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1 Introduction

Traditionally, real-time systems manage their data (e.g. chamber temperature,
aircraft locations) in application dependent structures. As real-time systems
evolve, their applications become more complex and require access to more data.
It thus becomes necessary to manage the data in a systematic and organized
fashion. Database management systems provide tools for such organization, so
in recent years there has been interest in “merging” database and real-time tech-
nology. The resulting integrated system, which provides database operations with
real-time constraints is generally called a real-time database system (RTDBS)
[1].

Like a conventional database system, a RTDBS functions as a repository of
data, provides efficient storage, and performs retrieval and manipulation of infor-
mation. However, as a part of a real-time system, whose “tasks” are associated
with time constraints, a RTDBS, has the added burden of ensuring some degree
of confidence in meeting the system’s timing requirements.

Example applications that handle large amounts of data and have stringent
timing requirements include telephone switching (e.g. translating an 800 number
into an actual number), radar tracking and others. Arbitrage trading, for exam-
ple, involves trading commodities in different markets at different prices. Since
price discrepancies are usually short-lived, automated searching and processing
of large amounts of trading information are very desirable. In order to capitalize
on the opportunities, buy-sell decisions have to be made promptly, often with a
time constraint so that the financial overhead in performing the trade actions
are well compensated by the benefit resulting from the trade. As another exam-
ple, a radar surveillance system detects aircraft “images” or “radar signatures”.
These images are then matched against a database of known images. The result
of such match is used to drive other system actions, for example, in choosing a
combat strategy.

Conventional database systems are not adequate for this type of application.
They differ from a RTDBS in many aspects. Most importantly RTDBSs have
different performance goals, correctness criteria, and assumptions about the ap-
plications. Unlike a conventional database system, whose main objective is to
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provide fast “average” response time, a RTDBS may be evaluated based on how
often transactions miss their deadlines, the average “lateness” or “tardiness” of
late transactions, the cost incurred in transactions missing their deadlines, data
external consistency (how current the values of data are in reflecting the state
of the external world), and data temporal consistency (values of data in the
database should be taken from the external world at similar times) [50].

As a real-time system, specifications related to timing constraints are usually
supplied by the application designers. For most cases, these timing requirements
are expressed as deadlines for transactions. Transactions of this sort, with which
explicit time constraints are associated, are termed real-time transactions.

As mentioned above, a RTDBS can be viewed as a value-added database
system that supports real-time transactions. A real-time transaction has to be
completed by its deadline to be of full benefit to the system. Such guarantees are
usually hard to ensure. In case a transaction’s deadline is not met, the transaction
is called a tardy transaction.

Real-time database systems differ in the way tardy transactions are handled,
and this issue is generally referred to as the overload management problem. A
tardy transaction may carry positive, zero, or negative residual value to the sys-
tem. For the positive case, even though the benefit obtained by completing the
tardy transaction is usually less than its full fledged value, the system should
still complete it, if possible. The system may, however, choose to lower the trans-
action’s priority so that non-tardy transactions are given preferential treatment,
for example, in accessing system resources. When a tardy transaction completely
loses its value (zero residual value case), it should be dropped to free system re-
sources for the benefit of other transactions. Finally, when a tardy transaction
carries negative value, the system may choose to raise the transaction’s priority
so that it can be completed as soon as possible to diminish the cost incurred due
to it tardiness. On the other hand, the system may lower the transaction’s pri-
ority or even drop it so that other transactions have a better chance of meeting
their deadlines. The decision is dependent upon the application semantics. In
the extreme case that a system cannot afford having a tardy transaction (e.g. in
nuclear power plant control), the system is said to be a hard real-time database
system; otherwise, if tardy transactions are tolerated even though they may be
undesirable (e.g. arbitrage trading), we say that the system is a soft real-time
database system.

It is argued in [51] that with current technology, it is very hard to provide
an absolute guarantee on meeting transaction deadlines, and therefore, RTDBSs
are mostly limited to soft real-time systems. There are several factors that make
it hard for a RTDBS to meet all deadlines. Firstly, the executions of database
transactions are usually data and resource dependent. To guarantee satisfaction
of transaction deadlines requires enormous excess resource to accommodate the
highest system load. Secondly, full transaction support involves many database
protocols which are highly unpredictable in their execution times3. Concurrency
control protocols, for example, often introduce blocking and restart of trans-

® For a brief account on real-time system predictability, see [52].
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actions over resource contention. Thirdly, disk-based database systems interact
heavily with the I/O subsystem. Problems such as disk seek time variation,
buffer management and page faults, cause the average case and worst case exe-
cution times to differ widely. All these add to the unpredictability of transaction
execution.

While difficulties for ensuring transactions meet their deadlines certainly ex-
ist, since most RTDBSs are used for highly specialized applications, special tech-
niques may be applied to improve the system’s real-time behavior. For example,
if the database is small enough to fit into main memory, most of the I/O op-
erations can be eliminated. This in turn, gets rid of the problem of page faults
and I/O scheduling. We will discuss main memory database systems later in this
chapter.

Also, in some real-time systems, “tasks” or transactions can be preanalyzed.
Semantic properties of transactions and data may be known a priori. The knowl-
edge of transaction runtime and resource requirements may lead to more effective
scheduling and concurrency control protocols. As an example [37], in a conven-
tional database system the number of constraints is assumed to be large. Check-
ing them individually may be impractical, so instead serializability is used as
the correctness criterion. However, “since real-time systems may have a fixed
number of processes and the databases are statically structured, it may be fea-
sible to specify a small set of integrity constraints which are most critical for
the system’s correctness. [37]” Specialized protocols may then be designed that
allow non-serializable but consistent schedules [33].

In the rest of this chapter, we will discuss some problems concerning the
design of a RTDBS. We will present some solutions as proposed by the research
community. We will also examine the various components of a database system
and discuss what features should be added to support real-time transactions.

2 Transaction Model

In this section, we look at the attributes of real-time transactions and discuss
how they affect transaction design. In particular, we will discuss the issue of
deadline assignment, and how semantic information can be used to help meeting
the system’s timing constraints.

The following types of information about transactions may be available and
may be of use in scheduling and concurrency control:

1. Timing Constraints — E.g. deadlines.

2. Criticalness — It measures how critical it is that a transaction meets its
deadline. Different transactions may have different criticalness. Note that
criticalness is a different concept from deadline. A transaction may have a
very tight deadline but missing it may not cause great harm to the system.

3. Value function — Related to a transaction’s criticalness is its value function.
A value function of a transaction measures how valuable it is to complete
the transaction at some point in time after the transaction arrives. Some
typical value functions are shown in Fig. 1.
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Fig. 1. Example value functions. Tardy transaction has (a) diminishing positive value,

(b) zero value, (c) negative value, (c) increasingly negative value.
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. Resource requirements — This includes the number of I/O operations to be

executed, expected CPU usage, etc.

. Expected execution time. This is usually hard to predict (see Sect. 3).

. Data requirements — Read sets and write sets of transactions.

. Periodicity — If a transaction is periodic, what its period is.

. Time of occurrence of events — At what point in time will a transaction

issue a read/write request?

. Other semantics — Is the transaction read only? Does it conflict with any

other transaction? If so, will they ever be executed at the same time? How
up-to-date the data is required by the transaction?

There are many ways that this information can be used to help the design of

real-time transactions. We demonstrate its use by the following examples.

One example concerns database consistency. In a conventional database sys-

tem, as long as transaction atomicity, consistency, isolation and durability (the
ACID properties) are enforced, transactions can be executed concurrently to in-
crease throughput without jeopardizing correctness. However, insurance of the
ACID properties does not come cheap. Special protocols for concurrency control,
transaction commitment, and database recovery have to be exercised. Very of-
ten, such protocols hamper the system’s real-time performance through blocking,
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transaction abortion, deadlock, and additional I/O due to logging.

Since full transaction support is costly, it has been suggested [51] that real-
time data and transactions be categorized into classes depending on their timing,
synchronization, consistency, and atomicity properties. Then using the supplied
semantic information, devise special minimal transaction supports that are suf-
ficient for the classes.

Another example use of semantic information as suggested in [16] is to an-
alyze transactions and construct contingency plans for each transaction type.
Contingency plans are alternate actions that can be invoked whenever the sys-
tem determines that it cannot complete a task in time. A contingency plan is
usually more economical to execute than the original transaction. It provides
useful but not optimal results. A related idea on imprecise computations can be
found in [14].

Among the attributes of a real-time transaction, deadline is the most impor-
tant one. This piece of information is used in many aspects of a RTDBS, be it
concurrency control, scheduling, or the use of contingency plans and imprecise
computations. Usually the deadline of a transaction is specified by the applica-
tion designers. However, if the transaction model supports nested transactions
or subtransactions, there is the question of how time constraints are assigned to
individual subtransaction based on the parent transaction’s deadline.

To illustrate this problem, let’s consider a transaction T' with deadline d.
Further assume that T consists of two subtransactions T} and 7% to be executed
in order. Since T3 is executed last, its deadline should be d, the deadline of its
parent transaction. But what about 77’s deadline? If we set it to be d minus the
expected execution time of Ty, T; is left with no slack* and the system runs the
risk of missing 7T”s deadline. A probably better but more complicated solution
is to assign a tighter deadline to 7;. If 77 misses it, its deadline is incremented
gradually until it is completed. A problem with this scheme is that transactions
with “soft” but tight deadlines (e.g. T1) will interfere with the execution of others
that have “harder” deadlines (e.g. 7).

So far we have assumed that real-time constraints are specified on the trans-
actions. Korth et. al. [32] propose a different model with which deadlines are as-
sociated with consistency constraints. In addition to transactions that maintain
correct database states, in their model, transactions may be invoked to record
the effects of some external event that is generated outside the system (e.g. sen-
sor reading). The ensuing change in the database state may render a consistency
constraint invalid (e.g. room temperature < z°F), and that constraint may need
to be restored within a specific deadline (e.g. the room temperature has to be
raised within 30 seconds). Once an inconsistency is detected, a “patch-up” trans-
action is invoked to attempt to correct the violation. The patch-up transaction,
however, may cause other consistency constraints to be violated. This leads to
a possible chain of transaction triggering.

* The slack time of a transaction is the amount of time that the transaction can be
delayed in its execution but still be able to meet its deadline. We will have a more
precise definition of slack time later in this chapter.
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In [32], three types of transactions, which have different atomicity and con-
sistency requirements, are considered:

1. External-input transactions: These transactions are executed to record rel-
evant events that occur in the external world into the database. They are
often simple, write-only transactions with short duration. In order to keep
the database externally consistent, external-input transactions should be
able to execute promptly without waiting or blocking. They may cause a
consistency violation.

2. Internal transactions: These transactions are similar to standard database
transactions. They are also invoked to restore consistency of the database.
Their execution could be of long-duration.

3. External-output transactions: These transactions cause actions to be per-
formed in the external world. Just like the external-input transactions, they
are often of short-duration.

Their approach to consistency restoration works as follows: First of all, by
analyzing the underlying real-time system, a predicate-priority graph (PPG) is
constructed. A PPG is a bipartite graph consisting of two kinds of nodes rep-
resenting transactions and consistency constraints. An edge emerging from a
transaction node, 77, to a constraint node, C;, means that the execution of T
may cause C; to be violated. The fanout of a transaction node may be larger
than one, meaning that a transaction can potentially violate several consistency
constraints. An edge from a constraint node, C3, to a transaction node 7T, sym-
bolizes that by executing 75, C; will be restored. Again, a constraint node may
have multiple outgoing links. In that case, any one of the transaction nodes that
are pointed to by a constraint node is capable of restoring the constraint. A
choice is thus possible in selecting a “patch-up” transaction.

Now, when a constraint is violated, a “patch-up” plan is constructed by ana-
lyzing the PPG. A “patch-up” plan is represented by an inconsistency-resolution
subgraph (IRS) of the PPG, which provides a strategy for resolving any incon-
sistencies. Intuitively, an IRS gives a partial ordering of transaction execution
so that consistency constraints are restored.

Since a constraint violation may be fixed by more than one internal transac-
tion, there may be more than one IRS choice for restoring an inconsistency. Ko-
rth’s paper suggests several strategies for selecting an IRS. For example, choose
an IRS such that:

the total execution time of the transactions involved is minimum.
the IRS involves the least number of transactions.
the IRS violates the least number of consistency constraints.

B W N =

the slack time for restoring consistencies is maximum.

These strategies are engineered towards different system performance metrics.
Complexities of problems related to the implementation of these strategies are
also studied in [32]. Some of these problems are found to be NP-hard.
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3 Transaction Scheduling

A major part of real-time system research concerns scheduling of jobs (of which
transactions are one kind) in a multiprogramming environment. Following Liu
and Layland’s paper [39], numerous others have been published on the subject.
Among these is a series of work done by Lehoczky, Sha et. al. [34] [35] [36]. For
a survey on scheduling algorithms in a hard real-time environment readers are
referred to [13].

Much of the work done on real-time job scheduling focuses mainly on CPU
scheduling. Transaction scheduling, however, involves not only the CPU. In fact,
due to the extensive data processing requirements of a database system, resources
such as data, I/O, and memory are also subject to severe competition among
concurrently running transactions. Careful scheduling the use of these resources
is very important to the performance of RTDBSs.

In this section, we discuss some general issues of transaction scheduling.
Since most of the real-time scheduling protocols revolve around the use of prior-
ity, we will discuss how priority is assigned to transactions. We also discuss CPU
scheduling and its database related problems. Algorithms for scheduling other
system resources such as data, I/O, and memory will be discussed in the fol-
lowing sections on concurrency control, I/O scheduling, and buffer management
respectively.

As a major asset of a computer system, efficient use of CPU cycles is very
important. Conventional scheduling algorithms [43], as employed by most of the
existing operating systems, aim at balancing the number of CPU-bound and
I/O-bound jobs to maximize system utilization and throughput. They are also
designed to treat processes fairly, each one gets its fair share of the system
resource. Other performance criteria include small job turnaround time, small
waiting time, and fast response time. However elaborated, these algorithms are
not adequate for real-time transaction scheduling. This is because in a RTDBS,
transactions should be scheduled according to their criticalness and the tightness
of their deadlines, even if this means sacrificing fairness and system throughput.

Real-time scheduling algorithms should therefore be based on the “inequal-
ities” of transactions. They should give preferential treatment to transactions
which are very critical and with stringent timing constraints. A popular method
is to assign a numeric priority to each transaction which reflects its relative
urgency. A transaction with higher priority is given an upper hand in gaining
access to system resources.

A transaction has many attributes that may affect its priority. Below is a
list of those attributes that are most relevant to a RTDBS. The parenthesized
variables next to each attribute represent the individual quantitative measure of
each concept.

1. Criticalness () — the more critical a transaction is, the higher is its priority.®

5 Sometimes, the criticalness of a transaction can be expressed as a value function (see
Sect. 2). For scheduling algorithms that aim at obtaining high total process value,
see [40] [23].
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2. Deadline (d) — the earlier its deadline, the higher is the transaction’s priority
[22].

3. Amount of unfinished work (I) — a transaction with less amount of unfin-
ished work may be given a higher priority than a transaction with large
amount of unfinished work. In the extreme case when a transaction has be-
gun its commit phase®, its priority could be raised to a higher value. This
enables a committing transaction, who requires minimal computation, to fin-
ish fast. Resources held by the committing transaction can thus be released
sooner to reduce blocking of other transactions [24].

4. Amount of computation already invested (c¢) — a transaction that already
has a large amount of computation done may be given a higher priority.
Preempting a transaction in a database system requires not only the release
of resource but also careful rollback of the transaction. It is sometime easier
and less wasteful of system resources to rollback a transaction that has only
run for a short time.

5. Age (a) — a transaction that arrived early should be given a higher priority
than those that arrived late. This scheme reduces turnaround time and helps
keep data externally consistent.

6. Slackness (s) — slackness measures how long a transaction’s execution can
be delayed while still making it possible to meet the transaction’s deadline.
If we denote the arrival time of a transaction by ¢,, then slackness can be
expressed as:

s=d—ty,—c—1L
The tighter the slackness of a transaction is, the higher should be its priority.

It is generally hard to capture the idea of urgency by only one of the items
discussed above. Consequently, it is suggested in [51] that a combination be used
to compute a priority value function (pr()). In particular, the following formula
is suggested as an example:

pr(T) = y(wia — wad + wac — wyl)

where the w]s are weights reflecting the relative importance of the various fac-
tors.

We note that when priority computation is based on the amount of unfinished
work and slackness, a good prediction of transaction execution time is needed.
We have discussed in Sect. 1 the factors which make a precise prediction hard to
achieve. As an attempt, we can generally decompose the execution time (tegec)
into three components as follows [9]:

tezec = tfault + tap + tnonds

where t 44011, tap, and tnonds denote the times spent in page fault, data-processing
operations, and non-data-processing operations respectively. We look at these
terms one by one.

6 A transaction is in its commit phase after it finishes all the computation. Any data
it updates are being written to disk in this phase.
* This notation is adapted from [9].
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The term 744 Tepresents the amount of time spent in paging data from disk
to memory. For periodic transactions, if data prefetching is possible, a memory
resident database can be assumed. This removes any uncertainty on tf.q41: by
essentially setting it to zero. Otherwise, ¢4, includes all the time for I/O
operations. Due to the wide gap between memory access time and disk access
time, in a disk-based database, the use of a deterministic worst-case bound on
t¢quit is too pessimistic. A probabilistic model on estimating ¢4, may be more
effective in this case. Scheduling algorithms which are based on execution time
prediction, therefore, have to take into account the fact that the estimates are
not precise.

The variable t,,,4p measures the execution time of non-database related
operations while ¢4, measures database related ones. It is generally harder to
estimate tgp than ¢,4,45. The reason being that the amount of data processing
usually depends on the state of the database itself. It is suggested that metadata
be kept describing the size of each object class [9]. Execution time on data
processing is then estimated dynamically with the help of these metadata.

Before we end this section, we briefly discuss various scheduler properties and
compare their relative merits with respect to RTDBSs. These properties include
on-line vs. off-line, conflict-avoidance vs. conflict-resolution, and preemptive re-
sume schedulings.

Due to the unpredictable job arrival pattern, conventional scheduling algo-
rithms are usually on-line. That is, the order of transaction execution is not
pre-computed. However, in RTDBS, if information about the transactions’ data
access patterns, periodicities, deadlines etc. is available, transaction preanalysis
should be carried out off-line [9]. Transaction execution order is thus scheduled
before transactions arrive. Since off-line schedulers are given more information,
and sooner, they are more flexible and usually produce better schedules.

When there are concurrently running tasks in a system, there are potential
conflicts on resource access. These resources include data, I/O, memory and
others. When given a job, a conflict-avoidance scheduler detects and resolves
conflicts among jobs over resources before the job is released for execution [9].
For conflict-avoidance be applicable, all resource requirements must be known
in advance. A conflict-resolving scheduler, on the other hand, handles conflicts
when they actually occur. A conflict-resolution protocol, for example, may decide
that a resource requester aborts a resource holder, if it is determined that the
requester has a higher priority over the resource. The penalty of using a run-
time conflict resolution strategy is the uncertainty it introduces in transaction
execution time [9].

Finally, we note that preemptive resume CPU scheduling may not be suit-
able for database systems [11]. Under this scheme, a high priority transaction
preempts a low priority one for CPU. The low priority transaction is not aborted
and does not relinquish any lock held. It simply sleeps and then resumes process-
ing when the high priority transaction completes. If the low priority transaction
is holding lock on a hot item, a convoy of waiting transactions will be formed
due to the extended period of locking. This convoy, once formed, tends to per-
sist for a long time [8]. The convoy phenomenon causes long waits for locks
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and should be avoided in a real-time system. A solution based on priority-based
round-robin CPU scheduling is suggested in [11], where the length of a CPU
slice is determined by the priority of a transaction.

4 Concurrency Control

Concurrency control refers to the control of interaction among concurrent trans-
actions in such a way that database consistency is not destroyed [31]. Transac-
tions interact with each other mainly through reads and writes of data items.
Careful access control on data therefore needs to be exercised. A good deal of
work has been done on this subject for conventional databases (see, for exam-
ple, [42]). The purpose of this section is to discuss the properties of concurrency
control protocols that are pertinent to RTDBSs.

Serializability is the most popular correctness criterion in concurrency con-
trol. A sequence of database operations is considered serializable if its effect is
equivalent to a serial transaction schedule. This condition, however, often lim-
its the degree of multiprogramming, and introduces blockings and restarts of
transactions.

An argument which supports sacrificing serializability to improve perfor-
mance in a RTDBS is that data are often short-lived in some real-time ap-
plications [48]. The claim is that any inconsistency introduced by concurrent
transactions does not spread too much over the database. Since the content of
the database does not get corrupted badly, techniques like compensating trans-
actions as discussed in Sect. 2 may be useful.

However, depending on the application semantics, serializability may be a
better choice for maintaining database consistency. In this case, the prevalent
approaches to concurrency control are lock-based protocols and optimistic con-
currency control protocols.

Two phase locking (2PL) is the most common locking protocol in conven-
tional database systems. With 2PL, a transaction execution consists of two
phases. In the first phase, locks are acquired but may not be released. In the
second phase, locks are released but new locks may not be acquired. In case a
transaction Tg requests a lock that is being held by another transaction Ty, Tr
waits.

Conventional locking protocols, like 2PL, are unsatisfactory for RTDBSs.
The two main problems encountered are the possibility of priority inversion and
deadlock. Let’s take a look of the problem of priority inversion first.

Consider the example given above which involves a lock requester Tg and
a lock holder Ty. If the priority of Tk is higher than the priority of Ty, then
a high priority transaction waits for a low priority one to finish. We call this
phenomenon priority inversion [2], [4], [45], [27].

Priority inversion is very undesirable in a RTDBS because a high priority
transaction is blocked by a low priority one. Since the low priority transaction
is discriminated against in its use of system resources, the blocked high priority
transaction is essentially running at an effective priority equal to that of the low
priority transaction. This renders the real-time scheduling algorithms ineffective.



AN OVERVIEW OF REAL-TIME DATABASE SYSTEMS 11

One solution to this problem is to hoist the priority of the lock holder to
that of the requester. Referring to our earlier example, T will be executed at
an elevated priority equal to pr(Tg). This priority lift truly reflects the urgency
of completing Ty, whose progress means progress of Tr. We call this strategy
Wait Promote [45].

Wait Promote:
IF pr(Tr) > pr(Ty) THEN
Tr waits;
Ty inherits the priority of Tg;
ELSE
Tr waits;
ENDIF

We note that the property of priority inheritance, as exhibited by the Wait
Promote strategy, should be transitive. It means that if T is itself blocked by
some other transaction X, then we should set pr(X) = max {pr(X),pr(Tr)}.
Also, if a lock holder is blocking more than one lock requester, the priority of
the lock holder should be set to the maximum of the requester’s priorities.

The problem with Wait Promote is that we still let a low priority transaction
block a high priority transaction. If aborting a transaction is not too expensive,
we may choose to abort the low priority lock holder and let the high priority
lock requester proceed. This strategy is called High Priority [2].

High Priority:

IF pr(Tr) > pr(Ty) THEN
Tr aborts Ty;

ELSE
Tr waits;

ENDIF

The use of High Priority eliminates the problem of priority inversion. However,
a problem arises if the priority function chosen (e.g. least slack) is such that a
restarted transaction may have a higher priority than its previous incarnation.
In such cases, when the restarted transaction tries to acquire locks, it may abort
the transaction that killed it before because the restarted transaction is now
running at a higher priority. This leads to the problem of cyclic restart.

To avoid this problem, before a lock requester T aborts a lock holder Ty,
the scheduler should make sure that the next incarnation of Ty, Tj_}, also has
a lower priority than Tg. This modified High Priority algorithm without cyclic
restart is shown below [2]:

High Priority without Cyclic Restart:

IF pr(Tr) > pr(Tuy) AND pr(Tg) > pr(T#) THEN
Tr aborts Ty;

ELSE
Tr waits;

ENDIF



12 Ben Kao and Hector Garcia-Molina

The High Priority strategy, although simple, may abort transactions too liber-
ally. This wastes system resource and lower throughput, and should be avoided
unless it is necessary. For our example, if it is estimated that the slack time of
Tr is longer than the remaining running time of Ty, then Ty may be allowed
to finish without missing Tr’s deadline. In that case, Ty is not aborted to save
system resource. This strategy, called Conditional Restart [2], is shown below:

Conditional Restart:
Ep := estimated remaining running time of Tg;
Sgr := estimated slack time of Tg;
IF pr(Tr) > pr(Tuy) AND pr(Tg) > pr(T4) THEN
IF Sg > Egy THEN
Tr waits;
Ty inherits the priority of Tr;
ELSE
aborts Tpr;
ENDIF
ELSE
Tr waits;
ENDIF

There are two complications of Conditional Restart. First, if there is a non-
trivial probability that the chain of blocked transactions involves more than
one transaction, the strategy needs to be modified. For example, if T is itself
blocked by a transaction X, then instead of comparing Ep and Sg, we ought to
compare the sum of the expected execution times of H and X with Sr instead.
Second, estimates of Ey and Sg have to be available.

The above discussion shows that no single strategy excels. The choice is
dependent upon the applications, the availability of resource, and the cost of
transaction restart.

There are studies on other real-time locking protocols which use delayed
transaction commitments to achieve more flexible schedulings, and to produce
serialization orders that favor high priority transactions [49] [38] [6]. In [49], a
three-phase real-time locking protocol is proposed. Among its nice properties
are strict history [7], high degree of concurrency, and a smaller rate of missed
deadlines compared to the basic 2PL-HP protocol. In [6], the problem of blocking
and restarts caused by conventional locking protocols, and their adverse effects
on a RTDB are discussed. A technique called “ordered sharing” [5] is used to
tackle the problem and is shown to be an effective way of ameliorating blockings
and restarts, as well as transaction missed deadlines.

As mentioned earlier, the second problem of locking protocols is the possibil-
ity of deadlock. Whenever a set of transactions get involved in a circular wait,
a deadlock occurs [43]. In such situation, a transaction involved in the dead-
lock is chosen to be aborted. This victim transaction should be picked such that
the largest number of remaining transactions can meet their deadlines. Example
strategies for choosing a victim in deadlock resolution include [24]:

1. Abort a transaction that already passed its deadline.
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2. Abort a transaction with the longest deadline.
3. Abort a transaction that is least critical.

Finally, empirical studies have shown that when deadlock occurs, it usually
involves only two transactions [17]. There are thus not many choices for a victim.
Hence, it may not be wise to use a sophisticated but expensive deadlock breaking
protocol.

Most commercially available database systems use lock-based concurrency
control protocols. Optimistic concurrency control, however, has the advantages
of being non-blocking and deadlock free. These properties are very desirable for
a real-time system. We devote the rest of this section to a discussion of optimistic
concurrency control as applied to RTDBSs [21], [26], [46].

With optimistic concurrency control, the execution of a transaction can gen-
erally be divided into three phases: (1) read phase, (2) validation phase, and (3)
write phase.

During the read phase, data items are read into memory. Computations based
on the values of these data items are performed. New values are computed,
but are not written into the database until the write phase. In general, if the
concurrency control scheduler has decided that a transaction 7T; be serialized
before a transaction T}, the following conditions have to be satisfied [26]:

1. R/W rule. Data items to be written by T; should not have already been read
by T;.
2. W/W rule. T;’s writes should not overwrite T;’s writes.

When a transaction finishes its computation, it enters its validation phase in
which the R/W and W/W rules are tested. If any one of the rules is violated,
conflict resolution, which usually involves aborting one or more transactions, is
invoked. One scheme for validating the rules is to check if any one of the following
condition hold:

1. T; completes its execution before T} started (no interleaving).

2. The write set of T; does not intersect with the read set of Tj (thus enforcing
the R/W rule), and T; completes its write phase before T} starts its validation
phase (this enforces the W/W rule).

Readers are referred to [31] for details on this validation scheme.
When validation fails, a conflict resolution scheme is invoked. Several schemes
are suggested in [26]. We quote three examples here:

1. Broadcasting Commit. Always let the validating transaction commit and
abort all the conflicting transactions. This strategy guarantees that as long
as a transaction reaches its validation phase, it will always finish.

2. Abort the validating transaction only if its priority is less than that of all
the conflicting transactions.

3. If the priority of the validating transaction is not the highest among the con-
flicting transactions, wait for the conflicting transactions with higher priority
to complete.
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Simulation experiments have been carried out in [20] comparing 2PL with
High Priority and optimistic concurrency control with Broadcasting Commit.
Their results show that under an overload management policy of discarding
tardy transaction, optimistic concurrency control can outperform 2PL. An in-
dependent study by Huang and Stankovic [26] also compares an optimistic con-
currency control algorithm (OCCL_SVW) with 2PL. Their results show that the
performance difference between OCCL_SVW and 2PL is sensitive to the amount
of data contention, but not to the amount of I/O resource contention. In par-
ticular, the optimistic concurrency control protocol performs better than 2PL
when data contention is low; otherwise, 2PL has a better performance.

5 I/0O Scheduling

In a disk-based database system, disk I/O occupies a major portion of transac-
tion execution time. As with CPU scheduling, disk scheduling algorithms that
take into account timing constraints can significantly improve the real-time per-
formance [11] [3] [12]. CPU scheduling algorithms, like Earliest Deadline First
and Highest Priority First, are attractive candidates but have to be modified
before they can be applied to I/O scheduling. The main reason is that disk
seek time, which accounts for a very significant fraction of disk access latency,
depends on the disk head movement. The order in which I/O requests are ser-
viced, therefore, has an immense impact on the response time and throughput of
the I/O subsystem. To illustrate, let’s consider the following example as shown
in Fig. 2.

I/ 0 A C b B
reques
S T O N T O I
T T T ]
Track #: 0 1 2 3 4 5 6 7 g
current disk i II}OVii[lg iI}
head position this direction

Fig. 2. Disk scheduling example.

Suppose we have four requests 4, B, C and D in the I/O queue with their
priorities in the following order:

pr(4) > pr(B) > pr(C) > pr(D).

The position of the data needed by each request is shown in Fig. 2. If Highest
Priority First (HPF) scheduling is employed, the service order would be:

HPF: A, B, C, D.
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We note that in this case, the head sweeps the disk back and forth four times,
or 32 tracks. Considering that the requests can be satisfied in only 11 track
movement (in the order of D, B, C, A), apparently HPF is not a very smart
way of scheduling the disk head if response time or throughput is a concern.

Algorithms for shortening disk head movement have been devised [53]. The
Elevator Algorithm, for example, moves the head from one end of the disk to the
other and then back, servicing whatever requests are on its way, and changing
direction whenever there are no more requests ahead in its direction. Referring
to the example in Fig. 2, the Elevator Algorithm will produce the following
servicing schedule:

Elevator: D, B, C, A

which takes three times less disk head movement than Highest Priority First
does.

The problem with the Elevator Algorithm, as applied to real-time systems,
is that the priority of requests is not considered. In our example, the highest
priority request A is serviced last. There is thus a trade-off between maximizing
throughput and meeting system’s timing constraints. Methods that combine
the properties of HPF and the Elevator Algorithm are very desirable. In what
follows, we describe two middle-ground I/0 scheduling algorithms: one that puts
the Elevator concept on Highest Priority First scheduling, and another which
adds the flavor of HPF to the Elevator Algorithm.

When Highest Priority First scheduling is used, the disk head may pass
through tracks for which there are other low priority requests. The Elevator
principle says “do pick them up because the disk head is already there!” In [3],
[4], Abbott presents the FD-SCAN? algorithm. Simply stated, FD-SCAN follows
HPF in always “targetting” the disk head towards the track with the highest
priority request, but also services whatever requests are on its way. Consider the
earlier example, the servicing order under FD-SCAN would be:

FD-SCAN:  C, A, D, B.

We note that in this example, the disk head moves a similar distance as the
Elevator Algorithm but the highest priority request A is served sooner.

In Abbott’s studies, FD-SCAN is tested against other disk scheduling algo-
rithms including First Come First Served, the Elevator Algorithm, Shortest Seek
Time First, and Earliest Deadline First. Simulation results show that FD-SCAN
performs best among the algorithms tested in terms of the ability to meet dead-
lines. This property is most prominent when the load of the I/O subsystem is
high. Also, this advantage of FD-SCAN is persistent through a wide range of
system parameter settings.

In [11], the problem of long seek time for the Highest Priority First scheduling
is addressed. It is argued that the use of fine grain priority gives the HPF sched-
uler a FCFS-like average seek time (with possibly even worse response time).

8 In [3] and [4], deadline is used as a priority measure. FD-SCAN stands for “Feasible
Deadline SCAN.” Any request whose deadline is determined to be impossible to
meet is discarded.
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Their idea (which we will call the Highest Priority Group First (HPGF)) is to
blur the boundaries of priority. Disk requests are grouped into a small number
of priority levels even though the transactions issuing the I/O requests may have
distinct priorities in other parts of the system. Once these groups are formed,
the disk is scheduled to service the highest priority group first. In case there is
more than one request in the highest priority group, the Elevator Algorithm is
used for the intra-group scheduling. Referring to our example, if requests 4 and
B are in a high priority group, and requests C and D are in a low priority group,
the service order under HPGF would be:

HPGF: B, 4, C, D.

We note that in the example, the disk movement is much less than what HPF
would require, while the higher priority requests are served before the lower
priority ones.

Through a series of experimental studies [11], it is found that HPGF performs
better than the Elevator Algorithm in meeting deadlines. This benefit is achieved
at a cost of a prolonged average response time. However, the study shows that
the response time degradation mainly affects low priority requests. High priority
requests, on the other hand, experience response times which are very close to
what the Elevator Algorithm provides.

6 Buffer Management and Memory Resident Database

In the last three sections, we have discussed various issues concerning access to
CPU, data, and disk I/O in a real-time database system. In this section, we
turn our attention to yet another system resource — main memory. We will
discuss how memory is managed and how it can be used efficiently to improve
the performance of RTDBSs.

This section is divided into two parts. The dividing issue is whether memory
space is tight or plentiful. If a real-time system has only limited amount of
memory, buffer management, which concerns the allocation of memory space
among concurrent transactions, has to be specially designed. The goal here is
to ensure that the execution of high priority transactions is not hindered by the
lack of memory. On the other hand, if memory is plentiful, much of the data can
reside in main store® forming what is called a memory resident database system
(MRDBS). An MRDBS has many features, such as fast and predictable access
time, which make it particularly suitable for real-time applications.

6.1 Buffer Management

The availability of memory affects transaction response time in two ways. First,
before a transaction starts its execution, buffers (memory pages) have to be
allocated to the transaction. These buffers are used to store the execution code,

9
We use the word “store” as a synonym of “memory”.
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copies of files and data paged in from disk, and any temporary objects produced.
Depending on the transaction, a certain number of buffers have to be allocated in
order to prevent the transaction from thrashing'®. When memory is running low,
a transaction may be blocked from execution. The amount of memory available
in a system thus limits the number of concurrently executable transactions.
Second, some applications, such as image processing, have high demands on
memory. Their executions will be significantly slowed down if memory is tight
and frequent memory swapping is done.

The job of a buffer manager is to allocate memory buffers to transactions
intelligently such that high priority transactions enjoy shorter response times.
A buffer manager is usually specified in terms of its admission policy and buffer
replacement policy. We briefly explain each policy in turn below. We will also
give examples on how transaction priorities are used to improve the manager’s
real-time behavior [25].

When a transaction 7 is issued, the buffer manager will decide whether to
admit it for execution. This decision is called the transaction admission policy.
We assume that transactions be able to supply the buffer manager with the
number of buffers it needs for proper execution. If enough free space is available,
transaction T is admitted. Otherwise, T is blocked or else a number of running
transactions can be suspended!! and their buffers reallocated to transaction T.
For the latter case, the decision of which transactions to suspend can be deter-
mined by their priorities. A simple solution would be to suspend transactions
with the lowest priorities until either:

1. enough number of buffers have been freed up for T' to execute, or
2. there are no more unsuspended transactions with priority less than that of

T.

In the first case, the freed-up buffers are allocated to T and T is admitted. For
the second case, T is blocked due to a lack of memory.

When a transaction references a data item which is not already in memory,
a free buffer has to be allocated to page in the data. If no more free buffers
are available, some buffer has to be flushed out to disk (if it was dirty) and its
content replaced by the needed data. The choice of a buffer for replacement is
called the buffer replacement policy.

Traditional replacement policies include Least Recently Used (LRU), Least
Frequently Used etc. [43]. In [11], a new policy, Priority-LRU, is proposed which
considers transaction priority as well as buffer recency. This algorithm groups
transactions into m priority classes. All buffers which are being used by some
transaction in the i** class is put into a list I; and are said to be of priority
1. The buffer pool is thus organized into m lists: Ly, Lo, ..., L, according to
buffer priority. The Priority-LRU algorithm can be succinctly described by the
following pseudo code:

1% In our context, thrashing refers to the phenomenon in which a transaction spends
most of its time swapping data to and from disk [43].
11 A suspended transaction is swapped out to disk and its execution is halted.
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Priority-LRU(Wg):
S = ¢;
(* put the least recently used buffer of each list into S *)
FOR ::=1TO m DO
z := least recently used buffer in L;;
S:=SU{z}
END FOR
(* pick the lowest priority buffer in S that is not one of the Wg
most recently used buffers *)
WHILE S # ¢ DO
z :=— lowest priority buffer in S;
(* test if z has been referenced recently *)
IF z is one of the Wx most recently accessed buffers THEN

S:=5—{z};
ELSE
RETURN(z);
ENDIF
END WHILE

RETURN(no suitable page);

The Priority-LRU algorithm takes one parameter, Wg, which controls the rela-
tive importance of recency and priority. For example, when Wp, is set to zero, the
least recently used buffer in the lowest priority group is chosen. A low priority
buffer is always chosen in favor of higher priority ones. Conversely, if Wg is set
high, then low priority buffers will get a break if they are referenced recently
enough.

6.2 Memory Resident Database System

As discussed in Sects. 1 and 3, one of the major difficulties encountered in de-
signing a RTDBS is the long and often unpredictable disk access delays. As
the price of memory continues to drop, one possible remedy is to put data di-
rectly into memory, thus eliminating I/O accesses. In this subsection, we give
a brief account on memory resident database system design. Interested readers
are referred to [10], [18], [19] and [48] for further reading.

Compared to disk, main memory access time is much faster (1000 — 10000
times), and is more predictable (no disk seek). These features are very desirable
in RTDBSs, and may even be necessary if transactions have extremely tight time
constraints.

However, putting all the data in memory is not without its disadvantages.
Above all, an MRDBS is more costly than a disk-based system. Even though
technology for high density memory chips is improving and the cost dropping,
currently there is still a limit on how much data can be memory resident. For
large databases, storing data in main memory has to be done selectively. In a
real-time environment, if transaction data requirement is relatively stable and
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known, data items that are referenced by high priority transactions should have
preference over low priority ones in claiming memory residency.

Another problem with main memory is its volatility. Data stored in main
memory usually do not survive through a power failure, nor a CPU failure.
An MRDBS, therefore, still requires disks to provide a stable backup storage.
Conventional recovery protocols that load the entire database to memory from
the disk backup copy, and then apply the transaction log to bring the database
up-to-date may be too slow for real-time applications. Mechanisms which allow
quick restart and the database to function (partially) during recovery have to
be employed [28]. For example, in [18], a recovery technique for MRDBS is pro-
posed. Their method assumes that a small part of main memory is made stable
by separate battery backup. This stable memory is used to store log records
of “pre-committed” transactions. Schemes for check-pointing the database and
compressing the transaction log for fast restart are also discussed.

A third MRDBS issue is that their design goals are different from a conven-
tional disk-based system. Data structure and query processing algorithms for
traditional database system are optimized to reduce the number of disk accesses
and to enhance data clustering [31], [56]. These goals are no longer valid'? in an
MRDBS. When data are memory resident, query optimization and data struc-
ture should be designed to minimize CPU processing time and the amount of
memory space used. Conventional access methods and database structures have
to be revised. A B-tree [15], for example, is found to be less efficient than hashing
for MRDBS index search. This is due to the additional space B-tree needs to
store all the keys and pointers [10]. The sort-merge join algorithm [30], which
was designed to reduce the number of disk I/0O, is also found to be inferior in
performance than the hash-merge algorithm when memory is plentiful [10].

Finally, small data access time also affects the choice of a concurrency control
mechanism [48]. Without I/O delay, transaction execution time will be small in
an MRDBS. Blocking delays due to data locking will also be reduced. We can
thus afford to have a coarser granularity for data lock to reduce memory and
processor overhead. Moreover, since memory is an important asset, optimistic
concurrency controls that create temporary data objects, and those which store
multiple versions of data, may not be attractive in an MRDBS [48].

7 Conclusion

In this chapter, we have discussed the various issues concerning the design and
implementation of real-time databases and transaction processing. We distin-
guished a RTDBS from a database system and a real-time system by its more
demanding goals. We also looked at application semantics and showed how they
can be used to improve RTDBSs performance. CPU, data, I/O, and memory

12 Clustering may still improve data access time in an MRDBS by putting data that
are often referenced together in the same “cache line”. This increases the cache hit
probability. The impact is, however, not as dramatic as data clustering on disk.
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scheduling were also discussed. Furthermore, some desirable features of memory
resident databases as applied to a real-time environment were also mentioned.

Due to space limitation, some other aspects of RTDBS which deserve special
attention are not covered by this chapter (see [44], [54] for additional discussion).
These topics include fast and incremental recovery protocols [28], database archi-
tectures that support predictable transaction execution, programming languages
that provide constructs for timing specifications [55], query processing and op-
timization techniques that are based on real-time performance goals, schedul-
ing methods that improve data external and temporal consistency [50] and dis-
tributed real-time databases [37].

Finally, we note that appropriate deadline assignment to subtransactions
is very crucial to the success of many real-time database protocols [29] [41].
Relatively little work has been done on this subject. As real-time databases
evolve, however, we expect to see more work on this, and many other RTDBS
problems.
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