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Abstract*

While there is currently great interest in the problem of
providing real-time services in general purpose operating
systems, the issue of real-time scheduling of internal oper-
ating system activities has received relatively little atten-
tion. Without such real-time scheduling, the system is
susceptible to conditions such as receive livelock — a
situation in which an operating system spends all its time
processing arriving network packets, and application proc-
esses, even if scheduled with a real-time scheduler, are
starved. We investigate the problem of scheduling operat-
ing system activities such as network protocol processing
in a proportional share manner. We describe a proportional
share implementation of the FreeBSD operating system
and demonstrate that it solves the receive livelock prob-
lem. Packets are processed within the operating system
only at the cumulative rate at which the destination appli-
cations are prepared to receive them. If packets arrive at a
faster rate then they are discarded after consuming minimal
system resources. In this manner the performance of “well
behaved” applications is unaffected by “misbehaving” ap-
plications. We demonstrate this effect by running a set of
multimedia applications under a variety of network condi-
tions on a set of increasingly sophisticated proportional
share implementations of FreeBSD and comparing their
performance. This work contributes to our knowledge of
the engineering of proportional share real-time systems.

1. Introduction
Applications such as interactive multimedia and immersive
virtual environments, require real-time computation and
communication services from the operating system in or-
der to be effective. As applications such as these are in-
creasingly being hosted on general purpose (rather than
specialized real-time) operating systems, there is great in-
terest in migrating real-time systems technology to desk-
top operating systems. A recent development in the area of
real-time support in general purpose operating systems is
the use of proportional share resource allocation for provid-
ing real-time services [3, 7, 9, 13]. In a proportional share
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system, processes make progress at a precise, uniform rate
according to the share of system resources they are to re-
ceive. Processes appear to execute on a dedicated virtual
processor whose capacity is a fraction of that of the actual
processor. Proportional share resource allocation is particu-
larly well-suited to the problem of providing real-time
services within a general purpose operating system because
its underlying scheduling mechanism is a quantum-based
round-robin-like scheduler and because one can implement
a proportional share system without introducing any new
application-level concepts or mechanisms. This means that
existing applications can be made to execute in a predict-
able, real-time manner without modifying the application.

Previous operating system work in proportional share re-
source allocation has considered only the problem of
scheduling user processes. In particular, the problem of
scheduling operating system activity such as network pro-
tocol processing has not been addressed. This is significant
because much of the processing in the operating system
occurs asynchronously with respect to system calls made
by applications. If the execution of operating system ac-
tivities is not managed carefully, the operating system
may consume an inordinate amount of resources and nul-
lify the benefits of real-time scheduling for application
processes.

For example, consider the receive livelock problem de-
scribed by Druschel and Banga, and by Mogul and Rama-
krishnan [6, 23]. In most general purpose operating sys-
tems, the processing of inbound network packets is the
highest priority activity after the processing of clock inter-
rupts. This is the case because the network interface is
arguably the most real-time device on a general purpose
computer. Since one cannot typically control the rate at
which packets arrive at a computer, when packets are not
processed “fast enough,” it is possible that packets may be
lost at the network interface. Said another way, unlike
most other devices attached to a computer, the operating
system cannot force the network interface to stop generat-
ing service requests without running the risk of losing
data. On modern high-speed networks, packets can arrive at
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high enough rates that the process of responding to net-
work interrupts and performing the necessary protocol
processing can saturate the system. The system will spend
all of its time preparing packets to be received by applica-
tions and there will be no time for applications to actually
receive and process any packets. Thus in the worst case, all
inbound data is lost. Every packet is partially processed
(by the operating system) while none are fully processed
(by the destination application). The receive livelock prob-
lem has been observed on server machines such as web
servers, file servers, and DNS name servers, that are at-
tached to high-speed networks such as 100 Mbps FDDI
rings [6].

The essence of the receive livelock problem is the static
priority scheduling mechanisms employed in most operat-
ing systems (including most real-time operating systems).
If the highest priority processing consumes all of the sys-
tem’s resources then all other processes starve. The solu-
tion therefore, is (1) to bound the resources consumed by
the network interface, and (2) to ensure that if a packet is
received at the network interface it will be processed by the
destination application. An approach to the first problem
investigated by Mogul and Ramakrishnan, is to poll for
newly arrived network packets under times of high load.
This technique worked well, however, by itself, polling
could not ensure that packets received are eventually proc-
essed by the application. This is because ultimately, their
system was not a real-time system and did not support
integrated application and operating system processing. To
address the second problem, Druschel and Banga developed
a network subsystem architecture for processing packets
according to application-level priorities. We adopt their
architecture but implement it using proportional share
technology. Moreover, we provide a real-time solution by
integrating application and kernel-level scheduling. When
combined with proportional share scheduling of user proc-
esses, we demonstrate that proportional share scheduling of
packet and protocol processing provides a means for pre-
cisely controlling the resources consumed by the network
subsystem. Network processing will occur at the rates at
which applications are prepared to receive packets and
hence all data received is eventually processed by the appli-
cation. Moreover, our solution protects applications from
“misbehaving” senders. If a remote sender transmits mes-
sages to an application on our machine at a higher rate
than the receiving application can process, the “excess”
messages are dropped at the network interface after only
minimal processing. Thus applications whose senders are
“well behaved” are unaffected by these errant processes.

While we are advocates of proportional share technology,
we recognize that other solutions to the problems we out-
line herein are possible (e.g., [23]). Whether or not one
views a particular resource allocation approach as being

intrinsically better or worse than any other will depend on
factors such as the nature of real-time guarantees required
by applications, the extent to which it is considered ac-
ceptable to modify the internal structures of the operating
system or its API, and the extent to which it is considered
acceptable to modify applications to take advantage of the
new real-time services. Our goal is to understand the cost
of providing real-time services transparently to applica-
tions that are unaware of their existence. We seek to under-
stand the complexity of providing such services in conven-
tional operating systems and how such services are likely
to perform.

Our work makes the following contributions. First we
demonstrate a model for proportional share scheduling of
operating system services through minimal modifications
to the existing operating system. We show how a mono-
lithic, single-threaded operating system kernel such as the
FreeBSD kernel can be extended to allow proportional
share execution of network packet and protocol processing.
Second, we demonstrate that proportional share execution
of the network packet and protocol processing solves the
receive livelock problem. We show that packets are re-
ceived only at the rates at which applications are able to
process them and how unmodified applications process the
packets that are received in real time.

The following section discusses related work in the design
of real-time operating systems. Section 3 briefly reviews
the main concepts of proportional share resource alloca-
tion. Section 4 describes the network protocol processing
components of FreeBSD and describes their proportional
share implementation. Section 5 evaluates the implemen-
tation by demonstrating both the effects of the receive live-
lock problem and its elimination through proportional
share scheduling of the network interface. We conclude in
Section 6 with some comments for future investigations.

2. Related Work
Research into the design and construction of real-time op-
erating systems can be crudely partitioned into three cate-
gories: the development of brand new real-time operating
systems, the extension of existing operating systems to
support real-time processing, and the provision of real-
time execution facilities by virtualizing the underlying
hardware and executing a largely unmodified general pur-
pose operating system on the resulting virtual machine.
The most recent example of a new real-time operating sys-
tem is the Rialto operating system developed at Microsoft
[15]. Recent examples of the real-time extensions to exist-
ing operating systems are more numerous and include
Real-Time Mach [21], the Processor Capacity Reserves
variant of Real-Time Mach [18], the SMART Solaris sys-
tem [7], and variants of Linux [16]. Of particular note here
are extensions to UNIX kernels to support proportional
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share scheduling. These include the SFQ SVR4 UNIX
system [3], the Mach- and FreeBSD-based Lottery Schedul-
ing implementations [13], and the EEVDF version of
FreeBSD [9]. Each of these systems supports only propor-
tional share execution of user processes. Examples of the
providing real-time services through virtual machine emu-
lation include Real-Time Linux [17], the Real-Time IBM
Microkernel [22], and a real-time HAL extension for Win-
dows NT [12].

Our approach falls under the category of extending an ex-
isting operating system to support proportional share
processing. From our perspective the most relevant related
work is the work done within the context of the Processor
Capacity Reserves (PCR) extensions to Real-Time Mach
(RT Mach) [18, 20]. In this work, the RT Mach develop-
ers were also concerned with the impact of network proto-
col processing and explicitly scheduled this process as a
real-time process using the PCR abstraction. Protocol
processing was performed in a user-level process and hence
scheduling its execution was straightforward as real-time
scheduling of user processes is the cornerstone of RT
Mach. The PCR abstraction ensures that real-time activi-
ties do not execute for longer than they are expected to.
Thus, although the RT Mach developers were primarily
interested in showing the utility of integrated protocol and
application scheduling, it is likely that a PCR system
could be made immune to the receive livelock problem.

Our work differs in two respects. First, we are dealing a
differently structured host operating system. Unlike the
original microkernel origins of RT Mach which enable
user-level execution of system processes, we are dealing
with a monolithic, single-threaded operating system. Our
challenge here is to schedule kernel “processes” without
rewriting the kernel so as to create physical, schedulable
processes. Second, whereas RT Mach employs rate-
monotonic scheduling technology, we are experimenting
with proportional share resource allocation. Ultimately we
hope to show that real-time execution of operating sys-
tems services is possible in a proportional share system
without having to resort to explicitly restructure the kernel
to make it multi-threaded.

3. Proportional Share Resource Allocation
In a proportional share (PS) system each shared resource r
is allocated in discrete quanta of size at most qr. At the
beginning of each time quantum a process is selected to
use the resource. Once the process acquires the resource, it
may use the resource for the entire time quantum, or it
may release the resource before the time quantum expires.
For a given resource, we associate a weight with each
process that determines the relative share of the resource
that the process should receive. Let wi denote the weight of
process i, and let A(t) be the set of all processes active at

time t. Define the (instantaneous) share fi(t) of process i  at
time t as
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A share represents a fraction of the resource’s capacity that
is “reserved” for a process. If the resource can be allocated
in arbitrarily small sized quanta, and if the process’s share
remains constant during any time interval [t1, t2], then the
process is entitled to use the resource for (t2 – t1)fi(t) time
units in the interval. As processes are created/destroyed or
blocked/released, the membership of A(t) changes and
hence the denominator in (1) changes. Thus in practice, a
process’s share of a given resource will change over time.
As the total weight of processes in the system increases,
each process’s share of the resource decreases. As the total
weight of processes in the system decreases, each process’s
share of the resource increases. When a process’s share
varies over time, the service time that process i  should
receive in any interval [t1, t2], is
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Equations (1) and (2) correspond to an ideal “fluid-flow”
system in which the resource can be allocated in arbitrarily
small units of time. In practice one can implement only a
discrete approximation to the fluid system. When the re-
source is allocated in discrete time quanta it is not possible
for a process to always receive exactly the service time it
is entitled to in all time intervals. The difference between
the service time that a process should receive at a time t,
and the time it actually receives is called the service time
lag (or simply lag). Let t i

0  be the time at which process i
becomes active, and let s( t i

0 , t) be the service time process
i receives in the interval [t i

0 , t]. Then if process i  is active
in the interval [t i

0 , t], its lag at time t is defined as

lagi(t) = Si( t i
0 , t) – si( t i

0 , t). (3)

Since the lag quantifies the allocation accuracy, we use it
as our primary metric for evaluating the performance of PS
scheduling algorithms. Previously we have shown that one
can schedule a set of processes in a PS system such that
the lag is bounded by a constant over all time intervals [9].
This means that a PS system’s deviation from a system
with perfectly uniform allocation is bounded and thus, as
explained below, real-time execution is possible.

3.1  Scheduling to Minimize Lag
The goal in proportional share scheduling is to minimize
the maximum possible lag. This is done by conceptually
tracking the lag of processes and at the end of each quan-
tum, considering only processes whose lag is positive [9].
If a process’s lag is positive then it is “behind schedule”
compared to the perfect fluid system — it should have
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accumulated more time on the CPU than it has up to the
current time. If a process’s lag is positive it is considered
eligible to execute. If its lag is negative, then the process
has received more processor time than it should have up to
the current time and it is considered ineligible to execute

When multiple processes are eligible, they are scheduled
using an earliest deadline first rule, where a process’s dead-
line is equal to its estimated execution time cost divided by
its share of the CPU ƒi(t). This deadline represents a point
in the future when the process should complete execution
if it receives exactly its share of the CPU. For example, if
a process’s weight is such that its share of the CPU at the
current time is 10% and it requires 2 ms of CPU time to
complete execution, then its deadline will be 20 ms in the
future. If the process actually receives 10% of the CPU,
over the next 20 ms it will execute for 2 ms.

In [9] it was shown that this proportional share version of
deadline scheduling provides optimal (i.e., minimum pos-
sible) lag bounds. This algorithm forms the basis for the
PS implementation described in Section 4.

3.2  Realizing Real-Time Execution
In principle, there is nothing “real-time” about propor-
tional share resource allocation. Proportional share re-
source allocation is concerned solely with uniform alloca-
tion (often referred to in the literature as fair allocation). A
PS scheduler achieves uniform allocation if it can guaran-
tee that processes’ lags are always bounded.

Real-time computing is achieved in a PS system by (i)
ensuring that a process’s share of the CPU (and other re-
quired resources) remains constant over time, and by (ii )
scheduling processes such that each process’s lag is always
bounded by a constant. If these two conditions hold over
an interval of length t for a process i , then process i  is
guaranteed to receive (fi × t) ± ε units of the resource’s
capacity, where fi is the fraction of the resource reserved for
process i, and ε is the allocation error, 0 ≤ ε ≤ δ, for some
constant δ [9]. Thus, although real-time allocation is pos-
sible, it is not possible to provide hard and fast guarantees
of adherence to application-defined timing constraints. Said
another way, all guarantees have an implicit, and funda-
mental, “± ε” term. In the implementation described below
ε is a set-able parameter, but is fixed at 1 ms.

Our deadline-based scheduling algorithm ensures that each
process’s lag is bounded by a constant [9] (condition (i)).
To ensure a process’s share remains constant over time
(condition (ii )), whenever the total weight in the system
changes, a “real-time” process’s weight must be adjusted
so that its initial share (as given by equation (1)) does not
change. For example, if the total weight in the system
increases (e.g., because new processes are created), then a
real-time process’s weight must increase by a proportional

amount. Adjusting the weight to maintain a constant share
is simply a matter of solving equation (1) for wi when fi(t)
is a constant function. (Note that wi appears in both the
numerator and denominator of the right-hand side of (1).)

4. Realizing Proportional Share Execution of
Operating System Activities: A Case Study
The challenges in realizing proportional share execution of
operating system activities are numerous. They include:

•  Identifying “threads” of control within the operating
system kernel that need to be scheduled and subjecting
them to the purview of a PS scheduler.

•  Assigning weights and shares to kernel activities.

•  Ensuring mutually exclusive access to shared data
structures in the kernel.

•  Assigning buffer capacity in a proportional manner at
asynchronous kernel boundaries.

We illustrate these problems using the network packet and
protocol processing portions of the FreeBSD operating
system as an example. For brevity, we consider only proc-
essing associated with the receipt of inbound packets.
(Processing of outbound packets turns out to be an easier
problem.)

4.1  Scheduling of Operating System Ac-
tivities in FreeBSD
FreeBSD is a derivative of the 4.4 BSD Operating System
[5]. Network processing occurs in three distinct layers in
FreeBSD: the socket layer, the protocol layer, and the de-
vice interface layer. Figure 1 illustrates these layers for
UDP packets. The layers for other transport protocols are
similar. Processing within each layer is controlled by
events external to the kernel such as hardware interrupts
from the network interface or software interrupts from user
processes making system calls to receive network mes-
sages. Interrupts from the network interface device are serv-
iced by a device-specific interrupt handler that is executed
at a high priority level (called splimp) that preempts all
other network-related processing and is preemptable only
by interrupts from the hardware clock. The device driver
copies data from buffers on the adapter card into a chain of
fixed-size kernel memory buffers (called mbufs) sufficient
to hold the entire packet plus auxiliary data such as queue
pointers. This chain of mbufs is passed on a procedure call
to a general interface input routine for a class of input de-
vices (e.g., Ethernet). This procedure uses the type field
from the Ethernet header to determine which protocol (e.g.,
IP) should receive the packet and enqueues the packet on
that protocol’s input queue. It then posts a software inter-
rupt (with an intermediate priority, splnet) that will cause
the protocol layer to be executed when no higher priority
hardware or software activities are pending. It then returns
from interrupt processing at the splimp level.
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Processing by the protocol layer
occurs asynchronously with re-
spect to the device driver process-
ing. When the software interrupt
posted by the device driver at pri-
ority splnet is the highest prior-
ity, the protocol-layer input rou-
tine is entered. It executes a main
loop in which each iteration re-
moves the mbuf chain at the head
of the input queue and passes it to
the appropriate processing rou-
tines for IP and UDP. To protect
the input queue data structure
shared by the protocol layer and
the interface layer, the protocol
layer dequeue function temporarily
raises its priority to the splimp
level to prevent preemption by the
device driver. The mbuf chain is
then processed completely in the
protocol layer and finally enqueued on the receive queue for
the destination socket. If any process is blocked in a kernel
system call awaiting input on the socket, it is unblocked.
Software interrupt porcessing returns when no more mbufs
remain on the protocol input queue.

The kernel socket layer code executes when a process in-
vokes some form of receive system call on a socket de-
scriptor and runs at the lowest-priority software interrupt
level (spl0). This priority is used for all normal kernel
processing so the socket code can execute when no higher
priority interrupts are pending. When there is a receive
system call active for the socket, data to be received is
copied into the receiving process’s local buffers from the
mbuf chain(s) at the head of that socket’s receive queue.
This queue is protected by a locking mechanism and by
temporarily raising the socket layer priority to splnet to
prevent preemption by the protocol layer. When there is
sufficient data on the socket receive queue to satisfy the
current request, the kernel completes the system call and
returns to the user process.

For a more complete description of these functions see [5]
and [19].

4.2  PS Scheduling of Operating System
Activities in FreeBSD
Conceptually each layer of protocol processing represents a
separate logical process that must be scheduled. These lay-
ers are not processes in the traditional sense but instead are
more akin to procedure calls that are called by a software
interrupt dispatching mechanism that is invoked upon the
completion of every system call or quantum expiration.
The existing dispatching mechanism is, in essence, a sim-

ple static priority scheduler. We
have modified the FreeBSD soft-
ware interrupt dispatching mecha-
nism to dispatch kernel activities
only at quantum expirations. This
has the positive effect of ensuring
that user processes execute for a
full quantum once scheduled, but
also the negative effect of delay-
ing kernel activities. This effect
can be mitigated, however, by an
appropriate choice of a quantum
duration. In the experiments de-
scribed below we used a 1 ms
quantum (compared to the default
FreeBSD quantum of 100 ms)
without ill-effect.

In addition to dispatching software
interrupts at quantum boundaries,
we also assign a weight to each

interrupt and perform an eligibility and deadline test for
each interrupt [9]. Software interrupts are considered
equally with user processes and either the eligible user
process or eligible software interrupt with the earliest dead-
line is scheduled next. One complexity here is that kernel
activities communicate and synchronize through shared
memory in the kernel. Previously, the software interrupt
priority structure was used to ensure shared data in the ker-
nel is accessed in a mutually exclusive manner. We can no
longer use these mechanisms because in order for the lag
bounds guaranteed by the theory to hold, a process must be
able to execute for its entire quantum once scheduled. Thus
when a software interrupt handler executes, we must ensure
that no shared data structures within the kernel are locked
when a quantum expires.

In general, there are several approaches to solving this
problem. For the FreeBSD network protocol processing
code, each software interrupt routine consists of a loop that
removes a packet from one queue, performs some process-
ing and then inserts the packet on a second queue. These
loops typically execute until the source queue is empty.
We modified these loops to execute until either the source
queue is empty or until a maximum number of packets has
been processed. In the latter case the interrupt routine will
reschedule itself (post another software interrupt for itself)
and then terminate. The maximum number of packets to
be processed is chosen to be the maximum number of
packets that are guaranteed to be processed to completion
within one quantum. Bounding the number of packets
processed in this way ensures that software interrupt proc-
essing is never preempted by a quantum expiry and hence
that shared data structures are always in a consistent state
at the end of each quantum. Note that although this tech-
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input processing.
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nique appears at first to reduce performance (because kernel
activities may not execute for an entire quantum), the ac-
tual rate at which activities are performed depends on the
share of the processor they are assigned and not on how
long they actually execute once scheduled. Moreover, by
adopting this approach we need not include any synchroni-
zation code in the packet processing code and hence overall
this code is more efficient.

The maximum number of packets that could be processed
was determined by hand timing the loops to determine the
maximum number of packets that could be processed
within a quantum. The time to process a packet is, for the
most part, independent of the size of a packet (much of the
processing consists of pointer manipulations) and in all
cases is bounded. These measurements were also used to
determine the cost of a particular kernel activity and used
by the dispatcher to compute deadlines for kernel activities
as described in Section 3.1.

4.3  PS Scheduling of User Processes
User processes are scheduled using the FreeBSD scheduler
modified to perform the eligibility and deadline calcula-
tions. Process descriptors were changed to record a weight
and share for each process as well as a measure of its cur-
rent execution time cost. Processes can either assign their
own weights or have them assigned by a separate manager
process. If programs are written with knowledge of our
kernel modifications they can alter their weights through a
system call. Pre-existing programs receive a default weight
that ensures they make progress as in a time-sharing sys-
tem. This weight (and the weight of any user process) can
be changed by the manager process. By manipulating a
process’s weight, its rate of progress relative to the other
processes in the system can be controled. By manipulating
a process’s share, one can control its absolute rate of pro-
gress independent of the other processes in the system. If
the manager sets a process’s share, the kernel determines
what weight the process should have in order to guarantee
that it receives the appropriate share [10].

The kernel records a bit indicating whether a process has a
fixed weight or a fixed share. Processes with a fixed share
are “real-time” processes and their weights will be adjusted
to maintain a constant share whenever the total weight of
processes in the system changes (i.e., whenever a process
is created or destroyed). Beyond the fixed weight/share di-
chotomy, there is no distinction between real-time and
non-real-time processes in the kernel. Any process can
become a real-time process at any time so long as the total
shares of all real-time processes remains less than 1.0.

To schedule a process the kernel needs an estimate of the
process’s execution time. The estimated execution time is
used to determine the process’s deadline as outlined in Sec-
tion 3.1. We use a simple heuristic of monitoring the exe-

cution time consumed by processes between system calls
and assume that the execution time used in the recent past
is a good indicator of the time a process will require in the
near future. We use the standard FreeBSD execution time
monitoring infrastructure to record the elapsed execution
time of processes.1 When a process performs network I/O
a new deadline is computed for the process based on the
amount of execution time consumed since the last I/O
operation. For processes with a regular structure (such as
most cyclic real-time processes) this heuristic should work
quite well. For the multimedia processing load considered
in our experiments (see Section 5), this simple heuristic
was sufficient. Moreover, if execution time estimates are
inaccurate the kernel will be able to detect this fact. If the
execution time estimate for a process is too low then the
process will not have made another system call by its dead-
line. If the estimate is too high, the process will complete
its current execution before its deadline. Thus one can em-
ploy software phased-locked loops to further refine the
estimates of execution time[4].

Note, however, that if the estimate of a process’s execu-
tion time is inaccurate, it effects only the performance of
that process. Independent of the execution time estimate, a
process can never consume more than its share of the proc-
essor (and shares are determined by weights not costs).
Thus if an estimate of a process’s execution time is overly
optimistic or if a programmer willfully specifies an execu-
tion time that is too low, the performance of other proc-
esses is unaffected.

4.4  Assigning Weights to Kernel Activities
Kernel processing is scheduled together with user process-
ing; each according to its weight. Weights for user proc-
esses are either set by the processes directly or by the man-
ager process. Weights for kernel activities are derived from
user weights. For the purpose of defining weights, we
distinguish between two types of kernel processing: per
user process activity and demultiplexing activity. Per user
process activities consist of the kernel processing associ-
ated with system calls made by user processes. When a
system call is made it is considered a logical extension of
the invoking process and execution of the appropriate ker-
nel activity is performed (scheduled) with the same weight
as the invoking process. For example, when a process
attempts to receive a message from a socket, the socket
layer processing is performed with the same weight as the
receiving process. In this manner kernel processing directly
related to an individual process occurs at the same rate at
which the process executes.

                                                
1 Note that because software interrupts are now scheduled, timings of
user activities are more accurate than in unmodified FreeBSD (as was
the case in [23]). Previously, software interrupt processing was charged
to the user process executing at the time of the interrupt.
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Other kernel activities such as IP processing are performed
on behalf of a collection of processes. For example, when
the IP processing software interrupt is posted after a packet
arrives, the ultimate destination of the packet is not known
and hence the rate at which it should be processed cannot
be determined (without actually processing the packet!). In
this case, IP processing needs to make progress at the sum
of the rates of all processes there are currently receiving
packets from the network. To ensure this is the case,
whenever a user process binds to a socket, the kernel re-
cords its weight and adds a corresponding amount of
weight to the weight of the IP processing kernel activity.

One subtlety here is that whereas user processes may
measure rates in arbitrary units (e.g., execution time re-
ceived per second), IP processing makes progress in units
of packets processed per time unit. Thus a user process’s
weight must be mapped into a IP weight by estimating
how many packets a user process is likely to receive per
unit time. To do this, we use the deadline of a process as
an estimate of its period and assume that the process will
receive one packet per period. For example, if a process’s
weight is such that its share is 10% of the CPU, and the
process’s measured execution time is 2 ms, its period (the
product of dividing its execution time by its share) will be
20 ms. Thus the weight of the IP activity needs to be set
so as to ensure that IP processing is performed at least
once every 20 ms. Therefore, whenever a process with
deadline d binds to a socket, the weight of the IP activity
is increased so that the share of the activity increases by
c/d, where c is the cost of IP processing for a single packet
(a constant). In addition, the weight of the IP processing
activity is further inflated to increase its share by a config-
urable amount that is sufficient to ensure that non-
requested IP packets (e.g., ARPs and other broadcast pack-
ets) can be processed without effecting the performance of
user packet processing.

4.5  Proportional Share Allocation of Ker-
nel Buffers
A final issue to consider is the allocation of buffer space
within the kernel. Just as processes require a share of the
CPU in order to make progress, they also require a share of
the buffers available in each of the interface and protocol
processing layers within the kernel. In FreeBSD, at most
50 packets can be queued pending processing by the IP
layer. If these queue entries are allocated to arriving packets
in a FCFS manner, it is possible that applications expect-
ing to receive packets at a slow rate may be adversely ef-
fected by applications that either are not processing packets
fast enough or whose senders “misbehave” by sending
packets at a higher rate than the application is prepared to
receive. For example, consider a scenario wherein an audio
phone application expects to receive one packet every 20
ms, and a file transfer program expects to receive 200

packets/second (one packet every 5 ms on average). In this
case the IP processing activity will be assigned a weight
so as to ensure it is able to process at least 50 + 200 =
250 packets/second. If the file transfer sender does not pace
its transmission or if it sends at a higher than expected
average rate, the device interface queue may become full
with unprocessed file transfer packets and when an audio
phone packet arrives, it is dropped for lack of space. In this
case a “misbehaving” non-real-time application is nega-
tively impacting a “well behaved” real-time application.

The solution, a variant of that proposed by Druschel and
Banga [23], is to allocate queue capacity (a number of
queue entries) for packets destined for user processes in
proportion to the rate at which the process is expected to
receive packets. For example, if a user process currently is
expecting to receive 1 packet every 20 ms, and the period
of the IP processing activity is currently 10 ms, then at
least one queue entry should be reserved for this process.
(In practice, one would reserve more entries to deal with a
less than periodic arrival process.) If a user process is exe-
cuting fast enough to receive 1 packet every 5 ms, then at
least 2 queue entries should be reserved for this process.

In addition to reserving queue entries for user processes,
the IP processing activity also has to internally schedule
the processing of individual packets. That is, it cannot
simply service packets in FCFS order as this would hurt
well-behaved applications when other applications are hav-
ing packets delivered at inappropriate rates. Although
queue entries are reserved for user processes, it is likely
that at any given time there will exist more packets than
the IP activity can process in one quantum, and hence the
IP activity must explicitly determine which packets to
service first in order to ensure that well-behaved applica-
tions do not lose packets. To do this, we simply recur-
sively implement another instance of a proportional share
scheduler inside the IP activity to select the packet to proc-
ess next. Whenever the IP activity is scheduled, it inter-
nally sub-allocates its quantum to packet processing by
assigning eligible times and deadline to packets based on
the weights of the user process that will receive the packet.
Combined, the hierarchical scheduling mechanism and
queue entry reservation system ensure that when a packet
for a well-behaved application arrives at the network inter-
face, it is guaranteed to be processed at the IP layer and
delivered to the user process, independent of how other
applications are receiving packets. Said another way, pack-
ets for misbehaving applications are dropped as early as
possible after only minimal processing.

Note that all we are doing here is managing buffers in pre-
cisely the same way routers manage buffers under fair
queueing-based service disciplines [1, 2, 8, 14].
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5. Experimental Results
We modified the FreeBSD 2.2.2-RELEASE system to
support proportional share scheduling and ran a suite of
experiments to assess the impact of proportional share
execution of packet and network protocol processing. Our
experiments were conducted on a 200Mhz Pentium Pro
with 64 MB of memory. The network interface was a
3Com 3C595 (vx0) 10/100 Ethernet adapter running at
10Mbps. We used three simple applications that we be-
lieve are indicative of the types of real-time and non-
realtime processing that is likely to be performed on a
general purpose workstation. The applications were:

•  an audio player application that handles incoming 100
byte messages at a rate of 50/second and computes for
1 millisecond on each message (requiring 5% of the
CPU on average),

•  a motion-JPEG receiver that handles incoming 1470
byte messages at a rate of 90/second and computes for
5 milliseconds on each message (requiring 45% of the
CPU on average), and

•  file transfer program that handles incoming 1470 byte
messages at a rate of 200/second and computes for 1
millisecond on each message (requiring 20% of the
CPU on average).

Each of these programs consists of a simple main loop
consisting of a read() operation on a UDP socket bound to
a specific port followed by a computation phase with a
known execution time. In addition to these three receiving
processes we also ran another process that executed the
Dhrystone benchmark program to simulate a compute in-
tensive program.

Each of these programs was run as a separate process on
the modified FreeBSD system and assigned a processor
share according to its CPU utilization and execution rate.
(The Dhrystone was not explic-
itly assigned a weight. Instead
FreeBSD assigned it a weight
that resulted in it receiving what-
ever share of the CPU remained
allocated.) We wrote three pro-
grams to act as sending processes
and send messages with the de-
sired size and rate to the corre-
sponding receiver. We ran one of
these programs on each of three
additional machines (all 200 Mhz
or greater Pentiums) running
FreeBSD v2.2.2, all connected to
an unloaded 10Mbps Ethernet
along with the machine running
the modified FreeBSD kernel.

The experimental setup is illustrated in Figure 2.

With this experimental setup we conducted a number of
experiments where we investigated the effects of different
possibilities for the scheduling within the modified
FreeBSD kernel. For each experiment, three variations of
the traffic generated by the sending processes were used: (1)
all three senders’ message transmission rates were constant
and uniform, (2) all three senders’ message rates were made
bursty by selecting a random inter-message delay exponen-
tially distributed with a mean equal to the previous uni-
form constant rate, and (3) the audio and video senders
message rates were constant as in (1), but the file sender
“misbehaved” and sent messages at a rate of 1,000/second
instead of 200/second. Instrumentation was added to the
modified kernel and the user processes to collect perform-
ance data. The primary data of interest are (a) the number
of messages received by each process during a fixed length
interval (1 minute in our case), (b) the number of packets
dropped at the queue between the interface/device driver
layer and the IP/UDP protocol layer, and (c) the number of
packets dropped at the socket receive queue (see Figure 1).)
For the Dhrystone benchmark we recorded only the number
of iterations completed in our measurement interval. Over
our measurements intervals we would nominally expect
that the audio player would receive 3,000 packets (50×60),
the video player would receive 5,400 packets, and the file
transfer would receive 12,000 packets. In addition, we
would never like to observe any loss at the socket layer.
As we explain below, loss here would be an indication that
too much processing time is being spent processing pack-
ets in the kernel and that because of this user processes are
not able to run.

To establish an unmodified FreeBSD baseline, we first ran
our applications on a FreeBSD with a 1 ms clock tick and
a 1 ms scheduling quantum. These results are given in
Table 1. The audio and file transfer applications executed at

their sender’s rate because they
require little compute time and
are mostly I/O bound, blocked
on a socket receive. The video
application has a high CPU us-
age (45%) and is subjected to the
FreeBSD aging mechanism
which reduces its priority. Be-
cause of this, it is unable to
receive all of its packets and
some are dropped at the socket
receive queue. The effect under
bursty senders is similar.

When the file transfer sender
misbehaves, we see the effects of
fixed priority scheduling on in-

Modified FreeBSD Kernel

FreeBSD

Audio
Sender

10 Mbps Ethernet

FreeBSD

M-JPEG
Sender

FreeBSD

ftp
Sender

Audio
Receiver

Dhrystone

M-JPEG
Receiver ftp

Receiver

200 Mhz Pentium Pro, 64 MB RAM

Figure 2: Experimental configuration
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terrupt handling and protocol processing. CPU cycles are
used for packets that are eventually dropped at the socket
layer taking cycles away from the video and Dhrystone
processes (since these processes consume the most CPU
time they are aged quickly and soon execute at the lowest
priority). Even though more file transfer packets are han-
dled, many more are dropped as are video packets. How-
ever, because all packets received are processed up to the
socket layer (where there are separate queues for each port),
the audio application is still able to receive all its packets.

With this baseline established, we modified the FreeBSD
kernel for proportional share scheduling of the user proc-
esses. In this case, the interface/device driver layer process-
ing and the network protocol layer processing was executed
according to the normal kernel software interrupt level
mechanism and priorities. (For all proportional share ex-
periments, we used a clock tick of 1 ms and a quantum of
1 ms.) The results of this experiment are given in Table 2.
                                                
2 Each entry in each table reports an average and standard deviation
(in parenthesis) over a set of runs.

With constant rate senders these results show the benefits
of proportional share allocation. Compared with the results
in Table 1, the video player now receives all its packets at
the expense of the Dhrystone process. Moreover, no pack-
ets are dropped at any queue. With bursty senders no pack-
ets are dropped but some reduction in the rate of packet
reception occurs due to the bursty nature of the senders and
our relatively short observation interval. For the case with
the misbehaving file transfer sender we are able to main-
tain the desired rate of progress for all real-time processes.
In addition we see the effects of interrupt and protocol
processing at a fixed priority in the kernel in the form of a
further slowdown of Dhrystone (compared to the constant
rate case) and in the loss of file transfer packets at the
socket layer. This shows how CPU cycles are still being
allocated with fixed priority to processing packets that will
never be handled by the application process.

The next design choice we considered was to also explic-
itly schedule the packet and network protocol processing
along with the user processes in a proportional share man-
ner. Given the cost of processing a single packet and the

Table 1: Unmodified FreeBSD, 1 ms clock, 1 ms quantum. 2

Constant Rate Senders Bursty Senders Misbehaved File Sender

Packets
(Iterations)

Drops at
socket

Drops
at IP

Packets
(Iterations)

Drops at
socket

Drops
at IP

Packets
(Iterations)

Drops at
socket

Drops
at IP

Audio Appli-
cation

3,000
(0.5) 0 0 2,938

(15.6) 0 0 2,999
(0.5) 0 0

M-JPEG
Application

3,313
(19.1)

2,110
(19.4) 0 3,466

(25.2)
1,703
(10.4) 0 2,456

(15.6)
2,967
(16.4) 0

File Transfer 11,996
(0.5) 0 0 10,897

(58.1) 0 0 11,862
(40.8)

48,043
(39.2) 0

Dhrystone 7,333,439
(49,227) N/A N/A 7,660,042

(37,347) N/A N/A 5,479,480
(48,454) N/A N/A

Table 2: Modified FreeBSD, proportional share for user processes only.

Constant Rate Senders Bursty Senders Misbehaved File Sender

Packets
(Iterations)

Drops at
socket

Drops
at IP

Packets
(Iterations)

Drops at
socket

Drops
at IP

Packets
(Iterations)

Drops at
socket

Drops
at IP

Audio Appli-
cation

2,999
(0.9) 0 0 2,927

(18.1) 0 0 2,999
(0.9) 0 0

M-JPEG
Application

5,454
(0.0) 0 0 5,126

(92.6) 0 0 5,454
(0.0) 0 0

File Transfer 11,996
(0.5) 0 0 10,483

(12.0) 0 0 12,000
(0.0)

47,952
(3.8) 0

Dhrystone 4,593,536
(46,257) N/A N/A 6,115,263

(235,175) N/A N/A 915,343
(26,109) N/A N/A
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rates at which user processes were estimated to receive,
FreeBSD computes a scheduling period for the protocol
layer of 10 ms. using the procedure outlined in Section
4.4. With this period and its computed share, the protocol
processing layer will process 4 packets every 10 ms. (note
that on average 3.4 packets are expected to arrive in a 10
ms interval). The protocol-layer input queue had the same
limit on the maximum number of packets that could be
enqueued as in normal FreeBSD (50 packets). The results
for this experiment are given in Table 3.

For constant rate and bursty senders there is essentially no
difference between the proportional share scheduling of
user processes only and the combined proportional share
scheduling of kernel and user activities. There is, however,
a dramatic effect on the results when the file sender misbe-
haves. As expected, the protocol layer processes at most
24,000 packets (4 packets/10 ms for 60 seconds) but be-
cause the aggregate number of packets received is over
68,000, the IP protocol layer input queue (with its maxi-
mum of 50 entries) is constantly overflowed. More impor-
tantly, since the audio sender is sending at the lowest rate
(50 packets/second), it is more likely have its packets
dropped at the protocol layer input queue. This illustrates
why it is important to allocate buffer resources as well as
CPU resources to achieve the desired scheduling goals.
Note that in this case the performance of the Dhrystone is
much improved. Since the real-time processes execute at
reduced rates (for lack of data), there are more cycles to be
consumed by the Dhrystone.

Following on the architecture of Druschel and Barga [23],
we next established an input queue for each socket (destina-
tion process) at the asynchronous boundary between the
interface/device driver layer and the protocol layer. The
queue for each destination process had a limit on the
maximum number of packets that could be enqueued based
on the scheduling period for the protocol processing and
the expected receiving rate for a destination (plus 1 or 2
additional packets to buffer short bursts). The input queue
limits were: audio player = 2, video player = 2, and file
transfer = 3 packets. The protocol layer processed each of
the three queues to exhaustion each time it was run (i.e.,
every 10 ms). These results are given in Table 4.

Again for constant rate and bursty senders there are few
differences between this case and the previous one except
when the file sender rate increases. With per-destination
input queues allocated according to the expected rate of
receiving packets, we in effect reserve buffers for the audio
and video receivers and thus enable them to achieve the
desired rate of packet processing. The particular allocations
we used were sufficient for some of the file packets to be
processed by the protocol layer only to be discarded at the
socket receive queue (because in order to absorb short-lived

bursts, strictly speaking the number of buffers reserved
was larger than necessary), however, the majority of pack-
ets were discarded at the network interface.

The final design variation we considered was to add a form
of proportional share scheduling to the IP/UDP layer proc-
essing. In this case, the input queue for each destination
was serviced only if the eligible time for receiving the
packet at the head of the queue had passed. These results
are given in Table 5.

These results show the effect of allocating both CPU and
buffer space with the desired results achieved for the all
cases of senders. In each case, the processing rates for all
applications were as required and all packet drops were
pushed down to the point were the minimum resources
were expended before the drop occurred.

6. Summary & Contributions
As commodity computers become powerful enough to
execute next generation networked multimedia applica-
tions, there will be a strong demand for real-time comput-
ing and communication support in desktop operating sys-
tems. We are advocating the use of proportional share re-
source allocation technology as the foundation for these
services. In this paper investigated the problem of propor-
tional share execution of operating system services. We
argued, and demonstrated empirically, that without real-
time management of the network interface and protocol
processing, the positive effects of real-time scheduling of
user processes can easily be nullified. We also demon-
strated that it is possible to modify a single threaded
monolithic FreeBSD UNIX kernel such that packet and
network protocol processing is performed in a proportional
share manner. In particular, the parameters needed to
schedule kernel activities, namely the weights and costs of
each activity, can be either derived from user processes’
scheduling parameters or estimated by simple measurement
of the code. Moreover, the proportional share framework
makes it easy to develop hierarchical resource allocators
such as a fair queuing-based buffer manager we employed
at the network device interface to further improve through-
put for real-time applications.

The result of our research is a proportional share version of
FreeBSD that supports integrated application and kernel
scheduling and solves the receive livelock problem. Pack-
ets are processed only if the destination process is capable
of receiving them and all packets received are processed by
the application.

Our work contributes to the state of the art in the engineer-
ing of proportional share real-time operating systems.
While the present work is largely a proof of concept and a
preliminary examination of the design space for realizing
proportional share services, in the future we hope to per-
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form a more exhaustive examination of these design is-
sues. In particular, we are working on proportional share
allocation of non-preemptible resources in the kernel such
as disk bandwidth.
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