allocating resources and assignslocked until some of the data in the buffer is consumed.
Us = U;. There are three approaches to scheduling rate-In particular, the budget and period ©fare assigned the
based tasks: as periodic hard real-time, as a continuouslyminimum values:(Bs, Ps) = (€nin, S—z). OnceT completes
releasable hard real-time, and as a continuously releasabla current job, its new job is released immediately with
hard real-time with blocking. the deadline assigned its previous deadline plus the period
o) ds,j :ds,jfl-l-Ps-
4.4.1 Rate-based as periodic hard real-time Similar deadline extension mechanisms are used in other
In the first approach, rate-based tasks are scheduled as persystems [1, 19] to allow the current job to borrow from the
odic hard real-time tasks. For both producer and consumerydget reserved for the task’s next job. Since the borrowed
processes, we choose a block sizendfytes which is N0 resources are executed with the deadline of the following
greater than half of the buffer and no smaller than the mini- jop, the task’s utilization remains unchanged and thegefor
mum amount of data that can be requested by the consumeghe correctness of the scheduling is preserved.
Fora producer process, the budgets set to the worst-case With the deadline extension mechanism, a rate-based

time to producen bytes and the perioB is set to the time 4k automatically takes advantage of any available slack
to consume bytes. When each period ends, the previously (5jigcated but unused resources) in the system to complete
producedh bytes are consumed, but the scheduler guaran-55 many jobs as possible, and idles when the buffer is full,

tees that next bytes are produced by this time. The situa- rq4ycing slack for other processes. Therefore, we expect

tion is reversed for consumer processes (those on the othejhis approach to be more efficient than the first one. How-
side of the buffer). Thus, the algorithm guarantees thelte wi ever, this approach still fails to achieve the full potehtia
be no buffer underrun provided thaexceeds the lowestre- o0 pased processes.

4.4.3 Rate-based as continuously releasable hard real- deadline soft real-time task as its period increases under
time with blocking the three different approaches. The results show that the

This approach extends the previous approach by also conapproach of scheduling rate-based tasks as continuously re

sidering demands of other tasks in the system. If there areleasable hard real-time tasks with blocking outperforres th

other tasks that need additional resources, a rate-bagled ta approach of scheduling rate-based tasks as a continuous re-

T will block immediately until some minimum amount of leasable hard real-time tasks without blocking; Both out-

data in the buffer is consumed or a minimum level of the perform the approach of scheduling rate-based tasks as pe-

buffer is reached. This sheds the total load and gives otherriodic hard real-ime tasks in all scenarios.

tasks a better opportunity to use idle time in the system. .

Since this approach takes the dynamic resource usage int® Conclusions and Future Work

consideration and sheds load by blocking rate-based tasks i

necessary, we expect better responsiveness of aperidtlic so

real-time or interactive 1/0O bound best-effort processes.

The spectrum of real-time applications with different
time and resource constraints requires a classificatiop-to o
timally support each of them. In order to optimize system
4.4.4 Evaluation performance in an integrated real-time system, it is nec-

We have implemented the three approaches for schedulingssary to manage all classes of real-time applications to-
rate-based tasks in RBED and present experimental result§ether with best-effort applications, uniformly using &-si

of their relative performance. The workload, detailed in 9le scheduler. Based on the RAD model, we have developed
Table 4, consists of one HRT task with CPU utilization of areal-time taxonomy which captures the timeliness feature
20%, one rate-based task (RB) with CPU utilization of 50% Of existing real-time applications. This is the first contple
and the buffer size of 8n, wheren is the amount of data taxonomy that fully captures the range of real-time process
generated by each completed job, and one missed-dead|inBd requirements from best-effort to hard real-time. Since
soft real-time task (MDSRT) with CPU utilization of 30%. best effort and hard real time processing have been exten-
We compare the performance of the missed deadline softSively investigated in the past, we focused on the wide spec-
real-time task in the presence of the rate-based task schedfum of soft real time classes, namely missed-deadline soft
uled respectively as a hard real-time task with period of real-time, resource adaptive soft real-time, firm realetim
50ms, a continuously releasable hard real-time task (RBand rate-based. Exploiting the timeliness features of each
w/o block), and a continuously releasable hard real-time of these classes allowed us to describe the complete space
task with blocking (RB with block). We also varied the pe- of real-time processing and to integrate them into our RBED
riod of the missed deadline soft real-time task by changing Scheduler.

its execution time while keeping its demanding utilization ~ The promising performance results suggest an obvious

constant. next step, which is to develop a uniform resource alloca-
tion model to uniformly manage all classes of processes.
Table 4. Workload 3 (unitin m9 Looking at the individual ways each soft real-time class is
Task Task Parameters Server Parameters Adjustment currently handled, it becomes obvious that not all process-
e_f@e | p [BelP-plU_F |20 [AD ing mechanisms are fully compatible in a uniform system
MDSRT | NA(60) | 200 | 60 | 200 | 30% | +3 | +10 9 _ y comp _ ystem.
RB NW(5) | 50 | 25 50 50% | O 0 For example, missed-deadline soft real-time tasks seek fai
HRT [NW(160) | 800 | 160 | 800 | 20% | O | © ness through proportional share resource allocation,ewhil

resource-adaptive soft real-time tasks use a heuristic re-
source adaptation algorithm to achieve the highest possi-

60

HRT

e ' ' ' ' ble global benefit. Assigning a benefit value to missed-

RB (w block) - - - - -

deadline soft real-time tasks or giving up the benefit value
for resource-adaptive soft real-time tasks makes satigfyi
their individual goals impossible. On the other hand, firm
real-time and rate based tasks are both handled like hard
real-time with the exception of allowing for certain missed
deadlines or trade offs between resource allocation and dis
‘ ‘ ‘ ‘ ‘ ‘ ‘ patching constraints respectively.
20 260 20 G0 30 340 30 ;400 Unifying these different processing mechanisms can be
Figure 7. Rate-based scheduling behavior im- desc_nbed in twp ways. Flrst_, reduce the number of cla_sses
pact on performance by either relax!ng the rngrements of_ more constrf_;uned
classes, e.g. firm real-time such that it becomes missed-
deadline soft real-time, or by increasing the requiremehts
Figure 7 shows the deadline miss ratio of the missed less constrained classes, e.g. missed-deadline sofimeal-

Deadline Miss Ratio (%)

such that it becomes firm real-time. This approach, used by[15] M. B. Jones, J. S. B. lll, A. Forin, P. J. Leach, D. Rosu,

most existing schedulers, may result in reducing the number
of classes into only one single class, which is not a flexible

solution as explained in section 1. Second, merge the pro-[16]

cessing mechanisms of several different classes by simpli-

fying their existing timeliness features or introducingwne

timeliness features. This approach will maintain the diver

sity of classes but unify the processing mechanisms for as[17]
many classes as possible. We favor the second approach and

are currently investigating its implementation in the RBED

scheduler.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applic
tions in hard real-time systems. Rroceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS]1988&s 4—
13, Dec. 1998.

[2] G.Bernat, A. Burns, and A. Llamosi. Weakly hard reati
systemsIEEE Transactions on Computeis0(4):308-321,
Apr. 2001.

[3] S. Brandt and G. Nutt. Flexible soft real-time procegsim
middleware.Real-Time System22:77-118, 2002.

[4] S. Brandt, G. Nutt, T. Berk, and J. Mankovichr. A dy-
namic quality of service middleware agent for mediating ap-
plication resource usage. Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS 1988)es 307—
317, Dec. 1998.

[5] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft remabt
and non-real-time processes. Rmoceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2@a8jes
396-407, Dec. 2003.

[6] A. Burns. Scheduling hard real-time systems: A review.
Software Engineering Journa:116-128, May 1991.

[7] G.C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload managementEEE
Transactions on Computers1(3):289-302, Mar. 2002.

[8] A. Demers, S. Keshay, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. IRroceedings of the
ACM SIGCOMM Symposiurpages 1-12, Sept. 1989.

[9] C. Hamann, J. Loser, L. Reuther, S. Schonberg, J. Wolte
and H. Hartig. Quality assuring scheduling-deploying
stochastic behavior to improve resource utilizationPo-

ceedings of the 22nd IEEE Real-Time Systems Symposium

(RTSS 2001)Dec. 2001.

M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computer$4(12):1443-1451, Apr.
1995.

D. Henriksson and A. Cervin. Optimal on-line sampliret p
riod assignment for real-time control tasks based on plant
state information. Inin Proceedings of the 44th |IEEE
Conference on Decision and Control and European Control
Conference (CDC-ECC 2005pec. 2005.

K. Jeffay and D. Bennett. A rate-based execution abstra
tion for multimedia computing. IfProceedings of the Fifth
International Workshop on Network and Operating System
Support for Dié;ital Audio and Vide®Apr. 1995.

K. Jeffay and S. Goddard. A theory of rate-based exenuti

(10]

(11]

(12]

(13]

In Proceedings of the 20th IEEE Real-Time Systems Sympo-

sium (RTSS 1999ages 304—-314, Dec. 1999.
E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems.Ptao-

(14]

ceedings of the 6th IEEE Real-Time Systems Symposium

(RTSS 1985)Dec. 1985.

10

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

and M.-C. Rosu. An overview of the Rialto real-time archi-
tecture. InProceedings of the 7th ACM SIGOPS European
Workshop pages 249-256, Sept. 1996.

M. B. Jones, D. Rosu, and M.-C. Rosu. CPU reservations
and time constraints: Efficient, predictable schedulingnef
dependent activities. IRroceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP, '83jes
198-211, Oct. 1997.

T. Kaldewey, C. Lin, and S. A. Brandt. Firm real-time
processing in an integrated real-time system. Waork in
Progress Session of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposjuan Jose, Califor-

nia, 2006.

G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips.Proceed-

ings of the 16th IEEE Real-Time Systems Symposium (RTSS
1995) Dec. 1995.

C. Lin and S. A. Brandt. Improving soft real-time perfor
mance through better slack reclaiming. Pnoceedings of

the 26th IEEE Real-Time Systems Symposium (RTSS, 2005)
pages 3-14, Miami, Florida, Dec. 2005.

J. W. Liu, K. Lin, W. Shih, A. C. Yu, J. Chung, and W. Zhao.
Algorithms for scheduling imprecise computationdE=EEE
Computer 25(5):58-68, May 1991.

P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M.
Fuertes. Optimal state feedback based resource allocation
for resource-constrained control tasks. Rroceedings of

the 25th IEEE Real-Time Systems Symposium (RTSS, 2004)
pages 161-172, Dec. 2004.

C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: Operating system support for multimedia ap-
plications. InProceedings of the 1994 |IEEE International
Conference on Multimedia Computing and Systems (ICMCS
'94), pages 90-99, May 1994.

J. Nieh and M. Lam. The design, implementation and eval-
uation of SMART: A scheduler for multimedia applications.

In Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP '9Qct. 1997.

L. Niu and G. Quan. A hybrid static/dynamic dvs schedul-
ing for real-time systems with (m,k)-guarantee Pioceed-

ings of the 26th IEEE Real-Time Systems Symposium (RTSS
2005) pages 356—-365, Miami, Florida, Dec. 2005.

A. Povzner, C. Lin, and S. A. Brandt. Supporting ratsdzh
processes in an integrated systemWork in Progress Ses-
sion of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposiyr8an Jose, California, 2006.

R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for QoS managementPioceed-

ings of the 18th IEEE Real-Time Systems Symposium (RTSS
1997) Dec. 1997.

J. Regehr. Using Hierarchical Scheduling to Support Soft
Real-Time Applications on General-Purpose Operating Sys-
tems PhD thesis, University of Virginia, May 2001.

J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. Pnoceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 208d¢s 3—

14, London, UK, Dec. 2001. IEEE.

H. Tokuda and T. Kitayama. Dynamic QoS control based
on real-time threads. IRroceedings of the Fourth Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Videppages 114-123, 1993.

C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource managementPrb:
ceedings of the First Symposium on Operating Systems De-
sign and Implementation (OSDI'94)lov. 1994.

