
1

A Discrete and Dynamic Approach to Application/Operating
System QoS Resource Management

Scott Brandt, Gary Nutt, and Ken Klingenstein
University of Colorado at Boulder

1. Introduction

One of the primary goals of Internet2 is to enable widespread use of high-bandwidth and time
sensitive distributed applications. Such applications as desktop video-over-IP and distributed vir-
tual cubicles will require guarantees of consistent performance from the lower layers of the sup-
porting computing environment. Service committments are needed from both of the major
components, namely operating systems and networks. At the network layer, important service
requirements appear to be bandwidth, delay and jitter. At the operating system layer, service
requirements may include cpu, memory and buffer commitments. For real-time applications to be
successful, they will need to negotiate levels of service with both networks and operating systems,
and respond to changes in the service levels actually provided.

In networking, quality of service issues appear to center around methods of handling congestion,
i.e. allocating resources at different service levels to different flows. For operating systems, an
analogue appears true as well, that quality of service depends primarily on schemes for allocating
system resources to different applications. In a modern computing environment, multiple concur-
rent applications may be competing for operating resources, notably cpu, and the provision of
such resources to applications, and the adaptation of the applications to changes in those resource
levels, will be critical tothe viability of real-time applications.

Operating systems designers have been creating mechanisms to support QoS-based soft real-time
application execution. These mechanisms provide a variety of interfaces for determining the
amount of resources that will be allocated to an application, allowing a process to a)negotiate
with the operating system for a specific amount of resources as in RT Mach [7] and Rialto [5][6];
b) specify arangeof resource allocations as in MMOSS [3]; or c) specify a measure of applica-
tion importancethat can be used to compute a fair resource allocation as in SMART [8][9]. These
systems all provide a mechanism that can be used to dynamically reduce the resource allotment
granted to the running applications. In the extreme, the applications may be forced to dynamically
adapt to a strategy in which the resource allocation is less than that required for average-case exe-
cution. In creating these resource management mechanisms, operating systems developers have
assumed that it is possible for applications to adjust their behavior according to the availability of
resources, but without providing a general model of application development for such an environ-
ment.

We are exploring a middleware solution which takes an approach in which applications cooperate
with the operating system in their use of system resources, adapting to the current state of the sys-
tem to maximize the benefit obtained from the available resources. This approach is in contrast
with the operating system approach in which utilization outside the worst case requires enforce-
ment. This distinction -- negotiation and adaptation versus strict enforcement -- is a major philo-
sophical difference in our approach when compared to existing approaches to achieving quality of
service from an operating system.



2

In previous papers [1][4][10][11] we presentedexecution levels, a method for dynamically man-
aging soft real-time application execution in an environments with varying QoS allocations. We
have demonstrated the feasibility of cooperative middleware based QoS management and dis-
cussed our prototype middleware execution level based QoS resource manager called the
Dynamic QoS Resource Manager(DQM) and examined a set of representative QoS allocation
algorithms within this context.

In continuing our research in this area, we have extended the DQM in several ways that bring it
significantly closer to our goal of having a viable middleware QoS resource management agent
[2]. In our earlier work we used synthetic programs to experiment with the DQM, though now our
tests are driven using working applications (two MPEG players). We have also expanded the
adaptive capabilities of the DQM with a technique calleddynamic estimate refinement.

It is important to note that while these techniques directly address only the QoS for application to
operating system interactions, it appears that the approach can be extended to application to net-
work QoS interactions. One possible extension would be for applications to utilize similar tools
to negotiate levels for QoS with network layer devices, and, in turn, receive updates from the net
for application adaptation. An alternative approach would be to include network layer interac-
tions as part of the operating system interaction, and consider network capacity as one of the sev-
eral resources that the operating system and application negotiate. It is widely thought that
operating system QoS, rather than network QoS, may be the greatest factor in end-to-end perfor-
mance; if so, then the latter approach has much appeal.

2. Execution Levels and the DQM

Our research has focused on supporting soft real-time processes on general-purpose operating
systems. Most soft real-time systems soften the real-time behavior of the applications by moderat-
ing the percentage of missed deadlines or the amount by which deadlines are missed, with smaller
amounts considered better. This is adequate for the class of soft real-time processes for which
missed deadlines are acceptable, but not all such processes fall into this category. For example,
desktop playback of a fixed-bandwidth network-based continuous media stream does not allow
for all deadlines to be missed by a certain amount because eventually the OS will run out of buffer
space to hold the queue of frames that is slowly backing up. In this case a preferable solution
would be one such as dropping frames or reducing the amount of processing for each frame so
that the hard deadlines (enforced by the arrival of new data) can still be met.

In support of application-controlled adaptive behaviour, we have developed the execution level
based application execution model. With execution levels, each application is constructed using a
set of algorithms for achieving its goals, ordered by their relative resource usage and the relative
quality of their output. The execution levels are the application specification of the soft real-time
policy it implements. The QoS manager provides the mechanism for managing the soft real-time
execution of the applications by managing the dynamically adjusting the level of each running
application. Avariety of QoS allocation algorithms exist that adjust the applications according to
the currently available resources.

In order to examine QoS-based soft real-time processing with the execution level model, we have
developed a prototype system consisting of a middleware DQM and a library of DQM interface
and soft real-time support functions called the Soft Real-Time Resource Library (SRL). This pro-



3

totype system has allowed us to experiment with execution level based adaptive soft real-time pro-
cessing. Like the flexible QoS systems cited above, the current implementation of our DQM
works solely with the CPU resource. However, we believe that the concepts described in this
paper can be extended in a straightforward manner to encompass other resources such as network
bandwidth and memory.

The DQM dynamically determines a level for the running applications based on the available
resources and the specified benefit of the application, and changes the level of each running appli-
cation until all applications run without missing deadlines, the system utilization is above some
predetermined minimum, and stability has been reached. Resource availability (or the lack
thereof) is determined in a few different ways. CPU overload is determined by the incidence of
deadline misses in the running applications. The SRL linked into each application notifies the
DQM each time an application misses a deadline. CPU underutilization is determined by examin-
ing CPU idle time. System idle time can be determined in several ways including via the operat-
ing system, through the /proc file system, by measuring the CPU usage of a low priority
application, and by taking the complement of the CPU usage measurements (or estimates) of the
running applications. If the operating system provides idle time information, this information is
the most reliable.

3. Results

In order to examine the operation of the DQM we have used both synthetic and real applications.
The synthetic applications consume resource according to their level specifications without per-
forming any useful work. They have allowed us to exercise the DQM with a wide variety of level
specifications.

The two real applications are mpeg players, but they differ in the way that their real-time behavior
has been softened. The first application changes the frame rate of the displayed image from 0
frames/second to 10 frames/second. This particular application required no algorithmic changes
other than the inclusion of the three SRL functions: dqm_init(), called once at the beginning of the
application; dqm_loop(), called each time through the main loop; and dqm_exit(), called at appli-
cation exit. The second application dynamically adjusts the size of the image displayed on the
screen. Since the amount of work is related to how much time is spent drawing the pixels on the
screen, this results in a reasonable range of CPU usage numbers over the different levels.
Dqm_loop() returns the level at which the application should execute, so the main control loop of
the application contains a switch which sets the size of the displayed image accordingly.

As shown elsewhere [1][2], our results to date have been very promising. The applications adapt
quickly to changing resource availability and stabilize at appropriate execution levels as deter-
mined by the DQM.

4. Conclusion

Internet2 based applications will make tremendous demands for the use of the host computer and
network resources. Information must flow from an application through the host operating system,
over the internet, up through a second host operating system, and into a receiver application.
Because of the heavy demand for various resources to support this data movement, these applica-
tions must be prepared to participate in the way the resources are managed across the applica-



4

tion’s components (as well as across applications). The execution level model and DQM
demonstrate a sound approach for managing the resources in a soft real-time environment within a
host machine.

The contribution of this work to the Internet2 community is clear. Execution levels are a simple
and natural model for developing resource-sensitive adaptive applications and the DQM demon-
strates one way in which a host can support the execution of such applications. We have illustrated
the utility of this new approach to resource management -- an approach that can be applied to net-
work bandwidth as well as CPU resources. Just as host machines are oversubscribed for their
resources, the internet is (and will continue to be) oversubscribed for its bandwidth. In such an
operating environment, host computers must be able to administer the network bandwidth so as to
provide assurances for service rates without making hard QoS guarantees. We believe execution
levels and the DQM can be the basis of a sound approach for managing the allocation of Internet2
bandwidth.

5. Acknowledgments

Scott Brandt and Gary Nutt were partially supported by NSF grant number IRI-9307619.

6. References

[1] S. Brandt, G. Nutt, T. Berk, and M. Humphrey.Soft Real-Time Application Execution with
Dynamic Quality of Service Assurance. Proceedings of the Sixth IEEE/IFIP International
Workshop on Quality of Service, pp. 154-163, May 1998.

[2] S. Brandt, G. Nutt, T. Berk, and J. Mankovich.A Dynamic Quality of Service Middleware
Agent for Mediating Application Resource Usage. Submitted for publication, May 1998.

[3] C. Fan.Realizing a Soft Real-Time Framework for Supporting Distributed Multimedia Appli-
cations. Proceedings of the 5th IEEE Workshop on the Future Trends of Distributed Comput-
ing Systems, pp. 128-134, August 1995.

[4] M. Humphrey, T. Berk, S. Brandt, G. Nutt.The DQM Architecture: Middleware for Applica-
tion-centered QoS Resource Management. IEEE Workshop on Middleware for Distributed
Real-Time Systems and Services, December 1997, pp. 97-104.

[5] M. Jones, J. Barbera III, and A. Forin.An Overview of the Rialto Real-Time Architecture. Pro-
ceedings of the Seventh ACM SIGOPS European Workshop, pp. 249-256, September 1996.

[6] M. Jones, D. Rosu, M. Rosu.CPU Reservations & Time Constraints: Efficient Predictable
Scheduling of Independent Activities. Proceedings of the 16th ACM Symposium on Operating
Systems Principles, October 1997.

[7] C. Mercer, S. Savage and H. Tokuda.Processor Capacity Reserves: Operating System Support
for Multimedia Applications. Proceedings of the International Conference on Multimedia
Computing and Systems, pp. 90-99, May 1994.

[8] J. Nieh and M. Lam.The Design, Implementation and Evaluation of SMART: A Scheduler for
Multimedia Applications.Proceedings of the 16th ACM Symposium on Operating Systems
Principles, October 1997.



5

[9] J. Nieh and M. Lam.Integrated Processor Scheduling for Multimedia. Proceedings of the
Fifth International Workshop on Network and Operating System Support for Digital Audio
and Video, April 1995.

[10] G. Nutt, T. Berk, S. Brandt, M. Humphrey, and S. Siewert.Resource Management of a Vir-
tual Planning Room. Proceedings of the Third International Workshop on Multimedia Infor-
mation Systems, September 1997.

[11] G. Nutt, S. Brandt, A. Griff, S. Siewert, M. Humphrey, and T. Berk.Dynamically Negotiated
Resource Management for Data Intensive Application Suites. Transactions on Knowledge and
Data Engineering, to appear.


