Realizing a Soft Real-Time Framework for Supporting
Distributed Multimedia Applications

Changpeng Fan

German National Research Center for Information Technology (GMD)
Research Institute for Open Communication Systems (FOKUS)
Hardenbergplatz 2, D-10623 Berlin, Germany

ABSTRACT

Multimedia operating systems must have real-time
features and other supporting features in order to meet
the QoS requirements of distributed multimedia applica-
tions. It is not enough to simply give communication pro-
cessing activities higher priorities, it is necessary to
realize a soft real-time framework which controls all sys-
tem activities. In addition, feasible soft real-time schedul-
ing schemes are the cornerstones for the functionality and
efficiency of the framework. In the paper, the motivation,
rationale and realization schemes of our framework pro-
posal are addressed. We have also proposed and are ex-
perimenting with several base scheduling methods which
are suitable for supporting continuous media communica-
tions and applications. These include a cooperative soft
real-time scheduling method (CO-SCHEDULE) and a
semi-imperative soft real-time scheduling method (SIM-
SCHEDULE). The design and implementation structure
of these scheduling methods are described. Preliminary
implementation experiences are also presented.

1. Introduction

Distributed multimedia system has become one of
the main focuses of computer networking and applica-
tions. The trend of current development is to extend and
optimize the multimedia applications on endsystems
(workstations, PCs), and to further advance the distribut-
ed multimedia applications by connecting the endsystems
with large-bandwidth, high-speed networks.

Distributed multimedia (especially continuous me-
dia) applications need end-to-end performance support
from both the networks and the endsystems. Until recent-
ly, much emphasis has been put on the networking aspect
in order to construct a multiservice network. The provi-
sion of quality-of-service (QoS) guarantee has been ex-
tensively investigated in the networking field. Relatively

less attention seemed to have been paid to end-systems

and the operating system which controls the activities on
the end-systems.

We note that in multimedia systems, it is not suffi-
cient to guarantee the transmission of multimedia (MM)
information flow between two endsystems at the level of
networking service. In the end, it is the endsystem (con-
trolled by an OS) that uses this networking service to pro-
vide multimedia service to end-users. Enhancements in
both the endsystem hardware and software are needed in
order to meet the time-constrained high processing re-
quirements of MM applications.

An integrated multimedia system is a system where
the CPU has direct control over all media including con-
tinuous media. This contrasts to a control-only system,
where the continuous media data does not touch the oper-
ating system or main memory, but rather uses a separate
infrastructure. The integrated solution has many advan-
tages in terms of flexibility, scalability and cost, and is
therefore our goal environment. In such integrated envi-
ronments, the operating systems are critical both in ac-
cessing networking services and in controlling the
activities on the endsystems. It is therefore vital to en-
hance the functionality and performance of the operating
systems in order to provide feasible supports for multime-
dia communications and applications [2, 4].

In the MMOSS project (“Multimedia OS Supporting
Environment”), we have proposed and are experimenting
with a soft real-time framework for the operating systems
with supporting features for multimedia. We have also
proposed and are experimenting with several base sched-
uling methods which are suitable for supporting continu-
ous media communications and applications. In the
following, we address briefly the motivation, rationale
and realization schemes of our framework and scheduling
schemes.

2. Multimedia applications and soft real-time
framework

Appeared in Proc. IEEE FTDCS'95

2.1 Requirements from multimedia applica-
tions

It is well known that multimedia applications have
posed a set of new functional and performance require-
ments on hardware and software components of a com-
puter system. Especially, continuous media(CM)
represents a significant departure from traditional appli-
cations and places a new set of constraints on the operat-
ing system supporting services. Two constraints among
them are dominant requirements on the operating systems
which try to support multimedia, i.e., the timeliness re-
quired to simulate continuous media and the unavailabili-
ty of brute force resources with which to do so.

The central idea and starting point for supporting
multimedia (especially continuous media) communica-
tions and applications should be to exploit the special fea-
tures of them. That is, the support of OS to continuous
media should exploit the special features of continuous
media which are not present in or are not typical of other
kinds of computer and communication applications.
Some of these features can be identified as soft real-time,
soft guarantee, periodicity, error-tolerance, adaptability,
etc.

The types of MM applications are diverse. We main-
ly pay our attention to a MM application domain called
multimedia collaboration (MMC). Examples of such ap-
plications can be found in circumstances such as [1]. In a
typical MMC scenario, several users collaborate their
work by working on some commonly accessible docu-
ments concurrently, and they usually interact with one an-
other by way of live interactive audio/video connections.
Because the parallel availability of the continuous media
and the discrete media is necessary for the users’ collabo-
ration, the key point here is that the requirements from
both should be satisfied at the same time.

2.2 Features of CM applications

In comparison to hard real-time applications, the
nonrigidity or flexibility of continuous media (CM) appli-
cations and communications can be seen in several as-
pects. (Of course, we also keep in mind that not all the
CM applications have the same flexibilities or the same
degrees of flexibilities.)

First, some loss of CM data packets or fail to process
some CM data packets or CM-related events are accept-
able. Although the permissible loss varies from applica-
tions to applications, human eyes and ears apparently can
tolerate and smooth some glitches from missing samples
or events.

Second, we can identify three kinds of possible flex-

ibilities (adaptabilities) which can be exploited. That is,
rate, data volume and playback delay of CM applications
are in many cases adaptive and can be adjusted in certain
ranges.

With MMC as a background and as long as schedul-
ing is concerned, continuous media applications and com-
munications usually posses the following features:

1) A high degree of guarantee is required but a strict
hard guarantee is not needed. That is, some violations of
timing constraints can be tolerated. 2) A high degree of
CPU-usage should be achieved. That means, for example,
the schedulability’s test and the scheduling mechanisms
for real-time processes or threads should not be too time-
consuming; sometimes a trade-off between efficiency and
optimum should be made. 3) Real-time (RT) processes as
well as non-real-time processes should be accommodated
in the same framework. 4) A certain degree of elasticity
in describing the real-time properties of a RT process at
creation time should be allowed. For example, the worst
execution time of the process need not be the exact real
upper bound of the process execution at run time.

As is evident, one of the key points is how to exploit
the possibility of sacrificing absoluteness for a higher ef-
ficiency and utilization, since MM systems are generally
no hard real-time systems. And at the same time, a certain
degree of guarantee of service provision should be main-
tained.

2.3 Soft guarantee and process framework

Our soft real-time framework proposal consists of a
process framework for categorizing processes, some tim-
ing enforcement models and some base scheduling
schemes. One of the overall goal of our soft real-time
framework is to achieve a good approximation of the tim-
ing properties as predicted by the hard real-time schedul-
ing theory so that the whole system is run in a more or
less predictable manner.

We propose to use the following process framework.
Processes in this framework will be treated in terms of
processing possibility in three categories: “sure” (but not
absolute) guarantee, “maybe” guarantee and “best-ef-
fort”. The processes in the first two categories have to
make an explicit claim about their timing constraints and,
if accepted by the admission control of the scheduling
subsystem, will then receive a corresponding service --
with “sure” and “maybe” guarantees of their timing con-
straints respectively. Timing constraint specification con-
tains such real-time features as deadline, period duration,
worst-case execution time, etc. The rationale for the
above categorization is that the most important MM ac-
tivities can then be favored at most. Less important activ-

ities can be less favored. Other activities take what is left.

The following three timing enforcement models are
taken into consideration: (1) Cooperative: the scheduling
system assumes that the timing constraints claimed by RT
processes are also to be observed strictly by them. (2) Im-
perative: the scheduling system enforces the timing con-
straint on the running processes. That is, the scheduler’s
view of period, deadline and execution time will be im-

posed on the running processes, regardless whether the

running processes have really been executed in the
claimed periods etc. (3) Semi-imperative: It is assumed
that the timing constraints claimed by RT processes are
usually observed by them. The scheduling system moni-
tors their executions. In case of timing specification viola-
tion, a timing-violation-handler defined by the scheduling
system or by the process itself will be invoked. The usage
of the models depends on the needs of the applications
and the system environment, i.e., on the concrete seman-
tics of the needed soft guarantee.

2.4 Base scheduling methods

As stated above, a scheduling subsystem in our
framework contains an admission controller and a dis-
patcher exercising some scheduling methods. The basic
requirement on a base scheduling method is that it should
be simple, flexible yet powerful. Similar to the idea of
[6], our work emphasizes on both predictability and flexi-
bility. In our current implementation, two base scheduling
methods (CO-SCHEDULE and SIM-SCHEDULE) are
used to reflect the cooperative timing enforcement model
and the semi-imperative timing enforcement model re-
spectively. Both scheduling methods are designed by in-
tegrating some elements from the rate-monotonic
scheduling, the priority-based scheduling and the weight-
ed round-robin scheduling. The Generalized Rate Mono-
tonic Theory [9] is used in both methods as a basis for
admission control in creating new processes. The other

related results of the theory are also used in other aspects

of the system implementation such as preventing un-
bounded priority inversion by way of some forms of pri-
ority inheritance.

The choice of rate monotonic scheduling as a cor-
nerstone of our scheduling methods lies in its simplicity
and flexibility. In contrast to a pure fixed-priority schedul-
ing method, rate monotonic scheduling has two attributes:
(1) it can do admission control in a very simple way by
checking the processing capacity required by the process-
es, especially in the context of soft real-time; (2) the pri-
orities of the processes can be dynamic and will be
adjusted when new processes are admitted into the sys-
tem.

3. Overall realization schemes

As mentioned above, one of the overall goal in im-
plementing our soft real-time framework is to achieve a
good approximation of the timing properties as predicted
by the hard real-time scheduling theory so that the whole
system is run in a more or less predictable manner. By ex-
ploiting the soft real-time properties of the CM applica-
tions, this approximation can be realized in simple and
efficient ways.

» Scheduling subsystem

Above all, the first realization issue is the efficient
implementation and provision of the base scheduling ser-
vices and diverse soft guarantee semantics. In order to fa-
cilitate the estimation of process processing capacity
usage, our scheduling subsystem is designed and imple-
mented to be time-constraint predictor and time-con-
straint enforcer in one. We have also designed the
programming interfaces for process management in such
a way that the applications can access the soft guarantee
real-time services flexibly.

In addition, the following issues are also under our
current investigation. The basic ideas to solutions are
sketched below.

» Implementation schemes for applications
Since periodicity is a typical feature of the MM ac-

tivities, the proposed scheduling methods provide “sure
guarantee” and “maybe guarantee” only to virtual period-
ic processes. Naturally periodic applications can be im-
plemented in the periodic scheme easily. Non-periodic
applications which need guarantee can be rendered as
pseudo-periodic processes to fit into the framework.

 Structure of OS

We advocate a “monolithic micro-kernel” structure
with many traditional system call-like kernel functions
being implemented as user-space libraries. In this way,
the advantage of micro-kernel can be achieved to some
extent. For example, rescheduling / context switch can be
done without the influences of some long-delaying sys-
tem call executions. At the same time, the accounting
complication by a pure micro-kernel structure [6] can be
avoided to some extent. First, the cost of invoking library
functions is accounted as part of the capacity reserved by
the user processes. Second, the capacity used by the sys-
tem kernel on behalf of a user process should be “paid”
by the user process and it is far easy to do such account-
ing in a monolithic way. The system should provide “ad-
visory” cost information with regard to the execution of
MM-related library functions and system calls in order to
aid the user processes in reserving their processing capac-
ities. It is sometimes quite difficult to estimate their costs

for all circumstances accurately. This difficulty can be al-
leviated to some extent since our scheduling subsystem is
designed to be time-constraint predictor and time-con-
straint enforcer in one. With the aid of such a scheduling

subsystem, the user processes can undergo a “try and re-

vise” procedure to attain a good estimation of their actual
processing capacities.

» Considerations on the cost of scheduling and
interrupt processing

In the case where the amount of such cost is quite
small, it can be taken as part of the system variations
which should be tolerated by the soft-guarantee semantics
of the framework. In the case where the amount of such
cost is too significant to be ignored, the capacity for such

cost can be reserved by reserving the processing capaci-

ties for one or two virtual “system-overhead” periodic
processes with very short virtual periods. (According to
the rate-monotonic theory, these virtual processes can
break the executions of other processes at any time when
they are ready, because they have the highest priorities re-
sulting from their very short periods. This has the practi-
cal effect that the virtually arbitrary breaks caused by the
scheduling and interrupt handling are, to a large extent,
compensated by these virtual reservations.)

» Application-driven protocol processing architec-
ture

For a communication-intensive application, the cost
of interrupt processing of incoming packets can be quite
significant if a BSD style (SOFTINT) protocol processing
method is used. An application-driven protocol process-
ing architecture is needed in that the protocol processing
functions are implemented as user-space libraries as
much as possible. Such an architecture makes it simple to
schedule protocol processing using the capacity reserved

by its corresponding user processes. Techniques and mea-

ing-constraints of processes and indicate system overload
to application processes.

4. Soft real-time scheduling algorithms in
experiment

Several soft real-time scheduling algorithms are un-
der our current experiment. These include a cooperative
soft real-time scheduling method (CO-SCHEDULE) and
a semi-imperative soft real-time scheduling method
(SIM-SCHEDULE). Another example is an elastic time-
scale soft real-time scheduling scheme (ET-SCHED-
ULE). The CO-SCHEDULE is designed by integrating
some elements from the rate-monotonic scheduling, the
priority-based scheduling and the weighted round-robin
scheduling. The SIM-SCHEDULE is an extension of the
CO-SCHEDULE to run under semi-imperative enforcing
model. And the ET-SCHEDULE is a novel scheduling
framework into which many scheduling methods includ-
ing CO-SCHEDULE and SIM-SCHEDULE can be
placed to function. The soft real-time scheduling algo-
rithms deal with both real-time processes and non-real-
time processes.

4.1 Design overview of CO-SCHEDULE and
SIM-SCHEDULE

A high-level presentation of the CO-SCHEDULE
scheduler is shown in the following figure. The CO-
SCHEDULE scheduler supports a set of high-priority pe-
riodic processes and a set of normal processes. A high-
priority periodic process denoted a% Ras a higher pri-
ority than any normal processes and can preempt them at
any time. Inside the set of the high-priority periodic pro-
cesses, the processes are scheduled according to the rate-
monotonic scheduling algorithm. The mapping of periods

sures are taken to reduce the influences and randomnessto the priorities are dynamic and are managed by the

of interrupt processing caused by incoming packets so
that the cost for such interrupt processing can be more
closely reserved in the form of the virtual “system-over-
head” periodic processes mentioned above.
* The FAST adaptive service model
Soft real-time techniques can not only provide some

scheduling subsystem. The normal processes are again
classified into different priority classes -- normal priority
class 1, normal priority class 2, normal priority class
3,......, respectively, where a small number denotes a high-
er priority. Inside a normal priority class n, the processes
denoted as 'P are scheduled according to a weighted

degree of soft guarantee but can also accommodate the round-robin scheduling algorithm. That is, when sched-

flexibility of adapting to changing system environments.

The latter takes the form that it is possible to support a
flexible and adaptive service model (the FAST model) in
our soft real-time framework [3]. The FAST model can

support both the application-initiated adaptations and the
supporting-system-initiated adaptations needed by multi-
media communications and applications. Our soft real-
time schedulers can support the on-line change of the tim-

uled to run, a process'Pwith weight W, is given W,

time budget. The process runs until it is blocked or the
time budget is used up. In the latter case, the process is
placed to the end of the class n waiting queue.

The CO-SCHEDULE scheduler runs according to

the cooperative time model. That is, the processes are as-

sumed to run not longer than the worst-case-execution
claimed by them. The scheduler schedules the processes

simply according to their priorities and weight. No moni-
toring of the execution time of the current process is con-
ducted.

High-priority periodic process set

Normal priority class 1
1
Pll Pl P4 P14 o o0
Normal priority class 2
2 2 2
P P%| |P%3 . oo
®
®

Figure 1. CO-SCHEDULE scheduler overview

e SIM-SCHEDULE: a semi-imperative soft real-
time scheduling method

The SIM-SCHEDULE scheduler extends the CO-
SCHEDULE method by monitoring the execution of the
high-priority periodic processes. The scheduler preempts
a high-priority periodic process if this periodic process
has not completed its task in one of its period after using
up its claimed ﬁ execution time. Several following ac-
tions are then possible. For example, it can be rendered
into a process of a certain normal priority class m to exe-
cute its emergency-handler or it can be simply allowed to
complete its current execution in its next period.

» Usage of the schedulers
Periodicity is a common property of real-time tasks
in continuous media applications. The high-priority peri-
odic process set can, for example, be used to implement
functions for isochronous data transmission and con-
sumption. The set of the high-priority periodic processes
can be (soft) guaranteed to meet their timing specification

if the processor usage of the set are checked to be in the

capacity limit given by the theorems in [9]. Note the pro-

cesses in the normal process class can also be scheduled

to run in some sense of real-time if carefully planned.

The implementations of the schedulers can be de-
rived from a priority-based scheduler. The high-priority

periodic processes are assigned different priorities ac-
cording to their periods (if necessary, do a period-trans-
formation). The processes are allowed to mask some
small parts of its process body as non-preemptable.

* Role of emergency handler

System-defined and user-defined emergency han-
dlers are provided in the SIM-SCHEDULE scheme. By
emergency handler, the scheduling subsystem can, for ex-
ample, notify an application process that it is unlikely to
schedule its activity according to its time-constraints.
This mechanism allows the application processes to react
to the missed deadlines in an application-specific manner.
Such a notification mechanism is one of the key features
with which an adaptive service supporting model can be
built.

Under the control of the SIM-SCHEDULE schedul-
er, the mal-function of one of the high-priority periodic
processes will not have negative effects on other high-pri-
ority periodic processes and the processes of the priority
class 1 to (m-1).

» Implementation of “maybe” guarantee

The outcome of the decision of the admission con-
troller of the scheduling subsystem can be one of the fol-
lowing three cases: a guarantee of the real-time attributes
of the new process can be maintained; a “maybe” guaran-
tee of the real-time attributes of the new process can be
maintained; or a “best-effort” maintenance of the real-
time attributes of the new process will be done. We have
proposed two algorithms to implement the semantics of
“maybe” guarantee. “Sure” guarantee and “maybe” guar-
antee processes are not only treated differently in admis-
sion control, they are also treated differently in other
situations.

4.2 Programming interfaces of usage

» Cooperative periodic process

Under the cooperative periodic process model, the
periodic processes independently use the timing facilities
to reflect and embody their own timing constraints. It is
therefore assumed that each instantiation of the task body
will be executed within a worst-case execution time and
the OS does not need to impose any extra constraints on
its execution. The model is direct and simple. But it is
then impossible to have a good control of timing viola-
tions caused by imprecise estimation of processor usage
(execution time) of the processes, by other transient over-
load conditions, or by synchronization conditions.

A programming interface for the periodic processes
is provided so that the user only need to provide task
body and specify real-time constraints such as start time,

period, execution-time. The real arrangement of the peri-
ods will then be done by the OS automatically. The pro-
gramming interface looks like:
CreateCoPeriodicProc (unit_prog, start_time,

end_time, period, unit_comp_time)

where, unit_progis the entry point of a procedure
which should be executed in each peristhrt_time,
end_time, period, unit_comp_tinaee the intended start
time, end time, period and computation time per period of
the intended virtual periodic process.

« Semi-imperative periodic process

Under a semi-imperative periodic process model, the
periodic processes provide specifications on their timing
constraints. The OS monitors the execution of the process
to detect possible timing violations. There are several va-
rieties of timing violations and violation handling. If the
execution of the task body has ever exceeded the worst-
case execution time as claimed by the process in its RT
attributes, then it is a timing violation from the side of the
process. If the OS detect that the system can not provide

enough processing cycles to meet the need of the claimed

timing requirements of the process, then it is a timing vio-
lation from the side of the OS. In the case of a timing vio-
lation, handling can be done by a OS procedure or a
process-specific procedure. The method of handling can
be roughly classified into abortive and corrective. An ex-
ample programming interface looks like:
CreateSimPeriodicProc (unit_prog, start_time,

end_time, period, unit_comp_time, excep)

where, unit_progis the entry point of a procedure
which should be executed in each peristhrt_time,
end_time, period, unit_comp_tinaee the intended start
time, end time, period and computation time per period of
the intended virtual periodic procegscepis the excep-
tion handler which should be called by the OS when a
timing violation arises. (The simplest formefcepis the
termination of the whole process). In our opinion, a semi-
imperative process model is needed in most systems.

For timing enforcement, we use a simple scheme
used in many static priority preemptive schedulers -- a
periodic clock interrupt runs the scheduler; a budget timer
ensures that control is returned to the scheduler if a task
exceeds its permitted worst-case-execution time.

* Run a non-periodic process in the periodic sched-

uling framework

The CO-SCHEDULE and SIM-SCHEDULE sched-
uler both support a set of high-priority periodic processes
and a set of normal processes. The set of the high-priority
periodic processes can be guaranteed (“sure” or “maybe”)
to meet their timing specification if the processor usage of
the set are checked by the admission controller to be in

the capacity limit.

However, we also sometimes want to guarantee the
execution of a non-periodic process which does not do
continuous-media-related processing. For example, in a
MMC scenario, we want to guarantee the file transfer ac-
companying a video connection. Note, in order to check
the schedulability bound in a scheduling system using
rate-monotonic scheduling, a non-periodic process has
also to be considered and scheduled in the same way as a
periodic process. In order to run a non-periodic process in
our periodic scheduling framework, the scheduler has to
schedule the non-periodic process in an “artificially peri-
odic” way.

Since non-periodic programs do not have an explicit
periodic structure and requirement, they can be handled
by arbitrarily setting the period computation time and pe-
riod to yield an intended rate. The following implementa-
tion, for example, is a possible form:

CreateProgAsPeriodicProc (prog, start_time,

period, unit_comp_time)

where, prog is the entry point of a program,
start_time, period, unit_comp_tinaee the intended start
time, period and computation time per period of the in-
tended virtual periodic process.

5. Preliminary implementation experiences

Preliminary experiences have been gained in imple-
menting our soft real-time framework, especially the CO-
SCHEDULE and SIM-SCHEDULE scheduling sub-
systems, in the MMOSS project on a development envi-
ronment with TI-TMS-C’40 processors[2]. It turns out
that it is easy to implement our base schedulers efficient-
ly. Related programming interfaces for process manage-
ment have been designed and are being implemented.
More other work is under way. Practical experiences with
the FAST service model are also gained and reported [3].

It is of course very important to have a very low
scheduling cost, otherwise the goal of real-timeliness can
not be achieved. A scheduling scheme such as SIM-
SCHEDULE can indeed be implemented in a very effi-
cient manner -- based in part on a priority-driven dis-
patcher. The following table and figure give some
examples of the scheduling cost of a preliminary version
of the SIM-SCHEDULE as we have implemented on a
TMS-C’40 processor. The numerical examples listed in
the table (for scheduling interval of 5ms) are the maxi-
mum costs which are not usually needed in a normal exe-
cution scenario. Note that the TMS-C'40 is a RISC
processor with many registers. The scheduling cost can
be reduced greatly if the operations for register switch

can be halved or the processor clock frequency is raised.

Table 1. Maximum Scheduling Cost

Max. Time for
Scheduling inps / Processor Clock Frequency
Max. Scheduling (in MHz)
Cost in %
No. of Ready 40 80 120
Processes in run_q
1 5.70/0.11 2.85/0.06 1.90/0.04
5 7.00/0.14 3.50/0.07 2.33/0.05]
20 11.87/0.24 5.94/0.12 3.96/0.08
Normal Case
(No Process Switch) 1.20/0.024 0.60/0.012 0.40/0.008

Processor Clock Frequency: 40 MHz

10
ormal Case ——
1 Ready Process +--
5 Ready Processes
. 10 Ready Processes
20 Ready Processes -

X
£
I 6
o
o
(=)
£
=
3 4
<
[5]
n

2

0 1—;,;:;: = [l]

10
Scheduling Interval in ms

100

Figure 2. Maximum Scheduling Cost in %

6. Concluding remarks

Our soft real-time framework proposal consists of a
process framework for categorizing processes, some tim-
ing enforcement models and some base scheduling
schemes. Feasible soft real-time scheduling schemes are
the cornerstones for the functionality and efficiency of the
framework. We are experimenting with several base
scheduling methods which are suitable for supporting
continuous media communications and applications.
These include a cooperative soft real-time scheduling
method (CO-SCHEDULE), a semi-imperative soft real-
time scheduling method (SIM-SCHEDULE) and an elas-
tic time-scale soft real-time scheduling scheme (ET-
SCHEDULE). Preliminary experiences with these algo-
rithms are encouraging.

The work in [8] concerning a Sun version of SVR4
UNIX fails partly because they only provide static fixed
priority scheduling and neither admission control nor tim-
ing-constraint violation control is exerted. Earlier work
such as those in [5, 7] has shown the feasibility of real-
time technigues to multimedia environments but they
generally lack the flexibility for a dynamic system. Our
work concerning the realization of a soft real-time frame-
work aims at both predictability and flexibility. It is also
simple to implement.

Acknowledgment

Discussions with Radu Popescu-Zeletin have helped
to refine the ideas. Cooperative team-work from other
MMOSS project members is also gratefully acknowl-
edged.

References

M. Altenhofen, J. Dittrich, et al, “The BERKOM Multimedia Col-
laboration Service,Proc. ACM Multimedia931993.

C. Fan, “MMOSS: Soft Real-Time Operating System Support in a
Multimedia Communication SubsystemProc. 19th IFAC/IFIP
Workshop on Real-Time ProgrammitBAC/IFIP, June, 1994.

C. Fan, “An Adaptive Service Model for Supporting Multimedia
Communications and Applicationdd appear in Proc. APCC’95
Japan, 1995.

R. G. Herrtwich, The Role of Performance, Scheduling, and
Resource Reservation in Multimedia Syste@perating Systems
of the 90's and Beyond, LNCS 5&yringer, 1992.

(2]

(3]

(4

It is clear that multimedia operating systems must
have real-time features and other supporting features for
distributed multimedia applications. Only giving the
highest priority to communication protocol processing
can only achieve the effect that the multimedia data pack-
ets are processed as soon as possible. This is, however, 7]
not enough for the whole system effect, since the applica-
tion processes that consume these MM data can not be
scheduled to use these data in time and according to their
periodicities. Therefore, there is the necessity for a real-
time framework such as ours which controls all system
activities.

(5]

(6]

(8]

(9]

K. Jeffay, D. L. Stone & F. D. Smith, Kernel Support for Live Dig-
ital Audio and VideoComputer Communication¥ol. 15, No. 6,
July 1992.

C. W. Mercer, S. Savage & Hideyuki Tokuda, Processor Capacity
Reserves for Multimedia Operating Systerfiechnical Report
CMU-CS-93-157Carnegie Mellon University, 1993.

J. Nakajima, M. Yazaki & H. Matsumoto, “Multimedia/Realtime
Extensions for Mach 3.0Proc. USENIX Microkernel Conference
Apr. 1992.

J. Nieh, et al, “SVR4 UNIX Scheduler Unacceptable for Multime-
dia Applications,"Proc. 4th Int'l Workshop on Network and Oper-
ating Systems Support for Digital Audio and Vid€oy. 1993.

L. Sha, R. Rajkumar & S. S. Sathaye, “Generalized Rate-Mono-
tonic Scheduling Theory: A Framework for Developing Real-Time
Systems,lEEE Proceedings Journalan. 1994.

