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Abstract and its implementation in theeserv  file system, ifi)

a tagging mechanism for the association of reservations
Eclipse/BSD is an operating system derived frofjith schedulable operations, anitf)(an access and ad-
FreeBSD. Eclipse/BSD provides flexible and fine-grainggission control scheme which leads to a new and useful
Quality of Service (QoS) support for (server) applicarotion ofreservation domain.
tions. We have implemented hierarchical proportional- gne of our design goals is to provide QoS support for
share cpu, disk and link schedulers, the /reserv file systgr]"arge set of (server) applications without imposing sig-
providing an API to manipulate "reservations” and a tagsificant changes to their design. For example, if an appli-
ging mechanism for the association of reservations Wightion hosts services for multiple companies, we do not
schedulable operations. Currently, Eclipse/BSD is beignt to require the existence of separate instances of the
used to guarantee QoS to server applications, and in Re¥plication, one for each company, in order for them to
ticular to differentiate the performance of different wegenefit from QoS support. Another of our design goals

sites hosted on the same platform. is to provide a flexible resource management framework
capable of expressing and implementing a large set of pro-

1 Introduction visioning needs.

The demand to provide Quality of Service (QoS) guar-
antees is increasing with the need to run multiple server
applications, such as audio and video media servers and . disk (bandwidth)
web servers, and host services for multiple entities (e.g., *
companies, individuals) on the same platform. QoS re=
quirements may be client-based, service-based, conte
based, and so on. For example, it may be important to dif-
ferentiate among incoming client requests and to allocate
resources based on the client’s identity. Systems support-
ing multiple services, including multiple instances of the Figure 1: Scheduler hierarchies
same service, may that require system resources be allo-
cated based on server specifications and credentials, leav-
ing it to the servers to differentiate among clients. Mal 1
variations are possible and all require the existence of flex-
ible schemes for the management and allocation of syst®ur system makes use of hierarchical, proportional-share
resources such as the cpu, disk and network bandwidtlesource schedulers [14, 13, 3, 17] at the device driver

In this paper we present, our design and rationale flewel for the management of disk and network bandwidth
a flexible, fine-grained resource management API; an iamd for cpu scheduling. The resource schedulers we have
plementation of our approach in the Eclipse/BSD operatnplemented are dynamically reconfigurable in the sense
ing system; and a set of experiments to demonstrate that the scheduler hierarchy and/or the weights can be al-
soundness of our approach. Our work is based on faered without stopping the scheduling itself. These recon-
key elements: if the use of hierarchical, proportionalfigurations are subject to access and admission control,
share resource scheduleiig) the notion of aeservation but are otherwise unrestricted.

disk (bandwidth)

Schedulers



Hierarchical, proportional-share resource scheduléesface 0), etc. The directory hierarchy under each dis-
support a general notion of structured resougserva- tinct resource represents all the currently existing reserva-
tions. Each node in the hierarchy representeserva- tions for that resource. For examplesserv/wd0/rl
tion with its shareequal to its weight divided by the sumand /reserv/iwd0/r2 represent bandwidth reserva-
of the weights of its parent’s children (including its owtionsrl andr2 ondisk 0. Reservationsireserv  cor-
weight). For example, Figure 1 illustrates two schedulersponding to scheduler nodes are cafiededuler direc-
hierarchies H1 and H2 for disk bandwidth. Nodes A artdriesand those corresponding to queues are cajlexie
B, in the H1 scheduler hierarchy, each represent a res#rectories
vation of 50% of the disk bandwidth. At the next level in
the H1 hierarchy, each of the nodes, C, D, E, and F, repre-
sent a 25% reservation of the overall disk bandwidth, or,
in the case of C and D, each has a 50% reservation of As3  Tagging
reservation, etc. It is also interesting to note that in the
single-level H2 hierarchy, nodes C, D, E, and F each hafe important aspect of our design is the association of a
a 25% reservation of the overall disk bandwidth. The difeservation (queue directory) with an operation on an ob-
ference between the H1 and H2 hierarchies is how thegt. The operations on objects include: reading/writing
dynamically apportion excess bandwidth. For examplegffile, sending a message on a socket, and executing a
C were not using any disk bandwidth, then under H1, read (a process in FreeBSD). The corresponding reser-
E, and F would obtain a 50%, 25%, and 25% share of thations are disk bandwidth, network interface transmis-
disk bandwidth, respectively, while under H2 they woulsion bandwidth, and cpu cycles, respectively. In our de-
each get a 1/3 share of the disk bandwidth. sign, we associate reservations with references to objects

We distinguish two kinds of reservation nodes in @ther than to the object itself, thereby permitting the ob-
scheduler hierarchy: schedulers and (request) quelgto be shared by different principals without having to
The scheduler nodes implement a scheduling algoriti$fare their reservations.
for selecting resource requests from immediate descenmn the case of a filef , we tag a file descriptor corre-

dant nodes; queue nodes are points where actual resogfghding td with a reservation. The reservation must be
requests are initially enqueued. Queues are always leaygfiieue directory for the device on which the filee-

in the resource scheduler hierarchy. For example, the lggfes. For a connected socket,we tag a file descriptor
node C in H1 is a queue at which disk I/O requests Mm@yt s with a reservation. The reservation must be a queue
be enqueued. Disk I/O requests and network output tfrectory for the network interface used by packets from
quests are represented byf{} andmbuf{} headers, s. For connected sockets, it is easy to determine the ap-
respectively. propriate network interface, but for unconnected sockets,
the network interface depends on the destination address
which is not known a priori. In this case we provide a
mechanism fotate tagging We also provide a mecha-
We have designed and implementedfieserv  (reser- nism for dynamically changing the tag of a file descriptor.
vation) file system which provides an API and namelfl the case of process scheduling in Eclipse/BSDrage
pace through which we can access, use, and reconﬁ@gh process with a cpu reservation and provide a means
ure the system resource schedulers. The directory noff§dynamically changing the tag.

in the /reserv  file system correspond to the nodes The tags are used to determine the appropriate queue
in the scheduler hierarchy and thus represent reserfa-1/O requests based on tagged file descriptors. For ex-
tions. We refer to the directories in theeserv ~ file ample, iffd is a file descriptor tagged with queue direc-
system asgeservation directorie®r simplyreservations tory g, then all I/O based ofd will be queued at the
The/reserv  file system API (described more fully inqueue node corresponding to the queue directpryif

the next section) provides the means to add and delitis were disk 1/O, then thbuf{}  structs representing
reservations and to alter the scheduling weights througt® resulting from read/write operations baseddnwill

out the hierarchy. Each resource is represented bynaude a reference to the appropriate queue. Similarly, a
reservation directory undéreserv : /reserv/icpu , tagged process will be be scheduled from the correspond-
/reserviwd0  (disk 0),/reserv/fxp0 (network in- ing cpu queue.

1.2 Reservations



1.4 Reservation Domains with a reference to the object. In the case of files and
sockets, the reservations are associated with the file de-

Access and admission control applied to fheserv . . .
) . : . scriptors referring to the objects and all I/0O based on a
file system offer an opportunity to define a useful notion

. . .. particular file descriptor is enqueued at the correspondin
of reservation domainAbstractly, access and admlssmﬁ P g P 9
scheduler queue.

control are used to restrict (or grant) the right to access, . .
. : . In order to ease the incorporation of new resource
use, and/or reconfigure thieeserv  file system. Since : . . . .
. . schedulers into Eclipse/BSD, an interface is provided
the /reserv  file system is the center of all resourceh . e
. . . t I ugh which resource schedulers can “register” them-
management in Eclipse/BSD, the instantaneous set of a’o )
. selves for use under thieeserv  file system.
rights possessed by a process to use, access, and/or recon-
figure the/reserv  file system is called theeservation
domainof the process. This notion of reservation doma®,1 Schedulers
is independent of the usual notion of a process’ protec- _ _
tion domain (the importance of this has been argued el§¥r work is based on the use of flexible resource sched-
where [2]). In our scheme, process credentials include {#Hg's- The resources in question include cpu, disks, and
PID as well as the traditional UID and GID. Access arftetwork interfaces and each has a resource scheduler. The
admission control offer restrictions and rights on the u§gheduler for a resource orders teguestsor access to
of queue directories for tagging, the creation of new (suthie resource. Structurally,stheduletis a tree ofsched-
reservations, the changing of scheduling weights and¢r nodesandqueue nodesQueues have no descendants
queue capacities, the setting of garbage collection flag8d implement FIFO request queueing (although we do
the passing and/or revocation of rights to other proces§&$ rule out the possibility of reordering requests within
(not only related processes), etc. Our notion of a res@rfequest queue). Scheduler nodes can have queues and
vation domain is particularly useful in the client-serveicheduler nodes as immediate descendants. A scheduler
model where fine-grain control over the use of resourc@@de orders the requests emanating from its immediate
is necessary. descendants. The ordering is based on its scheduling al-
) ) ) gorithm and the (visible) states of its immediate descen-
The reminder of the paper is organized as folloW§, s, Thaoot of a resource scheduler must be a sched-
In the following section, we describe the design angq, node

implementation of Eclipse/BSD in more detail includ- All requests for service arriving at a resource scheduler

ing descriptions of the resource scheduler interface, Y%%ch as ambuf} arriving at a network interface) are
/reserv file system, garbage collection, access and gged” with a reference to a queue. Requests are in-

mission control, and _reservatlon domains. In SeCt'o_né)’erted into the queues corresponding to their tags. The
we present out experimental results: we cgnclude W'trhaechanism for assigning tags to requests is an important
summary of related and future work in Section 4. part or the/reserv  file system and is described in Sec-
tion 2.5.
2 Design and Implementation The framework consisting of scheduler and queue
nodes supports a wide variety of resource schedulers. For
In this section, we describe the design an implemegxample, a scheduler node with a single descendant queue
tation of the resource management system used répresents a FIFO scheduler. A scheduler node whose im-
Eclipse/BSD. Our current system makes use of hieranediate descendants are all queues in which the queues
chical, proportional-share, dynamically reconfigurable rare assigned dynamic “priorities” could implement a pri-
source schedulers. Reconfiguration includes the abilitgity resource scheduler. Similarly, a scheduler node
to alter the resource scheduler hierarchies and read af@se descendant queues are assigned weights could im-
write scheduler weights and other parameters. A n@kementa proportional-share scheduler based on weighted
file system,/reserv , has been designed and implefair queueing. Hierarchical resource schedulers are sup-
mented which provides an API through which applicgorted by inserting additional scheduler nodes within the
tions can configure and use these dynamically configierarchy.
urable resource schedulers. Resources are reserved for G3ur current focus has been on hierarchical, propor-
objects (files, sockets, processes) by associating a regenal share resource schedulers. We have implemented a
vation (queue directory), not with the object, but rathemumber of different proportional-share schedulers within



the Eclipse/BSD framework. For the cpu scheduler vepaque pointer to a previously created scheduler node
use a single-level MTR-LS scheduler [6]; we have inwhich will be the immediate ancestor of the newly cre-
plemented hierarchical YFQ for the disk scheduler [43ted scheduler node or queue nodepdfent is null,

and for the network we have implemented the hierarcliten the newly created (scheduler) node is considered the

cal WFQ algorithm [5]. root scheduler node of the resource scheduler.
Our scheduler implementations are novel in the sense . o
that we can add/delete queues and scheduler nodes g (Priv. root) : This function is called by the

change scheduler weights without stopping the resoulkgtnel after all initial nodes have been created (at least the
scheduler. For example, the implementation of AQF root scheduler node and a queue) and is used to start
maintains an exact GPS simulation while permittifg (the scheduling of tagged requests for this resource. The
the addition and/or deletion of nodes to the scheduler FgSOUrce scheduler responds to this function by enabling
erarchy, {i) the changing of scheduler weights, ari)( handlers or enabling the underlying controller to respond
the automatic adjustment of the virtual work and tim@ Events and by commencing to schedule tagged requests
scales to avoid arithmetic overflow during long-duratidi?” the resource.
busy pgrio@s. A detailed description. of our WFimple- delete(priv, node)
mentation is beyond the scope of this paper.

This function is called to
deletenode wherenode is an opaque pointer to either

a scheduler or queue node. Immediate deletion may re-
2.2 The Resource Scheduler Interface quire flushing outstanding requests. If the resource sched-

In this section we describe the interface that a rgl_er does not support immediate deletion (for example

source scheduler must provide to the kernel in ordt(gre netwgrk sckhedulehr may contmut; tg slend p:g\{lo;sly
to “participate” in the freserv  file system. The enqueued packets), the resource scheduler could indicate

Jreserv  file system interacts with a resource SCheayccessful deletion even though the actual deletion takes

uler exclusively through this interface thereby simplifypl"’lc_e aftﬁr ?" pe_ndmg rtle(;quests r;a_\lle beends_erv;::_ed. Oth-
ing the task of encorporating new resource schedul<§rr¥v'l(se’t Ie _llJInct:lc:jn Icou retu_rn al ulre an. , In this case,
into the /reserv  file system. Resource scheduler@1e ernel will calldelete  again at a later time.

must “register” at boot time by presenting a set of ir{jet/set(priv node, values, type) - These
terface routines to the kemel. Registration consists fyctions allow the kernel to get/set scheduler parameters.
usingreservfs_register() to pass pointers 10 in- The AP| interpretwalues  differently depending on the

terface routines and an opaque pointer value (void *) t@sgurce scheduler, tgpe argument, and theode

the kernel. The system maintains a Device Translatigierence (queue or scheduler node). The result of a set
Table (DTT) which contains registration information fOE)peration may fail due to admission control checks.

each resource scheduler. The opaque value (denoted the create , delete , andset() interface func-

priv_ (ate)) is passed as an argument whenever the Ii%hs must not interfere with the resource scheduler’s op-

nel uses an |nt.erfac_e funct|on.. This value can be usedé?}ition. It is assumed that these calls can be made while
schedulers to identify underlying hardware, such as NBla resource scheduler is running

work interfaces, while using shared code.
Interface functions provided by the resource schedulers
to the kernel, usingeservfs_register() ,include: 2.3 The /reserv API

init(priv) : The kernel calls this function very earlyj, this section we describeeserv APl and its use of

in the boot process and before any scheduler or qUHE interface to the resource schedulers. Due to the hi-
nodes have been created. The resource scheduler igs:pical nature of the resource schedulers, it is natural
the chance to allocate and initialize any data structures,ify convenient to associate a directory hierarchy with the
needs prior to any calls ireate() . priv s obtained gcpequler and queue nodes of the resource schedulers.
by the kernel during registration. The directory hierarchy of théeserv file system
create(priv, parent, type) . A call to this consists of two types of directories, vis¢cheduler di-
function returns an opaque pointer to a new schedutectories and queue directories Since scheduler and
node or queue node (determinedtype , viz., SCHED queue directories correspond to resource reservations, we
or QUEUErespectively). Thearent parameter is an will sometimes refer to them a®servation directories



or simply asreservations Scheduler directories correreservation) and withidir are numbered uniquely. For
spond to scheduler nodes and queue directories comeampledir/rO , dir/rl , etc. The file descriptor of

spond to queue nodes. Each independently schedutezkhare file in the newly created scheduler directory is
resource is represented by a scheduler directory undeurned by the open call.

/reserv which corresponds to the root scheduler node Similarly, by openingdir/newqueue , a new queue

for that resource. For example, we hdneserv/icpu  , directory is created imir along with its corresponding
/reserviwd0 , and/reserv/fxp0 corresponding to share andbacklog files. In this case a call is made to
the cpu, disk, and network resources, respectively.  create(priv, parent, QUEUE) which returns an

Every scheduler directory contains (among othepaque pointer to a new queue node. The names of queue
scheduler and queue directories) files nansbdre , directories begin withg and, withindir , are uniquely
newsched , and newqueue. Each queue direc-numbered. The file descriptor of the nashare file is
tory contains two files namedhare and backlog . returned.

Files (scheduler directories, queue directorigisare , In the Section 2.5 we describe the connection between
backlog , newsched, and newqueue files) in queue directories and schedulable requests on OS objects
/reserv  are represented bseserv{}  nodes. The such as files, sockets, and processes.

reserv{} structure has atype field and other
scheduler-independent information regarding the file, o
much like theinode{} of a traditional Unix file sys- 2.4 [reserv Initialization

tem. Thereserv(}  structures representing schedul§piiajization of freserv  occurs after the resource

directories and queue directories contain opaque pointelfaqulers have registered and before any file system
to scheduler and queue nodes, respectively. These fields,ointed. The kernel callinit(priv) for ev-
hold the values returned by calls¢eeate() ery resource scheduler registered in the DTT—this gives
In the following paragraphs, we explain the use of thfe schedulers a chance to allocate and initialize any
various/reserv  files. Letdir be a reservation, ei-needed internal data structures. Next the kernel cre-
ther scheduler or queue, apdir  be its parent reserva-ates areserv{}  node for the root directory of the
tion. The filedir/share  (in the case of a proportional-jresery  file system. Then it creates tweserv{}
share scheduler) contains two values: the weight wii3des for each resource scheduler, one for et
which dir  shares the resource, available frgdir , scheduler directory and one for a queue directory in
among its siblings and a minimum guaranteed absolgi root scheduler directory. In addition to these, the
value. Writes todir/share  attempt to change these&erel createseserv{}  nodes for theshare files
values and are subject to admission controlpdir is in each directory, thébacklog file in the queue di-
/reserv , then thedir/share file is read-only and rectory, and thenewqueue and newsched files in
represents the resource in its entirety. the scheduler directory. For each resource scheduler,
If dir is a queue directory then reading fronthe kernel callscreate(priv, NULL, SCHED) to
dir/backlog returns the count of requests served amfleate the root scheduler nodepot , and calls
the aggregate quantity of service provided (in cpu time ofeate(priv, root, QUEUE) for a second time to
I/O bytes). Writing tadir/backlog sets the maximum create a queue node. Figure 2 shows the data structures
number of requests and aggregate quantity of service tfuatthe root of the'reserv  file system, a scheduler di-
may be enqueued, and resets the corresponding countgsstory, a queue directory, and the rest of the files that are
The newsched and newqueue files are used to created during initialization. Each of the queue directo-
create new scheduler and queue directories. Opérs (once mounted undéreserv ) is namedqO, that
ing dir/lnewsched  creates a new scheduler direds,/reserv/icpu/q0 ,Ireserviwd0/q0  , etc.
tory in dir along with itsshare , newsched, and  Once the scheduler and queue directories have been
newqueue files. During the open, a call is made to thereated for each resource schedulstart(priv,
create(priv, parent, SCHED) function which root) will be invoked to commence scheduling. This
returns an opaque pointer to a new scheduler node. T™oelld involve activating the hardware or switching over
value of parent is equal to the value of the opaquérom a standard FreeBSD scheduler to the registered re-
pointer stored in theeserv{}  node representindir . source scheduler. At this point the kernel is able to
The names of scheduler directories begin withfor use the queue nodes of all the schedulers even before



the /reserv  file system is mounted. Initial daemongjueue to which the request belongs.
launched from "rc” scripts will use these request queues. Earlier we have discussed the use of tags when tagging
We will come back to how this is accomplished afteffle descriptors and processes. These tags were references
we have discussedefault lists. to queue directories. In this discussiontag can be ei-
ther a pointer to asnode{} corresponding to a queue
directory or a (opaque) pointer to a queue node. If the tag

€ onoti is a pointer to avsnode{} , then thevnode{} holds the

root of /reserv file system

S o ’ pointer for the correspondingserv{}  node and the
drectores reserv{} node holds the corresponding tag, the opaque

root scheduler node

pointer to queue node.

Since reservations (scheduler or queue directories) are
garbage collected when they are no longer being used, we
need a way to keep track of references to reservations.
Garbage collection, under Eclipse/BSD, is triggered by
detecting when the number of references to a reservation
goes to zero. We have chosen to usevhede{} refer-
ence count to hold the count of the total number of ref-
erences to the corresponding reservation. In what fol-
lows we point out the new locations fenode{} tags
\l‘ m that have been introduced in Eclipse/BSD. These addi-
SHARE | PACKLOG tional references tonode{} s are accounted for in the
vnode{} reference count field.

A new tag field is associated with each file descriptor.
Theproc{} structure has been expanded with a tag field
for its cpu reservation. These tags are pointers to vnhodes.

Access to thereserv  file system API is through 'he default listof a process is a list ofnode{}
the FreeBSDvnode/vfs  file system interface. The!@dS. one for each resource. The default list of a pro-
Ireserv file-system dependent data corresponds to #igSS IS used to provide tags when a tag is not otherwise

reserv{} nodes and the the file-system depende?ﬁecmed' The default list of a proce®dD is repre-

vnodeops andvfsops have been implemented to supSented as a new filproc/P1D/default which con-

port the/reserv  API. File system operations cannofdins the tags. Reading treefault  file returns the
take place until théreserv ~ file system is mounted. Af- names of the of queue directories corresponding to the
ter system initialization, anode{} is created for the (@9S, €.g.reserv/cpu/q2 /reserv/wd0/r1/q0

root of the/reserv  file system and it is mounted orf"€S€rv/xp0/rs/q3 - A process, with the appropri-
/reserv . From this point on, théreserv  API is ate access rights, can write thefault  file to change

available. entries. There is also a second list of tags, callectktile
default-list The child default-list is also represented as
a file, i.e, /proc/PID/cdefault . When a process
forks, the child’s default list and child default-list are set
Every request arriving at a resource scheduler must toghe child default-list of its parent.

taggedwith a pointer to a queue node. These are theWhen a process uses any of itygen() , accept()
opaque pointers returned by calls ¢oeate(priv, or connect()  system calls, the kernel will automati-
parent, QUEUE) . Thus I/O data structures, such asally tag the returned file descriptor with the tag for that
buf{} for disks andmbuf{} for network output, gain resource currently listed in the default list of the process.
a tag field to hold an opaque pointer. We have also augpr example, when a process issuaoanect() call,
mented theiio{} structure with a new tag field which isthe kernel determines the network interface, locates the
used to propagate opaque pointers to lower levels for tiegistered resource scheduler for that interface, and tags
ultimate tagging of 1/0 requests. At the resource schetie returned file descriptor with the tag for that interface
uler, the tag (opaque pointer) is used to quickly locate therrently appearing in the process’s default list. In gen-

wd0 fxp0

reserv(} opaque pointer
SCHED —

queue node

q0
reserv{} | opaque pointer
QUEUE

reserv{}
SHARE

reserv{}
NEW_Q

reserv{}
NEW_S

Figure 2: /reserv file system

2.5 Tagging and the Default List



eral, a file descriptor’s tag is initialized famodes{} erence count accumulates all references to reservations
at open time; for connected sockets abnnect or inthe/reserv file system, i.e., tags and other kernel
accept time; for unconnected sockets s¢ndto or vnode{} references. Referencesfeserv files oc-
senddmsg time. This latter case is referred tolate tag- cur in file descriptors with tags, in the default list and
ging since, even if the file descriptor is tagged, the meshild default-list of processes, in tige{} nodes cor-
sage destination may require a network interface thatrésponding to open files ilneserv , and current direc-
different than the one corresponding to the tag. So everafy references for processes in theserv  file sys-
the file descriptor of a unconnected socket is tagged, teen. Thevnode{} reference count is used to trigger
must check whether it can be used. If not, the approprig&rbage collection and provides a clean triggering mecha-
tag from the default list is used. nism through thénactive() call of thevnode inter-
The tag of a file descriptor can be explicitly set diace.
read by a newfcntl  system call with the new com- A flag, GG in thereserv node indicates whether the
mands:F_SET_QUEUEfor explicitly setting a file de- node should be garbage collected whiractive()
scriptor’s tag, andF_GET_QUEUEfor obtaining the is called. When areserv{}  node is createdGC
name of the queue directory corresponding the the figgenabled, but the flag can be reset using new com-
currently associated with the file descriptor. In the casgands to thefcntl  system call. These commands,
of F_GET_QUEUFHI the file descriptor corresponds to= SET _COLLECTandF_GET_COLLECTcan be used
a file in /reserv , the the pathname corresponding ton file descriptors for reservations in theserv file
the file is returned. System calhcpures()  has been system to set or get thHeCflag.
added to change the tag corresponding to a process’s Cphjthough, in our current implementation, garbage col-
reservation. lection is triggered by thenode{} reference count, we
The file descriptor tags are used in thead() , can envision other policies including those based on expi-
write() ,sendto() andsendmsg() system calls to ration duration, expiration time, etc.
determine the queue tag (opaque pointer) for the requesjyhen the garbage collector is triggered from the
entity buf{} sandmbuf{} s)thatarrives atthe resourC§node 's inactive()  function, it will try to delete the
scheduler. Thus we are assured that all requests armvi@tree rooted at thahode{} and then collapse the tree
ataresource scheduler are tagged. upstream towards the root. Garbage collection uses the
At boot time, after thestart(priv, root) func-  |ocking semantics implemented in theserv ~ file sys-
tion has been called and before theserv  file sys- tem. Locks ontheeserv{}  nodes are needed to main-
tem is mounted, the default list of tiigit ~ process con- tain atomicity on access and also between a parent and its
tains tags to each of the initial queue directories creaigglidren. For example, the locks are used to serialize two
for each resourcdr(it s child default-list is set to the or more processes attempting to allocatemade{} for
default list). This means that the necessanpde{} s the sameeserv{} node, or to avoid two garbage col-
have been allocated but are not enqueued in the file T tors Working on the same nodes at the same time (ker-
temvnode queue because theeserv  file system is npe| threads). Even though this latter case does not arise in
not mounted. However, even though theserv  file the current implementation, we are anticipating the need
system is not yet mounted, the tagging mechanism, bage@rder to ease the ports to newer FreeBSD versions or
onvnode{} tags and the default list, is operational angther Unix systems.
therefore requests arriving at resource schedulers will berp,o garbage collector will collectraserv{}  node if

tagged. Wherireserv  is mounted, the previously Créys correspondingnodef{}  reference count is zero and it
atedvnode s will be transparently enqueued in the filgs ot |ocked (directly or indirectly by its immediate par-
systemvnode queue with reference counts appropriateg/nt)_ Prior to deleting @eserv{}  node, the resource
set. schedulersdelete()  function is called on the corre-
spondingscheduleror queuenode. If this call does not
succeed, then the garbage collection at thaide{}

fails and has to be retried later. To provide an asyn-
The /reserv  file system uses garbage collection tohronous interface, the scheduler returns success while
delete reservations (scheduler and queue) that aremmarking its own node for deletion after having serviced
longer referenced. In our design, tveode{} ref- the pending requests. We have implemented both styles

2.6 Garbage Collection



of deletion. 2.8 Admission Control

Admission control deals with requests which are allowed
or disallowed based on resource limitations. In our current
implementation we make extensive use of proportional-

Access control constrains the ability of a process to uaare resource schedulers. ldit denote a sched-
and/or modify the objects belonging to theserv  file uler directory andil, ..., dn its immediate subdirecto-
system. Processes are endowed with “credentials” whiés (Scheduler or queue directories). Isgt denote the
are used to determine whether certain operations areShiare file for directoryd; . sj specifies two quantities
lowed. The standard Unix credentials of user and grofipv€ightw; and a minimum absolute amount;, of the

ids are not sufficient to build a useful access control medfSOUree. _
anism for thelreserv  file system. One reason is that The weights determine how the resource, reserved for

many servers create subprocesses, all with the same @fe-» IS divided up among its immediate descendant di-
dentials, to deal with clients that are not all granted idenfctories. Specifically, the fraction dfr ’s resource re-
cal access to resources. At the very least, a processes #tyed fordj is equal tow;/ 377, w;. Supposen is the
needs to be part of its credentials. In general, other kif§¥limum amount of resource guaranteedio (spec-

of unforgeable credentials may prove to be useful. ~ ified in dir ’s share file). Then the conditionn; <

Below we identify the Read (R) and Write (W) opera%m/ 2_j—1 w; is checked by admission control for all
tions on/reserv  which is subject to access control: directories which may be affected when writing to a share

file. Such writes are admissible if and only if this condi-

scheduler directoryR: reading the directory and gettindion Will not be violated at any reservationfreserv

the GCflag; W: writing the directory and setting tH@C Writing to abacklog file is also subject to admission
flag. control since memory resources are involved.

2.7 Access Control

queue directory R: Reading the directory, using the di2 9 Reservation and Reservation Domains
rectory as a tag, and getting ti&Cflag; W: writing the
directory and setting th&Cflag. A reservation corresponds to a node in a resource sched-

uler and thus represents a “share” of the corresponding
share and backlog filesR: reading; W: writing subject to resource as provided by the scheduling algorithm of the
admission control. resource scheduler. Theeserv APl enables us to or-

ganize and structure reservations (resource schedulers):
newqueue and newsched fil& opening; W: opening. we can create new scheduler and queue directories (using

the newsched andnewqueue files), change resource

Abstractly, an access control policy is represented bgeheduler parameters (writing share files), and alter
matrix, ACC, of subjects (credentialed processes) and ®ffer capacities (writing thacklog files).
jects from/reserv  (e.g., scheduler directory, share file, A queue directory represents a queue node in a resource
etc.). The entry denoted ACC[S, O] is the list of opergcheduler and resource requests entered into this queue
tions allowed by subject S on object O. Finally, there isill obtain the QoS which has been provisioned for this
list of processes associated with each entry of ACC[] defueue node. Our tagging mechanisms enable us to asso-
ignating those processes which are allowed to modify thigite queue directories with file descriptors and processes
entry and to what extent. and thus provide QoS support for operations on these ob-
The access rights (with respect/teserv  of a pro- jects. The assignment of reservations to objects is quite

cess with credential S are represented by row S of the #iexible. Reservations can be shared by more than one ob-
cess matrix ACC. The operations specified in ACCJ[S,jdct (the same tag can be associated with file descriptors
are exactly those which are available to S (subject to adpresenting different files) and a file can be associated
ditional admission control restrictions). Conceptually, weith more than one reservation (by tagging file descrip-
identify thereservation domainf a process with its corre-tors to the same file with different tags).
sponding row in ACC. Our initial implementation is based Tags can be assigned automatically using the default
on the use of capability lists associated withserv list or explicitly usingfcntl  and the garbage collector
entities. will automatically collect unused reservations. The use



Ireserv node A
/cpu Ifxp0 /sd0
/share  /newqueue /newreserv /g0 /gl /g2 /g3 /g4

/share /backlog

Figure 3: The state of /reserv directory used in the exper-
iments.

Figure 4: Node S is a Web server that hosts multiple sites

of default lists and garbage collection makes it possif¥8 either FreeBSD or Eclipse/BSD.
to provision resources for legacy applications. Reserva-
tions can be assigned to the default list of an application
without its knowledge and it will transparently obtain the
QoS support provided by these reservations. When the apie consider a server where Web sites of four com-
plication finishes, these reservations can be transpareptipies are hosted, and the server’s administrator wants
garbage collected. to isolate the performance of services provided to these

The reservation domain of a process determines its abdidr companies. That is, when a system resource is over-
ity to manipulate and use thieeserv  file system. Itis a loaded, the service for a company should not be affected
very general notion and complements the traditional idey the load on other companies. The administrator con-
of a protection domain. figures the/reserv  file system as illustrated in Fig-

ure 3. The queue directorigd , g2, g3 andg4 in /re-
. serv/fxpO0  contain the same files &®, and the reser-

3 Experiments vation directoriesreservicou  and /reserv/sdO

) _ ) have the same structure/asserv/fxp0 . Each queue
Eclipse/BSD is derived from FreeBSD [11]. It employairectoryql, 92, 93 andg4 have a weight of 0.24 and

the MTR-LS, YFQ and WFQ proportional-share sched+qresponds to a different company, wherg@shas a
ulers for cpu, disk and output link, respectively,

: . and Siggeight of 0.04 and corresponds to the shared activities on
naled Receiver Processing (SRP) for network input pigys server.

cessing [6, 4, 5]. SRP demultiplexes incoming packets

before network and higher-level protocol processing, andwie ran experiments on the configuration shown in Fig-
processes input protocols in the context of the respectiy@ 4, where HTTP clients on nodes A to D make requests
cpu reservations. The Eclipse/BSD implementation usgfthe HTTP server on node S. Nodes A to D are Pentium
in these experiments adds 10884 lines of code to FreeBS{ PC's running FreeBSD. The operating system varies
version 2.2.8: 3230 lines for theserv  file system and only in node S, being either FreeBSD or Eclipse/BSD.
modifications to theproc file system, and 7654 lines forNode S is a PC with 266 MHz Pentium Pro CPU, 64 MB
the new schedulers and their integration into the kernglamM, and 9 GB Seagate ST39173W fast wide SCSI disk.
The kernel size in the GENERIC Configuration is 16013W“ nodes are connected by a Lucent P550 Cajun Ether-
bytes for FreeBSD and 1643939 bytes for Eclipse/BSfat switch at 100 Mbps. Node S runs the Apache 1.3.3
(anincrease of only 43.9 KB). The Eclipse/BSD code W TTP server and hosts multiple Web sites. Nodes A to D
be available atttp://www.bell-labs.com/what/eclipse run client applications (some derived from the WebStone
In our previous papers [6, 4, 5], we presented expepienchmark) that make requests to the server. All measure-

ments verifying that Eclipse/BSD’s cpu, disk and netwolients are the averages of five three minutes runs.
schedulers provide QoS guarantees, including isolation

and minimum bandwidth. This section demonstrates ex-The Apache 1.3.3 HTTP server for FreeBSD is a multi-
perimentally the effectiveness of Eclipse/BSD framewogkocess server. It (pre)forks upto a predefined number of
to provision system resources, and in particular, to charrecesses. Each HTTP connection is handled by a pro-
reservations on the fly (e.g., the cpu reservation of a paess. The number of requests a process services before
cess and output link reservation of a socket) and to shareerminates can be specified. Idle and/or new processes
reservations among applications. accept new connections from the listening socket(s).



3.1 Isolating Performance of Web Sites
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Apache supports a number of ways to host multiple Web
sites on a single server, including running a separate
Apache server for each Web site, or running one Apacﬁie
server configured with multipleirtual hostsone for each &
site. For each of these cases, Eclipse/BSD provides an éf- 5|
fective framework to isolate and differentiate performancé
of Apache Web sites and provide them with performancié o}
bounds. In our previous papers, we demonstrated the QCE)S
capabilities of Eclipse/BSD when each Web site is hosted °| -~
with a separate Apache server. Here, we experiment with
a single Apache server configured with four virtual hosts %o 2 :
each corresponding to a different company’s web site.

These experiments demonstrate the need to modify figure 5: FreeBSD cannot provide isolation to different
reservations of a process, socket and file descriptor on gites.
fly.

In order to guarantee QoS to each virtual host, when =
an Apache process accepts a new request from a listen-
ing socket, the cpu reservation of the process needs to be
set to the one corresponding to the virtual host, at which
the request arrived. Similarly, the network reservation <ﬁ
the connected socket needs to be set to the one corgfe-
sponding to the virtual host (for brevity, we omit reser<
vation and scheduling of other resources, such as disé%s ol
since experiments in this paper only overload cpu and
output link). To do so, we have written an Eclipse/BSD st
module (mod eclipsebsd  in Apache parlance) that en-
ables Apache to utilize the QoS support of Eclipse/BSD.  °, 2 a Number‘smmoféeachcompt‘zngm 12 m 16
Apache uses the module concept to extend its functional-

ity (without the need to change the Apache source tregjgure 6: Appropriate CPU reservations in Eclipse/BSD
As of Apache 1.3,, it is possible to compile the Apach&n guarantee isolation and/or a minimum throughput for

core into a dynamic shared object library, and thereaftgich site independent of the load at other sites.
compile Apache modules as shared objects that can be dy-

namically loaded at run-time.

Themod.eclipsebsd  module adds new configura-
tion directives to specify the resource reservations corre- 2|
sponding to a virtual host. Once an Apache process ag-
cepts a requestod eclipsebsd  sets the cpu reserva- :
tion of the process and the output link and disk reserve
tions of the file descriptors of the process appropriately.
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In the first experiment, an increasing number of clients
continuously made CGI requests to either of four Web |
sites hosted at node S. Processing of each of these CGI
requests consists of computing half a million random ) _
numbers (usingand() ) and returning a 1 KB reply. Figure 7: The performance of Eclipse/BSD without reser-

Therefore, the bottleneck resource is the cpu. We k& ions is similar to the one of FreeBSD.

10



Loading the output link: 1.5MB HTTP accesses Loading the output link: 1.5MB HTTP accesses
T T T T T T T T

35

35

ar
ar

30 |

nqn
uon
=
g

30 |
25 25
20

20

15 | 15 |

Throughput [Mbps]
Throughput [Mbps]

10 | 10 |

0 L L L L L L 0 L L L L L L
30 35 0 5 30 35

10 15 20 25 10 15 20 25
Number of clients of each competing site Number of clients of each competing site

Figure 8: FreeBSD cannot provide isolation to differefigure 10: The performance of Eclipse/BSD without
sites. reservations is similar to the one of FreeBSD.

Loading the output link: 1.5MB HTTP accesses
35 T T T T

der Eclipse/BSD when Apache server is configured with
mod.eclipsebsd , each site gets at least one quarter of
the resources, when the number of concurrent requests for
a site reaches a few. Thus, it is possible to isolate the per-
formance of sites.
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umber of cents of each sompeting site 0 * In the next experiment, an increasing number of clients
continuously requested the same 1.5 MB document from
Figure 9: Appropriate reservations in Eclipse/BSD cajither of four Web sites hosted at node S. Given that re-
guarantee isolation and/or a minimum throughput for eaghests are much smaller than replies, little processing is
site independent of the load at other sites. required per request, and the requested document fits eas-
ily in the node S’s buffer cache, the bottleneck resource is

the number of concurrent clients to site 1 at eight whifeS Nétwork output link.
we varied the number of concurrent clients to otherWe kept the number of concurrent clients to site
sites. Figures 5, 6 and 7 show the average throughat eight while we varied the number of concurrent
put (CGI transactions per second) of each site undgients to other sites. Figures 8, 9 and 10 show
FreeBSD, under Eclipse/BSD when Apache is configurte average throughput of each site under FreeBSD,
with mod.eclipsebsd  module that sets the reservaunder Eclipse/BSD when Apache is configured with
tions, and under Eclipse/BSD when Apache is not comod.eclipsebsd  module that sets the reservations,
figured withmod_ eclipsebsd . and under Eclipse/BSD when Apache is not configured
In the latter case, each process runs under the defsuith mod eclipsebsd . Results are very similar to
reservation on each resource (i.e., in our setup undeose of CGl workload. We see that even with reserva-
g0’s). Performance is roughly the same as performantoens, the throughput of site 1 is (slightly) impacted by
on FreeBSD. In both cases, each process obtains edelload at sites 2, 3 and 4. This is because that clients
treatment. Thus, the throughput of a site depends on theeach site are distributed to nodes A, B, Cand D in a
ratio of the number concurrent requests for the site owveund-robin manner, and they are impacting each other’s
the total number of concurrent requests at the server. Aseformance (remember that nodes A, B, C and D are run-
result, the sites cannot be isolated. On the other hand, nimg FreeBSD without any QoS support).
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3.2 Isolating Performance of Reservations

The reservation domain of a process determines its ability
to manipulate and use thieeserv  and/proc file sys-
tems through which it is able to create and provision reser-
vations, and tag files, sockets, and processes with reser-
vations. Eclipse/BSD enables processes to share reser-
vations without the need to share reservation domains
or have a hierarchical relationship among reservation do-
mains. This provides a flexible framework for expressing
many resource provisioning needs. The following exam-
ples illustrate the effectiveness of our framework. Con-
sider the case where different resources are to be provi-
sioned differently among two companies: The companies
need to share a cpu reservation, but have separate output
link reservations. Application A is hosting services for
company 1 and another application B is hosting services
forcompany 2. Application A and B can share a cpu reser-

Figure 11: FreeBSD cannot provide isolation to differemttion without the need to share output link reservations.

companies.
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Consider another case where resources are to be provi-
sioned among three companies. Application A is hosting
services for companies 1 and 2, and application B is host-
ing services for companies 2 and 3. Application A and B
can share reservations for company 2 without the need to
share reservations for other companies. Also, our frame-
work enables us to distinguish between the reservation do-
main of a process and the traditional protection domain.
For the next experiment, we consider a scenario in
which the system administrator wants to provision the
system equally among four companies independent of ser-
vices supported for the companies. Now, assume that the
system needs to host the external Web pages of these com-
panies, as well as a separate Web site for company 4 con-
sisting of some “sensitive” data. The administrator wants
to run a single Apache server (with a separate virtual host
for each company) to service the external web sites of
these four companies respectively called site 1, 2, 3 and
4), and a separate Apache server for the second Web site
of company 4 (this site is called site 5). The desired pro-
visioning can be done in Eclipse/BSD by using tres
serv in Figure 3 and giving permission to Apache server
for external pages to queue its request under any of the

Figure 12: Appropriate reservations in Eclipse/BSD céﬁqueSt queues and to the second Apache server to queue
guarantee isolation and/or a minimum throughput for ealtf request only undeg4.

company independent of the load at other companies.

CPU Intensive Workload

Again, an increasing number of clients continuously made
CGl requests to either of five Web sites hosted at node S.
We use the same CGI script as in Section 3.1 to overload

12



the cpu. We kept the number of concurrent clients to each
of the external sites at eight while we varied the number
of concurrent clients to the second Apache server (site 5).

Figures 11 and 12 show the average throughput
(CGI transactions per second) of each site and aver-
age aggregate throughput of sites 4 and 5 (graph 6 cor-
responding to company 4) under FreeBSD and under
Eclipse/BSD when the first Apache server is configured
with mod eclipsebsd  module. _

Eclipse/BSD provisions resources equally among the
four companies. The load increase on the fourth conéi
pany’s second Web site (site 5) does not degrade the pér-
formance of the other companies’ Web sites, only impacts
the performance of the fourth company’s external site (site
4); but the aggregate throughput provided to company 4
remains at least one fourth of the available throughput.
On FreeBSD, the performance of all companies’ external
Web sites suffer with the load increase at company zglsg
second Web site (site 5). Thus, the throughput of services
provided to companies cannot be isolated.

Output Link Intensive Workload

In the next set of experiments, we use the same output
link intensive workload described in Section 3.1. Thus, an
increasing number of clients continuously requested the
same 1.5 MB document from all the Web sites hosted at
node S. We kept the number of concurrent clients at the
external Web sites at eight, while the number of concur-
rent requests at the second Web site of fourth company
(site 5) is increased.

Figures 13 and 14 show the average throughput of each
site and average aggregate throughput of sites 4 and 5
(graph 6 corresponding to company 4) under FreeBSE)
and under Eclipse/BSD when the first Apache server s
configured withmod.eclipsebsd Results are very
similar to those of CGI workload.

Throu

3.3 Overhead of New Primitives

Two new system calls are extensively used in these exper-
iments:chcpures () that changes the cpu reservation
a process anttntl () with F_.SET_QUEUE option that
changes the reservation of a file descriptor. The overhga
of these system calls is presented in Table 1. For eac
measurement, we wrote a user-level program that invoked

the corresponding system call 10,000 times, measured the
total elapsed-time, and calculated the average overhead of
the system call. The first row in Table 1 is the baseline
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%gure 14: Appropriate reservations in Eclipse/BSD can
u(zj—lrantee isolation and/or a minimum throughput for each
c%mpany independent of the load at other companies.



the scheduler.

Operation Overhead fs] The API in Eclipse/BSD is based on the Unix file sys-
null syscall 185 tem. It is not unusual in Unix to extend the file system
chepures 5.64 namespace [15]. Thieserv file system gives us a
fentl(F-SET.QUEUE...) | 9.99 convenient and uniform way to deal with reservations.
creating a queue directory10.28 Other systems, especially those that emphasize real-time

Table 1: Overhead of new primitives used in the eXpeﬁc_:hedullng, have not exten.ded the file system to cover the
ments man_agement of reso_urces: _
Rialto’s [10] real-time distributed framework takes a
user centric approach for resource management in which

plications negotiate the desired QoS parameters with
resource planner object. Resource provider objects
o roughly correspond to our resource schedulers. The Ri-

We also measured the overhead of creating (i.e., 0Pgfy approach is object oriented and disposed towards real-
ing the correspondinnewqueue file) queue directo- o
ries under/reserv  file system. The overhead of this The work done in orprocessor capacity reservés?]
operation depends on the size and the shape dféhe 555 approaches the QoS management from a real-time
serv file system and the resource (remember that creglyshective and deals with microkernel-specific issues.
ing a queue directory also creates a scheduler queue). HSirprocessor capacity reservationsay be used by dif-

number listed in this table is the average of creating }Qent threads allowing multiple user level servers to par-
gueue directories undéeserv/cpu ticipate in one “reservation.”

Resource kernelsom CMU [16] have evolved from

the work on Processor Capacity Reserves. This work is
4 Related and Future Work on Froc pacily me: ;
also real-time oriented and reservations are expressed in

The literature in scheduling research is quite extensi\t/%fmS of processor requirements per time period. Their

especially for packet scheduling [14, 13, 3, 9, 17]. Ol\J/\{ork addresses the priority inversion problem between

use of hierarchical, proportional-share schedulers borrot\j/\'gerent reservations. They identify the problem of pro-

heavily from this body of research. We have added a qce_ssoco-dependenwnd deal with resource composabil-

namic element to these schedulers since we requiretI a'_lt_h Kin 11 sh that by addi iorities t
they be reconfigurable while running. e work in [1] shows that by adding priorities to ser-

The scheduler model we have adopted is well-suit\élge requests on a web server, the server can provide dif-

. . . ferentiated QoS. Rather that building QoS into the kernel,
for simple proportional-share schedulers. We are inter- . . S

. . . . . hey map requests to two different numerical priorities de-
ested in pushing this model to include more real time de-

pendencies. More general scheduler models sucteas lvering them acc'ordlngly in order, to web procgsses.
. . . The research in [2] introducassource containeras
coupled generalized processor shariig] andservice-
) the focus of OS resource management. They address the
curve based schedulef8] are available and we would

. . . L issue of decoupling protection domains from resource do-
like to extend Eclipse/BSD in these directions. The _ plingp . . .
. . . mains. Their resource container abstraction combines as-
Eclipse/BSD code will be available atttp://www.bell- ) ) .
. pects of our reservation domains and default lists. How-
labs.com/what/eclipse . .
ever, we have found that separating the notion of reserva-

ALTQ [7] provides a network queueing framewor(lzon domains from the reservations provides more flexible
i

a
overhead of a system call in Eclipse/BSD and FreeBSafg
running on node S (described for Figure 4).

(API) for output link scheduling that allows the use O'ne—grain resource management
several queuing disciplines. Like Eclipse/BSD, ALT '
is implemented as an extension to FreeBSD. The ALTQ

API simplifies the task of including new network schedR eferences

ulers into FreeBSD and encourages researchers to deploy

their schedulers under this framework. We were unable fd] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
make use or the ALTQ framework, since the Eclipse/BSD  “Providing Differentiated Quality of Service in Web
schedulers provide a significantly differentinterface tothe  Hosting Services”. IlProceedings of the Workshop
kernel, one that supports dynamic reconfiguration within  on Internet Server Performancéune 1998.
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