Proportional Share Scheduling of Operating System Services
for Real-Time Applications

Kevin Jeffay, F. Donelson Smith, Arun Moorthy, James Anderson
University of North Carolina at Chapel Hill
Department of Computer Science
Chapel Hill, NC 27599-3175
{jeffay,smithfd,moorthy,andersp@cs.unc.edu

Abstract

While there is currently great interest the problem of
providing real-time services in genefalrpose operating
systems, the issue of real-time scheduling of inteopat-
ating system activities hasceivedrelatively little atten-
tion. Without suchreal-time scheduling, theystem is
susceptible to conditions such eeceive livelock — a
situation in which an operating systespendsall its time
processing arriving network packesdapplicationproc-
esses.even if scheduledwith a real-time scheduler, are
starved. Wanvestigate the problem of scheduliogerat-
ing system activities such as network protgo@cessing
in a proportional share manner. \Wescribe groportional
shareimplementation of theFreeBSD operatingystem
anddemonstratehat it solves theeceivelivelock prob-
lem. Packetsare processewithin the operating system
only at the cumulativeate atwhich the destination appli-
cationsare prepared toeceivethem. If packets arrive at a
faster rate then they adiscardedafter consuming minimal
system resources. In this manner geeformance of “well
behavedapplications isunaffected by“misbehaving” ap-
plications. Wedemonstratehis effect by running a set of
multimedia applicationsinder avariety of networkcondi-
tions on a set of increasingBophisticated proportional
shareimplementations ofFreeBSD and comparing their
performanceThis work contributes to ouknowledge of
the engineering of proportional share real-time systems.

1. Introduction

system, processes make progress at a precise, umd@m
according tothe share ofsystemresourceghey are to re-
ceive. Processeappear to execute on dedicatedvirtual
processor whose capacity is a fractiorttwdt of theactual
processor. Proportional share resource allocatipauitcu-
larly well-suited to the problem of providingeal-time
services within a general purpose operating sysiecause
its underlying scheduling mechanism isgaantum-based
round-robin-like scheduleandbecausene canimplement

a proportionakharesystem withoutintroducing any new
application-level concepts or mechanisms. This means that
existing applicationgan bemade toexecute in goredict-
able, real-time manner without modifying the application.

Previous operating system work in proportioshbre re-
source allocationhas consideredonly the problem of
scheduling user processes. In particular, the problem of
scheduling operating system activity such as netyook
tocol processing has not been addressed. This is significant
becausenuch of the processing in the operating system
occurs asynchronouslyith respect tosystem callsmade

by applications. If the execution of operating system ac-
tivities is not managedcarefully, the operating system
may consume amordinateamount ofresourcesand nul-

lify the benefits ofreal-time scheduling for application
processes.

For exampleconsiderthe receive livelock problem de-

Applications such as interactive multimedia and immersive Scribed byDruscheland Banga,and by Mogul andRama-

virtual environments,require real-time computation and
communication services frothme operating system in or-
der to beeffective. Asapplications such as thesee in-
creasingly beinchosted on genergburpose (rather than
specialized real-time)perating systemshere is great in-
terest in migrating real-timsystems technology tdesk-
top operating systems. A recent development iratka of

krishnan [6, 23]. In mosgeneralpurpose operating sys-
tems, the processing afibound network packets is the
highest priority activity after the processing of claoter-
rupts. This is thecase becausthe networkinterface is
arguably themost real-time device on ageneral purpose
computer. Since one cannot typically control tiage at
which packetsrrive at acomputer, when packetse not

real-time support irgeneralpurpose operating systems is Processed “fast enough,” it is possible that packets may be

the use of proportional share resource allocatiompfovid-
ing real-time services [3, 7, 9, 13]. In a proportiosizre

* Work supported by grants from the National Scierfggundation
(grants CCR-9510156, & CCR-9732916) and the IBM Corporation.

lost at thenetwork interface. Said anoth&vay, unlike
most otherdevices attached to eomputer, theoperating
system cannoforce the networkinterface tostop generat-

ing service requestwithout running the risk of losing
data. On modern high-speed networks, packets can arrive at

In: Proceedings of the 19IEEE Real-Time Systems Symposium
Madrid, Spain, December 1998, pages 480-491.

high enougtratesthat theprocess of responding toet-
work interruptsand performing the necessary protocol
processing can saturate the system. The systenspeaiid
all of its time preparing packets to bexeived byapplica-
tions and there will be no time for applicationsactually
receive and process any packets. Thus in the worst case,
inbound data islost. Every packet ispartially processed
(by the operating system) while nomee fully processed
(by the destination application). Theceivelivelock prob-
lem hasbeenobserved on servanachines such as web
servers, file servergnd DNS name servers, thare at-
tached tohigh-speednetworks such as 100 Mbg=DDI
rings [6].

The essence ofhe receivelivelock problem is the static
priority scheduling mechanisn&nployed inmost operat-
ing systems (including moseal-time operatingystems).

intrinsically better or worse than any other wiltpend on
factorssuch as the nature of real-tingeiaranteesequired
by applications, the extent to which it t®nsidered ac-
ceptable to modifithe internal structures of thaperating
system or its API, and the extent to which itcansidered
atceptable to modify applications to ta@vantage of the
new real-time services. Our goal is understandhe cost
of providing real-time services transparently applica-
tions that are unaware of their existence. We seelndier-
stand the complexity of providing such servicecamven-
tional operating systemandhow suchservicesarelikely
to perform.

Our work makes the following contributions. First we
demonstrate a model f@roportionalshare scheduling of
operating systenservicesthrough minimal modifications

to the existing operating system. We show how a mono-

If the highest priority processing consumes all of the sys-lithic, single-threade@perating systenkernel such as the

tem’s resourceghen all othemprocesses starve. The solu-
tion therefore, is (1) to bounthe resources consumed by
the network interfacegand(2) to ensurghat if apacket is

FreeBSD kernel can bextended toallow proportional
share execution of network packet and protocol processing.
Second, we demonstrateat proportionalshare execution

received at the network interface it will be processed by theof the networkpacketandprotocol processing solves the

destination application. Aapproach tothe first problem
investigated byMogul and Ramakrishnan, is to poll for
newly arrived network packetsundertimes of highload.
This technique workedvell, however, byitself, polling
could not ensur¢hat packetsreceived areventuallyproc-
essed by thapplication. This isbecausailtimately, their
system was not aal-time systemand did not support
integrated application and operatisgstem processing. To
address the secomatoblem, Druscheland Bangaleveloped
a network subsysterarchitecture forprocessingpackets
according toapplication-level priorities. Weadopt their
architecturebut implement it using proportionaghare
technology. Moreover, wprovide a real-timesolution by
integrating applicatiorand kernel-level schedulingWhen
combined with proportionadhare scheduling of usproc-
esses, we demonstrate that proportional share scheduling
packetandprotocol processingrovides ameans forpre-
cisely controlling theresources consumed lblge network
subsystemNetwork processingvill occur atthe rates at
which applicationsare prepared toreceive packets and
hence all data received is eventually processetidyappli-
cation. Moreover, ousolution protects applicationfsom
“misbehaving” senders. If a rematendertransmits mes-
sages to an application on our machine at a higdter
than the receiving applicatiocan process, thée‘excess”
messagesire dropped athe networkinterface afteronly
minimal processing. Thus applications whessmnders are
“well behaved” are unaffected by these errant processes.

While we are advocates gfroportional sharetechnology,
we recognize that otheolutions to the problems waut-
line hereinare possible €.g, [23]). Whether ornot one
views a particularesourceallocation approach as being

receivelivelock problem. We show thapacketsare re-
ceivedonly at therates at which applicationare able to
process them and hounmodifiedapplications process the
packets that are received in real time.

The following section discusseslatedwork in thedesign

of real-time operatingystems. Section 3 brieflgeviews
the main concepts of proportionghare resource alloca-
tion. Section 4describeghe network protocoprocessing
components ofreeBSDand describestheir proportional
shareimplementation. Section Bvaluates the implemen-
tation by demonstrating both the effects of the receive live-
lock problem and its elimination throughproportional
share scheduling dhe networkinterface. We conclude in
Section 6 with some comments for future investigations.

. Related Work

Research into thdesignand construction of real-time op-
erating systemsan be crudelyartitionedinto three cate-
gories: thedevelopment obrand new real-time operating
systems, the extension of existing operating systems to
support real-time processingnd the provision ofreal-
time execution facilities by virtualizing thenderlying
hardware an@xecuting a largelyunmodified general pur-
pose operating system on the resulting virtual machine.
The most recent example of a new real-time operating sys-
tem is the Rialto operating systeteveloped aMicrosoft

[15]. Recent examples of the real-time extensions to exist-
ing operating systemare more numerousand include
Real-Time Mach [21], the Processor Capadigserves
variant of Real-Time Mach [18], the SMART Soladgs-

tem [7], and variants of Linux [16]. Of particular ndtere

are extensions toUNIX kernels to support proportional

share scheduling. These inclutlee SFQ SVR4UNIX
system [3], the Mach- and FreeBSD-based Lot&sigedul-
ing implementations [13]and the EEVDF version of
FreeBSD [9]. Each of these systems supports prdpor-
tional share execution of user procesdesamples of the
providing real-time servicethrough virtual machinemu-
lation include Real-TimeLinux [17], the Real-Time IBM
Microkernel [22], and a real-time HAL extension féfin-
dows NT [12].

Our approactfalls underthe category of extending an ex-
isting operating system to support proportiorgiiare
processing. From our perspective the medtvantrelated
work is the work done within the context of tReocessor
Capacity Reserve@CR) extensions to Real-Timdach
(RT Mach) [18, 20]. In this work, the RWMach develop-
ers were also concern&dth the impact of networlproto-
col processingand explicitly scheduledthis process as a
real-time processising the PCRabstraction. Protocol
processing was performed in a user-level proaedshence
schedulingits execution wasstraightforward as real-time
scheduling of user processes tlse cornerstone of RT
Mach. ThePCR abstraction ensurdhat real-time activi-
ties do notexecute forlonger than theyare expected to.
Thus, although the R™Mach developers wergrimarily
interested in showing the utility dfitegratedprotocol and
application scheduling, it is likely that BCR system
could be made immune to the receive livelock problem.

Our work differs in two respectsFirst, we are dealing a
differently structuredhost operating system. Unlike the
original microkernelorigins of RT Mach which enable
user-level execution ofystem processes, vae dealing
with a monolithic, single-threadedperating system. Our
challenge here is to schedlternel “processesWwithout
rewriting the kernel so as toreatephysical, schedulable
processes. Secondyhereas RT Mach employs rate-
monotonic schedulingtechnology, weare experimenting
with proportional shareesourceallocation. Ultimately we
hope to show thateal-time execution of operating sys-
temsservices ispossible in a proportionaharesystem
without having to resort to explicitly restructure tkernel
to make it multi-threaded.

3. Proportional Share Resource Allocation

In a proportionakhare PS systemeach shared resource
is allocated in discrete quanta size at mostg,. At the
beginning ofeachtime quantum a process iselected to
use the resource. Once the procasguiresthe resource, it
may use theesourcefor the entire time quantum, or it
may releasehe resource beforéhe timequantum expires.
For a givenresource, we associate veeight with each
procesghat determinesthe relativeshare of the resource
that the process should receive. Wwetlenote the weight of
process, and letA(t) be the set of alprocesses active at

timet. Define the (instantaneous) sh(® of process at
timet as
W
f(t)= ———
2 ioam Wi

A share represents a fraction of tlesource’s capacitthat
is “reserved” for gorocess. If theesource can ballocated
in arbitrarily smallsizedquanta,and if the process’'share
remains constant during any time intervig| {,], then the
process is entitled to use thesourcefor (t, — t)fi(t) time
units in the interval. Aprocessegre created/destroyed or
blocked/releasedthe membership ofA(t) changes and
hencethe denominator in (1) changehus in practice, a
process’s share of a giveasourcewill change ovetime.
As the total weight oprocesses irthe systemincreases,
each process’s share of tresource decreases. A total
weight of processes in the system decreassd) process’s
share ofthe resourceincreases. When a processkare
varies overtime, theservicetime thatprocessi should
receive in any intervatf, t;], is

Slto.ty) = [fi(0)

@

)
time units.

Equations (1)and (2) correspond to an ideal “fluid-flow”
system in which the resource candliecated in arbitrarily
small units of time. Ipracticeone canimplement only a
discreteapproximation to the fluicsystem.When the re-
source is allocated in discrete time quanta it is not possible
for a process to alwayeceiveexactly theservicetime it
is entitled to in alltime intervals. Thalifference between
the servicetime that aprocess shouldeceive at d@ime t,
andthe time it actuallyreceives is callethe servicetime
lag (or simply lag). Lett, be the time at whiclprocess
becomes active, and Igit;, t) be theservicetime process
i receives in the intervak{, t]. Then if process is active
in the interval [, t], its lag at timet is defined as

lagi(t) = S(ty, t) — (1, 1). 3)
Since the lagyuantifiesthe allocationaccuracy, wause it

as our primary metric for evaluating the performance 8f
scheduling algorithms. Previously we have shown that one
can schedule aet ofprocesses in BS system such that
the lag is bounded by a constant over all time intervals [9].
This means that BS system’sdeviation from asystem
with perfectly uniform allocation isbounded andhus, as
explained below, real-time execution is possible.

3.1 Scheduling to Minimize Lag

The goal in proportionashare scheduling is tminimize
the maximum possible lag. This @®ne by conceptually
tracking the lag oprocessesnd atthe end ofeach quan-
tum, considering only processes whose lag is positive [9].
If a process’s lag ipositive then it is“behind schedule”
compared tothe perfect fluid system — it shouldhave

accumulated moréme on the CPU than it has up to the amount. Adjusting the weight to maintain a constiare
current time. If a process’s lag ositive it isconsidered is simply a matter of solving equation (1) for whenf(t)
eligible to execute. If its lag is negative, then precess is a constant function. (Note that appears inboth the
has received more processor time than it should have up taumerator and denominator of the right-hand side of (1).)

the current time and it is considered ineligible to execute o]]
, . 4. Realizing Proportional Share Execution of
Whenmultiple processesare eligible, theyare scheduled Qperating System Activities: A Case Study

using arearliest deadiline firstule, where aprocess’sead- The challenges in realizing proportiorsilare execution of

line is equal to its estimated execution time cost divided byO erafing svstem activities are numerous. Thev include:
its share of the CP,(t). This deadlinerepresents @oint P g sy : y -

; phadecuti * ldentifying “threads” of control within theoperating
n the fgture when t_he process should com ut|on_ system kernel that need to beheduled andubjecting
if it receives exactly its share of tl&PU. For example, if them to the purview of RSscheduler.

a process’s weight is such that its share of the CPU at the Assigning weights and shares to kernel activities
current time is 10%nd it requires 2ns of CPU time to)) ’
complete execution, then its deadline will berggin the ~ * Ensuring mutually exclusiveccess to sharedata

future. If the process actualleceives10% of theCPU, structures in the kernel.

over the next 2@nsit will execute for 2ms * Assigning buffer capacity in a proportional manner at
asynchronous kernel boundaries.

In [9] it was shown that this proportionghareversion of
deadlinescheduling providesptimal (.e., minimum pos-
sible) lag bounds. This algorithm forms the basis for the
PSimplementation described in Section 4.

We illustrate these problems using the netwoskket and
protocol processing portions of tHereeBSD operating
system as an example. For brevity, eansideronly proc-
essing associatedwith the receipt of inbound packets.
3.2 Realizing Real-Time Execution (Processing of outbound packets tuma to be areasier
In principle, there is nothing “real-time” about propor- problem.)

tional share rgsoyrcallocation. Pro.portio.nalshare re- 44 Scheduling of Operating System Ac-

source allocation |$or_1cerneq;olely Wlth.unlform .aIIoca- tivities in FreeBSD

tion (often referred to in the literature fadér allocation). A
PSscheduler achievamiform allocation if itcanguaran-
tee that processes’ lags are always bounded.

FreeBSD is a derivative of the4 BSD OperatingSystem
[5]. Network processingccurs in three distinct layers in
FreeBSD: thesocketlayer, the protocol layer andthe de-
Real-time computing isachieved in aPS system by ij vice interface layer. Figure 1 illustrates these layers for
ensuring that grocess’s share dhe CPU (and other re- UDP packets. The layers for other transport protocols are
guiredresourcesyemains constant oveime, and by {i) similar. Processing withireach layer is controlled by
scheduling processes such that each process’s lag is alwagsents external tdhe kernel such abardwareinterrupts
bounded by &onstant. If these two conditio®ld over from the network interface or software interrupts froser
an interval of length for a process, then process$ is processesnaking system calls taoeceive network mes-
guaranteed to receive; (x t) + ¢ units of theresource’s sages. Interrupts from the network interface devicesane
capacity, wheré is the fraction of the resource reserved for iced by a device-specifinterrupt handlerthat is executed
procesd, andeis the allocation error, 8 e< 5, for some at a high priority level(called splimp that preempts all
constant [9]. Thus, although real-time allocation is pos- other network-relatedprocessingand is preemptableonly
sible, it is not possible tprovide hard andfast guarantees by interrupts from thehardwareclock. Thedevice driver
of adherence to application-defined timiognstraints.Said copies data from buffers on the adamadinto a chain of
another way all guarantees have amplicit, andfunda- fixed-sizekernel memonybuffers (called mbuf9 sufficient
mental, % ¢” term. In the implementatiodescribedbelow to hold the entirgoacketplus auxiliarydatasuch asqueue

¢ is a set-able parameter, but is fixed ats pointers. This chain ahbufsis passed on procedurecall

Our deadline-basedchedulingalgorithm ensurethat each [0 & general interfaceput routinefor a class ofnput de-
process’s lag iounded by aonstant [9] (conditioni)). vices €.g, Ethernet). Thlsprocedurguses .the typdield

To ensure a process’s share remaiosstant overtime from the Ethenjet header to determine which protoed, (
(condition {i)), wheneverthe total weight in the system !P) shouldreceivethe packetand enqueuethe packet on
changes, a “real-time” processieight must beadjusted that prqtocol’_s |nput1u_eue. _Itthen posts asoftwa_re inter-
so that its initial share (as given kyuation (1)) does not "UPt (With anintermediatepriority, spinej that will cause
change. For example, if the total weight in the systemtN€ Protocollayer to beexecutedvhen no higher priority
increasesd.g, becaus@mew processeare created)then a hardware osoftwareactivities are pending. It therreturns

real-time process’s weight musicrease by @roportional ~ [TOM interrupt processing at tisplimplevel.

Processing by the protocdhyer ple static priority scheduler. We
occurs asynchronouslyith re- have modified the FreeBSD soft-
spect to th)édevice drivg”rv process- User wareinterrupt dispatchingnecha-
ing. When the software interrupt | nism todispatch kernel activities

posted bythe device driver atpri- Socket Layer | Kernel, only at quantum expirations. This
ority splnetis the highestprior- Socket % A priority has the positiveeffect of ensuring
ity, the protocol-layerinput rou- receive (spl0) that userprocesses execute for a
tine is entered. It executesraain qu_eu_ef _____ A full quantum oncescheduled, but
loop in which each iteration re- Kemnel, also the negativeffect of delay-
moves thembuf chain at thehead Protocol Layer (UDP/IP} network ing kernel activities. This effect

. . protocol .
of the input queue and passes it to brotocol A priority can bemitigated, however, by an
the appropriate processingou- input g (spine) appropriate choice of a quantum
tines for IPandUDP. To protect queue duration. In the experiments de-
the input queue datastructure @ W —m——e———————"""°°7 scribed below weused a 1ms
shared bythe protocollayer and | Interface/Device Driver Laye'l hemmork quantum(compared tothe default
the interface layer, the protocol f g‘r?grtity FreeBSD quantum ofl00 mg
layer dequeudunction temporarily | Network Device | (splimp without ill-effect.
raisesits priority to the.splimp In addition to dispatchingoftware
level to prevent preemption by the Figure 1: FreeBSD, UDP, network interrupts at quanturboundaries,
device driver. The mbuf chain is input processing.

we also assign a weight teach
interrupt and perform aneligibility and deadlindest for

each interrupt [9]. Software interruptsare considered
equally with userprocessesand either the eligibleuser
process or eligible software interrupt with the ear|gestd-

line is schedulechext. One complexityere isthat kernel
activities communicateand synchronize throughshared

The kernel socket layarodeexecutes when a process in- memory in the kernel. Previously, tleftware interrupt
vokes some form ofeceivesystem call on a socket de- priority structure was used to ensure shafat inthe ker-
scriptorandruns at the lowest-prioritgoftware interrupt nel is accessed in a mutually exclusive manner.c#/eno

level (spl0). This priority is usedfor all normal kernel longer use these mechanishecause irorderfor the lag
processing so the sockeddecan executavhen no higher bounds guaranteed by the theory to hold, a process must be
priority interruptsare pending. When there is eeceive able to execute for its entire quantum osckeduledThus
system call active for the socketata to be received is when a software interrupt handler executes, we m@sire
copiedinto thereceiving process’s locduffers from the that noshared datatructures within thé&ernelare locked
mbuf chain(s) athe head ofthat socket'sreceive queue. when a quantum expires.

This queue is protected by lacking mechanismand by
temporarily raising the sockdayer priority to splnetto
prevent preemption by the protocol lay®vhen there is
sufficientdata onthe socketreceive queue teatisfy the
current requesthe kernel completes theystem call and
returns to the user process.

then processeccompletely in the

protocol layer and finally enqueued on the recejueue for
the destination socket. If any process is blocked kerael
system call awaiting input on the socket, ituisblocked.
Software interrupt porcessing returns when no nmobeifs
remain on the protocol input queue.

In general, therare several approaches tsolving this
problem. For theFreeBSD networkprotocol processing
code, each software interrupt routine consists of a loop that
removes a packet from omgieue, performsomeprocess-

ing andthen inserts theacket on asecond queue. These
loops typicallyexecuteuntil the sourcequeue isempty.

For a more complete description of these functions see [S5WWe modified these loops to executetil either thesource

and [19]. gueue is empty or until a maximum number of packets has
4.2 PS Scheduling of Operating System been proce§sed. In the lattarsethe in'Ferrupt routingvill
Activities in FreeBSD reschedule |ts§I(post anothespftwarelnterrupt for itself)
andthen terminate. The maximum number pHckets to

Be processed ishosen to be the maximum number of
packetsthat are guaranteed to be processedcéonpletion
within one quantumBounding the number ofpackets
processed in this way ensutbsit softwareinterrupt proc-
essing isnever preempted by guantum expiryand hence
that shared datatructuresarealways in a consistent state
at theend ofeachquantum. Note that although thisch-

Conceptually each layer of protocol processing represents
separate logical process that mustsbkeeduledThese lay-
ers are not processes in the traditional sensénbtgad are
more akin toprocedurecalls thatare called by a software
interrupt dispatching mechanism thatinsokedupon the
completion ofevery system call orquantum expiration.
The existing dispatching mechanism is, in essencéma

nigue appears at first to reduce performance (bedarsel
activities may notexecute for arentire quantum), the ac-
tual rate atwhich activitiesare performed depends on the
share ofthe processothey are assignedand not on how
long they actuallyexecute oncescheduledMoreover, by
adopting this approach we nerdt includeany synchroni-
zation code in the packet processing cadehence overall
this code is more efficient.

The maximum number gfacketsthat could beprocessed
was determined by haritning the loops tadetermine the
maximum number ofpackets that could be processed
within a quantum. The time to procespaxcketis, for the

most part, independent of the size of a packet (much of th

processing consists of pointer manipulatioasyl in all
cases is bounded. Theseeasurementsvere also used to
determinethe cost of garticular kernehctivity and used
by the dispatcher to computieadlinesfor kernel activities
as described in Section 3.1.

4.3 PS Scheduling of User Processes

User processeare scheduledsing theFreeBSDscheduler
modified to performthe eligibility and deadline calcula-
tions. Processlescriptorsvere changed toecord aweight
and share for each processveasll as ameasure ofts cur-
rent execution time cost. Processas eitherassigntheir
own weights or have themssigned by a separatenager
process. If programare written with knowledge of our

kernel modifications they can alter their weights through a

system call. Pre-existing programs receiwadetaultweight

that ensures they make progress as in a time-sharing sy

tem. This weight (and the weight of any upeocess) can
be changed byhe managerprocess. By manipulating a
process’sweight, itsrate of progress relative tine other

cution timeconsumed by processes betwesystem calls
and assume that the execution timsed inthe recentpast
is a good indicator of the time a process wadjuire in the
nearfuture. We use thstandard~reeBSD executionime
monitoring infrastructure torecordthe elapsed execution
time of processe$.When a process performs network /O
a newdeadline iscomputed forthe process$ased on the
amount of execution timeonsumedsince the last I/O
operation. Fomprocessesvith aregular structure (such as
most cyclic real-time processes) this heuristic shaudck
quite well. For the multimedia processitgad considered
in our experimentgseeSection 5), this simplédieuristic

gvas sufficient. Moreover, if execution time estimates are

inaccurate the kernel will be able tetectthis fact. If the
execution time estimate for@ocess igoo low then the
process will not have made another system call bgeds-
line. If the estimate is too high, thocesswill complete
its current execution before itieadline.Thus onecan em-
ploy software phased-lockedoops to further refine the
estimates of execution time[4].

Note, however, that if the estimate ofpeocess’sexecu-

tion time isinaccurate, it effectenly the performance of
that process. Independent of the executiore estimate, a
process can never consume more than its share girdbe

essor(and sharesare determined byweights not costs).
Thus if an estimate of a process’s execution timevixly

optimistic or if a programmer willfully specifies axecu-

tion time that is too low, theerformance ofother proc-

esses is unaffected.

S_

4.4 Assigning Weights to Kernel Activities

Kernel processing ischeduledogether with useprocess-
ing; each according tits weight. Weightsfor user proc-

processes in the system can be controled. By manipulatingsses are either set by the processes directly or hyahe

a process’s share, ogancontrol its absoluteate of pro-

gressindependent ofhe otherprocesses ithe system. If

the managersets aprocess’s share, the kerradtermines

what weight the process should haveonder to guarantee
that it receives the appropriate share [10].

The kernel records a bit indicating whether a protessa
fixed weight or dfixed share. Processes withfiged share
are “real-time” processes and theieights will beadjusted
to maintain a constarsghare whenevehe total weight of
processes ithe systenchangesi(e., whenever a process
is created odestroyed). Beyonthe fixed weight/share di-
chotomy, there is nodistinction between real-time and
non-real-time processes ithe kernel. Any process can

become a real-time process at any time so long as the tot

shares of all real-time processes remains less than 1.0.

To schedule @rocess the kerneleeds arestimate of the
process’s executiotime. Theestimated executiotime is
used to determine the process’s deadline as outlin&stén
tion 3.1. We use a simple heuristic of monitoring éxe-

ager process. Weights for kernel activitae derivedfrom
user weights. For the purpose défining weights, we
distinguish betweentwo types ofkernel processing: per
user process activitand demultiplexing activity. Peuser
process activitiegonsist of thekernel processing associ-
atedwith system callsmade byuser processes. When a
system call ismade it is considered lagical extension of
the invoking procesandexecution of theappropriateker-
nel activity is performedscheduledwith the same weight
as the invoking process. For example, whempracess
attempts toreceive amessage from a socket, tkecket
layer processing is performedth the same weight as the
receiving process. In this manner kernel procesdiregtly
éﬁalated to anndividual process occurs #te samerate at
which the process executes.

1 Note thatbecause software interrupts are now scheduledngs of
user activities are moraccuratethan in unmodified FreeBSD (as was
the case in [23]). Previously, software interrupt processingchasged
to the user process executing at the time of the interrupt.

Other kernel activities such as IP processrg) performed
on behalf of a collection of processes. For examphen
the IP processing software interrupt is posted afteacket

packets/second (one packet everyon average). Ihis
casethe IP processing activity will bassigned a weight
SO as to ensure it is able to procesteast 50 + 200 =

arrives, the ultimate destination of the packet is not known250 packets/second. If the file transfer serdtersnot pace

and hencethe rate atwhich it should beprocessed cannot

its transmission or if itsends at éigher thanexpected

be determined (without actually processing the packet!). Inaveragerate, thedevice interface queuemay becomefull
this case, IP processing needs to make progress at the sumith unprocessefile transfer packetand when anaudio

of the rates ofall processes therare currently receiving
packets from the network. Tensurethis is the case,
whenever auser process binds to a socket, kegnel re-
cords its weight and adds a correspondingamount of
weight to the weight of the IP processing kernel activity.

One subtletyhere is that whereasuser processes may
measure rates in arbitrapnits (.9, execution time re-
ceivedper second), Iprocessing makes progresstunits
of packetsprocessegbertime unit. Thus auser process’s
weight must bemappedinto a IP weight by estimating
how many packets a user processikely to receive per
unit time. To do this, we use thieadline of grocess as
an estimate of itperiodandassume that thprocesswill
receiveone packet per periottor example, if grocess’s
weight is such that itshare is10% of the CPUand the
process’s measured execution time isng its period (the
product of dividing its execution time by ithare)will be
20 ms Thus the weight of the IP activityeeds to be set
SO as to ensurthat IP processing iperformed atleast
once every 20ms Therefore, whenever a processth
deadlined binds to a socket, the weight of the IP activity
is increased sthat theshare ofthe activity increases by
c/d, wherec is the cost of IP processing for a singkecket
(a constant). Iraddition,the weight of the IPprocessing
activity is further inflated to increase ishare by a config-
urable amount that is sufficient tcensure that non-
requested IP packets.¢, ARPs andotherbroadcast pack-
ets) can berocessedvithout effectingthe performance of
user packet processing.

4.5 Proportional Share Allocation of Ker-
nel Buffers

A final issue toconsider isthe allocation ofbuffer space
within the kernel. Just gsrocessesequire ashare of the

phone packet arrives, it is dropped for lack of spacthin
case a‘misbehaving” non-real-time application isega-
tively impacting a “well behaved” real-time application.

The solution, avariant of thatproposed by Druschel and
Banga[23], is to allocatequeue capacity (a number of
gueueentries) for packetslestinedfor user processes in
proportion to therate atwhich the process isxpected to
receive packets. For example, if a user process currently is
expecting toreceive 1 packet every 2@s andthe period
of the IP processing activity is currently 10s then at
least onequeueentry should beeservedfor this process.
(In practice, one wouldeservemore entries talealwith a
less than periodic arrival process.) If a user processés
cuting fast enough to receive 1 packgery 5ms then at
least 2 queue entries should be reserved for this process.

In addition to reservingjueueentries for user processes,
the IP processing activity also has to internathedule
the processing oindividual packets. That is, itcannot
simply service packets ifrCFS order asthis would hurt
well-behaved applications when other applicatiares hav-
ing packets delivered atinappropriate rates. Although
gueueentriesare reservedor user processes, it is likely
that at any given timéherewill exist morepackets than
the IP activitycan process itone quantumandhence the
IP activity must explicitly determinewhich packets to
servicefirst in order to ensurethat well-behaved applica-
tions do not lose packets. To do this, we simpgur-
sively implementanother instance of a proportiorsiare
scheduler inside the IP activity to select the packeirdo-
ess nextWheneverthe IP activity isscheduled, it inter-
nally sub-allocatests quantum to packet processing by
assigning eligible timeand deadline tgacketsbased on
the weights of the user process that will receivepieket.

CPU in order to make progress, they also require a share ¢é¢ombined, thehierarchical schedulingnechanism and

the buffers available ireach ofthe interface and protocol
processing layerwithin the kernel. In FreeBSD, ahost
50 packets can bgueuedpending processing bthe IP

gueueentry reservatiosystemensurethat when apacket
for a well-behaved application arrivesthe networkinter-
face, it isguaranteed to be processedtla IP layer and

layer. If these queue entries are allocated to arriving packetgélivered tothe user processndependent ofhow other

in a FCFS manner, it is possible that applicatiexysect-
ing to receivepackets at &low rate may beadversely ef-
fected by applications that either are not processauiets
fast enough or whoseenders‘misbehave” by sending
packets at a highaatethan the application igrepared to
receive. For example, consider a scenario whereiaudio
phone application expects teceiveone packetevery 20
ms, and afile transfer program expects teceive 200

applications are receiving packets. Said another pagk-
ets for misbehaving applicatiorsse dropped agarly as
possible after only minimal processing.

Note that all we are doing here is manadinudfers in pre-
cisely the same way routersanage bufferaunder fair
gueueing-based service disciplines [1, 2, 8, 14].

5. Experimental Results

We modified the FreeBSD 2.2.2-RELEASE system to
support proportionakhare schedulingnd ran asuite of
experiments to assess the impact of proporticinare
execution of packesandnetwork protocol processing. Our
experimentswere conducted on 200Mhz Pentium Pro
with 64 MB of memory. The networknterface was a
3Com 3C595 \{x0) 10/100 Ethernetadapterrunning at
10Mbps. Weusedthree simple applications that we be-
lieve are indicative of the types of real-timeand non-
realtime processing that is likely to hgerformed on a
general purpose workstation. The applications were:

* an audio player application thhandlesincoming 100
byte messages at a rate5@f'secondand computes for
1 millisecond oneachmessage (requiring 5% of the

CPU on average),

¢ a motion-JPEGeceiverthat handlesincoming 1470
byte messages at a ratefif'secondand computes for
5 milliseconds on each messagequiring45% of the

CPU on average), and

« file transfer program thatandlesincoming 1470byte
messages at a rate of 200/secandcomputes for 1
millisecond oneachmessage (requirin@0% of the

CPU on average).

Each ofthese programs consists of a simple main loop
consisting of aead() operation on a UDP sockbbund to

a specific portfollowed by acomputation phase with a
known execution time. laddition tothese threeeceiving
processes walso ran another procesthat executed the
Dhrystone benchmark program simulate a compute in-

tensive program.

Each ofthese programs was run aseparate process on
the modified FreeBSDsystem and assigned a processor
share according tidss CPU utilizationandexecution rate.

(The Dhrystone wasiot explic-
itly assigned aweight. Instead
FreeBSD assigned it a weight
that resulted in it receivingshat-
ever share othe CPU remained
allocated.) We wrote threpro-
grams to act as sendipgocesses
and sendmessages with the de-
sired size and rate to the corre-
sponding receiver. We ran one of
these programs oerach of three
additional machines (all 200 Mhz
or greater Pentiums) running
FreeBSD v2.2.2, all connected to
an unloaded10Mbps Ethernet
along with the machine running
the modified FreeBSD kernel.

The experimental setup is illustrated in Figure 2.

With this experimental setup weonducted anumber of
experimentsvhere weinvestigated theeffects of different
possibilities for the schedulingwithin the modified
FreeBSD kernellFor eachexperiment, three variations of
the traffic generated by the sending processes were used: (1)
all three senders’ message transmission raéze constant
and uniform, (2) all three senders’ message nat@e made
bursty by selecting a random inter-messdgly exponen-
tially distributedwith a meanequal tothe previous uni-
form constant rateand (3) the audio and video senders
message ratesereconstant as in (1), but the filsender
“misbehaved’andsent messages atrate of 1,000/second
instead of 200/secondnstrumentation wasdded to the
modified kernelandthe usermprocesses to collegerform-

ance dataThe primarydata ofinterestare @) the number

of messages received by each process duriingalength
interval (1 minute in oucase), If) the number opackets
dropped atthe queue betweenthe interface/devicedriver
layer and the IP/UDP protocol layer, am)l {the humber of

packets dropped at the socket receive queueHigeee 1).)

For the Dhrystone benchmark we recorded only the number
of iterationscompleted inour measurement intervaDver
our measurements intervals weould nominally expect

that the audio player would recei8e000 packets (5860),

not able to run.

the video player wouldeceive5,400 packetsandthe file
transfer would receivel2,000 packets. Imaddition, we
would neverlike to observe anyoss at the sockdayer.

As we explain below, loss here would be an indication that
too much processing time is being spent procegsich-

ets in the kernel and that because of thésr processes are

To establish an unmodified FreeBSD baseline, we first ran

| Modified FreeBSD Kernel |

200 Mhz Pentium Pro, 64 MB RAM

M-JPEG
Receiver

Audio
Receiver, ecever

f 10 Mbps Ethernet

T I T

Audio
Sender

| FreeBSIZI |FreeBSD|

M-JPEG ftp
Sender Sender

| FreeBSl:i

Figure 2: Experimental configuration

our applications on a FreeBSD with anis clock tick and
a 1 ms scheduling quantum. These resudt® given in
Table 1. The audio and file transfer applications executed at

their sender'srate because they
require little compute time and
are mostly 1/0 bound,blocked
on a socketreceive. The video
application has a high CPU us-
age (45%) and is subjected to the
FreeBSD aging mechanism
which reducesits priority. Be-
cause ofthis, it is unable to
receive all of its packets and
someare dropped athe socket
receive queueThe effect under
bursty senders is similar.

When the file transfer sender
misbehaves, we see the effects of
fixed priority scheduling on in-

Table 1 Unmodified FreeBSD

, Insclock, 1ms quantum?2

Constant Rate Senders Bursty Senders Misbehaved File Sendpr
Packets | Drops at| Drops Packets | Drops at| Drops Packets | Drops at| Drops
(Iterations)| socket atIP | (lterations)| socket atIP | (lterations)| socket at IP
Audio Appli- 3,000 2,938 2,999
cation (0.5) 0 0 (15.6) 0 0 (0.5) 0 0
M-JPEG 3,313 2,110 0 3,466 1,703 0 2,456 2,967 0
Application (19.1) (19.4) (25.2) (10.4) (15.6) (16.4)
. 11,996 10,897 11,862 48,043
File Transfer (0.5) 0 0 (58.1) 0 0 (40.8) (39.2) 0
7,333,439 7,660,042 5,479,480
Dhrystone (49,227) N/A N/A (37,347) N/A N/A (48,454) N/A N/A
Table 2 Modified FreeBSD, proportional share for user processes only.
Constant Rate Senders Bursty Senders Misbehaved File Sendgr
Packets | Drops at| Drops Packets | Drops at| Drops Packets | Drops at| Drops
(Iterations)| socket at IP | (Iterations)| socket at IP | (Iterations)| socket at IP
Audio Appli- 2,999 2,927 2,999
cation (0.9) 0 0 (18.1) 0 0 (0.9) 0 0
M-JPEG 5,454 5,126 5,454
Application | (0.0) 0 0 (92.6) 0 0 (0.0) 0 0
. 11,996 10,483 12,000 47,952
File Transfer (0.5) 0 0 (12.0) 0 0 (0.0) (3.8) 0
4,593,536 6,115,263 915,343
Dhrystone (46,257) N/A N/A (235,175) N/A N/A (26,109) N/A N/A

terrupt handlingand protocol processing. CPWycles are
usedfor packetsthat are eventuallydropped atthe socket
layer taking cycles awayfrom the video and Dhrystone
processes (since these processes consoenenost CPU
time theyare agedjuickly andsoonexecute athe lowest
priority). Even though more fileransfer packetare han-
dled, many moreare dropped as amddeo packets.How-
ever,becauseall packetsreceived are processed up to the
socket layer (where there are separate queuesafbiport),
the audio application is still able to receive all its packets.

With this baselineestablished, wenodified the FreeBSD
kernel for proportionashare scheduling ahe userproc-
esses. In this case, the interface/dedideer layer process-
ing and the network protocol layer processing eeecuted
according tothe normal kernekoftware interrupt level
mechanismand priorities. (For all proportionakhare ex-
periments, we used a clock tick ofnis and aquantum of

1 ms) The results of this experiment are given in Table 2.

2 Each entry in each table reports arerageand standard deviation
(in parenthesis) over a set of runs.

With constantrate senderthese results show theenefits

of proportional share allocation. Compared with the results
in Table 1, the video player nokgceivesall its packets at
the expense of the Dhrystone process. Moreovepack-

ets are dropped at any queMéith bursty senders no pack-
etsare droppedbut somereduction inthe rate of packet
reception occurs due to the bursty nature ofsireders and
our relatively short observation interval. For ttesewith

the misbehaving filaransfersender we arable to main-
tain the desired rate of progress & real-time processes.
In addition we sedhe effects of interrupt and protocol
processing at a fixed priority in the kernel in the form of a
further slowdown of Dhryston@compared tahe constant
rate casepnd inthe loss of filetransfer packets at the
socket layer. This shows how CR¥yclesarestill being
allocated with fixed priority to processing packets thvit
never be handled by the application process.

The nextdesign choice weonsideredvas to alsoexplic-
itly schedulethe packetand network protocol processing
along with the user processes in a proportiahare man-
ner. Given the cost of processing a singéeketand the

10

rates at which user processsere estimated to receive,
FreeBSDcomputes a schedulingeriod for the protocol
layer of 10ms. using theprocedureoutlined in Section
4.4. With this periodandits computed sharehe protocol
processing layer will process 4 packetery 10ms. (note
that onaverage3.4 packetsare expected tarrive in a 10
msinterval). Theprotocol-layerinput queue hadhe same
limit on the maximumnumber of packetshat could be
enqueued as inormal FreeBSD(50 packets). The results
for this experiment are given in Table 3.

For constant rate and burstgnderghere isessentially no
difference betweenthe proportionalshare scheduling of
user processesnly and the combinedproportional share
scheduling of kernel and user activitidhereis, however,
a dramatic effect on the results when the $dademisbe-
haves. Asexpectedthe protocollayer processes ahost
24,000 packets (4 packets/Ifs for 60 seconds)ut be-
causethe aggregatenumber of packetgeceived is over
68,000, the IP protocdayer input queue(with its maxi-
mum of 50 entries) is constanttywerflowed. More impor-
tantly, since theaudiosender issending athe lowestrate
(50 packets/second), it isnore likely have its packets
dropped athe protocollayer input queue.This illustrates
why it is important toallocate buffer resources agll as
CPU resources to achievthe desired schedulinggoals.
Note that in this case thgerformance othe Dhrystone is
much improved. Since the real-tinpeocesses execute at
reduced rates (for lack of data), thare more cycles to be
consumed by the Dhrystone.

Following on thearchitecture of Druschelnd Bargd23],
we next established an input queue for each sdqdkstina-
tion process) athe asynchronouboundary between the
interface/device drivetayer and the protocol layer. The
queuefor each destination procesbad alimit on the
maximum number of packets thatuld beenqueued based
on the schedulingeriod for the protocol processing and
the expectedreceiving rate for a destinatidiplus 1 or 2
additional packets to buffeshort bursts). The inpudueue
limits were: audio player = 2, video player = and file
transfer = 3packets. The protocdayer processed each of
the threequeues tcexhaustioreachtime it was run i(e.,
every 10m9g. These results are given in Table 4.

Again for constantate and bursty sendersthere are few
differencesbetweenthis caseandthe previous onexcept
when the filesenderrate increasesWith per-destination
input queues allocated according the expectedrate of
receiving packets, we in effect reserve bufferstiieraudio
and video receiversand thus enablethem to achieve the
desired rate of packet processing. The particular allocation
we used wersufficient for some of the file packets to be
processed by the protoclalyer only to bediscarded at the
socket receive queue (because in ordeatisorb short-lived

S

bursts, strictly speaking the number liiffers reserved
was larger than necessary), however, the majorityaok-
ets were discarded at the network interface.

The final design variation we considered wasadid aform

of proportional share scheduling to the IP/URker proc-
essing. In thiscase, the inputjueuefor eachdestination
was servicedonly if the eligible time forreceiving the
packet atthe head ofthe queue hadpassed. These results
are given in Table 5.

These resultshow theeffect ofallocating both CPU and
buffer spacewith the desiredresults achievedfor the all
cases of senders. In eaddse, the processing rates for all
applicationswere asrequired andall packet dropswere
pushed down tahe point werethe minimum resources
were expended before the drop occurred.

6. Summary & Contributions

As commodity computers become powerful enough to
executenext generationnetworked multimedia applica-
tions, there will be a strondemandfor real-time comput-
ing andcommunication support idesktop operating sys-
tems. Weare advocatinghe use of proportionalhare re-
source allocation technology #ise foundation forthese
services. In thigpaper investigatethe problem ofpropor-
tional share execution of operatirgystem services. We
argued,and demonstratedempirically, that withoutreal-
time management of the networkterface and protocol
processing, the positiveffects of real-time scheduling of
user processes caasily be nullified. We alsalemon-
stratedthat it is possible to modify a singléreaded
monolithic FreeBSD UNIX kernelsuch thatpacket and
network protocol processing is performed in a proportional
share manner. In particular, thgarametersneeded to
schedule kernel activities, namely the weigdnsl costs of
eachactivity, can be eithederived from user processes’
scheduling parameters or estimated by simple measurement
of the code. Moreover, the proportionashareframework
makes it easy talevelop hierarchical resource allocators
such as a faiqueuing-based buffer manager we employed
at the network device interface to furtheprove through-
put for real-time applications.

The result of our research is a proportional share version of
FreeBSDthat supportsntegratedapplication and kernel
schedulingand solves thereceivelivelock problem.Pack-

ets are processauhly if the destinatiorprocess iscapable

of receiving them and all packetsceived are processed by
the application.

Our work contributes to the state of the art in ¢éhgineer-
ing of proportional share real-time operatingystems.
While the present work is largely a proof of concepd a
preliminary examination of thdesign space for realizing
proportionalshare services, ithe future we hope tper-

11

Table 3 Modified FreeBSDPSfor user processes and protocol processing (one protocol-layer input queue).

Constant Rate Senders Bursty Senders Misbehaved File Sendqr
Packets | Drops at| Drops Packets | Drops at| Drops Packets | Drops at| Drops at
(Iterations)| socket atIP | (lterations)| socket atIP | (lterations)| socket IP
Audio Appli- 3,001 0 0 2,992 0 0 757 0 2,244
cation (1.4) (5.0) (341.8) (341.6)
M-JPEG 5,457 0 0 5,225 0 0 2,004 0 3,448
Application (4.2) (8.2) 193.0) (194.9)
. 12,005 10,532 11,999 | 15,211.0 32,745
File Transfer| =g) 0 0 (171.3) 0 0 (0.5) | (297.9) (299.5)
4,970,544 6,034,405 8,794,017
Dhrystone (32,032) N/A N/A (71,884) N/A N/A (340,194) N/A N/A

Table 4 PSscheduling of user processes and protocol processing with destination queues (no packet scheduling).

Constant Rate Senders Bursty Senders Misbehaved File Sendgr
Packets Drops at Drops Packets | Drops at| Drops Packets | Drops at| Drops
(Iterations) socket atIP | (lterations)] socket atIP | (lterations)| socket at IP
Audio Appli- 2,999 2,958 2,999
cation (0.9) 0 0 (17.2) 0 0 (0.5) 0 0
M-JPEG 5,454 0 0 5,215 0 1.3 5,454 0 0
Application (0.5) (11.9) (0.5) (0.5)
. 12,005 10,887 7.7 12,003 31,044 | 16,906
File Transfer| 3 5y 0 0 (17.8) 0 0.9 | (5.2 (10.1) | (0.5)
4,805,747 5,817,508 1,079,076
Dhrystone (63.697) N/A N/A (7,932) N/A N/A (39,830) N/A N/A

Table 5: PSscheduling of user processes and protocol processing with destination queues and packet scheduling.

Constant Rate Senders Bursty Senders Misbehaved File Sendgr
Packets | Drops at| Drops Packets | Drops at| Drops Packets | Drops at| Drops
(Iterations)| socket at IP | (Iterations)| socket atIP | (lterations)| socket at IP
Audio Appli- 3,000 0 0 2,966 0 4.0 3,000 0 0
cation (0.0) (8.2) (5.7) (0.0)
M-JPEG 5,454 0 0 5,221 0 6.3 5,454 0 0
Application (0.0) (22.8) (4.1) (0.5)
. 11,999 10,893 0.7 12,000 47,983
File Transfer (0.8) 0 0 (45.7) 0 (0.5) (0.5) 0 (1.2)
4,652,845 5,788,270 1,261,473
Dhrystone (15,045) N/A N/A (66,791) N/A N/A (37.910) N/A N/A
o & e e Siamnaln o ese s 7. References
I .t' pf ’ tibl 9 p'rthp K such [1] A. Demers, S. Keshav, S. Shenk@malysis and
allocation of non-preempubleesources Irine kerneisuc Simulation of aFair QueueingAlgorithm, Jour. of

as disk bandwidth. Internetworking Research & Experiend@¢t. 1990,
pp. 3-12.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

12

S. J. Golestani,A Self-Clocked Fair Queueing
Schemefor Broadband Applications Proc., IEEE
INFOCOM 94, April 1994, pp. 636-646.

P. Goyal, X. Guo H. M. VinA Hierarchical CPU
Scheduler foMultimedia OperatingSystemsProc.,
USENIX Symp. onOperatingSystems Design and
Implementation, Seattle, WA, Oct. 1996, pl)7-
121.

H. Massalin, C. Purine-Grain Adaptive Scheduling
Using FeedbackComputingSystems Vol. 3, No.
1, 1990, pp. 139-173.

M. K. McKusick, K. Bostic, M.J. Karels J. SQuar-

terman. The Designand Implementation of the
4.4BSD UNIXOperating System Addison-Wesley,
1996.

J. Mogul, K. RamakrishnanEliminating Receive
Livelock in an Interrupt-Driven KerneACM Trans-

actions on Computer Systems, Vol. 15, No. 3,

August 1997, pp. 217-252 .

J. Nieh, M. S. Lam The Design, Implementation
and Evaluation of SMART: ASchedulerfor Multi-
media Applications Proc., Sixteenth ACMSymp.
on Operating Systems Principles, Saint-Malo,
France, Oct. 1997, pp. 184-197.

A. K. Parekh, R. G. GallageA Generalized Proces-
sor Sharing Approach To Flow Control integrated
Services Networks-The SingleNode Case
ACM/IEEE Transactions on Networking/ol. 1,
No. 3, 1992, pp. 344-357.

I. Stoica, H.Abdel-Wahab, K.Jeffay, S. Baruah, J.
Gehrke, C.Plaxton, A Proportional Share Resource
Allocation Algorithm for Real-Time, Time-Shared
Systems Proc. 17th |IEEE Real-TimeSystems
Symposium, Dec. 1996, pp. 288-299.

|. Stoica, H.Abdel-Wahab, K.Jeffay,On theDual-
ity Between Resource Reservatiamd Proportional
Share ResourcAllocation, Proc. Multimedia Com-
puting and Networking 1997, SPIFProceedings Se-
ries, Vol. 3020, Feb. 1997, pp. 207-214.

H. Tokuda, T. KitayamaDynamic QOS Control
Based onReal-TimeThreads Proc., Workshop on
Network and OperatingSystem Supporfor Digital
Audio and Video, Lancaster, UK, Nov. 1993 cture
Notes in Computer Science, Vol. 846, pp. 124-137.

VenturCom Inc., Real-time Extension 4.1 for Win-
dows NT,http://www.venturcom.com/prod_serv/nt/
rtx/index.htm| 1997,

C. Waldspurger, W.Weihl. Lottery Scheduling:
Flexible Proportional Share Resource Management

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Proc. USENIX Symp. orDperatingSystemDesign
and Implementation, Nov. 1994, pp. 1-12.

L. Zhang, VirtualClock: A NewTraffic Control Al-
gorithm for Packet-Switched Network&CM Trans-
actions on Computer Systems, vol. 9, no. 2, May
1991, pp. 101-124.

M.B. Jones, D. Rosu, M.-CRosy CPU Reserva-
tions & Time Constraints: Efficient, Predictable
Scheduling oflndependentActivities Proc., Six-
teenth ACM Symposium orOperating Systems
Principles, Saint-Malo, Franc&ctober 1997, pp.
198-211.

B. Srinivasan, S. Pather, F. Ansari, D. Nieha@s
Firm Real-Time System Implementation Using
Commercial Off-The-Shelflardware andFree Soft-
ware Proc., IEEE Real-Time Technologyd Appli-

cations Symp., Denver,CO, June 1998, ppll2-

120.

M. Barbarnov, V. Yodaiken, Real-Time Linux,
Technical Report, Department of CompuSaience,
New Mexico Institute of Mining and Technology,
undated.

C.W. Mercer, S.Savage, H. Tokuda&rocessor Ca-
pacity Reserves: Operating System Supporivial-
timedia ApplicationslEEE Intl. Conf. on Multime-
dia Computing and Systems, Boston, MA, May
1994, pp. 90-99.

G.R. Wright, W.R. StevensTCP/IP lllustrated,
Volume 2, The ImplementatiorAddison-Wesley,
Reading MA, 1995.

C. Lee, K. Yoshida, CMercer, R. Rajkumay Pre-
dictable Communication Protocol Processing in
Real-Time MachProc., IEEE Real-tim&echnology
and Applications Symposium, Boston, MAJune
1996, pp. 220-229.

H. Tokuda, T. NakajimaP., Rao,Real-TimeMach:
Towards a Predictable Real-Time System
Proc.USENIX Mach Workshop, Burlington, VT,
October 1990, pp. 73-82.

G. Bollella, K. Jeffay,SupportFor Real-TimeCom-
puting Within General Purpose OperatingSystems:
Supporting co-resident operatingsystems Proc.,
IEEE Real-Time Technologgnd Applications Sym-
posium, Chicago, IL, May 1995, pp. 4-14.

P.Druschel, G. Bangd,azy ReceiveProcessing: A
Network SubsystemArchitecture for ServerSys-
tems Proc., USENIXSymp. OnOperatingSystem
Design and Implementation, Seattle, WA, Oct.
1996, pp. 261-275.

