
9. J. D. Northcutt:The Alpha Operating System: Requirements and Rationale,
Archons Project Technical Report #88011, Department of Computer Science,
Carnegie-Mellon University, January 1988

10. R. W. Scheifler and J. Gettys: “The X Window System,” ACM Transactions
on Graphics, 5(2), April, 1986.

11. B. Shneiderman:Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 2nd ed., Addison-Wesley, 1992.

12. G. A. Wall, J. G. Hanko, and J. D. Northcutt: “Bus Bandwidth Management
in a High Resolution Video Workstation,” Proceedings of the Third
International Workshop on Network and Operating System Support for
Digital Audio and Video, November, 1992.

13. T. Winograd: personal communication, March 1993.



addition, when the system is overloaded with continuous media applications, a way
of identifying applications of lesser or greater importance to the users can allow the
system to automatically perform service trade-offs rather than forcing it to degrade
all applications equally at best, or randomly at worst. Armed with such information,
the system can manage its resources in such a way as to maximize the total value
delivered to the end user. Towards this end, we are creating a new scheduling frame-
work, based on Time-Driven Resource Management [6, 8, 9], that provides the flex-
ible control and delivered performance required for multimedia applications.

Finally, note that the existence of the strict-priority realtime scheduling class in
standard SVR4 in no way allows a user to effectively deal with these types of prob-
lems. In addition, it opens the very real possibility of runaway applications that con-
sume all CPU resources and effectively prevent a user or system administrator from
regaining control without rebooting the system.

7 Acknowledgments
Monica Lam provided many insightful suggestions, especially during the formative
stages of this work. This research was supported in part by an NSF Young Investiga-
tor Award and Sun Microsystems Laboratories, Inc.

‡UNIX is a trademark of UNIX System Laboratories.

8 References

1. AT&T: UNIX System V Release 4 Internals Student Guide, Vol. I, Unit 2.4.2.,
AT&T, 1990.

2. M. J. Bach: The Design of the UNIX Operating System, Prentice Hall Inc.,
1986

3. J. Bonwick: “Kernel Tracing in SunOS 5.0,” in progress.

4. S. Evans, K. Clarke, D. Singleton, B. Smaalders: “Optimizing Unix Resource
Scheduling for User Interaction,” USENIX Summer 1993, Cincinnati, Ohio.

5. J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, et. al.: “Beyond
Multiprocessing...Multithreading the SunOS Kernel,” USENIX Summer
1992, San Antonio, Texas.

6. J. G. Hanko, E. M. Kuerner, J. D. Northcutt, and G. A. Wall: “Workstation
Support for Time-Critical Applications”, Proceedings of the Second
International Workshop on Network and Operating System Support for
Digital Audio and Video, November, 1991.

7. S. Khanna, M. Sebree, J. Zolnowsky: “Realtime Scheduling in SunOS 5.0,”
USENIX Winter 1992, San Francisco, California.

8. J. D. Northcutt, J. G. Hanko, and G. A. Wall: “A New Framework for
Processor Scheduling,” in progress.



5.3 New Timesharing Class

A new timesharing scheduling class was developed in order to correct the problems
demonstrated in these experimental runs. In particular, the modified version removes
the anomalies of identifying batch jobs as interactive, and vice versa. In addition, it
attempts to ensure that each process that can run is given the opportunity to make
steady progress in its computation, while retaining a bias in favor of interactive pro-
cesses. Finally, it reduces the feedback interval over which CPU behavior is moni-
tored and penalties and rewards given. The timesharing scheduling class contained
in Sun’s Solaris 2.3 operating system is based on this work.

The results of the default use of this class for all applications and the window
server process are given by Figure 2i. As can be seen, this delivers significantly bet-
ter results for the continuous media and interactive applications than any combina-
tion of the standard SVR4 scheduling classes. It should also be noted that this
scheduling policy achieves this level of performance without significantly starving
the batch application, which still receives approximately 30% of the available CPU
time.

Additional tests were performed by adjusting user priorities and by combining
this new scheduling class with the SVR4 RT class (as was done with SVR4 TS
class). However, with the exception of the cases where there was sufficient load in
the RT class to consume all CPU cycles and starve the new scheduling class, this
resulted in no pathologies and showed a direct and predictable relationship between
user priorities and application performance.

6 Conclusions and Future Work
Through trial and error, it may be possible to find a particular combination of prior-
ities and scheduling class assignments to make the SVR4 scheduling pathologies go
away. However, such a solution would be extremely fragile and would require dis-
covering new settings for any change in the mix of applications. In fact, these prob-
lems have been induced in many instances with different applications and conditions
than those described here. For example, the continuous media application by itself
can freeze the system when a user simply uses a popup menu. Our new timesharing
scheduling class eliminates these pathologies and provides default resource manage-
ment behavior that favors interactive applications while not overly penalizing others.

Current workstation operating systems, typified by SVR4 UNIX, evolved from
the much different environment of large-scale, multi-user, timesharing systems.
These systems attempt to be fair to all applications while maximizing total system
throughput. As a result, a user (or system administrator) has only limited control
over UNIX operating system resource management decisions.

Without such control it is not possible to provide the full range of behaviors that
might be desired of multimedia applications. For example, providing uniform rates
of audio and video presentation, where variance in the delivery rate is minimized,
may be more important to some applications than others. Knowledge of the “slack”
available in such computations can lead to more effective resource utilization. In



dow system is not able to execute to process the frames sent to it by the continuous
media application. Again, the system delivers low overall value for any choice of
value assignments, as shown in Figure 2e.

Alternatively, the window system could be associated with the RT class, with all
of the applications remaining in the TS class. Although in such a case, the window
system related activities (e.g., mouse tracking) perform well, the basic TS scheduling
system pathology allows the batch job to monopolize the processor. As a result, none
of the other applications can achieve even a small fraction of their possible value, as
illustrated in Figure 2f.

Another attempt to provide a high degree of value to the user involves placing
both video and the window system in the RT class, and having all applications
remain in the TS class. In this case, the system executesvideo to the complete exclu-
sion of all other processing. That is, neithertyping nor compute are permitted to run
at all, and it is not possible to type commands into the system’s shell windows. In
fact, basic kernel services such as the process swapping, flushing dirty pages to disk,
and releasing freed kernel memory are inhibited. The reason for this behavior is that
video and the window server consume essentially all of the system’s processor
cycles, and realtime processes take precedence over all “system” and timesharing
processes. This is because the RT scheduler uses a strict priority policy, and no pro-
cesses from other scheduling classes are permitted to run while there are ready pro-
cesses in the RT class.

Figure 2f and Figure 2g show the results that are derived from placing the win-
dow system at a lower and at a higher RT priority thanvideo, respectively. While
neither case delivers acceptable results, the first case (i.e., with the window server’s
priority belowvideo) was particularly bad becausevideo did not leave sufficient time
for the window server to process its requests. Note also, that in Figure 2h,video had
less variance than in the baseline measurements. This is due to the strict priority
scheduling discipline; processes in the RT class run in preference to all other pro-
cesses, including system daemons.

Finally, we note that placing interactive applications in the RT class in order to
improve their performance would also be ineffective unless the window server were
placed in the RT class. Even then, proper operation is not assured because basic sys-
tem services can be prevented from functioning due to resource demands in the
higher priority realtime class. For example, when the X window server,typing, and
video are run in the RT class, with priorities P(X)>P(typing)>P(video), typing unex-
pectedly performs more than three times worse than its baseline because it relies on
streams I/O services [1] for character input processing. Because the streams process-
ing is not done in the RT class, it is deferred in favor of the applications in RT,
which consume virtually all of the CPU cycles.



receiving a character to having it displayed, as opposed to the baseline value of 39
milliseconds. The interactive application suffers a degradation of three orders of
magnitude because the window server, which must execute in order to render the
character’s pixels to the frame buffer, is not scheduled to run frequently enough to
work its way through its growing backlog of commands. Moreover, due to the design
of the standard SVR4 TS class, it can often take tens of seconds for the priority of a
penalized process to recover to the point at which it can actually run. This augments
the effect of the improper processor scheduling decisions and contributes to the poor
overall performance of the system.

In an attempt to deal with this problem, the system’s administrative controls were
used to change the TS priorities of the window system and the applications. These
user priorities are used by the TS scheduler to modify the actual scheduling priori-
ties. These controls correspond roughly with the traditional UNIXnice values. In
one case, the user priority of the window system was elevated to the maximum pos-
sible level (+20), while the user priority ofvideo was depressed to the minimum pos-
sible level (−20), as shown in Figure 2b. This had the effect of improvingvideo’s
performance, but the latency oftyping became more variable andcompute barely ran.
In an attempt to fix this, the user priority ofvideo was degraded modestly (−5),
resulting in the contour in Figure 2c. This shows how very small changes in these
controls can lead to large and unpredictable effects. Finally, Figure 2d illustrates the
result ofvideo receiving a medium amount of degradation (−10). The achieved mean
values of all applications are relatively high, but the variance in frame rate forvideo
is unacceptably high. Note also the counterintuitive result thatvideo performs better
in this scenario then in Figure 2e, even though the scheduler controls indicated a
lower importance forvideo.

Although the use of user priority adjustments could alleviate the pathological
condition inherent in the SVR4 TS scheduling class, this approach is not effective in
general (e.g., with multiple, independent applications). That is, it can take a great
deal of experimentation in order to find a set of control values that work well, and
the settings might only work for that exact application mix. In addition, this
approach severely degrades the performance ofvideo, resulting in highly variable
display rates.

5.2 SVR4 Timesharing and Realtime Classes

Although SVR4 UNIX also provides so-called “realtime” facilities, the assignment
of different tasks to the realtime (RT) scheduling class yielded equally unsatisfactory
results. Sincevideo best fits the notion of what a realtime application is, the obvious
first step for using the RT class is to assignvideo to it. However, when this is done,
the system again ceases to accept input events from the mouse or keyboard and the
video again degrades severely. This is due to the fact that any ready task in the RT
class takes precedence over any TS task. Sincevideo is almost always active, tasks
in the TS class are hardly ever allowed to execute — in fact, shell programs are not
even permitted to run, so a user cannot even attempt to stop such a “realtime” appli-
cation. Once again, the quality of the video being displayed is poor because the win-



5 Interpretation of Results
It is expected that, in a well-behaved system, concurrent applications should all
make some progress in their computation. That is, the running of an application by a
user indicates some residual value for it. Therefore, no one application should be
able to prevent others from running in absence of overt action by a user indicating
this is the desired behavior. In addition, there should be no cases in which the system
fails to respond to operator input; otherwise, control over the system is lost. Finally,
users should be able to exercise a wide range of influence over the system’s behav-
iors using a stable and predictable control mechanism.

The results of these experiments indicate that the standard SVR4 scheduling sys-
tem often violates these objectives. The straightforward approach to adding multime-
dia applications to an SVR4-based workstation results, at best, in a low degree of
value being provided to the users, and serious pathological behavior in the worst
case. The following sections describe the test results for the SVR4 timesharing class
alone, the SVR4 timesharing and realtime classes together, and a new implementa-
tion of the timesharing class.

5.1 SVR4 Timesharing Class

The first thing a typical user would do is to simply run the chosen set of applica-
tions, which, by default, associates all applications with the timesharing (TS) sched-
uling class. Doing this results in a pathological condition where the window system
no longer accepts input events from the mouse or keyboard, causing the interactive
application to freeze and the continuous media application to stop displaying frames
of video. In fact, this pathology is so complete that attempts to stop the processes by
typing commands in a shell (i.e. command interpreter) window prove futile, because
the shell itself is not permitted to run.

The value contour for this scenario is shown in Figure 2a, and illustrates that all
of the applications, with the exception of the batch job, contribute a relatively small
amount to the total delivered value. This is due to the fact that the batch application
forks many small programs to perform work, and then waits for them to finish.
Because the batch application sleeps to wait for each child process to complete, the
TS scheduling class identifies it as an I/O-intensive “interactive” job and provides it
with repeated priority boosts for sleeping. As a result, the batch application quickly
moves to the highest timesharing priority value and remains there for the remainder
of the experimental run.

An added effect occurs when the window server develops a backlog of outstand-
ing service requests. As it works down this queue of outstanding commands, the TS
scheduling class identifies the window server as CPU-intensive and lowers its prior-
ity. At the same time, because it sleeps in the process of obtaining new video frames,
video is assigned a higher priority, allowing it to run and thereby generate additional
traffic for the window server. As a result, the quality of the video being displayed is
poor because the window system is not able to execute to process the frames fast
enough. Worse yet,typing exhibits an average delay of more than 42 seconds from



Figure 2 presents a set of value contours derived from this data. In each contour,
the first two bars, labeled ‘Tχ’ and ‘Tσ’, represent the mean and standard deviation,
respectively, fortyping character latency. These values are normalized to the baseline
values such that a full size bar represents a mean or standard deviation of latency as
small as on an otherwise idle system (i.e. a taller bar represents better performance).
Similarly, the bars labeled ‘Vχ’ and ‘Vσ’, represent the normalized mean and stan-
dard deviation of the time between display of successive frames forvideo. Finally,
the bars labeled ‘Cχ’ and ‘Cσ’, represent the normalized mean and standard devia-
tion of the time taken by one iteration ofcompute. The following section provides a
description of the scenarios represented by each and an analysis of these results.

Figure 2 Application Value Contours

a.) All in SVR4 TS

e.) Video in RT

h.) Video and X-serverg.) Video and X-server

b.) SVR4 TS, Nice

d.) SVR4 TS, Nice

Tχ Tσ VσVχ Cχ Cσ

in RT, P(X)>P(V)in RT, P(V)>P(X)

(X+20,C-20)

i.) All in New Time-
sharing Class

f.) X-server in RT

c.) SVR4 TS, Nice
(X+20,V-5,C-20)

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

 (X+20,V-10,C-20)



Using value contours based on the mean and standard deviation of characteristic
execution times, we capture the essential quality metric for each application class.
The measured characteristic and baseline values are shown in Table 1 for each of the
applications. To obtain these baseline values, each application was run in isolation
on an otherwise quiescent workstation. Note, therefore, that when multiple applica-
tions are run simultaneously, it is not generally possible for all of them to reach
100% of the baseline value. The data from the experiments described in this paper,
obtained from running these applications simultaneously, is shown in Table 2.
.

Table 2 Individual Experiment Results

Application Measurement Mean Std. Dev.

Typing Latency between character arrival
and rendering to frame buffer

38.5 msec. 15.7 msec.

Video Time between display of successive
frames

112 msec. 9.75 msec.

Compute Time to execute one loop iteration 149 msec. 6.79 msec.

Table 1 Application Baseline Values

Application / Scheduling Class Typing Video Compute

X T V C χ (msec) σ (msec) χ (msec) σ (msec) χ (msec) σ (msec)

TS TS TS TS 42.9e+3 23.8e+3 2.78e+3 9.30e+3 150 16.0

TS+20 TS TS TS-20 49.6 26.4 117 17.9 3.91e+3 699

TS+20 TS TS-5 TS-20 41.8 17.9 529 1.43e+3 189 279

TS+20 TS TS-10 TS-20 44.0 18.5 174 619 412 896

TS TS RT TS — — 1.10e+3 4.81e+3 243 415

RT TS TS TS 26.4e+3 14.4e+3 4.23e+3 9.35e+3 150 22.9

RT- TS RT+ TS — — 142 260 — —

RT+ TS RT- TS 42.0e+3 32.9e+3 112 8.09 8.04e+3 2.87e+3

New New New New 46.0 19.1 177 48.3 496 114

Legend

X The X Window System server TS SVR4 TS (timesharing class)

T Thetyping application TS±n SVR4 TS with nice of±n

V Thevideo application RT SVR4 RT (realtime class)

C Thecompute application RT+ SVR4 RT with higher priority

χ Mean RT− SVR4 RT with lower priority

σ Standard Deviation New New scheduling class

— : Application did not complete measured operation



appears as a memory-mapped device in an application’s address space and allows a
user-level application to acquire video frames, whose pixels can be color-space con-
verted into RGB values, dithered to 8-bit depth, and displayed via the window sys-
tem.

An effort was made to eliminate variations in the test environment to make the
experiments repeatable. To this end, the testbed was disconnected from the network
and restarted prior to each experimental run. In addition, to enable a realistic and
repeatable sequence of typed keystrokes for programs of the interactive class, a key-
board/mouse simulator was constructed and attached to the testbed workstation. This
device is capable of recording a sequence of keyboard and mouse inputs, and then
replaying the sequence with the same timing characteristics.

4 Measurements
To evaluate a system’s performance, a means of measuring the system’s operation is
needed that encompasses all of the activities in all of the applications. However, the
measure of quality of an application’s performance is different for each class of
application. To deliver the desired performance on interactive activities, the system
should minimize the average and variance of time between user input and system
response to a level that is faster than that which a human can readily detect. This
means that for simple tasks such as typing, cursor motion, or mouse selection, sys-
tem response time should be less than 50-150 milliseconds [11]. To deliver peak per-
formance on display-oriented continuous media activities, the system should
minimize the difference between the average display rate and the desired display
rate, while also minimizing the variance of the display rate. In particular, uncertainty
is worse than latency; users would rather have a 10 frames per second (fps) constant
frame rate as opposed to a frame rate that varied noticeably from 2 fps to 30 fps with
a mean of 15 fps [13]. To deliver good performance on batch activities, the system
should strive to minimize the difference between the actual time of completion and
the minimum time required for completion as defined by the case when the whole
machine is dedicated to the given activity. In other words, if amake takes 10 min-
utes to complete on an unloaded system, the user would like themake to take
10×(1+δ) minutes, whereδ is as small as possible, to complete even when there are
other activities running on the system.

Because the relative value of each application to a user is subjective and applica-
tion performance is measured in many different ways (i.e. interactive character
latency verses video frame rate), no single figure-of-merit can be derived to compare
test results. That is, any calculation resulting in a single value would require an
assignment of weights and conversion factors to each measurement to account for
the relative values of the applications and the different units of measurement. Since
any such arbitrary assignment is suspect and is likely to obscure significant informa-
tion, the outcome of each test is presented as a value contour. In a value contour, the
achieved performance on each measurement is charted relative to a normativebase-
line value. If a single figure-of-merit is desired, it can be derived by assigning
weights appropriate to the relative value of each application to the contour data.



Figure 1 Sample Application Screen

The experiments were performed in an environment representative of a typical
workstation; it consisted of a SparcStation10 with a single 50MHz processor and
64MB of primary memory. The testbed system included a standard 8bit (pseudo-
color) frame buffer controller (i.e., GX), and a 1GB local (SCSI) disk drive. In addi-
tion, the testbed workstation began with the current release of Sun’s operating sys-
tem — Solaris 2.2 [5], which is based on SVR4 UNIX.

SVR4 UNIX supports multiple concurrent scheduling policies, calledscheduling
classes. In particular, a realtime class (RT) class and a timesharing (TS) class are
included in SVR4. The scheduling classes are unified into a single priority scheduler
by mapping each of them onto a range of global priorities, with timesharing pro-
cesses mapped to the low priority range and realtime processes to the highest prior-
ity range. SVR4 also provides a set of commands for assigning processes to a class
and controlling each class. These were used to assign processes for each experiment
to the RT class, the TS class, or to a new scheduling class we developed as described
later. In addition, for some experiments, controls specific to the scheduling class
were used to modify their default behaviors.

In order to support thevideo continuous media application, an SBus I/O adaptor
was constructed and added to the system that permits the decoding and digitization
of analog video streams into a sequence of video frames. This video digitizing unit



In order to obtain valid results, the experimentation was done with a standard,
production workstation and operating system. However, measurements of actual sys-
tem behavior are quite complex as compared to simulation-based experimentation.
As a result, a number of measures were taken to permit repeatability of experiments
and allow the identification and isolation of processor scheduling effects. Since the
purpose of the experiments is to explore the effectiveness of various processor
scheduling policies, an attempt was made to minimize the effects of other resource
management decisions. Results were collected from the execution of a series of trial
runs of the representative programs on the testbed hardware. The parameters of the
trials were chosen so as to permit the exploration of a wide range of different condi-
tions with the minimum number of experiments.

3 Experimental Design
To characterize typical workstation usage, three applications were chosen to repre-
sent interactive, continuous media, and batch activities. Each of these programs was
implemented in the most obvious, and straight-forward fashion. The applications
were:

• typing (interactive class) — This application emulates a user typing to a text editor
by receiving a series of characters from a serial input line and using the X win-
dow server [10] to display them to the frame buffer.

• video (continuous media class) — This is a realtime video player application (e.g.
as used for television, teleconferencing) that attempts to show frames of video at
a constant rate.Video captures data from a digitizer board, dithers to 8-bit pseudo-
color, and relies on the X window server to render the pixels to the frame buffer.
Video frames are 640x480 pixels.

• compute (batch class) — This application is intended to represent programs such
as the UNIXmake utility. make execution is characterized by repeated spawning
and waiting for various programs such as compiler passes, assemblers, and link-
ers. However, in order to reduce variability induced by the system’s virtual mem-
ory, file system, and disk I/O handling, a simple shell script was used that
repeatedly forks and waits for a small processes to complete (in this case, the
UNIX expr command).

A number of software tools were added to the testbed to permit the logging of
significant events into files, and the post-processing of these files for the generation
of tracing reports. Modifications were made to the application programs and compo-
nents of the system software in order to generate the necessary tracing events, but
these modifications did not measurably change the performance of the software [3].

While not strictly an application program, the X window server represents a
fourth major component that contributes to the overall performance of the system in
these experiments. It was necessary to instrument the window server in order to
obtain the desired measurements of user-level system performance. However, the
window system’s behaviorper se is not of interest here, only its contribution to the
user-visible performance of the application programs in the example mix.



Anticipating that processor scheduling based on traditional timesharing would
not be suitable for the support of multimedia applications, UNIX System V Release
4 (SVR4) provides a realtime static priority scheduler, in addition to a standard
UNIX timesharing scheduler [1]. By scheduling realtime tasks at a higher priority
than any other class of tasks, SVR4 UNIX allows realtime tasks to obtain processor
resources when needed in order to meet their timeliness requirements. This solution
claims to provide robust system support for multimedia applications by allowing
applications such as those that manipulate audio and video to be placed in the real-
time class. Since SVR4 UNIX is the most common basis of current workstation
operating systems, it is important to investigate these assertions. Therefore, we have
used an SVR4 UNIX based system to examine actual performance of real multime-
dia applications running in a workstation environment.

Through careful measurements of application performance, we quantitatively
demonstrate that the SVR4 UNIX scheduler manages system resources poorly for
both so-called realtime and timesharing activities, resulting in unacceptable system
performance for multimedia applications. Not only are the application latencies
much worse than desired, but pathologies occur with the scheduler such that the sys-
tem no longer accepts user input. This paper describes these experiments and mea-
surements. In addition, this paper introduce a new scheduling class which we
developed that alleviates many of these problems.

The paper is organized as follows. Section 2 provides an overview of the experi-
ments and Section 3 describes the experimental setup and applications that we used
for our measurements. Section 4 presents our measurements and Section 5 discusses
the results. Finally, we present conclusions and directions for future work.

2 Overview of Experiments
To examine the ability of the processor scheduling policies of SVR4 UNIX to sup-
port multimedia applications, we have identified three classes of computational
activities that characterize the main types of programs executed on workstations:
interactive, continuous media, and batch. Interactive activities are characteristic of
applications (e.g., text editors or programs with graphical user interfaces) in which
computations must be completed within a short, uniform amount of time in order not
to disrupt the exchange of input and output between the user and application. Con-
tinuous media activities are characteristic of applications that manipulate sampled
digital media (e.g., television or teleconferencing), via cyclic computations that must
process and transport media samples at a defined rate. Batch activities are character-
istic of applications (e.g., long compilations or scientific programs) in which the
required processing time is sufficiently long to allow users to divert their attention to
other tasks while waiting for the computation to complete. By selecting applications
from each of these classes, a representative workload can be constructed that charac-
terizes typical multimedia workstation usage. In order to simplify the experiments
and the task of interpreting the resulting data, only one program from each class is
used in the following experiments.



SVR4 UNIX‡ Scheduler Unacceptable for
Multimedia Applications

Jason Nieh†, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall
†Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue, MTV29-110

Mountain View, CA 94043

Applications that manipulate digital audio and video are rapidly being added to
workstations. Such computations can often consume the resources of an entire
machine. By incorporating a “realtime” process scheduler, UNIX System V
Release 4 (SVR4), the most common basis of workstation operating systems,
claims to provide system support for multimedia applications. Our quantitative
measurements of real application performance demonstrate that this process
scheduler is largely ineffective and can even produce system lockup. While
SVR4 UNIX provides many controls for changing scheduler performance, they
are virtually impossible to use successfully. Furthermore, the existence of a
realtime static priority process scheduler in no way allows a user to deal with
these problems. This paper provides a quantitative analysis of real system
behavior, demonstrates why it is not possible to obtain the kind of behavior
desired with the mechanisms currently provided by the system, and presents
modifications to improve the situation.

1 Introduction
Applications that manipulate digital audio and video represent a new class of com-
putations executed by workstation users. Audio and video applications must operate
in the workstation environment without compromising the essential characteristics of
the workstation. That is, audio and video applications should not reduce the worksta-
tion to a single function system, like an embedded system or single-tasking PC.
Instead, the workstation operating system must manage resources in such a manner
that other applications and users can continue to function correctly.

A fundamental task of any operating system is the effective management of the
system’s resources. Resources that must be properly managed include processor
cycles, virtual and physical memory, and I/O bandwidth. Although mismanagement
of any of these resources can lead to poor system function [12], we have focused on
processor scheduling in this paper. Processor cycles are often the most over-sub-
scribed resource, with many applications able to use more processing power than can
be provided. In such an environment, the degree of effectiveness of processor sched-
uling is the dominant factor in overall system performance.

Appears inProceedings of the Fourth International Workshop on Network and Operating System Support for Digital Audio and Video


