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Abstract

Eclipse/BSD is an operating system derived from
FreeBSD. Eclipse/BSD provides flexible and fine-grained
Quality of Service (QoS) support for (server) applica-
tions. We have implemented hierarchical proportional-
share cpu, disk and link schedulers, the /reserv file system
providing an API to manipulate ”reservations” and a tag-
ging mechanism for the association of reservations with
schedulable operations. Currently, Eclipse/BSD is being
used to guarantee QoS to server applications, and in par-
ticular to differentiate the performance of different web
sites hosted on the same platform.

1 Introduction

The demand to provide Quality of Service (QoS) guar-
antees is increasing with the need to run multiple server
applications, such as audio and video media servers and
web servers, and host services for multiple entities (e.g.,
companies, individuals) on the same platform. QoS re-
quirements may be client-based, service-based, content-
based, and so on. For example, it may be important to dif-
ferentiate among incoming client requests and to allocate
resources based on the client’s identity. Systems support-
ing multiple services, including multiple instances of the
same service, may that require system resources be allo-
cated based on server specifications and credentials, leav-
ing it to the servers to differentiate among clients. Many
variations are possible and all require the existence of flex-
ible schemes for the management and allocation of system
resources such as the cpu, disk and network bandwidth.

In this paper we present, our design and rationale for
a flexible, fine-grained resource management API; an im-
plementation of our approach in the Eclipse/BSD operat-
ing system; and a set of experiments to demonstrate the
soundness of our approach. Our work is based on four
key elements: (i) the use of hierarchical, proportional-
share resource schedulers, (ii ) the notion of areservation

and its implementation in the/reserv file system, (iii )
a tagging mechanism for the association of reservations
with schedulable operations, and (iv) an access and ad-
mission control scheme which leads to a new and useful
notion ofreservation domain.

One of our design goals is to provide QoS support for
a large set of (server) applications without imposing sig-
nificant changes to their design. For example, if an appli-
cation hosts services for multiple companies, we do not
want to require the existence of separate instances of the
application, one for each company, in order for them to
benefit from QoS support. Another of our design goals
is to provide a flexible resource management framework
capable of expressing and implementing a large set of pro-
visioning needs.
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Figure 1: Scheduler hierarchies

1.1 Schedulers

Our system makes use of hierarchical, proportional-share
resource schedulers [14, 13, 3, 17] at the device driver
level for the management of disk and network bandwidth
and for cpu scheduling. The resource schedulers we have
implemented are dynamically reconfigurable in the sense
that the scheduler hierarchy and/or the weights can be al-
tered without stopping the scheduling itself. These recon-
figurations are subject to access and admission control,
but are otherwise unrestricted.
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Hierarchical, proportional-share resource schedulers
support a general notion of structured resourcereserva-
tions. Each node in the hierarchy represents areserva-
tion with its shareequal to its weight divided by the sum
of the weights of its parent’s children (including its own
weight). For example, Figure 1 illustrates two scheduler
hierarchies H1 and H2 for disk bandwidth. Nodes A and
B, in the H1 scheduler hierarchy, each represent a reser-
vation of 50% of the disk bandwidth. At the next level in
the H1 hierarchy, each of the nodes, C, D, E, and F, repre-
sent a 25% reservation of the overall disk bandwidth, or,
in the case of C and D, each has a 50% reservation of A’s
reservation, etc. It is also interesting to note that in the
single-level H2 hierarchy, nodes C, D, E, and F each have
a 25% reservation of the overall disk bandwidth. The dif-
ference between the H1 and H2 hierarchies is how they
dynamically apportion excess bandwidth. For example, if
C were not using any disk bandwidth, then under H1, D,
E, and F would obtain a 50%, 25%, and 25% share of the
disk bandwidth, respectively, while under H2 they would
each get a 1/3 share of the disk bandwidth.

We distinguish two kinds of reservation nodes in a
scheduler hierarchy: schedulers and (request) queues.
The scheduler nodes implement a scheduling algorithm
for selecting resource requests from immediate descen-
dant nodes; queue nodes are points where actual resource
requests are initially enqueued. Queues are always leaves
in the resource scheduler hierarchy. For example, the leaf
node C in H1 is a queue at which disk I/O requests may
be enqueued. Disk I/O requests and network output re-
quests are represented bybuf{} andmbuf{} headers,
respectively.

1.2 Reservations

We have designed and implemented the/reserv (reser-
vation) file system which provides an API and names-
pace through which we can access, use, and reconfig-
ure the system resource schedulers. The directory nodes
in the /reserv file system correspond to the nodes
in the scheduler hierarchy and thus represent reserva-
tions. We refer to the directories in the/reserv file
system asreservation directoriesor simply reservations.
The /reserv file system API (described more fully in
the next section) provides the means to add and delete
reservations and to alter the scheduling weights through-
out the hierarchy. Each resource is represented by a
reservation directory under/reserv : /reserv/cpu ,
/reserv/wd0 (disk 0), /reserv/fxp0 (network in-

terface 0), etc. The directory hierarchy under each dis-
tinct resource represents all the currently existing reserva-
tions for that resource. For example,/reserv/wd0/r1

and /reserv/wd0/r2 represent bandwidth reserva-
tionsr1 andr2 on disk 0. Reservations in/reserv cor-
responding to scheduler nodes are calledscheduler direc-
toriesand those corresponding to queues are calledqueue
directories.

1.3 Tagging

An important aspect of our design is the association of a
reservation (queue directory) with an operation on an ob-
ject. The operations on objects include: reading/writing
a file, sending a message on a socket, and executing a
thread (a process in FreeBSD). The corresponding reser-
vations are disk bandwidth, network interface transmis-
sion bandwidth, and cpu cycles, respectively. In our de-
sign, we associate reservations with references to objects
rather than to the object itself, thereby permitting the ob-
ject to be shared by different principals without having to
share their reservations.

In the case of a file,f , we tag a file descriptor corre-
sponding tof with a reservation. The reservation must be
a queue directory for the device on which the filef re-
sides. For a connected socket,s , we tag a file descriptor
for s with a reservation. The reservation must be a queue
directory for the network interface used by packets from
s . For connected sockets, it is easy to determine the ap-
propriate network interface, but for unconnected sockets,
the network interface depends on the destination address
which is not known a priori. In this case we provide a
mechanism forlate tagging. We also provide a mecha-
nism for dynamically changing the tag of a file descriptor.
In the case of process scheduling in Eclipse/BSD, wetag
each process with a cpu reservation and provide a means
for dynamically changing the tag.

The tags are used to determine the appropriate queue
for I/O requests based on tagged file descriptors. For ex-
ample, if fd is a file descriptor tagged with queue direc-
tory q, then all I/O based onfd will be queued at the
queue node corresponding to the queue directoryq. If
this were disk I/O, then thebuf{} structs representing
I/O resulting from read/write operations based onfd will
include a reference to the appropriate queue. Similarly, a
tagged process will be be scheduled from the correspond-
ing cpu queue.
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1.4 Reservation Domains

Access and admission control applied to the/reserv
file system offer an opportunity to define a useful notion
of reservation domain.Abstractly, access and admission
control are used to restrict (or grant) the right to access,
use, and/or reconfigure the/reserv file system. Since
the /reserv file system is the center of all resource
management in Eclipse/BSD, the instantaneous set of all
rights possessed by a process to use, access, and/or recon-
figure the/reserv file system is called thereservation
domainof the process. This notion of reservation domain
is independent of the usual notion of a process’ protec-
tion domain (the importance of this has been argued else-
where [2]). In our scheme, process credentials include the
PID as well as the traditional UID and GID. Access and
admission control offer restrictions and rights on the use
of queue directories for tagging, the creation of new (sub)
reservations, the changing of scheduling weights and/or
queue capacities, the setting of garbage collection flags,
the passing and/or revocation of rights to other processes
(not only related processes), etc. Our notion of a reser-
vation domain is particularly useful in the client-server
model where fine-grain control over the use of resources
is necessary.

The reminder of the paper is organized as follows.
In the following section, we describe the design and
implementation of Eclipse/BSD in more detail includ-
ing descriptions of the resource scheduler interface, the
/reserv file system, garbage collection, access and ad-
mission control, and reservation domains. In Section 3,
we present out experimental results. We conclude with a
summary of related and future work in Section 4.

2 Design and Implementation

In this section, we describe the design an implemen-
tation of the resource management system used in
Eclipse/BSD. Our current system makes use of hierar-
chical, proportional-share, dynamically reconfigurable re-
source schedulers. Reconfiguration includes the ability
to alter the resource scheduler hierarchies and read and
write scheduler weights and other parameters. A new
file system, /reserv , has been designed and imple-
mented which provides an API through which applica-
tions can configure and use these dynamically config-
urable resource schedulers. Resources are reserved for OS
objects (files, sockets, processes) by associating a reser-
vation (queue directory), not with the object, but rather

with a reference to the object. In the case of files and
sockets, the reservations are associated with the file de-
scriptors referring to the objects and all I/O based on a
particular file descriptor is enqueued at the corresponding
scheduler queue.

In order to ease the incorporation of new resource
schedulers into Eclipse/BSD, an interface is provided
through which resource schedulers can “register” them-
selves for use under the/reserv file system.

2.1 Schedulers

Our work is based on the use of flexible resource sched-
ulers. The resources in question include cpu, disks, and
network interfaces and each has a resource scheduler. The
scheduler for a resource orders therequestsfor access to
the resource. Structurally, ascheduleris a tree ofsched-
uler nodesandqueue nodes. Queues have no descendants
and implement FIFO request queueing (although we do
not rule out the possibility of reordering requests within
a request queue). Scheduler nodes can have queues and
scheduler nodes as immediate descendants. A scheduler
node orders the requests emanating from its immediate
descendants. The ordering is based on its scheduling al-
gorithm and the (visible) states of its immediate descen-
dants. Theroot of a resource scheduler must be a sched-
uler node.

All requests for service arriving at a resource scheduler
(such as anmbuf{} arriving at a network interface) are
“tagged” with a reference to a queue. Requests are in-
serted into the queues corresponding to their tags. The
mechanism for assigning tags to requests is an important
part or the/reserv file system and is described in Sec-
tion 2.5.

The framework consisting of scheduler and queue
nodes supports a wide variety of resource schedulers. For
example, a scheduler node with a single descendant queue
represents a FIFO scheduler. A scheduler node whose im-
mediate descendants are all queues in which the queues
are assigned dynamic “priorities” could implement a pri-
ority resource scheduler. Similarly, a scheduler node
whose descendant queues are assigned weights could im-
plement a proportional-sharescheduler based on weighted
fair queueing. Hierarchical resource schedulers are sup-
ported by inserting additional scheduler nodes within the
hierarchy.

Our current focus has been on hierarchical, propor-
tional share resource schedulers. We have implemented a
number of different proportional-share schedulers within
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the Eclipse/BSD framework. For the cpu scheduler we
use a single-level MTR-LS scheduler [6]; we have im-
plemented hierarchical YFQ for the disk scheduler [4];
and for the network we have implemented the hierarchi-
cal WF2Q algorithm [5].

Our scheduler implementations are novel in the sense
that we can add/delete queues and scheduler nodes and
change scheduler weights without stopping the resource
scheduler. For example, the implementation of WF2Q
maintains an exact GPS simulation while permitting (i)
the addition and/or deletion of nodes to the scheduler hi-
erarchy, (ii ) the changing of scheduler weights, and (iii )
the automatic adjustment of the virtual work and time
scales to avoid arithmetic overflow during long-duration
busy periods. A detailed description of our WF2Q imple-
mentation is beyond the scope of this paper.

2.2 The Resource Scheduler Interface

In this section we describe the interface that a re-
source scheduler must provide to the kernel in order
to “participate” in the /reserv file system. The
/reserv file system interacts with a resource sched-
uler exclusively through this interface thereby simplify-
ing the task of encorporating new resource schedulers
into the /reserv file system. Resource schedulers
must “register” at boot time by presenting a set of in-
terface routines to the kernel. Registration consists of
usingreservfs_register() to pass pointers to in-
terface routines and an opaque pointer value (void *) to
the kernel. The system maintains a Device Translation
Table (DTT) which contains registration information for
each resource scheduler. The opaque value (denoted by
priv (ate)) is passed as an argument whenever the ker-
nel uses an interface function. This value can be used by
schedulers to identify underlying hardware, such as net-
work interfaces, while using shared code.

Interface functions provided by the resource schedulers
to the kernel, usingreservfs_register() , include:

init(priv) : The kernel calls this function very early
in the boot process and before any scheduler or queue
nodes have been created. The resource scheduler has
the chance to allocate and initialize any data structures it
needs prior to any calls tocreate() . priv is obtained
by the kernel during registration.

create(priv, parent, type) : A call to this
function returns an opaque pointer to a new scheduler
node or queue node (determined bytype , viz., SCHED

or QUEUE, respectively). Theparent parameter is an

opaque pointer to a previously created scheduler node
which will be the immediate ancestor of the newly cre-
ated scheduler node or queue node. Ifparent is null,
then the newly created (scheduler) node is considered the
root scheduler node of the resource scheduler.

start(priv, root) : This function is called by the
kernel after all initial nodes have been created (at least the
root scheduler node and a queue) and is used to start
the scheduling of tagged requests for this resource. The
resource scheduler responds to this function by enabling
handlers or enabling the underlying controller to respond
to events and by commencing to schedule tagged requests
for the resource.

delete(priv, node) : This function is called to
deletenode wherenode is an opaque pointer to either
a scheduler or queue node. Immediate deletion may re-
quire flushing outstanding requests. If the resource sched-
uler does not support immediate deletion (for example
the network scheduler may continue to send previously
enqueued packets), the resource scheduler could indicate
successful deletion even though the actual deletion takes
place after all pending requests have been serviced. Oth-
erwise, the function could return failure and, in this case,
the kernel will calldelete again at a later time.

get/set(priv, node, values, type) : These
functions allow the kernel to get/set scheduler parameters.
The API interpretsvalues differently depending on the
resource scheduler, thetype argument, and thenode
reference (queue or scheduler node). The result of a set
operation may fail due to admission control checks.

The create , delete , and set() interface func-
tions must not interfere with the resource scheduler’s op-
eration. It is assumed that these calls can be made while
the resource scheduler is running.

2.3 The /reserv API

In this section we describe/reserv API and its use of
the interface to the resource schedulers. Due to the hi-
erarchical nature of the resource schedulers, it is natural
and convenient to associate a directory hierarchy with the
scheduler and queue nodes of the resource schedulers.

The directory hierarchy of the/reserv file system
consists of two types of directories, viz.,scheduler di-
rectories and queue directories. Since scheduler and
queue directories correspond to resource reservations, we
will sometimes refer to them asreservation directories
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or simply asreservations. Scheduler directories corre-
spond to scheduler nodes and queue directories corre-
spond to queue nodes. Each independently scheduled
resource is represented by a scheduler directory under
/reserv which corresponds to the root scheduler node
for that resource. For example, we have/reserv/cpu ,
/reserv/wd0 , and/reserv/fxp0 corresponding to
the cpu, disk, and network resources, respectively.

Every scheduler directory contains (among other
scheduler and queue directories) files namedshare ,
newsched , and newqueue . Each queue direc-
tory contains two files namedshare and backlog .
Files (scheduler directories, queue directories,share ,
backlog , newsched , and newqueue files) in
/reserv are represented byreserv{} nodes. The
reserv{} structure has atype field and other
scheduler-independent information regarding the file,
much like theinode{} of a traditional Unix file sys-
tem. Thereserv{} structures representing scheduler
directories and queue directories contain opaque pointers
to scheduler and queue nodes, respectively. These fields
hold the values returned by calls tocreate() .

In the following paragraphs, we explain the use of the
various /reserv files. Let dir be a reservation, ei-
ther scheduler or queue, andpdir be its parent reserva-
tion. The filedir/share (in the case of a proportional-
share scheduler) contains two values: the weight with
which dir shares the resource, available frompdir ,
among its siblings and a minimum guaranteed absolute
value. Writes todir/share attempt to change these
values and are subject to admission control. Ifpdir is
/reserv , then thedir/share file is read-only and
represents the resource in its entirety.

If dir is a queue directory then reading from
dir/backlog returns the count of requests served and
the aggregate quantity of service provided (in cpu time or
I/O bytes). Writing todir/backlog sets the maximum
number of requests and aggregate quantity of service that
may be enqueued, and resets the corresponding counters.

The newsched and newqueue files are used to
create new scheduler and queue directories. Open-
ing dir/newsched creates a new scheduler direc-
tory in dir along with its share , newsched , and
newqueue files. During the open, a call is made to the
create(priv, parent, SCHED) function which
returns an opaque pointer to a new scheduler node. The
value of parent is equal to the value of the opaque
pointer stored in thereserv{} node representingdir .
The names of scheduler directories begin withr (for

reservation) and withindir are numbered uniquely. For
example,dir/r0 , dir/r1 , etc. The file descriptor of
theshare file in the newly created scheduler directory is
returned by the open call.

Similarly, by openingdir/newqueue , a new queue
directory is created indir along with its corresponding
share andbacklog files. In this case a call is made to
create(priv, parent, QUEUE) which returns an
opaque pointer to a new queue node. The names of queue
directories begin withq and, withindir , are uniquely
numbered. The file descriptor of the newshare file is
returned.

In the Section 2.5 we describe the connection between
queue directories and schedulable requests on OS objects
such as files, sockets, and processes.

2.4 /reserv Initialization

Initialization of /reserv occurs after the resource
schedulers have registered and before any file system
is mounted. The kernel callsinit(priv) for ev-
ery resource scheduler registered in the DTT—this gives
the schedulers a chance to allocate and initialize any
needed internal data structures. Next the kernel cre-
ates areserv{} node for the root directory of the
/reserv file system. Then it creates tworeserv{}
nodes for each resource scheduler, one for theroot
scheduler directory and one for a queue directory in
the root scheduler directory. In addition to these, the
kernel createsreserv{} nodes for theshare files
in each directory, thebacklog file in the queue di-
rectory, and thenewqueue and newsched files in
the scheduler directory. For each resource scheduler,
the kernel callscreate(priv, NULL, SCHED) to
create the root scheduler node,root , and calls
create(priv, root, QUEUE) for a second time to
create a queue node. Figure 2 shows the data structures
for the root of the/reserv file system, a scheduler di-
rectory, a queue directory, and the rest of the files that are
created during initialization. Each of the queue directo-
ries (once mounted under/reserv ) is namedq0 , that
is, /reserv/cpu/q0 , /reserv/wd0/q0 , etc.

Once the scheduler and queue directories have been
created for each resource scheduler,start(priv,

root) will be invoked to commence scheduling. This
could involve activating the hardware or switching over
from a standard FreeBSD scheduler to the registered re-
source scheduler. At this point the kernel is able to
use the queue nodes of all the schedulers even before
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the /reserv file system is mounted. Initial daemons
launched from ”rc” scripts will use these request queues.

We will come back to how this is accomplished after
we have discusseddefault lists.

QUEUE

reserv{}

 queue node

opaque pointer

opaque pointer

NEW_S

reserv{}

SHARE

reserv{}

NEW_Q

reserv{}

BACKLOG

reserv{}

SHARE

reserv{}

root scheduler
directories

root scheduler node

root of /reserv file system

SCHED

reserv{}

SCHED

reserv{}

ROOT

reserv{}

...

fxp0wd0

q0

Figure 2: /reserv file system

Access to the/reserv file system API is through
the FreeBSDvnode/vfs file system interface. The
/reserv file-system dependent data corresponds to the
reserv{} nodes and the the file-system dependent
vnodeops andvfsops have been implemented to sup-
port the /reserv API. File system operations cannot
take place until the/reserv file system is mounted. Af-
ter system initialization, avnode{} is created for the
root of the /reserv file system and it is mounted on
/reserv . From this point on, the/reserv API is
available.

2.5 Tagging and the Default List

Every request arriving at a resource scheduler must be
taggedwith a pointer to a queue node. These are the
opaque pointers returned by calls tocreate(priv,
parent, QUEUE) . Thus I/O data structures, such as
buf{} for disks andmbuf{} for network output, gain
a tag field to hold an opaque pointer. We have also aug-
mented theuio{} structure with a new tag field which is
used to propagate opaque pointers to lower levels for the
ultimate tagging of I/O requests. At the resource sched-
uler, the tag (opaque pointer) is used to quickly locate the

queue to which the request belongs.

Earlier we have discussed the use of tags when tagging
file descriptors and processes. These tags were references
to queue directories. In this discussion, atag can be ei-
ther a pointer to avnode{} corresponding to a queue
directory or a (opaque) pointer to a queue node. If the tag
is a pointer to avnode{} , then thevnode{} holds the
pointer for the correspondingreserv{} node and the
reserv{} node holds the corresponding tag, the opaque
pointer to queue node.

Since reservations (scheduler or queue directories) are
garbage collected when they are no longer being used, we
need a way to keep track of references to reservations.
Garbage collection, under Eclipse/BSD, is triggered by
detecting when the number of references to a reservation
goes to zero. We have chosen to use thevnode{} refer-
ence count to hold the count of the total number of ref-
erences to the corresponding reservation. In what fol-
lows we point out the new locations forvnode{} tags
that have been introduced in Eclipse/BSD. These addi-
tional references tovnode{} s are accounted for in the
vnode{} reference count field.

A new tag field is associated with each file descriptor.
Theproc{} structure has been expanded with a tag field
for its cpu reservation. These tags are pointers to vnodes.

The default list of a process is a list ofvnode{}

tags, one for each resource. The default list of a pro-
cess is used to provide tags when a tag is not otherwise
specified. The default list of a processPID is repre-
sented as a new file/proc/PID/default which con-
tains the tags. Reading thedefault file returns the
names of the of queue directories corresponding to the
tags, e.g.,/reserv/cpu/q2 /reserv/wd0/r1/q0

/reserv/fxp0/r5/q3 . A process, with the appropri-
ate access rights, can write thedefault file to change
entries. There is also a second list of tags, called thechild
default-list. The child default-list is also represented as
a file, i.e, /proc/PID/cdefault . When a process
forks, the child’s default list and child default-list are set
to the child default-list of its parent.

When a process uses any of theopen() , accept()

or connect() system calls, the kernel will automati-
cally tag the returned file descriptor with the tag for that
resource currently listed in the default list of the process.
For example, when a process issues aconnect() call,
the kernel determines the network interface, locates the
registered resource scheduler for that interface, and tags
the returned file descriptor with the tag for that interface
currently appearing in the process’s default list. In gen-
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eral, a file descriptor’s tag is initialized forvnodes{}

at open time; for connected sockets atconnect or
accept time; for unconnected sockets atsendto or
senddmsg time. This latter case is referred to aslate tag-
ging since, even if the file descriptor is tagged, the mes-
sage destination may require a network interface that is
different than the one corresponding to the tag. So even if
the file descriptor of a unconnected socket is tagged, we
must check whether it can be used. If not, the appropriate
tag from the default list is used.

The tag of a file descriptor can be explicitly set or
read by a newfcntl system call with the new com-
mands:F_SET_QUEUE, for explicitly setting a file de-
scriptor’s tag, andF_GET_QUEUE, for obtaining the
name of the queue directory corresponding the the tag
currently associated with the file descriptor. In the case
of F_GET_QUEUE, if the file descriptor corresponds to
a file in /reserv , the the pathname corresponding to
the file is returned. System callchcpures() has been
added to change the tag corresponding to a process’s cpu
reservation.

The file descriptor tags are used in theread() ,
write() , sendto() andsendmsg() system calls to
determine the queue tag (opaque pointer) for the request
entity (buf{} s andmbuf{} s) that arrives at the resource
scheduler. Thus we are assured that all requests arriving
at a resource scheduler are tagged.

At boot time, after thestart(priv, root) func-
tion has been called and before the/reserv file sys-
tem is mounted, the default list of theinit process con-
tains tags to each of the initial queue directories created
for each resource (init ’s child default-list is set to the
default list). This means that the necessaryvnode{} s
have been allocated but are not enqueued in the file sys-
tem vnode queue because the/reserv file system is
not mounted. However, even though the/reserv file
system is not yet mounted, the tagging mechanism, based
on vnode{} tags and the default list, is operational and
therefore requests arriving at resource schedulers will be
tagged. When/reserv is mounted, the previously cre-
atedvnode s will be transparently enqueued in the file
systemvnode queue with reference counts appropriately
set.

2.6 Garbage Collection

The /reserv file system uses garbage collection to
delete reservations (scheduler and queue) that are no
longer referenced. In our design, thevnode{} ref-

erence count accumulates all references to reservations
in the /reserv file system, i.e., tags and other kernel
vnode{} references. References to/reserv files oc-
cur in file descriptors with tags, in the default list and
child default-list of processes, in thefile{} nodes cor-
responding to open files in/reserv , and current direc-
tory references for processes in the/reserv file sys-
tem. Thevnode{} reference count is used to trigger
garbage collection and provides a clean triggering mecha-
nism through theinactive() call of thevnode inter-
face.

A flag, GC, in thereserv node indicates whether the
node should be garbage collected wheninactive()

is called. When areserv{} node is created,GC
is enabled, but the flag can be reset using new com-
mands to thefcntl system call. These commands,
F_SET_COLLECTandF_GET_COLLECT, can be used
on file descriptors for reservations in the/reserv file
system to set or get theGCflag.

Although, in our current implementation, garbage col-
lection is triggered by thevnode{} reference count, we
can envision other policies including those based on expi-
ration duration, expiration time, etc.

When the garbage collector is triggered from the
vnode ’s inactive() function, it will try to delete the
subtree rooted at thatvnode{} and then collapse the tree
upstream towards the root. Garbage collection uses the
locking semantics implemented in the/reserv file sys-
tem. Locks on thereserv{} nodes are needed to main-
tain atomicity on access and also between a parent and its
children. For example, the locks are used to serialize two
or more processes attempting to allocate avnode{} for
the samereserv{} node, or to avoid two garbage col-
lectors working on the same nodes at the same time (ker-
nel threads). Even though this latter case does not arise in
the current implementation, we are anticipating the need
in order to ease the ports to newer FreeBSD versions or
other Unix systems.

The garbage collector will collect areserv{} node if
its correspondingvnode{} reference count is zero and it
is not locked (directly or indirectly by its immediate par-
ent). Prior to deleting areserv{} node, the resource
scheduler’sdelete() function is called on the corre-
spondingscheduleror queuenode. If this call does not
succeed, then the garbage collection at thatvnode{}
fails and has to be retried later. To provide an asyn-
chronous interface, the scheduler returns success while
marking its own node for deletion after having serviced
the pending requests. We have implemented both styles
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of deletion.

2.7 Access Control

Access control constrains the ability of a process to use
and/or modify the objects belonging to the/reserv file
system. Processes are endowed with “credentials” which
are used to determine whether certain operations are al-
lowed. The standard Unix credentials of user and group
ids are not sufficient to build a useful access control mech-
anism for the/reserv file system. One reason is that
many servers create subprocesses, all with the same cre-
dentials, to deal with clients that are not all granted identi-
cal access to resources. At the very least, a processes PID
needs to be part of its credentials. In general, other kinds
of unforgeable credentials may prove to be useful.

Below we identify the Read (R) and Write (W) opera-
tions on/reserv which is subject to access control:

scheduler directory: R: reading the directory and getting
the GCflag; W: writing the directory and setting theGC
flag.

queue directory: R: Reading the directory, using the di-
rectory as a tag, and getting theGCflag; W: writing the
directory and setting theGCflag.

share and backlog files: R: reading; W: writing subject to
admission control.

newqueue and newsched files: R: opening; W: opening.

Abstractly, an access control policy is represented by a
matrix, ACC, of subjects (credentialed processes) and ob-
jects from/reserv (e.g., scheduler directory, share file,
etc.). The entry denoted ACC[S, O] is the list of opera-
tions allowed by subject S on object O. Finally, there is a
list of processes associated with each entry of ACC[] des-
ignating those processes which are allowed to modify the
entry and to what extent.

The access rights (with respect to/reserv of a pro-
cess with credential S are represented by row S of the ac-
cess matrix ACC. The operations specified in ACC[S, .]
are exactly those which are available to S (subject to ad-
ditional admission control restrictions). Conceptually, we
identify thereservation domainof a process with its corre-
sponding row in ACC. Our initial implementation is based
on the use of capability lists associated with/reserv

entities.

2.8 Admission Control

Admission control deals with requests which are allowed
or disallowed based on resource limitations. In our current
implementation we make extensive use of proportional-
share resource schedulers. Letdir denote a sched-
uler directory andd1 , : : :, dn its immediate subdirecto-
ries (scheduler or queue directories). Letsj denote the
share file for directorydj . sj specifies two quantities
a weight,wj and a minimum absolute amount,mj , of the
resource.

The weights determine how the resource, reserved for
dir , is divided up among its immediate descendant di-
rectories. Specifically, the fraction ofdir ’s resource re-
served fordj is equal towj=

Pn

j=1 wj . Supposem is the
minimum amount of resource guaranteed todir (spec-
ified in dir ’s share file). Then the conditionmj �

wjm=
Pn

j=1 wj is checked by admission control for all
directories which may be affected when writing to a share
file. Such writes are admissible if and only if this condi-
tion will not be violated at any reservation in/reserv .

Writing to abacklog file is also subject to admission
control since memory resources are involved.

2.9 Reservation and Reservation Domains

A reservation corresponds to a node in a resource sched-
uler and thus represents a “share” of the corresponding
resource as provided by the scheduling algorithm of the
resource scheduler. The/reserv API enables us to or-
ganize and structure reservations (resource schedulers):
we can create new scheduler and queue directories (using
the newsched and newqueue files), change resource
scheduler parameters (writing toshare files), and alter
buffer capacities (writing tobacklog files).

A queue directory represents a queue node in a resource
scheduler and resource requests entered into this queue
will obtain the QoS which has been provisioned for this
queue node. Our tagging mechanisms enable us to asso-
ciate queue directories with file descriptors and processes
and thus provide QoS support for operations on these ob-
jects. The assignment of reservations to objects is quite
flexible. Reservations can be shared by more than one ob-
ject (the same tag can be associated with file descriptors
representing different files) and a file can be associated
with more than one reservation (by tagging file descrip-
tors to the same file with different tags).

Tags can be assigned automatically using the default
list or explicitly usingfcntl and the garbage collector
will automatically collect unused reservations. The use
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/newqueue /newreserv/share

/cpu /fxp0 /sd0

/q0 /q3

/backlog/share

/q4/q2/q1

/reserv

Figure 3: The state of /reserv directory used in the exper-
iments.

of default lists and garbage collection makes it possible
to provision resources for legacy applications. Reserva-
tions can be assigned to the default list of an application
without its knowledge and it will transparently obtain the
QoS support provided by these reservations. When the ap-
plication finishes, these reservations can be transparently
garbage collected.

The reservation domain of a process determines its abil-
ity to manipulate and use the/reserv file system. It is a
very general notion and complements the traditional idea
of a protection domain.

3 Experiments

Eclipse/BSD is derived from FreeBSD [11]. It employs
the MTR-LS, YFQ and WF2Q proportional-share sched-
ulers for cpu, disk and output link, respectively, and Sig-
naled Receiver Processing (SRP) for network input pro-
cessing [6, 4, 5]. SRP demultiplexes incoming packets
before network and higher-level protocol processing, and
processes input protocols in the context of the respective
cpu reservations. The Eclipse/BSD implementation used
in these experiments adds 10884 lines of code to FreeBSD
version 2.2.8: 3230 lines for thereserv file system and
modifications to theproc file system, and 7654 lines for
the new schedulers and their integration into the kernel.
The kernel size in the GENERIC configuration is 1601351
bytes for FreeBSD and 1643939 bytes for Eclipse/BSD
(an increase of only 43.9 KB). The Eclipse/BSD code will
be available athttp://www.bell-labs.com/what/eclipse.

In our previous papers [6, 4, 5], we presented experi-
ments verifying that Eclipse/BSD’s cpu, disk and network
schedulers provide QoS guarantees, including isolation
and minimum bandwidth. This section demonstrates ex-
perimentally the effectiveness of Eclipse/BSD framework
to provision system resources, and in particular, to change
reservations on the fly (e.g., the cpu reservation of a pro-
cess and output link reservation of a socket) and to share
reservations among applications.

node A

node B
switch

node S

node D

node C

Figure 4: Node S is a Web server that hosts multiple sites
on either FreeBSD or Eclipse/BSD.

We consider a server where Web sites of four com-
panies are hosted, and the server’s administrator wants
to isolate the performance of services provided to these
four companies. That is, when a system resource is over-
loaded, the service for a company should not be affected
by the load on other companies. The administrator con-
figures the/reserv file system as illustrated in Fig-
ure 3. The queue directoriesq1 , q2 , q3 andq4 in /re-
serv/fxp0 contain the same files asq0 , and the reser-
vation directories/reserv/cpu and /reserv/sd0
have the same structure as/reserv/fxp0 . Each queue
directoryq1 , q2 , q3 andq4 have a weight of 0.24 and
corresponds to a different company, whereasq0 has a
weight of 0.04 and corresponds to the shared activities on
the server.

We ran experiments on the configuration shown in Fig-
ure 4, where HTTP clients on nodes A to D make requests
to the HTTP server on node S. Nodes A to D are Pentium
Pro PC’s running FreeBSD. The operating system varies
only in node S, being either FreeBSD or Eclipse/BSD.
Node S is a PC with 266 MHz Pentium Pro CPU, 64 MB
RAM, and 9 GB Seagate ST39173W fast wide SCSI disk.
All nodes are connected by a Lucent P550 Cajun Ether-
net switch at 100 Mbps. Node S runs the Apache 1.3.3
HTTP server and hosts multiple Web sites. Nodes A to D
run client applications (some derived from the WebStone
benchmark) that make requests to the server. All measure-
ments are the averages of five three minutes runs.

The Apache 1.3.3 HTTP server for FreeBSD is a multi-
process server. It (pre)forks upto a predefined number of
processes. Each HTTP connection is handled by a pro-
cess. The number of requests a process services before
it terminates can be specified. Idle and/or new processes
accept new connections from the listening socket(s).
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3.1 Isolating Performance of Web Sites

Apache supports a number of ways to host multiple Web
sites on a single server, including running a separate
Apache server for each Web site, or running one Apache
server configured with multiplevirtual hostsone for each
site. For each of these cases, Eclipse/BSD provides an ef-
fective framework to isolate and differentiate performance
of Apache Web sites and provide them with performance
bounds. In our previous papers, we demonstrated the QoS
capabilities of Eclipse/BSD when each Web site is hosted
with a separate Apache server. Here, we experiment with
a single Apache server configured with four virtual hosts
each corresponding to a different company’s web site.
These experiments demonstrate the need to modify the
reservations of a process, socket and file descriptor on the
fly.

In order to guarantee QoS to each virtual host, when
an Apache process accepts a new request from a listen-
ing socket, the cpu reservation of the process needs to be
set to the one corresponding to the virtual host, at which
the request arrived. Similarly, the network reservation of
the connected socket needs to be set to the one corre-
sponding to the virtual host (for brevity, we omit reser-
vation and scheduling of other resources, such as disks
since experiments in this paper only overload cpu and
output link). To do so, we have written an Eclipse/BSD
module (mod eclipsebsd in Apache parlance) that en-
ables Apache to utilize the QoS support of Eclipse/BSD.
Apache uses the module concept to extend its functional-
ity (without the need to change the Apache source tree).
As of Apache 1.3., it is possible to compile the Apache
core into a dynamic shared object library, and thereafter
compile Apache modules as shared objects that can be dy-
namically loaded at run-time.

The mod eclipsebsd module adds new configura-
tion directives to specify the resource reservations corre-
sponding to a virtual host. Once an Apache process ac-
cepts a request,mod eclipsebsd sets the cpu reserva-
tion of the process and the output link and disk reserva-
tions of the file descriptors of the process appropriately.

CPU Intensive Workload

In the first experiment, an increasing number of clients
continuously made CGI requests to either of four Web
sites hosted at node S. Processing of each of these CGI
requests consists of computing half a million random
numbers (usingrand() ) and returning a 1 KB reply.
Therefore, the bottleneck resource is the cpu. We kept
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Figure 5: FreeBSD cannot provide isolation to different
sites.
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Figure 6: Appropriate CPU reservations in Eclipse/BSD
can guarantee isolation and/or a minimum throughput for
each site independent of the load at other sites.
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Figure 9: Appropriate reservations in Eclipse/BSD can
guarantee isolation and/or a minimum throughput for each
site independent of the load at other sites.

the number of concurrent clients to site 1 at eight while
we varied the number of concurrent clients to other
sites. Figures 5, 6 and 7 show the average through-
put (CGI transactions per second) of each site under
FreeBSD, under Eclipse/BSD when Apache is configured
with mod eclipsebsd module that sets the reserva-
tions, and under Eclipse/BSD when Apache is not con-
figured withmod eclipsebsd .

In the latter case, each process runs under the default
reservation on each resource (i.e., in our setup under
q0 ’s). Performance is roughly the same as performance
on FreeBSD. In both cases, each process obtains equal
treatment. Thus, the throughput of a site depends on the
ratio of the number concurrent requests for the site over
the total number of concurrent requests at the server. As a
result, the sites cannot be isolated. On the other hand, un-
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Figure 10: The performance of Eclipse/BSD without
reservations is similar to the one of FreeBSD.

der Eclipse/BSD when Apache server is configured with
mod eclipsebsd , each site gets at least one quarter of
the resources, when the number of concurrent requests for
a site reaches a few. Thus, it is possible to isolate the per-
formance of sites.

Output Link Intensive Workload

In the next experiment, an increasing number of clients
continuously requested the same 1.5 MB document from
either of four Web sites hosted at node S. Given that re-
quests are much smaller than replies, little processing is
required per request, and the requested document fits eas-
ily in the node S’s buffer cache, the bottleneck resource is
S’s network output link.

We kept the number of concurrent clients to site
1 at eight while we varied the number of concurrent
clients to other sites. Figures 8, 9 and 10 show
the average throughput of each site under FreeBSD,
under Eclipse/BSD when Apache is configured with
mod eclipsebsd module that sets the reservations,
and under Eclipse/BSD when Apache is not configured
with mod eclipsebsd . Results are very similar to
those of CGI workload. We see that even with reserva-
tions, the throughput of site 1 is (slightly) impacted by
the load at sites 2, 3 and 4. This is because that clients
for each site are distributed to nodes A, B, C and D in a
round-robin manner, and they are impacting each other’s
performance (remember that nodes A, B, C and D are run-
ning FreeBSD without any QoS support).
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companies.
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Figure 12: Appropriate reservations in Eclipse/BSD can
guarantee isolation and/or a minimum throughput for each
company independent of the load at other companies.

3.2 Isolating Performance of Reservations

The reservation domain of a process determines its ability
to manipulate and use the/reserv and/proc file sys-
tems through which it is able to create and provision reser-
vations, and tag files, sockets, and processes with reser-
vations. Eclipse/BSD enables processes to share reser-
vations without the need to share reservation domains
or have a hierarchical relationship among reservation do-
mains. This provides a flexible framework for expressing
many resource provisioning needs. The following exam-
ples illustrate the effectiveness of our framework. Con-
sider the case where different resources are to be provi-
sioned differently among two companies: The companies
need to share a cpu reservation, but have separate output
link reservations. Application A is hosting services for
company 1 and another application B is hosting services
for company 2. Application A and B can share a cpu reser-
vation without the need to share output link reservations.
Consider another case where resources are to be provi-
sioned among three companies. Application A is hosting
services for companies 1 and 2, and application B is host-
ing services for companies 2 and 3. Application A and B
can share reservations for company 2 without the need to
share reservations for other companies. Also, our frame-
work enables us to distinguish between the reservation do-
main of a process and the traditional protection domain.

For the next experiment, we consider a scenario in
which the system administrator wants to provision the
system equally among four companies independent of ser-
vices supported for the companies. Now, assume that the
system needs to host the external Web pages of these com-
panies, as well as a separate Web site for company 4 con-
sisting of some “sensitive” data. The administrator wants
to run a single Apache server (with a separate virtual host
for each company) to service the external web sites of
these four companies respectively called site 1, 2, 3 and
4), and a separate Apache server for the second Web site
of company 4 (this site is called site 5). The desired pro-
visioning can be done in Eclipse/BSD by using the/re-

serv in Figure 3 and giving permission to Apache server
for external pages to queue its request under any of the
request queues and to the second Apache server to queue
its request only underq4 .

CPU Intensive Workload

Again, an increasing number of clients continuously made
CGI requests to either of five Web sites hosted at node S.
We use the same CGI script as in Section 3.1 to overload
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the cpu. We kept the number of concurrent clients to each
of the external sites at eight while we varied the number
of concurrent clients to the second Apache server (site 5).

Figures 11 and 12 show the average throughput
(CGI transactions per second) of each site and aver-
age aggregate throughput of sites 4 and 5 (graph 6 cor-
responding to company 4) under FreeBSD and under
Eclipse/BSD when the first Apache server is configured
with mod eclipsebsd module.

Eclipse/BSD provisions resources equally among the
four companies. The load increase on the fourth com-
pany’s second Web site (site 5) does not degrade the per-
formance of the other companies’ Web sites, only impacts
the performance of the fourth company’s external site (site
4); but the aggregate throughput provided to company 4
remains at least one fourth of the available throughput.
On FreeBSD, the performance of all companies’ external
Web sites suffer with the load increase at company 4’s
second Web site (site 5). Thus, the throughput of services
provided to companies cannot be isolated.

Output Link Intensive Workload

In the next set of experiments, we use the same output
link intensive workload described in Section 3.1. Thus, an
increasing number of clients continuously requested the
same 1.5 MB document from all the Web sites hosted at
node S. We kept the number of concurrent clients at the
external Web sites at eight, while the number of concur-
rent requests at the second Web site of fourth company
(site 5) is increased.

Figures 13 and 14 show the average throughput of each
site and average aggregate throughput of sites 4 and 5
(graph 6 corresponding to company 4) under FreeBSD
and under Eclipse/BSD when the first Apache server is
configured withmod eclipsebsd . Results are very
similar to those of CGI workload.

3.3 Overhead of New Primitives

Two new system calls are extensively used in these exper-
iments:chcpures () that changes the cpu reservation of
a process andfcntl () with F SET QUEUE option that
changes the reservation of a file descriptor. The overhead
of these system calls is presented in Table 1. For each
measurement, we wrote a user-level program that invoked
the corresponding system call 10,000 times, measured the
total elapsed-time, and calculated the average overhead of
the system call. The first row in Table 1 is the baseline
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Operation Overhead [�s]
null syscall 1.85
chcpures 5.64
fcntl(F SET QUEUE...) 9.99
creating a queue directory10.28

Table 1: Overhead of new primitives used in the experi-
ments

overhead of a system call in Eclipse/BSD and FreeBSD
running on node S (described for Figure 4).

We also measured the overhead of creating (i.e., open-
ing the corresponding/newqueue file) queue directo-
ries under/reserv file system. The overhead of this
operation depends on the size and the shape of the/re-
serv file system and the resource (remember that creat-
ing a queue directory also creates a scheduler queue). The
number listed in this table is the average of creating 10
queue directories under/reserv/cpu .

4 Related and Future Work

The literature in scheduling research is quite extensive,
especially for packet scheduling [14, 13, 3, 9, 17]. Our
use of hierarchical, proportional-share schedulers borrows
heavily from this body of research. We have added a dy-
namic element to these schedulers since we require that
they be reconfigurable while running.

The scheduler model we have adopted is well-suited
for simple proportional-share schedulers. We are inter-
ested in pushing this model to include more real time de-
pendencies. More general scheduler models such asde-
coupled generalized processor sharing[18] andservice-
curve based schedulers[8] are available and we would
like to extend Eclipse/BSD in these directions. The
Eclipse/BSD code will be available athttp://www.bell-

labs.com/what/eclipse.
ALTQ [7] provides a network queueing framework

(API) for output link scheduling that allows the use of
several queuing disciplines. Like Eclipse/BSD, ALTQ
is implemented as an extension to FreeBSD. The ALTQ
API simplifies the task of including new network sched-
ulers into FreeBSD and encourages researchers to deploy
their schedulers under this framework. We were unable to
make use or the ALTQ framework, since the Eclipse/BSD
schedulers provide a significantly different interface to the
kernel, one that supports dynamic reconfiguration within

the scheduler.
The API in Eclipse/BSD is based on the Unix file sys-

tem. It is not unusual in Unix to extend the file system
namespace [15]. The/reserv file system gives us a
convenient and uniform way to deal with reservations.
Other systems, especially those that emphasize real-time
scheduling, have not extended the file system to cover the
management of resources:

Rialto’s [10] real-time distributed framework takes a
user centric approach for resource management in which
applications negotiate the desired QoS parameters with
a resource planner object. Resource provider objects
roughly correspond to our resource schedulers. The Ri-
alto approach is object oriented and disposed towards real-
time.

The work done in onprocessor capacity reserves[12]
also approaches the QoS management from a real-time
perspective and deals with microkernel-specific issues.
Theirprocessor capacity reservationsmay be used by dif-
ferent threads allowing multiple user level servers to par-
ticipate in one “reservation.”

Resource kernelsfrom CMU [16] have evolved from
the work on Processor Capacity Reserves. This work is
also real-time oriented and reservations are expressed in
terms of processor requirements per time period. Their
work addresses the priority inversion problem between
different reservations. They identify the problem of pro-
cessorco-dependencyand deal with resource composabil-
ity.

The work in [1] shows that by adding priorities to ser-
vice requests on a web server, the server can provide dif-
ferentiated QoS. Rather that building QoS into the kernel,
they map requests to two different numerical priorities de-
livering them accordingly in order, to web processes.

The research in [2] introducesresource containersas
the focus of OS resource management. They address the
issue of decoupling protection domains from resource do-
mains. Their resource container abstraction combines as-
pects of our reservation domains and default lists. How-
ever, we have found that separating the notion of reserva-
tion domains from the reservations provides more flexible
fine-grain resource management.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
“Providing Differentiated Quality of Service in Web
Hosting Services”. InProceedings of the Workshop
on Internet Server Performance, June 1998.

14



[2] G. Banga, P. Druschel, and J. Mogul. Resource con-
tainers: A new facility for resource management in
server systems. InProceedings of the USENIX 3rd
Symposium on Operating System Design and Imple-
mentation New Orleans, LA, October 1999, Febru-
ary 1999.

[3] Jon C. R. Bennett and Hui Zhang. ”Hierarchical
Packet Fair Queueing Algorithms”. InProceedings
of the ACM SIGCOMM California, August 1996,
August 1996.

[4] J. Bruno, J. Brustoloni, E. Gabber, B.Özden, and
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