A Feedback-driven Proportion Allocator for Real-Rate Scheduling

David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,
Calton Pu, and Jonathan Walpole
Department of Computer Science and Engineering
Oregon Graduate Institute

Abstract

In this paper we propose changing the decades-old practice of allocating CPU to threads based on pri-
ority to a scheme based on proportion and period. Our scheme allocates to each thread a percentage of
CPU cycles over a period of time, and uses a feedback-based adaptive scheduler to assign automatically
both proportion and period. Applications with known requirements, such as isochronous software devices,
can bypass the adaptive scheduler by specifying their desired proportion and/or period. As a result, our
scheme provides reservations to applications that need them, and the benefits of proportion and period to
those that do not. Adaptive scheduling using proportion and period has several distinct benefits over either
fixed or adaptive priority based schemes: finer grain control of allocation, lower variance in the amount of
cycles allocated to a thread, and avoidance of accidental priority inversion and starvation, including
defense against denial-of-service attacks. This paper describes our design of an adaptive controller and
proportion-period scheduler, its implementation in Linux, and presents experimental validation of our
approach.

1 Introduction systems because of the difficulty of correctly esti-
CPU scheduling in conventional general pur_mating a thread's required portion and period.

pose operating systems performs poorly for real- ”In this paperhwe propose ateghnlq_ug to dﬁn%ng'
rate applications, applications with specific rate oY e§t|n|1ate_t be Eropc;rtlon anb perod nee ? oy
throughput requirements in which the rate is driver? Particular job Dbased on observations of Iits

by real-world demands. Examples of real-ratd’r09ress. As a result, our system can offer the ben-

applications are software modems, web serverff'ts of proportional scheduling without requiring

speech recognition, and multimedia players. Thes@e use of reser_vat|ons. With these est|ma_tes, the
ystem can assign the appropriate proportion and

kinds of applications are becoming inc:reasinglyS) o "
popular, which warrants revisiting the issue Of_perlod to a job’s thread(s), alleviating the need for

scheduling. The reason for the poor performance {§PUt from human experts. Our technique is based

that most general purpose operating systems u9& feedback, so the proportions and periods
priority-based scheduling, which is inflexible and assigned to threads change dynamically and auto-

not suited to fine-grain resource allocation. RealMatically as the resource requirements of the

time operating systems have offered anothefr€2ds change. Given a sufficiently general,
approach based on proportion and period. In thiESPonsive, stable, and accurate estimator of
approach threads are assigned a portion of the CFRJPIress, we can replace the priority-based sched-
over a period of time, where the correct portion and/'€"s of the p_ast with schedulers_ based on propor-
period are analytically determined by humant©n a@nd period, and thus avoid the drawbacks
experts. However, reservation-based schedulingSSociated with priority-based scheduling.

has yet to be widely accepted for general purpose

This project was supported in part by DARPA contracts/grants N66001-97-C-8522, N66001-97-C-8523, and
F19628-95-C-0193, and by Tektronix, Inc. and Intel Corporation.

The fundamental problem with priority-based2 Motivation
scheduling is that knowledge of a job's priority by 1 jimitations of priority-based scheduling

itself is not sufficient to allocate resources to the{/vere graphically demonstrated to the world

job properly. For example, one cannot expresgy.qniy when NASAs Mars Pathfinder robot expe-
dependencies between jobs using priorities, og

i h h b obs wi enced repeated resets due to priority inversion
3Pe°'fy ow to share reso“rcesl etween 1% S ij't 3]. Occasionally, a high priority task was blocked
n‘Lerent E”O”t'es' AIS a “?Slu L golrlorlty_— aIS?j' waiting for a mutex held by a low priority task.
scheémes have severa p(_)tenna problems, inclu _'n@nfortunately, the low priority task was starved for
starvat'lon, priority inversion, and Iack_of fme_-gram CPU by several other tasks with medium priority.
alloqatlon. Use of adaptive mechanlsms like th%_ventually, the system would detect that the high
multi-level feedback sc_heduler[3] alleviate some o briority task was missing deadlines and would reset
these problems, but introduce new ones as thgseit ‘More insidious than the problem itself is the

recent deployment_ of fixed re_:al-time priorities in difficulty of finding the bug when it occurs. In this
systems such as Linux and Windows NT can attesI?ase, the mutex was buried under several layers of

Our approach avoids these drawbacks by usingyqaction: no reasonable amount of code inspec-

a_controller that gssigns proportion and perio jon would have discovered the bug. Fortunately, a
based on estimations of a thread's progress. [i,mpination of good engineering, run-time debug-
avoids starvation by ensuring that every job in th ing support, and the fact that a mutex was the

system s "?‘SS‘QF‘GO.' & non-zero percentage of "8urce of the inversion helped NASA engineers to
CPU. It avoids priority inversion by allocating CPU correct the bug [12][17]

based on need as measured by progress, rather than-l-he problems of priority inversion and starva-

on priority. It provides f"?.e'gra”T control since tion occur because priorities alone are not expres-
threads can request specific portions of the CPL%ive enough to capture all desired relationships
e.g., assigning 60% of the CPU to thread X ang\oyeen jobs. As a result, priority-based schemes
40% to thread Y. . _are forced to use kludges to compensate, such as
The key enabling technology to our approach '?)assing priorities through mutexes or decreasing

a feedbgck-based controller that assigns proportiome priority of CPU-bound jobs. These mechanisms
and period to threads based on measurements Rhve worked well in the past, but they have unto-
their progress. For example, the progress of a PrQard side-effects ’

ducer or consumer of a bounded buffer can be esti- For example, to ensure that the kernel allocates

mated by the fill level of the buffer. If it is full, the ¢ et cPU to an important CPU-bound job
consumer is falling behind and need; more CI:)Lﬁlnning on Unix, one couldiceit. However, as it
whereas the producer has been making t00 MUGHines to use its time-slice the kernel will auto-

progress and has spare CPU to offer. In CaS%giatically reduce its priority until it is running at or

Whefe progress cannqt be dlrectly_measured, Welow the priorities of less important jobs. Alterna-
provide heuristics designed to provide reasonabl

ﬁvely, one could assign it a fixed real-time priority

performance. For example, the scheduler can givgpicp, js higher than the normal priorities, guaran-
interactive jobs reasonable performance by ass'g'?éeing that it will run. Unfortunately, it will then

ing them a small period and estimating their proy,,, ¢4 the exclusion of all jobs in the system with

por_tior|1| by nt:e?suriglg E_‘e amount of time they|, o priority. Consider a job running at a (fixed)
typlc: y run _egre oc #‘9- q i real-time priority that spin-waits on user input.
The remainder of this paper describes OUlSince the X server typically runs at a lower priority

approach in more detail. Section 2 motivates th‘fhan the real-time thread, it will be unable to gener-

need for adaptive proportion/period schedulersa,[e the input for which the thread is spinning, and
Section 3 presents our solution,

n ; . including &y system will livelock. Note that the solution
description of our implementation. Section 4 d's'used by the Mars Pathfinder of passing priority

cusses implications of our solution, and presentg, ., g1 mutexes[18] will not help in this situation.
experimental measurements of our prototype. Sec-

tion 5 describes similar approaches to the question
of scheduling.

Monitor +:‘ ﬁ: +:‘ *:
Thread
Progress Thread Thread Thread ;ea

A A A
Allocate

Resources
Controller Actuate Scheduler/Dispatcher

This diagram shows the rough architecture of our scheduler. A feedback controller monitors the rate of
progress of job threads, and calculates new proportions and periods based on the results. Actuation
involves setting the proportion and period for the threads. The scheduler is a standard proportion/
period reservation-based scheduler. The controller's execution period and the dispatch period can be
different.

Figure 1: Diagram of Closed-loop Control

3 Our Solution based on two attributes: proportion and period. The
Our solution is based on the notionpbgress proportion is a percentage, specified in parts-per-

Ideally, resource allocation should ensure tha{hﬁ_uiar;]d’ of It_he_durart]ionldof thﬁ period dudrinr?
every job maintains a sufficient rate of progreséN ich the application should get the CPU, and the

towards completing its tasks. Allocating more CPUperiOCI is the time interval, specified in millisec-

than is needed will be wasted, whereas allocating"dS: Over which the allocation must be given. For
xample, if one thread has been given a proportion

less than is needed will delay the job. In essenc ¢ ‘) q iod of o
our solution monitors the progress of jobs and! 20 out of 1000 (5%) and a period of 30 millisec-
nds, it should be able to run up to 1.5 milliseconds

increases or decreases the allocation of CPU &

those jobs as needed. In our terminology, a job is very 30 miIIisecondg. . .
Intuitively, the period defines a repeating dead-

collection of cooperating threads that may or ma)fine To meet the deadline, the application must

not be contained in the same process. ; ; K H)
Figure 1 shows the high-level architecture ofP€form some amount of work. Hence, to satisfy
me application the scheduler must allocate suffi-

our design. The scheduler dispatches threads S .
order to ensure that they receive their assigned pr&i€nt CPU cycles, which in our case is the propor-

portion of the CPU during their period. A control- tion times the period times the CPU's clock rate. If

ler periodically monitors the progress made by thé;he scheduler cannot allocate the appropriate

threads, and adjusts each job’s proportion automa}ﬁ—g]vc;u;tisosfetc'jn;e dtgag}i‘?]éhread’ the thread is said to

ically. We call this adjustmeiictuationor adapta- An ad ; ion-based schedbli
tion, since it involves tuning the system’s behavior n advantage of reservation-based scheduling

in the same sense that an automatic cruise contrgfBS) IS that one can easily detect overload by

adjusts the speed of a car by adjusting its throttles.umming the proportions: a sum greater than or

Readers should note that the diagram resemblesegual to one indicates the CPU is oversubscribed.

classic closed-loop, or feedback, controlled SysI_f the scheduler is conservative, it can reserve some

tem. This dynamic adaptation controlled by feeol_capacity by setting the overload threshold to less

back is necessary because the needs of jobs, afiign 1. For example, one might wish to reserve
the composition of jobs running on the system var)?apac'ty to cover the overhead of scheduling and
with time. The following subsections address eactterrupt handling.

of the key points in the architecture.

1. Our use of the term “reservation” is some-
3.1 The Reservation Scheduler what loose, since we do not need strict guar-
antees from the scheduler. As a result, a
good enough best-effort proportion/period
scheduler would suffice.

Our scheduler is a standarde$ervation-
based” scheduler that allocates CPU to threads

Upon reaching overload, the scheduler has sewapplication’s progress is tricky, especially given the
eral choices. First, it can perform admission controbpaque interface between the application and the
by rejecting or cancelling jobs so that the resultingpperating system. Good engineering practice tells
load is less than 1. Second, it can raise qualitys that the operating system and application imple-
exceptions to notify the jobs of the overload andnentations should be kept separate in order that the
renegotiate the proportions so that they sum to noperating system be general and the application be
more than the cutoff threshold. Third, it can autoportable.
matically scale back the allocation to jobs using Our solution to this problem is based on the
some policy such as fair share or weighted fainotion ofsymbiotic interfaceswhich link applica-
share. In our system, these mechanisms are impléen semantics to system metrics such as progress.
mented by the controller, and are discussed belowFor example, consider two applications with a pro-

We have implemented a RBS scheduler in thelucer/consumer relationship using a shared queue
Linux 2.0.35 kernel by adding a new schedulingto communicate. A symbiotic interface that imple-
policy that implements rate-monotonic schedulingments this queue creates a linkage to the kernel by
(RMS)[14] using Linux’s basic scheduling mecha-exposing the buffer’s fill-level, size, and the role of
nisms[2]. Linux implements a variant of the classiceach thread (producer or consumer) to the system.
multi-level feedback scheduling that uses one runwith this information, the kernel can estimate the
gueue, and selects the thread to run next based omprogress of the producer and consumer by monitor-
thread property calledoodnessAt dispatch, i.e. ing the queue fill level. As the queue becomes full
when deciding which thread to run next, Linux(the fill-level approaches the maximum amount of
selects the thread with the highest goodness on theiffering in the queue), the kernel can infer that the
run queue. If all threads on the run-queue have eonsumer is running behind and needs more CPU
zero goodness value, Linux recalculates goodnesmd that the producer is running ahead and needs
for all threads in the system. Each thread has l@ss CPU. Similarly, when the queue becomes
scheduling policy that is used by Linux for calcu-empty the kernel can infer the producer needs more
lating goodness. Our policy calculates goodness t6PU and the consumer less. This analysis can be
ensure that threads it controls have higher goodnesgtended to deal with pipelines of threads by pair-
than jobs under other policies, and that jobs wittwise comparison. Over time, the feedback control-
shorter periods have higher goodness values. Wheaer will reach equilibrium in steady-state provided
a thread has used its allocation for its period, it ishe design is stable.
put to sleep until its next period begins. Because Our solution is to define suitable symbiotic
enforcement of our RBS scheduling policy caninterfaces for each interesting class of application,
only be made at dispatch time, we call this low-listed below. Given an interface, we can build a
level scheduler thedispatcher and the time monitor that periodically samples the progress of
between dispatches thdispatch interval The the application, and feeds that information to the
interval is bounded above by the timer intervalcontroller.
which we have set to be 1 millisecond for our pro-
totype. The key features of this prototype RBS are ¢ Producer/Consumer:
very low overhead to change proportion and The applications use some form of bounded
period, and fine-grain control over proportion and buffer to communicate, such as a shared-mem-
period values. We could equally well have used ory queue, unix-style pipe, or sockets. Pipes
other RBS mechanisms such as SMaRT [15], and sockets are effectively queues managed by
Rialto [11], or BERT [1] had one been available on the kernel as part of the abstraction. By expos-

our platform. ing the fill-level, size, and role of the applica-
tion (producer or consumer), the scheduler can
3.2 Monitoring Progress determine the relative rate of progress of the

The novelty of our approach lies in the estima- a@pplication by monitoring the fill-level.
tion of progress as the means of controlling the
CPU allocation. Unfortunately, estimating an * Server

Proportion Progress Period Specified| Period Unspecified
Specified Metric
Yes N/A Real-time Aperiodic real-timg
Yes Real-rate
No :
No Miscellaneous

Figure 2: Taxonomy of Thread-types for Controller

Servers are essentially the consumer of and the application’s use of that queue (producer or
bounded buffer, where the producer may oiconsumer). We have implemented a shared-queue

may not be on the same machine. library that performs this linkage automatically,
and have extended the in-kernel pipe and socket
* Interactive implementation to provide this linkage.

Interactive jobs are servers that listerttys
instead of sockets. Since interactive jobs hav@.3 Adaptive Controller

specific requirements (periods relative to Gjyen the dispatcher and monitoring compo-
human perception), the scheduler only needs tgents, the job of the scheduler is to assign propor-
know that the job is interactive and thgsin tion and period to ensure that applications make

which it is interested. reasonable progress. Figure 2 presents the four
_ _ cases considered by the controller: real-time, aperi-
* I/O intensive odic real-time, real-rate, and miscellaneous

Applications that process large data sets cathreads. Real-time threads specify both proportion
be considered consumers of data that is prognd period, aperiodic real-time threads specify pro-
duced by the I/O subsystem. As such, theyortion only, real-rate do not specify proportion or
need to be given sufficient CPU to keep theperiod but supply a metric of progress, and miscel-

disks busy. Using informed prefetching inter-janeous threads provide no information at all.
faces such as TIP[16] or Dynamic Sets[19], or

delayed write-back buffers for writes, allows .« Real-time threads

the system to monitor the rate of progress of Reservation-based scheduling using pro-
the I/O subsystem as a producer/consumer for portion and period was developed in the con-
a particular job. text of real-time applications [14], applications
that have known proportion and period require-

« Other ments. To best serve these applications, the

Some applications are sufficiently unstruc- conroller sets the thread proportion and period
tured that no suitable symbiotic interface g the specified amount and does not modify
exists, or may be legacy code that predates the them in practice. Such a specification (if
interface and cannot be recompiled. In such accepted by the system) is essentially a reser-
cases where our scheduler cannot monitor yation of resources for the application. Should,
progress, it uses a simple heuristic policy o however, the system be placed under substan-
assign proportion and period based on whether gl overload, the controller may raise a quality
or not the application uses the allocation it is exception and initiate a renegotiation of the
given. resource reservation.

When an application initializes a symbiotic
interface (such as by submitting hints, opening a
file, or opening a shared queue), the interface cre-
ates a linkage to the kernel usingnata-interface
system call that registers the queue (or socket, etc.)

« Aperiodic real-time threads

For tasks that have known proportion but
are not periodic or have unknown period, the
controller must assign a period. With reserva-

tions, the period specifies a deadline by which
the scheduler must provide the allocation, and
hence is more of a jitter-bound than an operat-
ing frequency. Too large a period may intro-
duce unacceptable jitter, whereas too small a
period may introduce overhead since dispatch-
ing happens more often. Without a progress
metric with which to assess the application’s
needs, our prototype uses a default value of 30
milliseconds. This provides reasonable jitter
bounds for interactive applications while limit-
ing overhead to acceptable levels.

* Real-rate threads

We call threads that have a visible metric of
progress but are without a known proportion or
period real-rate since they do not have hard
deadlines but do have throughput require-
ments. Examples of real-rate threads are multi-
media pipelines, isochronous device drivers,
and servers. During each controller interval,
the controller samples the progress of each
thread to determine thpressureexerted on the
thread. Pressure is a number between -1/2 and
1/2; negative values indicate too much progress
is being made and the allocation should be
reduced, O indicates ideal allocation, and posi-
tive values indicate the thread is falling behind
and needs more CPU. The magnitude of the
pressure is relative to how far behind or ahead
the thread is running.

Figure 3 contains the formula used by the
controller to calculate the total pressure on a
thread from its progress metrics, or input/out-
put queues. For shared queugsis-calculated
by dividing the current fill-level by the size of
the queue and subtracting 1/2. We use 1{2 (F
= 0) as the optimal fill level since it leaves
maximal room to handle bursts by both the
producer and consumer; Rs used to flip the
sign on the queue, since a full queue means the
consumer should speed up (positive pressure)
while the producer should slow down (negative
pressure).

2. To be honest, we are unaware of any appli-
cations that fall into this category. We have
included it in this discussion for complete-
ness.

O |
Q = Gg Rt,iFt,iE

R . = -1 If tis a producer of i
b El If t is a consumer of i

Q:, the progress pressure, is a measure of the
relative progress of thread t using its progress
metric(s). k; is a value between -1/2 and 1/2,
derived from the progress metric i (e.g. buffer
fill level), R;; flips the sign of F; for produc-

ers. G calculates a PID control function of the
qgueue pressures.

Figure 3: Progress Pressure Equation

The individual progress pressures are then
summed and passed to a proportional-integral-
derivative (PID) control to calculate a cumula-
tive pressure, QA PID controller combines
the magnitude of the summed pressures (P)
with the integral (I) and with the first-deriva-
tive (D) of the function described by the
summed progress pressures over time. PID
control is a commonly applied technique for
building controllers to provide error reduction
together with acceptable stability and damping
[5].

For aperiodic real-rate threads, the control-
ler must also determine the period. Currently,
we use a simple heuristic which increases the
period to reduce quantization error when the
proportion is small, since the dispatcher can
only allocate multiples of the dispatch interval.
The controller decreases the period to reduce
jitter, which we detect via large oscillations rel-
ative to the buffer size. The controller deter-
mines the magnitude of oscillation by
monitoring the amount of change in fill-level
over the course of a period, averaged over sev-
eral periods. Although this heuristic appears to
work well for our video pipeline application,
we do not have significant experience with its
applicability to other domains.

Miscellaneous threads

The controller uses a heuristic for threads
that do not fall into the previous categories. For
proportion, the controller approximates the

Responding to Overload

0 kQ P, on target When the sum of the desired thresholds is
PpP=g greater than the amount of available CPU, the con-
0 —C P, too generous troller must somehow reduce the allocations to the

threads. This increase can result either from the
entrance of a new real-time thread, or from the con-
Py is the new allocation for threat calcu- troller’s periodic estimation of real-rate or miscel-
Iateq from the progress pressure &d the laneous threads’ needs. In the former case, the
f’nrjl\;i'ollijs a"ﬁcat'ontp'\'orma"y' thebcontroller controller performs admission control by rejecting
iplies the progress pressure by a constant new real-time jobs which request more CPU than is
scaling factor to determine the new desired . .
allocation. If the previous allocation overesti- C.urrerlt_ly available. We chosg this approach for
mated the application’s needs, the controller ~ SimPplicity, we hope to extend it to support a form
reduces the allocation by a constant factor. of quality negotiation such as that used in BBN's
Quality Objects [22].
In the latter case, the controleguishesurrent
job allocations to free capacity for the new request.
thread’s progress with a positive constant. InAfter the new allocations have been calculated, the
this way there is constant pressure to allocateontroller sums them and compares them to an
more CPU to a miscellaneous thread, until it isoverload threshold. If the allocations oversubscribe
either satisfied or the CPU becomes oversubthe CPU, it squishes each miscellaneous or real-
scribed. For period, the controller uses arate job’s proposed allocation by an amount pro-

Figure 4: Proportion Estimation Equation

default period of 30 milliseconds. portional to the allocation. In the absence of other
information (such as progress metrics), this policy
Estimating Proportion results in equal allocation of the CPU to all com-

After calculating the queue pressure for apeting jobs over time.
thread, the controller must then calculate the new We have extended this simple fair-share policy
allocation for the thread. Figure 4 presents thdy associating an importance with each thread. The
equation used by the controller to estimate proporesult is a weighted fair-share, where the impor-
tion. In normal circumstances, we multiply thetance is the weighting factor. Our use of impor-
queue pressure by a constant scaling factor t@nce is different than the concept of priority, since
determine the desired allocation. However, increast more-important job cannot starve a less important
ing the allocation may not improve the thread’sjob. Instead, importance determines the likelihood
progress, as might happen for example if anothdghat a thread will get its desired allocation. For two
resource (such as a disk-as-producer) is the bottlgbs that both desire more than the available CPU,
neck for this application. the more important job will end up with the higher

To reclaim the unused allocation, the controllepercentage.
compares the CPU used by a thread with the Note that this squishing solves the same prob-
amount allocated to .If the difference is larger lem addressed by TCP’s exponential backoff [9].
than a threshold, the controller assumes the prestlike TCP, our controller is centralized and can
sure is overestimating the actual need and the all@asily detect overload, allowing us to provide pro-
cation should be reduced. portional sharing while enforcing compliance.

Implementation

3. We assume that the RBS is giving threads as We have implemented this conf[roller using the
much CPU as the controller allocated, since ~ SWIFT software feedback toolkit [6]. SWIFT
we reserve some spare capacity. If the RBS ~ embodies an approach to building adaptive system

is missing deadlines, it notifies the control- software that is based on control theory. With
ler which can increase the amount of spare SWIFT, the controller is a circuit that calculates a
capacity by reducing the admission thresh- function based on its inputs (in this case the

old.

progress monitors and importance parameters), ar = ©%*7]
uses the function’s output for actuation.

For reasons of rapid prototyping, our controller 000
is implemented as a user-level program. This hag | .
clear implications on overhead, which limits theg 1 -
controller’s frequency of execution, which in turnfz 0.02 -
limits its responsiveness. We have plans to movs 1 -
the controller into the Linux kernel in order to 5] .
reduce this overhead. Nonetheless, our experimenJ 0.01 -~
discussed below show the overhead to be reaso] pd
able for a prototype system for most common jobs 1 «*

In our prototype, jobs must either explicitly reg- *®° 0 L I 15 20 % 2 35 4o
ister themselves in order to be scheduled by oL. Number of Controlled Processes
RBS scheduler (as opposed to the default Linux This figure shows the overhead of our user-
scheduler) or be descended from such a job. In the level controller. Our experimental results are
future, we hope to schedule all jobs using our linear, y =.00066x + .00057, with a coefficient
scheduler. Currently we limit it to specific jobs of determination of .999. The y-axis is the
such as real-time applications, the controller pro- amount of CPU consumed by the controller,

cess, and the X server. where 1 corresponds to 100% utilization. For
40 jobs (x = 40), the overhead is 2.7% of CPU
4 Discussion capacity.

. . : . Figure 5: Overhead of Controller
The following sections discuss various aspects

of our solution in more detail. Section 4.1 charac-

terlze§ our prototype’s_ performance. Section 4'%Ie() is called on dispatch and runs in time linear
examines the responsiveness of our controlle_r Qiith the number of threads on the run queue, and in
variable-rate real-rate applications, with and with,o \yorst case linear with the number of threads in
out competing load. Section 4.3 dlsc_usses ways @ systemDo_timers() is called on timer
improve th(_a accuracy an_d reSPONSIVENEsS of thiﬁterrupts, checks for expired timers, and moves
system, vyhlle Section 4.4 justifies our cl_alms abouf .oads waiting on expired timers to the run-queue;
the benefltc')s OOf ohur appr_oachz. Thﬁ e;genmefnts WeIGeempting the current thread if the woken thread
run-on a_4 Mhz P;nt'gm v_wt 1 _MB O MeM-is ynder our control and has higher goodness. We
ory, run”mr;]g ourmo iie ver3|odn ofbl[lr;uxh2.0.35. eep a list of timers used by RBS threads, sorted by
!n al the experiments, we disable t € PEroGime of expiry, and cache the next expiration time
estimation aspect of the controller. Period adjusty, . g doing any work unless at least one timer

ment ar;ld buffzr Size are mc;[et:-rehlat?fd, Slﬂcel'l?olmas expired. As a result, this routine typically runs
are used to reduce Jitter and both affect the likell;, o ngtant time, but in the worst case runs linearly

hood of completely filling or emptying the buffer. i the number of threads under our control.
A proper discussion of the interactions between To assess the overhead of our use of feedback
period adjustment and buffer size "’.‘dj“Stme”t a'fe measured the overhead of our user-level con—’
unfortunately beyond the scope of this paper. troller. Figure 5 depicts the controller’s overhead in
. terms of additional CPU utilization, where the first
4.1 Characterization process is the controller itself, running with a 10
To better understand the characteristics of oumsec period and the additional processes are
system, we discuss its overhead and responsivgummy processes that consume no CPU but are
ness; presenting an analysis of its stability ischeduled, monitored, and controlled. At each con-
beyond the scope of this paper. At the lowest levekroller period, the controller must read the progress
the overhead of dispatch depends on the executiqfietrics from the kernel, calculate new allocations,
time of two routines in the Linux scheduler, and send the new values to the in-kernel RBS. As a
schedule() anddo_timers(). Sched- result, the overhead of the controller grows linearly

currently schedule both the controller and the X
X | - S PR server, and see no noticeable delays in interactive
q response time even when the CPU is fully utilized.

]
8
|

3000
1 A , 4.2 Controller Responsiveness

Rate of progress
(bytes/sec)

|

207 | ' ! To characterize the responsiveness of our sys-
10004 = — - consumer's progressrate tem, we wrote a program that simulates a pulse
| e — ,Ffr?‘,j‘,“fef’,slpf?qr?‘ﬁr?ﬁe, e fUNCtion for our controller. The program is a simple
0 10 20 30 40 pipeline of a producer and consumer connected by
10+ a bounded buffer. Both the producer and consumer

- 0.8_' loop for some number of cycles before they
8 ; . enqueue or dequeue a block of data. We fix the
= 064} \ i .k' allocation (cycles/sec) given to the producer by
o guli Vfﬂ A ,;&"f specifying a reservation for it, and control the rate
3 i ‘f { at which it produces data (bytes/cycle). For the
5 02 consumer, we fix the rate of consumption, but let

the controller determine the allocation. Ideally, the
00 01'02'03'04'0 producer’s rate of progress in bytes/sec should
timein seconds match the consumer’s. By manipulating the pro-
o ducer’s production rate we can determine the
This figure shows the response of the controller responsiveness of the controller as it adjusts the
to a variable-rate real-rate job. The producer consumer’s allocation to achieve the same rate of
runs at a predetermined variable rate, the con- progress
troller determines the consumer's allocation so Figure 6 shows the results of running this pro-
that its progress matches that of the producer. ram on an otherwise idle svstem. The producer
The top graph shows the progress rates of the 9 d risi I f y .'d h 3 bli
producer and consumer, the bottom graph generate rsing pulses ot various wi ths, oubling
shows the corresponding queue fill-level. its rate of production in bytes/cycle for a period of
time before falling back to the original rate. To
Figure 6: Controller Responsiveness maintain the queue at half-full, the controller must
double the allocation to the consumer since the

with the number of threads it controls. The slope oP"ducer has specified its proportion and period,
the controller does not affect its allocation. After

this line is small, .064% of the CPU per process,

even though our prototype is not an optimal imple_running for three rising pulses, the producer keeps

mentation its default rate high and generates three falling
Overhead that is linear with the number ofpmS?S' 5 _ hs. th ¢
threads under control is a necessary evil for feed- F'9ure 6 contains two graphs, the rates o
back-controlled systems. The benefit is that thd'©9ress of the producer and consumer calculated
system dynamically and rapidly detects changes i y multiplying the measured aIIocatlon in cycles/
the threads’ resource requirements, which resul@€¢ Py the ct?ntrollledl rate gf ErOdUCt'On %r con-
in very efficient resource utilization. Fortunately, S,Ll”lnpt'lo_n '?] gtes ((;y((:jet; ?fn ; € measrlljreh qugue
this recalculation need only happen at the rate z;'tl eve |nt_ e bounded buffer between the threads.
which a process’s needs change, and not as often s shown in the graphs, the controller responds to

thread dispatch. The controller gamplingthe 1€ change in the producer's rate by rapidly

resource needs of the threads, and need only Sa;ﬂg:reasi_ng the allocation to the consumer, even
ple twice as fast as the highest rate of changé“.Ough.'ts.kn.OWI('}dge Qf either the producer or con-
Using a suitable low-pass filter, we can scheduléumerhIS I'”&'ted to fthi'r uf'?‘"e ?f thle queue. Indadhdl—
jobs with reasonable responsiveness and low ovef©": the shape of the fill level curve and the

head while keeping the sampling rate reasonabl onsumer’s allocation match our expectations: the
high (100 Hz in our prototype). For example, we llocation roughly follows the square wave set by

CPU Allocation

CPU Allocation

Production rate

S 1000+

cC 4

8 800 consumer’ s alocation

3 1 e producer’s allocation

< 600

o

a

2

o

2

<)

C .

& 800- —— CPU hog'salocation

>]

2 600~

O 400

o i

2 200

5]

g 0 RARRRRARE RARRRRRAR RARRARARA T
0 10 20 30 40

)

< 200

3 150 H |

%‘3 100

% 50

< Ofr INMRRRRRAN INMRARRRAN INMRRRRRAN T
0 10 20 30 40

1.0

T g3

§ 0.8 11 ,

= %MM e

4= 1 ’ . .

0] ¢ . . ~fa

g i / i

S god

& 0.2 I

00 e INMRRARRAN INMRARRRAN NMRRRRRAN T

0 10 20 30 40

timein seconds

This figure shows the same pipeline run con-
currently with a CPU hog. Since the total

desired allocation exceeds the capacity of the
CPU, the controller must squish the load and
consumer threads. It cannot squish the pro-
ducer since the producer has specified a fixed
reservation. Note that the Y-axis in the top

graph in Figure 6 has different units than those
used here.

Figure 7: Controller Response Under Load

1/3 of a second to respond to the doubling in pro-
duction rate.

Figure 7 shows the same experiment run with
competing load. For simplicity, the load corre-
sponded to a miscellaneous job (no progress-met-
ric) that tries to consume as much CPU as it can.
The effect of the competing load is that the total
desired allocation of the producer, consumer, and
load threads is greater than the amount available,
and hence the controller must squish allocations.
The top two graph shows the resulting allocations
to these three jobs (separated for clarity). The pro-
ducer’s allocation is fixed because it has specified a
reservation. The load’s allocation is initially high,
but effectively loses allocation to the consumer
since its pressure;@ constant over time while the
consumer’s grows as it falls further behind the pro-
ducer. If it were the case that there was not suffi-
cient CPU to satisfy all the jobs, the queue would
eventually become full and trigger a quality excep-
tion, allowing the application to adapt by lowering
its resource requirements.

One interesting result is the high frequency
oscillation in allocation between the load and the
consumer. This oscillation results from changes in
the relative pressures from the hog and the con-
sumer. When the consumer matches the fixed rate
of the producer, its Qs low while the hog's Q
remains constant. As it falls behind, itg gdows
until it exceeds that of the hog, and it gets more
allocation. This behavior matches our expectation
for real-rate jobs which must track some real-world
rate, such as the rate of requests arriving at a web
server. We believe that in the future most jobs will
have progress metrics, and the use of a constant
pressure, and hence the occurrence of such oscilla-
tion, will be infrequent.

4.3 Improving the Controller’'s Behavior

We have several ideas for increasing the accu-
racy of the allocation. First, we plan to lower the
overhead of the controller in order to run it at a
higher frequency. Calculating the exponential and
linear curves more frequently causes the allocation

. . % change faster, and results in a more responsive
drastically the farther it is from 1/2. The effect Onsystem without affecting its stability. In some sense

Elg{jes!grt%rg pﬂgﬁigmg:ﬁgietmgdtt: Isroiimuiger;oa} epriority-based scheme is perfectly responsive, but
P P Is“also inherently unstable.

data. From our data, it takes the controller roughly

10 around 4000 Hz (25Qsec). We conjecture that we

] could run with a dispatch interval in the range of 50
usec on faster CPUs with a small effort to optimize
our code.

0_9—: 4.4 Benefits of Real-Rate Scheduling

The benefit of scheduling based on progress is
that allocation is automatically scaled as the appli-
cation’s requirements change. In our system, the
1 amount of CPU given to a thread grows in relation
0.8 to its progress pressure and importance. For exam-
ple, we have a multimedia pipeline of processes
that communicate with a shared queue. Our con-
10 so0 1000 2000 4000 10000 troller automatically identifies that one stage of the

Dispatcher Freauency (per second) pipeline has vastly different CPU requirements
This figure shows the overhead of dispatch vs. than the others (the video decoder), even though all
the size of the dispatch interval. The graph the processes have the same priority. This results in
shows the amount of CPU available to pro- 3 more predictable system since its correctness
cesses, the area above the curve is the dispaich gpeg not rely on applications to be well-behaved. In
overhead. There is a knee around ‘tOOOHZ' At other words, when a real time job spins instead of
It:k}gu?g”g'tg?s(;vaet?ﬁ%j\gr?lrgggdvi7F?equency blocking, the syst_em will not IiveI(_)ck. ,
' ' Another benefit is that starvation, and thus pri-
ority inversion, cannot occur. Dependent processes
_(connected (in)directly by progess metrics) cannot

Second, our controller currently suffers quanti tarve each other since eventually one will block
zation errors because the minimum allocation is f R y
when its fill-level reaches full or empty. Further,

msec. We are currently exploring possible SOIUHe endent processes can dynamically achieve sta
tions to this. One possibility is a more efficient dis- P P y y

patch algorithm that can be run at a higher ratet?le configurations of CPU sharing that fair-share,

Another possibility is to provide better accounting,we'ghtecl fair-share, or priorities cannot. For inde-

e.g., microsecond granularity, while keeping theoendent non real-rate threads, we prevent starva-

dispatch interval at 1 msec. This reduces our abilit%On through our fair-share or weighted fair-share

to guarantee proportion since we cannot prevent cg'lj'e?' In partlcrL]JIar, one procgsOT]EaU”IOt k‘?ep lthe
job from running for its full time-slice. However, becausfz?isar?lgtreei% pg?;ists Indefinitely - simply
our controller could preempt earlier if the thread A third benefit of P : h is that it auto-
makes a system call or an interrupt occurs. In addi- . Ird benetit of our e:pproac 'S,, atl “au 0
tion, our use of feedback could account for instanmat'fa”y provides both “best-effort” and *real-
time” scheduling, in addition to the real-rate sched-

taneous discrepancies by smoothing allocation over,.) .
time P y 9 uling that motivates the work. However, we believe

To determine the overhead of smaller dispatclllhe real-rate category to be the most important of

guanta, we measured the overhead of runnin teesgcr:(f(\jvilt?lterz]aec];\ugjt;]ec-;rzsng(\a/voi?r!etr:]esfe(;?vmvgrlctjers to
Linux with various time-slice lengths. We mea- '

sured the amount of CPU available to application . L
by running a program that attempts to use as muc?rlf5 Effect on Miscellaneous Applications

CPU as it can. Figure 8 shows the results of this Although the importance of real-rate applica-
experiment. The number plotted is the amount ofions such as speech recognition, multimedia, and
CPU the program was able to grab, normalized t§Veb servers will grow to dominance in the future,
the amount it can grab on a kernel with a time-slicénany PCs still run a mix of more traditional appli-
of 10msec. The graph shows the results of théations that have no rate requirements and for
higher overhead for smaller quanta, with a knedvhich priorities have sufficed. For these applica-

CPU Avallabletor user processes

tions, our approach can potentially reduce perforprecedence to real-time tasks (those that specify
mance (modulo responsiveness). However, thedaoth proportion and period), we expect most jobs
applications can still suffer from priority inversion to fall into the real-rate category. This includes all
and starvation, even if they do not benefit from preof what most people consider “soft-real-time”
dictable scheduling and fine-grain control. We sugapplications such as multimedia.

gest the right solution for these applications is to The BERT scheduler handles both real-time and
add a pseudo-progress metric which maps themon-real-time tasks using the same scheduling
notion of progress into our queue-based meta-intemechanism. Jobs submit units of work to be sched-
face. For example, a pure computation (findinguled, and the scheduler creates deadlines for the
digits of rtor cracking passwords) could use a metwork based on previous measures of the work’s
ric such as the number of keys it has attemptedime to completion. BERT automatically assesses
This could be done transparently by augmentingvhether a given job will meet its deadline, and if
the in-kernel resources such as ttys or sockets twot can either steal cycles from a lower priority job
expose fill-levels to the scheduler. Although weor can cancel the job[1]. BERT is similar in philos-
might be able to improve the performance of oulophy to our approach since it uses feedback of past
scheduler for miscellaneous jobs, we believe jobexecution times in its scheduling, but it does not
with no time or rate requirements will be uncom-use or measure application progress and as such is
mon in the future and thus such an effort is likely tasubject to the same problems as traditional sched-
have small returns relative to those gained by conilers.

verting the jobs to be real-rate. Our solution is similar to Rate-based scheduling
proposed by Jeffay and Bennett [10], in that
5 Related Work resources are allocated based on rate specifications

There exists a large body of work which hasOf X units of execution every y time units. However,

attempted to provide real-time scheduling Supporgﬂelr unlts_ are events which are converted to CPU
in operating systems, Jones et al. [11] provide §YC/€S uSing a worst-case estimate of event pro-
nice summary. Linux, Solaris, and NT provideC€SSing time. Applications must specify x, y, and

“real-time” priorities, which are fixed priorities he worst-case estimation, and an upper-bound on
that are higher in priority than regular priorities. "€SPOnse time. In addition, these values are con-

More relevant to this work are efforts to scheduleStant for the duration of the application Their sys-
based on proportion and/or periodtem also uses pipelines of processes so that

[11][15][20][21]. To date, all such approachesdepende”t_ stages do not r_leed_ to specify their rate,
require human experts to supply accurate specificdl€rely their event processing time. In contrast, our

tions of proportion and/or period, and focus on how?YStem provides dynamic estimation and adjust-

to satisfy these specifications in the best way. NonB1€nt of rate parameters, and only requires that the
of them try to infer the correct proportion, or adapfrocess metric be specified.

dynamically to changing resource needs of the In short, to the best of ourknowledge we are the
applications. first to attempt to schedule using feedback of the

In addition, several systems use hybridgpplication's rate of progress with respect to its

approaches to merge the benefits of reservation aff@Puts and/or outputs. The power of this approach
priority scheduling. Typically these approaches uséets Us provide a single uniform scheduling mecha-
a heuristic that gives a static[4][8] or biased [7]"iSM t.hat work§ well for all classes of app!lcatlons,
partition of the CPU to either real-time jobs or nonJncluding real-time, real-rate, and conventional.
real-time jobs. A new approach is taken by the ,

BERT and SMaRT schedulers, which dynamically® Conclusion

balances between the needs of both kinds of jobs. Real-rate applications that must match their
The SMaRT scheduler lets users assign priority tthroughput to some external rate, such as web serv-
either conventional or real-time threads, but give®rs or multimedia pipelines, and real-time applica-
weight to non-real-time threads within the sameions are poorly served by today’s general purpose
equivalence class [15]. Although we implicitly give operating systems. One reason is that priority-

based scheduling, widely used in existing operatin§’] R. Govindan and D. P. Anderson. Scheduling and

systems, lacks sufficient control to accommodate IPC mechanisms for continuous media. In
the dynamically changing needs of these applica- Proceedings of the 13th ACM Symposium on
tions. In addition, priority-based scheduling is sub- Operating System Principlespages 68-80,

ject to failure modes such as starvation and priority

October 1991.

inversion that reduce the robustness of the system[8] P. Goyal, X. Guo, and H. M. Vin. Adierarchical

In

this paper we have described a new approach CPU scheduler for multimedia operating systems.

to scheduling that assigns proportion based on In Proceedings of the 2nd USENIX Symposium on
measured rate of progress. Our system utilizes OPerating System Design and Implementation

progress monitors such as the fill-level in a

Seattle, WA. October 1996.

bounded buffer, a feedback-based controller thg®] V. Jacobson. Congestion avoidance and control. In
dynamically adjusts the CPU allocation and period Proceedings of the SIGCOMM ’88 Conference

of threads in the system, and an underlying propor- on Communications Architectures and Protogols
tional reservation-based scheduler. As a result, our ~ 1988.
system dynamically adapts allocation to meet curfl0] K. Jeffay, and David Bennett. A rate-based
rent resource needs of applications, without requir- execution abstraction for multimedia computing.
ing input from human experts. In Proceedings of the Fifth International
Workshop on Network and Operating System

7 Bibliography Support for Digital Audio and Videdurham,

) NH, April 1995. Published inecture Notes in
[1] A. Bavier, L. Peterson, and D. Moseberger. BERT: Computer Sciencel.D.C. Little and R. Gusella,

[2] M.

[3] F.

[4] B.

[5] G.

[6] A.

A scheduler for best effort and realtime tasks.
Technical Report TR-587-98 Princeton
University, August 1998.

editors. Volume 1018, pages 64-75. Springer-
Verlag, Heidelberg, Germany, 1995.

[11] M. B. Jones, D. Rosu, and M-C. Rosu. CPU

Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. reservations and time constraints: Efficient,
Magnus, and D. VerwornerLinux Kernel predictable scheduling of independent activities.
Int_e_rnals,pages 47-50. Addison Wesley, second In Proceedings of the 16th ACM Symposium on
ed!t!on, _1998. Translated frqm the Ggrman Operating System Principlepages 198-211,
edition Linux-Kernel-Programmierung published October 1997.

by Addison-Wesley GmbH. _
[12] Mike B. Jones. What really happened on Mars.

J. Corbato, M Merwin—paggett, a_nd R.C. Daley. Email, available on the Web at http://
An Experimental Time-Sharing = System. research.microsoft.com/~mbj/Mars_Pathfinder/
Proceedings of the AFIPS Fall Joint Computer Mars Pathfinder.html.

Conferencel962. As cited irDperating System))

Galvin. Addison-Wesleysth edition. processes and monitors in meSammunications

])) of the ACM 23(2):105-117, 1980. Also appeared
Ford and S. Susarla. CPU inheritance scheduling. in Proceedings of the 7th ACM Symposium on
In Proceedings of the 2nd USENIX Symposium on Operating System Principles, Pacific Grove, CA,
Operating System Design and Implementation 1979.

Seattle, WA. October 1996.)]]
) _ .. [14] C. L. Liu and J. W. Layland. Scheduling algorithms
F. Franklin, J. D. Powell, and A. Emami-Naeini. for multiprogramming in a hard-real-time

Feedback Control of Dynamic Systepege 185. environment. Journal of the ACM, 20(1):46-61,
Addison-Wesley, third edition, 1994. Reprinted January 1973.

with corrections June, 1995. })
[15] J. Nieh and M. S. Lam. The design,

Goel, D. Steere, C. Pu, and J. Walpole. SWIFT: A implementation, and evaluation of SMaRT: A
Feedback Control and Dynamic Reconfiguration scheduler for multimedia applications. In
Toolkit. ~ Technical ~ Report ~ CSE-98-009, Proceedings of the 16th ACM Symposium on
Department of ~ Computer ~ Science and Operating System Principlepages 184-197,
Engineering, Oregon Graduate Institute. June October 1997.

1998.

[16] R. H. Patterson, G. A. Gibson, E. Ginting, D.

Stodolsky, and J. Zelenka. Informed prefetching
and caching. IrProceedings of the 15th ACM
Symposium on Operating System Principles
December 1995.

[17] Glenn Reeves. Re: What really happened on mars.
Email, available on the Web at http://
research.microsoft.com/~mbj/Mars_Pathfinder/
Authoritative_ Account.html.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. |IEEE Transactions on
ComputersSeptember 1990.

[19] D. C. Steere. Exploiting the Non-determinism and
Asynchrony of Set Iterators to Reduce Aggregate
File I/0O Latency.Proceedings of the 16th ACM
Symposium on Operating System Principles
pages 252-263, October 1997.

[20] I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the
Duality between resource reservation and
proportional share resource allocation. In
Multimedia Computing and Networking 1997.
SPIE Proceedings Series, Volume 3020. San
Jose, CA, February 1997, pages 207-214.

[21] C. A. Waldspurger, and W. E. Weihl. Lottery
scheduling: flexible proportional-share resource
management. InProceedings of the First
Symposium on Operating System Design and
ImplementationNovember 1994, pages 1-11.

[22] J. A. Zinky, D. E. Bakken, and R. E. Schantz.
Architectural support for quality of service for
corba objects.Theory and Practice of Object
Systems April 1997. http://www.dist-
systems.bbn.com/papers/TAPOS.

