Scheduling hard real-time
systems: a review

by A. Burns

Recent results in the application of
scheduling theory to hard real-time
systems are reviewed in this paper. The
review takes the form of an analysis of
the problems presented by different
application requirements and
characteristics. Issues covered include
uniprocessor and multiprocessor
systems, periodic and aperiodic
processes, static and dynamic
algorithms, transient overloads and
resource usage. Protocols that limit and
reduce blocking are discussed.
Consideration is also given to
scheduling Ada tasks.

1 Introduction

An inherent characteristic of real-time systems is that their
requirements specification includes timing information in
the form of deadlines. Hard real-time systems are those that
have crucial deadlines. Failure to meet these deadlines being
as much an error as a failure in the value domain.

An acute deadline is represented in Fig. 1. The time taken
to complete an event is mapped against the ‘utility’ this
event has to the system.* Here ‘utility’ is loosely defined to
mean the contribution this event has to the system’s objec-

tives. With the computational event represented in Fig. 1,
this utility is zero before the start time and returns to zero
once the deadline is passed. The mapping of time to utility
between start time and deadline is application-dependent
(and is shown as a constant in the Figure).

In a safety-critical system the situation may indeed be
worse, with the actual damage (negative utility) resulting
from an early or missed deadline (Fig. 2). With the situation
depicted in Fig. 1, the failure that arises if the deadline is
missed is benign. In Fig. 2, the failure becomes more severe
as time passes beyond the deadline. Informally, a safety-
critical real-time system can be defined as one in which the
damage incurred by a missed deadline is greater than any
possible utility that can be obtained by correct and timely
computation. A system can be defined to be a hard real-time
system if the damage has the potential to be catastrophic,
ie. where the consequences are incommensurably greater
than any benefits provided by the service being delivered in
the absence of failure).

In most large real-time systems not all computational
events will be hard or critical. Some will have no deadlines
attached, and others will merely have soft deadlines. A soft
deadline is one that can be missed without compromising
the integrity of the system. Fig. 3 shows a typical soft dead-
line. The distinction between hard and soft deadlines is a

* The time-utility functions represented in Figs. 14 are often
called time-value functions; this term is not used here because of
potential confusion between the ‘value’ domain and the value of
the time domain. An alternative term to utility is benefit.

utility

!
!
1
[
1
1
|
|
!
|
[
|
r

t
[
|
b
!

start time

time

deadline

Fig.1 A hard deadline

116

Software Engineering Journal May 1991

!
|
)
i
1
1
t
|
L
utility |
|

[P R U ——

|
t
damage |

start time

deadline

Fig. 2 A safety-critical system

useful one to make in a general discussion on real-time
systems. An actual application may, however, produce
hybrid behaviours. For example, the process represented in
Fig. 4 has, in effect, three deadlines, D1, D2 and D3. The
first represents ‘maximum utility’, the second defines the
time period for at least a positive contribution and the third
signifies the point at which actual damage will be done. The
time-utility functions represented in Figs. 1-4 are a useful
descriptive aid; they are actually used directly to control
scheduling in some implementation strategies, for example,
in the Alpha Kernel [1, 2].

Hard real-time systems are needed in a number of appli-
cation domains, including air-traffic control, process control
and ‘on-board’ systems such as those proposed for the forth-
coming space station [3]. The traditional approach to
designing these systems has focused on meeting the func-
tional requirements; simulations and testing being
employed to check the temporal needs. A system that fails
to meet its hard deadlines during testing will be subject to
hardware upgrades, software modifications and posthum-

ous slackening of the original requirements. It is reasonable
to assume that improvements can be made to this ad hoc
approach.

In general, there are two views as to how a system can be
guaranteed to meet its deadlines. One is to develop and use
an extended model of correctness (and refinement); the
other focuses on the issue of scheduling [4]. The purpose of
this paper is to review the current state of scheduling
theory as it can be applied to real-time systems. The devel-
opment of appropriate scheduling algorithms has been iso-
lated as one of the crucial challenges for the next generation
of real-time systems [5]. For a review of the use of seman-
tic models to describe the properties of real-time systems,
see Joseph and Goswami [4].

1.1 Deadline characteristics
In the development of application programs it is usual to

map system-timing requirements onto process deadlines.
The issue of meeting deadlines therefore becomes one of

1
|
!
!
I
|
|
|

utility

|
I
1
- -7
1
i
|
!

start time

deadline

Fig.3 A soft deadline

Software Engineering Journal May 1991

117

process scheduling, with two distinct forms of process
structure being immediately isolated:

e periodic processes
e aperiodic processes.

Periodic processes, as their name implies, execute on a
regular basis. They are characterised by

[0 their period;
{1 their deadline, often taken to be equal to period;
[0 their required execution time (per period).

The execution time may be given in terms of an average
measurement and/or a worst-case execution time. For
example, a periodic process may need to execute every
second using, on average, 100 ms of CPU time; this may
rise to 300 ms in extreme instances.

The activation of an aperiodic process is essentially a
random event and is usually triggered by an action external
to the system. Aperiodic processes also having timing con-
straints associated with them, i.e. having started execution
they must complete within a predefined time period. Often
these processes deal with critical events in the system’s
environment, and hence their deadlines are particularly
important.

In general, aperiodic processes are viewed as being acti-
vated randomly, following a Poisson distribution, for
example. Such a distribution allows for ‘bursty’ arrivals of
external events but does not preclude any possible concen-
tration of aperiodic activity. It is therefore not possible to do
worst case analysis (there is a finite possibility of any
number of aperiodic events). As a result, aperiodic processes
cannot have hard deadlines. To allow worst-case calcu-
lations to be made, a minimum period between any two
aperiodic events is often defined (from the same source). If
this is the case, the process involved is said to be sporadic.*
In this paper, the term ‘aperiodic’ will be used for the
general case, and ‘sporadic’ will be reserved for situations
where hard deadlines are indicated.

1.2 Static and dynamic algorithms

Scheduling algorithms themselves can be characterised as
being either static or dynamic [6]. A static approach calcu-
lates (or pre-sets) schedules for each process in advance; it
requires prior knowledge of a process’ characteristics but
requires little runtime overhead. By comparison, a dynamic
method determines schedules at runtime, thereby furnishing
a more flexible system that can react to levels of activity
beyond what was anticipated. Whether dynamic algorithms
are appropriate for hard real-time systems is, however, a
matter of some debate {7]. Certainly, in safety-critical
systems it is reasonable to argue that no event should be
unpredicted and that schedulability should be guaranteed
before execution. This implies the use of a static scheduling
algorithm. Nevertheless, dynamic approaches do have an
important role.

* A slightly weaker definition of sporadic is possible if the dead-
lines of these processes are related to the actual number of active
sporadic events. If there is an upper bound on the total processing
requirement (per unit time) of all aperiodic events, then it is still
possible to have a hard system. Note that, as the number of such
sporadic processes approaches infinity, so must their deadlines.

118

e They are particularly appropriate to soft systems.

e They could form part of an error recovery procedure for
missed hard deadlines.

e They may have to be used if the applications require-
ments fail to provide a worst-case upper limit; for example,
the number of planes in an air traffic control area.

A scheduler is static and offline if all scheduling decisions
are made before the running of the system. A table is gener-
ated that contains all the scheduling decisions for use
during runtime. This relies completely upon a priori know-
ledge of process behaviour. Hence, this scheme is workable
only if all the processes are effectively periodic.

A scheduler is termed clairvoyant

Uf it has an oracle which can predict with absolute cer-
tainty the future request times of all processes.’ [8]

This is difficult for systems which have non-periodic pro-
cesses.

Schedulers may be preemptive or non-preemptive. The
former can arbitrarily suspend a process’ execution and
restart it later, without affecting the behaviour of that
process (except by increasing its elapse time). Preemption
typically occurs when a higher priority process becomes
runnable. The effect of preemption is that a process may be
suspended involuntarily.

Non-preemptive schedulers do not suspend processes in
this way. This is sometimes used as a mechanism for con-
currency control for processes executing inside a resource
whose access is controlled by mutual exclusion [9] (see
later discussion on blocking).

Hybrid systems are also possible [9]. A scheduler may,
in essence, be preemptive but allow a process to continue
executing for a short period after it should be suspended.
This property can be exploited by a process in defining a
non-preemptable section of code. For example, the code
might read a system clock, calculate a delay value and then
execute a delay of the desired length. Such code is impossi-
ble to write reliably if the process could be suspended
between reading the clock and executing the delay. These
deferred preemption primitives must be used with care. The
resulting blocking must be bounded and small, typically of
the same magnitude as the overhead of context switching.
The transputer’s scheduler uses this approach to enable a
fast context switch to be undertaken; the switch is delayed
by up to 50 processor cycles. As a result, the context to be
switched is small (the evaluation stack is empty) and can be
accommodated in a further 10 cycles [10].

1.3 Problem space

The difficulties in providing deadline scheduling are heavily
dependent on other characteristics of the real-time system.
A problem space can be defined that stretches between the
following extremes:

[J uniprocessor system with independent periodic pro-
cesses only;

[0 distributed system with interdependent periodic and
aperiodic process experiencing transient overloads.

This review is structured as a progression from the possible

Software Engineering Journal May 1991

milityI

1
-——
t

damage |
|
|
!
|
l
[
1

D1

start time

D2 D3

Fig. 4 A hybrid system

to the desirable. Further complications such as fault toler-
ance are not addressed.

2 Uniprocessor systems without blocking

First, we consider uniprocessor systems where there is a
single scheduler and, by definition, only one process is exe-
cuting at a time. Processes are independent of each other.

2.1 Independent periodic processes

In the simple case where the system processes are all
periodic and independent of each other, it has been shown
that the rate monotonic algorithm is an optimal static pri-
ority scheduling scheme [11]. By ‘optimal’ we mean that, if
a process set can be scheduled by any fixed priority algo-
rithm, then it can also be scheduled by the rate monotonic
scheduling algorithm [12].

The rate monotonic algorithm requires a preemptive
scheduler; all processes are allocated a priority according to
their period. The shorter the period, the higher their pri-
ority. For this simple scheme, the priorities remain fixed
and therefore implementation is straightforward. Overheads
are also acceptably low. Moreover, schedulability can be
checked before execution time, using either worst-case or
average execution times, for example. For an arbitrary
(random) collection of processes, the utilisation bound on
the processor when schedulability is guaranteed is 88%
[13]; worst-case utilisation is In (2), i.e. 69%. When the
periods for the processes are close to harmonic, utilisation
approaches 100%; the worst case arises when the periods
are relative primes. Necessary and sufficient schedulability
constraint for the rate monotonic algorithm have been
derived by Sha et al. [13, 14].

The rate monotonic formulation assumes that all tasks
have period equal to deadline. If this is not the case, then
the deadline monotonic algorithm is optimal [15]. New
schedulability tests for deadline monotonic scheduling have
recently been devised by Audsley [16].

As well as the rate and deadline monotonic approaches,

Software Engineering Journal May 1991

there are at least two other ways of specifying optimal
scheduling schemes for uniprocessors; earliest deadline [17,
18] and least slack time [19]. Slack time is the time a
process has before its deadline, reduced by the execution
time it still requires. These approaches allow high processor
utilisation to be realised but at the cost of dynamic pri-
orities and increased runtime overhead.

2.2 Transient overloads

It was noted earlier that a periodic process can be character-
ised by its average or its worst-case execution time. In
general, execution times are stochastic. For hard real-time
systems, it is necessary for all critical processes to be sched-
uled using worst-case estimates. However, it will usually be
the case that some process deadlines are soft, in the sense
that the occasional deadline can be missed. If total system
schedulability was checked using only worst-case execution
times, for all processes, then unacceptably low processor
utilisations would be observed during ‘normal’ execution.
Therefore, estimates that are nearer to the average may be
used for soft deadline processes.

If the above approach is taken (or if worst-case calcu-
lations were too optimistic, or the hardware failed to
perform as anticipated), then there may well be occasions
when it is not possible to meet all deadlines. The system is
said to be experiencing a transient overload. Unfortunately,
a direct application of the rate monotonic algorithm (or the
other optimal schemes) does not adequately address these
overload situations. For example, with the rate monotonic
approach, a transient overload will lead to the processes
with the longest periods missing their deadlines. These pro-
cesses may, however, be the most critical ones.

The difficulty is that the single concept of priority is used
by the rate monotonic algorithm as an indication of period;
it cannot therefore be used as an indication of the impor-
tance of the process to the system as a whole.

2.2.1 Period transformation: The simplest way of making
the rate monotonic algorithm applicable to transient over-

119

loads is to ensure that the priority a process is assigned
(due to its period) is also an accurate statement of its
(relative) importance. This can be done by transforming the
periods of important processes [20].

Consider, for example, two processes P, and P,, with
periods 12 and 30 and average execution times of 8 and 3
units, respectively. Using the rate monotonic algorithm, P,
will be given the highest priority and all deadlines will be
met if execution times stay at, or below, the average value.
However, if there is an overload, P, will miss its deadline;
this may or may not be what is required. To illustrate the
use of period transformation, let P, be the critical hard real-
time process that must meet its deadline. Its period is trans-
formed so that it becomes a process P, which has a cycle
of 10 units with 1 unit of execution time (on average) in
each period. Following the transformation, P’ has a shorter
period than P, and hence will be given a higher priority; it
therefore meets its deadlines in preference to P, (during a
transient overload).

The process P’ is different from an ordinary process,
with a cycle time of 10, in that it performs different actions
in subsequent periods (repeating itself only every 3 periods).
P, is obtained from P, by

e cither adding two delay requests into the body of the
code

e or instructing the runtime system to schedule it as three
shorter processes.

In general, it will not be possible to split a process into
exactly equal parts. But, as long as the largest part is used
for calculations of schedulability, the period transformation
technique can deal adequately with transient overloads.
Moreover, the transformation technique requires only trivial
changes to the code or runtime support.

2.3 Independent aperiodic processes

Most real-time systems have a mixture of periodic and
aperiodic processes. Mok [8] has shown that earliest dead-
line scheduling remains optimal with respect to such a
mixture. However, he assumes a minimum separation time
between two consecutive arrivals of aperiodic processes, i.e.
they are sporadic.

Where aperiodic events are not sporadic, one must use a
dynamic approach. Again, the earliest deadline formulation
is optimal [21] and is the most common one used in these
situations. Although optimal, it suffers from unpredict-
ability (or instability) when experiencing transient over-
loads, ie. deadlines are not missed in an order that
corresponds (inversely) to the importance of that deadline to
the system.

As an alternative, the rate monotonic algorithm can be
adapted to deal with aperiodic processes. This can be done
in a number of ways. The simplest approach is to provide a
periodic process whose function is to service one or more
aperiodic processes. This periodic server process can be
allocated the maximum execution time commensurate with
continuing to meet the deadlines of the periodic processes.

As aperiodic events can only be handled when the period-
ic server is scheduled, the approach is essentially polling.
The difficulty with polling is that it is incompatible with the
‘bursty’ nature of aperiodic processes. When the server is
ready, there may be no process to handle. Alternatively, the

120

server's capacity may be unable to deal with a concentrated
set of arrivals. To overcome this difficulty, a number of
bandwidth-preserving algorithms have been proposed [22].

The general structure behind these algorithms is that any
spare capacity (i.e. not being used by the periodic processes)
is converted into a ‘ticket’ of available execution time. An
aperiodic process, when activated, may run immediately if
there are tickets available. This therefore allows these
events to be highly responsive while still guaranteeing
periodic activities. The spare capacity is derived from two
sources:

[0 that which was designed into the system because of
known aperiodic activity;

] that which has been released by periodic processes
requiring less than their worst-case entitlement.

For an example of an algorithm that incorporates this
model, see the sporadic server [23, 24].

3 Uniprocessor systems with blocking

In most realistic real-time systems, processes interact in
order to satisfy system-wide requirements. The forms that
these interactions take are varied, including simple condi-
tion synchronisations, precedence constraints and mutual
exclusion protection of non-sharable resources. To help
program these events, concurrent programming languages
provide synchronisation primitives; for example, semap-
hores [25], monitors [26] (with signals or condition
variables), occam (CSP) type rendezvous [27] and Ada
extended rendezvous [28].

To calculate the execution time for a process requires
knowledge of how long it will be blocked on any synchro-
nisation primitive it uses. Mok [8] has shown that the
problem of deciding whether it is possible to schedule a set
of periodic processes, which use semaphores to enforce
mutual exclusion, is NP-hard. Indeed, most scheduling prob-
lems for processes that have time requirements and mutual
exclusive resources are NP-hard [29, 30]. Similarly, the
analysis of a concurrent program, which uses arbitrary
interprocess ~ message ~ passing (synchronous or
asynchronous) appears to be computationally intractable.
This does not imply that it is impossible to construct poly-
nomial time feasibility tests but that necessary and suffi-
cient checks are NP-hard, ie. a program could fail a
feasibility test but still be schedulable. However, if it passes
a feasibility test it will be schedulable. Considerations are
therefore restricted to those interprocesses interactions that
enable feasibility tests to be constructed. The common form
of mutual exclusion synchronisation is such a structure.
This form of interaction gives rise to the client-server prog-
ramming paradigm.

3.1 Priority inverston

The primary difficulty with semaphores, monitors or
message-based systems is that a high-priority process can
be blocked by lower priority processes an unbounded
number of times. Consider, for example, a high-priority
process H wishing to gain access to a critical section that is
controlled by some synchronisation primitive. Assume that
at the time of H’s request, a low-priority process L has
locked the critical section. The process H is said to be

Software Engineering Journal May 1991

blocked by L. This blocking is inevitable and is a direct
consequence of providing resource integrity, ie. mutual
exclusion.

Unfortunately, in the above situation H is not only
blocked by L, but it must also wait for any medium-priority
process M that wishes to execute. If M is executable, it will
execute in preference to L, and hence further delay H. This
phenomenon is known as priority inversion.

There are three main approaches that can minimise this
effect. First, one can prohibit preemption of a process while
it is executing in a critical section. This will prevent M from
executing, but it will also delay H even when it does not
wish to enter that particular critical section. If the critical
sections are short (and bounded), then this may be accept-
able. We shall return to this result in the multiprocessor
Section. The other approaches to controlling priority inver-
sion are considered below.

3.2 Prevention of priority inversion

Priority inversion can be prohibited altogether if no process
is allowed to access a critical section, if there is any possi-
bility of a higher priority process being blocked. This
approach is described by Babaoglu et al. [31]. In the above
example, process L would not be allowed to enter the
shared section if H could become executable while L was
still executing within it. For this scheme to be feasible, all
processes must be periodic and all execution times
(maximums) must be known. A process P can only enter a
critical section S if the total elapse time of P in S is less
than the ‘free’ time available before any higher priority
process that uses S starts a new period.

The main problem with this approach is the enforced
introducton of idle time into the system. For example, con-
sider the following:

e a low-priority process L wishes to enter a critical region
Sattimet,;

e a high-priority process H requires S at #,. H has not yet
been activated;

e L is not granted S because the time between ¢, and ¢, is
less than that required to execute S. Hence, between ¢, and
¢, no process is utilising the processor.

The possibility of idle time reduces the processor utilisation
that can be achieved. The worst-case utilisation is approx-
imately 50%.

3.3 Priority inheritance

The standard priority inheritance protocol [32] removes
inversion by dynamically changing the priority of the pro-
cesses that are causing blocking. In the example above, the
priority of L will be raised to that of H (once it blocks H)
and, as a result, L will execute in preference to the interme-
diate priority process M. Further examples of this pheno-
mena are given by Burns and Wellings [10].

Sha ef al. [32] show that for this inheritance protocol
there is a limit to the number of times a process can be
blocked by lower priority processes. If a process has m criti-
cal sections that can lead to it being blocked, then the
maximum number of times it can be blocked is m, i.e. in the
worst case, each critical section will be locked by a lower
priority process.

Software Engineering Journal May 1991

Priority inheritance protocols have received considerable
attention recently. A formal specification of the protocol, in
the Z notation, has been given for the languages CSP [33],
Occam {34] and Ada [35].

34 Ceiling protocol

Whereas the standard inheritance protocol gives an upper
limit to the number of blocks that a high-priority process
can encounter, this limit is high and can lead to unaccept-
ably pessimistic worst-case calculation. This is compounded
by the possibility of chains of blocks developing, ie. P,
being blocked by P,, which is blocked by P, etc. Moreover,
there is nothing that precludes deadlocks in the protocol.

All of these difficulties are addressed by the ceiling proto-
col [32]. When this protocol is used

] a high-priority process can be blocked, at most, once
during its execution (per activation),

[deadlocks are prevented,

O transient blocking is prevented.

The ceiling protocol can best be described in terms of
binary semaphores protecting access to critical sections. In
essence, the protocol ensures that, if a semaphore is locked,
by process P,, for example, and could lead to the blocking
of a higher priority process P,, then no other semaphore
that could block P, is allowed to be locked. A process can
therefore be delayed by not only attempting to lock a pre-
viously locked semaphore, but also when the lock could lead
to multiple blocking on higher priority processes.
The protocol takes the following form [32]:

o all processes have a static priority assigned (perhaps by
the rate monotonic algorithm);

o all semaphores have a ceiling value defined; this is the
maximum priority of the processes that use it;

e a process has a dynamic priority that is the maximum
of its own static priority and any it inherits due to it block-
ing higher priority processes;

e a process can only lock a semaphore if its dynamic pri-
ority is higher than the celling of any currently locked
semaphore (excluding any that it has already locked itself).

If there are currently no system semaphores locked, then on
all occasions the locking of the first semaphore is allowed.
The effect of the protocol is that a second semaphore can
only be locked if a high priority process that uses both
semaphores does not exist.

The benefit of the ceiling protocol is that a high-priority
process can only be blocked once (per activation) by any
lower priority process. The cost of this result is that more
processes will experience this block.

A formal proof of the important properties above of the
ceiling protocol has been given by Pilling, Burns, and
Raymond [36].

3.5 Ceiling priority

An equivalent behaviour to that exhibited by the ceiling
protocol can be obtained by raising the priority of each
process to the ceiling level immediately the semaphore is

locked [37]. Priorities are assigned to semaphores (critical

121

regions) as before, i.e. maximum priority of processes that
use it. If a low-priority process L shares a critical region
with a high-priority process H, then it will run with at least
the priority of H while in the critical region. As a result, no
other process with priority less than H can execute (and
lock a second semaphore). When H becomes ‘runnable’, it
will experience, at most, a single block. Moreover, this
blocking will be experienced at the very beginning of its
execution cycle; it will not be able to preempt L if L is
running with priority H. Once this initial block is over, H
will run through its cycle without interference (other than
possible preemption from an even higher priority process).

The use of ceiling priority is more straightforward to
implement than ceiling protocol. It also has the advantage
that during execution it involves less context switching
than the other method. Its blocking characteristics are
equivalent in all cases, apart from when a process only
occasionally uses a critical region (i.e. not every cycle). With
the ceiling protocol, the block is only experienced when a
call is actually made on the critical region. The ceiling pri-
ority strategy can cause a block at the beginning of every
period. Of course, in both approaches, blocking will only
occur if a lower priority process happens to be using a criti-
cal region at the time a higher priority process becomes
‘runnable’.

The recent analysis on the use of ceiling priorities is
having an important influence on the design of program-
ming languages [38] and real-time kernels [39]. This is
considered again in Section 5.

4 Multiprocessor systems

The development of appropriate scheduling schemes for
multiprocessor systems is problematic. Not only are uni-
processor algorithms not directly applicable but some of the
apparently correct methods are counter-intuitive.

Mok and Dertouzes [19] showed that the algorithms that
are optimal for single-processor systems are not optimal for
increased numbers of processors. Consider, for example,
three periodic processes P,, P, and P, that must be exe-
cuted on two processors. Let P, and P, have identical dead-
line requirements, namely a period of 50 units and an
execution requirement (per cycle) of 25 units, and let P,
have requirements of 100 and 52, respectively. If the rate
monotonic (or earliest deadline) algorithm is used, P, and
P, will have highest priority and will run on the two pro-
cessors (in parallel) for their required 25 units. They will
then be delayed for 25 units before repeating the 50 unit
cycle. This will leave P, with 52 units of execution to
accomplish in the 50 units that are available (on each
processor). The fact that P, has two processors available is
irrelevant (one will remain idle). As a result of applying the
rate monotonic algorithm, P; will miss its deadline even
though average processor utilisation is only 76%. However,
an allocation that maps P, and P, to one processor and P,
to the other easily meets all deadlines.

This difficulty with the optimal uniprocessor algorithms
is not surprising, as it is known that optimal scheduling for
multiprocessor systems is NP-hard [40-43]. It is therefore
necessary (as Garey et al. pointed out in 1978 [44]) to look
for ways of simplifying the problem and algorithms that
give adequate suboptimal results.

4.1 Allocation of periodic processes

122

The above illustration showed that judicious allocation of
processes can significantly affect schedulability. Consider
another example; this time let four processes be executing
on the two processors and let their cycle times be 10, 10, 14
and 14, respectively. If the two 10s are allocated to the same
processor (and by implication the two 14s to the other), then
100% processor utilisation can be achieved. The system is
able to be scheduled even if execution times for the four
processes are 5, 5, 10 and 4, for example. However, if a 10
and a 14 were placed together on the same processor, then
utilisation drops to 83%.

What this example appears to show is that it is better to
statically allocate periodic processes, rather than let them
migrate, and, as a consequence, potentially downgrade the
system’s performance. Even on a tightly coupled system
running a single runtime dispatcher, it is better to keep pro-
cesses on the same processor, rather than try and utilise an
idle processor (and risk unbalancing the allocation).

If static deployment is used, then the rate monotonic algo-
rithm (or other optimal uniprocessor schemes) can test for
schedulability on each processor. In performing the alloca-
tion, processes that are harmonically related should be
deployed together, i.e. to the same processor.

4.2 Allocation of aperiodic processes

As it appears expedient to statically allocate periodic pro-
cesses, then a similar approach to aperiodic processes would
seem to be a useful model to investigate. If all processes are
statically mapped, then the bandwidth-preserving algo-
rithms discussed earlier can be used on each processor (i.e.
each processor, in effect, runs its own scheduler/dispatcher).

The problem of scheduling # independent aperiodic pro-
cesses on m processors can be solved (optimally) in poly-
nomial time. Horn presents an optimal algorithm that is
Ow?®) for identical processors (in terms of their speeds)
[17]; this has been generalised more recently by Martel
[45] to give O(m*n* + n®).

One of the drawbacks of a purely static allocation policy
is that no benefits can be gained from spare capacity in one
processor when another is experiencing a transient over-
load. For hard real-time systems, each processor would need
to be able to deal with worst-case execution times for its
periodic processes, and maximum arrival times and execu-
tion times for its sporadic load. To improve on this situ-
ation, Stankovic et al. [46, 47] have proposed more flexible
(dynamic) task scheduling algorithms.

In their approach, which is described in terms of a dis-
tributed system, all periodic processes are statically allocat-
ed, but aperiodic processes can migrate. The following
protocol is used.

O Each aperiodic process arrives at some node in the
network; this could be a processor in a multiprocessor
system running its own scheduler.

[0 The node at which the aperiodic process arrives checks
to see if this new process can be scheduled together with
the existing load. If it can, the process is said to be guar-
anteed by this node.

O If the node cannot guarantee the new process, it looks
for alternative nodes that may be able to guarantee it. It
does this using knowledge of the state of the whole network
(called focused addressing) and by bidding for spare capac-
ity in other nodes (see below).

Software Engineering Journal May 1991

[0 The process is thus moved to a new node where there
is a high probability that it will be scheduled. However,
because of race conditions, the new node may not be able to
schedule it once it has arrived. Hence, the guarantee test is
undertaken locally; if the process fails the test, then it must
move again.

O In this way, an aperiodic process is either scheduled
(guaranteed) or it fails to meet its deadline.

Locating a node to which a process can migrate is problem-
atic. Two general approaches have been identified [48, 49]:

e receiver-initiated
e sender-initiated.

The first of these approaches involves a node asking for
processes to migrate to it. The second involves a node
keeping a record of workloads of other nodes, so that a
process may migrate to the most appropriate node. The
sender-initiated method has been shown to be better under
most system loads [48]. Stankovic et al. have investigated
both approaches [50, 51]] and adopted a hybrid approach.
Each node varies between the sender- and receiver-initiated,
according to the local workload.

The usefulness of their approach is enhanced by the use
of a linear heuristic algorithm for determining where a non-
guaranteed process should move. This heuristic is not com-
putationally expensive (unlike the optimum NP-hard
algorithm) but does give a high degree of success, i.e. there
is a high probability that the use of the heuristic will lead to
an aperiodic process being scheduled (if it is schedulable at
all).

The cost of executing the heuristic algorithm and moving
the aperiodic processes is taken into account by the guar-
antee routine. Nevertheless, the scheme is only workable if
aperiodic processes can be moved and if this movement is
efficient. Some aperiodic processes may be tightly coupled
to hardware unique to one node and will have at least one
component that must execute locally.

The use of this dynamic scheduling approach has been
incorporated into the design of the Spring Kernel [52, 53].
To minimise the overhead of migrating aperiodic processes,
copies of the code of the process are held at nodes that are
likely to be asked to guarantee the process.

4.3 Remote blocking

If we now move to consider process interaction in a multi-
processor system, then the complexity of the scheduling is
further increased (i.e. NP-hard) [29, 30, 54, 55]. As with the
uniprocessor discussion, we restrict ourselves to the inter-
actions that take the form of mutual exclusive synchro-
nisation for controlling resource usage.

In the dynamic (flexible) system described above, in
which aperiodic processes are moved in order to find a node
that will guarantee them, heuristics have been developed
that take into account resource tsage [56-58]. Again, these
heuristics give good results (in simulation) but cannot guar-
antee all processes in all situations.

If we return to a static allocation of periodic and aperio-
dic processes, then schedulability is a function of execution
time which is a function of blocking time. It was noted
earlier that multiprocessor systems give rise to a new form
of blocking, remote blocking. To minimise remote blocking,

Software Engineering Journal May 1991

the following two properties are desirable.

[0 Wherever possible, a process should not use remote
resources (and thereby be subject to remote blocking).

O Remote blocking should only be a function of remote
critical sections, not process execution time caused by
remote preemption.

The first property, which also reduces interprocessor com-
munication, can be achieved, to a certain degree, by judi-
cious allocation of the processes, so that all processes that
use a particular critical section (together with the critical
section itself) reside on the same processor. This is a further
argument for static allocation, and it suggests that migra-
tion of aperiodic processes could be counter-productive.

Reducing remote access represents a second criterion for
allocation; the two now being

e group processes according to their periods (i.e. harmonic
periods together);
e group processes according to their resource usage.

These criteria are independent and therefore not simulta-
neously achievable on all occasions. A compromise alloca-
tion would need to be made based on the particular
characteristics of the application.

Although remote blocking can be minimised by appropri-
ate processes deployment, it cannot, in general, be elimi-
nated. We therefore must consider the second approach.

In a uniprocessor system, it is correct for a high-priority
process to preempt a lower priority one. However, in a
multi-processor system, this is not necessarily desirable. If
the two processes are on different processors, then we
would expect them to execute in parallel. However, consider
the following example of three processes H, M and L with
descending priority levels. Processes H and L run on one
processor; M runs on the other but ‘shares’ a critical section
that resides with, and is used by, L. If L is executing in the
critical section when M wishes to use some data protected
by it, then M must be delayed. But, if A now starts to
execute, it will preempt L and thus further delay M. Even if
L was given M’s priority (i.e. remote inheritance), H would
still execute.

To minimise this remote preemption, the critical section
can be made non-preemptable (or at least only preemptable
by other critical sections). An alternative formulation is to
define the priority of the critical section to be higher than all
local processes (using a ceiling priority). Non-preemption is
the protocol used by Mok [8]. As critical sections are often
short when compared to non-critical sections of code, this
non-preemption of a high-priority critical section (which is
another way of blocking a local higher priority process) is
an acceptable rule.

Rajkumar et al. [59] have proved that, with non-
preemption, remote blocking can only take place when a
required resource is already being used, i.e. when an exter-
nal critical section is locked. They go on to define a form of
ceiling protocol appropriate for multiprocessor systems.

44 Transient overloads

It has already been noted that, with static allocation
schemes, spare capacity in one processor cannot be used to

123

alleviate a transient overload in another processor. Each
processor must deal with the overload as best it can, i.e. by
making sure that missed deadlines correspond to less
important processes. If a dynamic scheme is used to allocate
aperiodic processes, then some migration can be catered for.
Unfortunately, the schemes discussed earlier have the
follow properties (during transient overload).

0 Aperiodic deadlines are missed, rather than periodic
ones.

O Aperiodic deadlines are not missed in an order that
reflects importance.

The first point may, or may not, correspond to an applica-
tions requirement; the second is, however, always signifi-
cant if the application has any hard deadlines attached to
aperiodic activity.

A compromise situation is possible (between the static
and dynamic approaches) if a static allocation is used for
normal (non-overload) operation, with controlled migration
being employed for tolerance of transient overloads. With
this approach, each processor attempts to schedule all
aperiodic and periodic processes assigned to it. If a transient
overload is experienced (or better still predicted), then a set
of processes that will miss their deadlines are isolated. This
set will correspond to the least important collection of active
processes; this could be achieved using rate monotonic
scheduling and period transformation.

An attempt is then made to move those processes that
are destined to miss their deadlines. Note that this set could
contain aperiodic and/or periodic processes. The movement
of a periodic processes will be for one complete cycle of its
execution. After the execution of this cycle, it will ‘return’ to
its original processor. At the receiver processor, all incom-
ing processes will arrive as aperiodic, and unexpected,
events.

In the new processor, the new processes will be scheduled
according to their deadlines. This may even cause local pro-
cesses to miss their deadlines (potentially) if their impor-
tance is less than the new arrivals. A chain of migrations
could then ensue (although this is unlikely). It must,
however, be emphasised that migration is not a normal
action, rather it is a form of error recovery after transient
overload. A well specified system may never experience
such events.

The advantage of this approach to transient overloads is
that there is a reduced risk of deadlines being missed in the
more important processes. It also deals adequately with
systems in which aperiodic deadlines are more crucial than
the periodic ones. Of course, an optimal scheme would miss
the least important deadlines in the entire system (rather
than just locally), but the computations necessary to obtain
this optimum are too intensive for real-time applications.

4.5 Distributed systems

When moving from consideration of shared memory
systems to distributed architectures, it is usual to encounter
increased complexity. However, in the case of scheduling,
the differences are not significant. This is because the
analysis of shared memory systems had led to a model of
parallelism that is, essentially, loosely coupled. For example,
static allocation is a method usually considered more appro-
priate for distributed systems. In addition, the need to mini-

124

mise remote action (remote blocking) is commensurate with
good distributed design.

Actual algorithms for the suboptimal (but adequate) allo-
cation of periodic processes in distributed systems can be
found in References 60-64. These all use heuristics to
reduce the search space. Recent work in applying simulated
annealing [65, 66] to process allocation has produced prom-
ising results [67]. The energy function (which is used to
drive the search algorithm) takes into account

e schedulability at each processor (using either rate
monotonic, deadline monotonic or shortest deadline);

e memory utilisation at each processor (must be less than
100%);

e replicated processes (for fault tolerance) that must be
allocated different processors;

e constrained processes; these must be allocated to a
single processor or a subset of those generally available;

e network traffic (the algorithm attempts to minimise
communication subject to the above four constraints).

Tindell shows [67] that the algorithm finds the optimal
allocation (with test examples for which it is feasible to find
the optimal by exhaustive search) and can cope adequately
with large systems, for example, allocating 42 tasks to eight
processors. This last example took 40 CPU seconds on a
RC3260 MIPS machine; it is estimated that exhaustive
search would take 10?® years!

We have seen in the earlier discussion on multiprocessor
systems that process migration can be used to give flex-
ibility or to counter transient overloads. One method of
reducing the time penalty associated with moving a com-
plete process from one node to another is to anticipate the
migration and to have a copy of the code at the receiver
node (see Spring Kernel [52, 53]). Note that copies of the
hard deadlined processes may also be kept on each node to
enable reconfiguration to take place after processor failure.

For instance, a two-processor system could have stati-
cally allocated jobs and be structured to meet all hard dead-
lines locally, even during worst-case computation times. At
each node, there are also soft processes that may miss their
deadlines during extreme conditions. Copies of these soft
processes could be held on each node, so that a potential
overload could be tolerated by moving some form of process
control block between nodes.

This is a general approach; whether it is appropriate for
any particular application would depend on the character-
istics of the application and the hardware on which it is
implemented. It would be necessary to make sure that a
deadline would not be missed by an even greater margin as
a result of migration. This behaviour, which is part of the
phenomena known as bottleneck migration, can dictate the
use of a strategy that precludes migration. After all, tran-
sient overloads are indeed ‘transient’, and so some form of
local recovery may be more desirable.

4.5.1 Communication delays: Almost all distributed
systems incorporate some form of communication media;
typically, this is a local area network. With loosely coupled
systems, communication delays are significant and must be
incorporated into the analysis of worst-case behaviours. To
do this, network delays must be bounded. Unfortunately,
many commercially available networks are non-
deterministic or use FIFO queuing, or at best only have a

Software Engineering Journal May 1991

small range of priorities available. This gives rise to priority
inversion and prohibits the calculation of useful worst-case
delay times.

This is a fundamental distinction between systems (such
as a communications network) that are designed to have
good average performance and those that have good worst-
case performance. The needs of the real-time community for
time-limited behaviour are rarely taken into account in
architectural designs. The ability of existing ISO/OSI Stan-
dards to solve real-time communication problems must be
seriously questioned [68], although recent Standards work
is aimed at improving this situation [69]. Schedulability
aspects of message communication have not been investi-
gated extensively; recent publications by Kurose et al. [70],
Strosnider et al. [71] and Rodd et al. [72] are, however,
noteworthy exceptions.

4.5.2 Remote procedure calls: In all the analysis reported so
far, it is has been assumed that a program is partitioned
between processors (or nodes) using the process as the unit
of distribution. Access to remote resources is via shared
memory under the control of a remote critical section. We
have seen that execution of such critical sections must be
undertaken at a high priority if remote blocking is to be
minimised. An application may, however, choose to distrib-
ute a process between more than one processor. If this is
done, then the process can be said to reside on one pro-
cessor but its ‘thread of control’ may pass to another pro-
cessor. In general, this will be accomplished by remote
procedure calls.

This partitioning of a process is in keeping with an
object-oriented view of distribution and is supported, for
example, in the Alpha Kernel [73].

The use of a remote procedure introduces yet another
form of remote blocking. As with critical sections, remote
preemption can be minimised only if the procedure is given
top priority. The invocation of a remote procedure (or
object) is undertaken by a surrogate process that is aperio-
dic in nature). The local scheduler must execute this aperio-
dic process immediately if remote preemption is not to take
place. If more than one ‘remote’ procedure requires execu-
tion at the same time, then some preemption is inevitable.

Giving surrogate processes high priorities could lead to
transient overload. The local scheduler would therefore need
to know how important the external process is, in order to
decide which deadlines to forfeit.

4.6 Process abstraction

In most of the above discussion, it has been assumed that
critical sections are protected by some low-level primitive.
Remote assess can therefore be accommodated in two ways:

O using shared memory (shared primitives);
00 using a remote procedure that contains the necessary
calls to the local primitives.

Typically, the first of these would be used in a multiproces-
sor system and the second in a distributed system, but this
would not be universally true.

There is, however, a different structure that is more in
keeping with the use of a higher level of abstraction. Here,
the critical section is constructed as part of a process, and
therefore mutual exclusion is ensured. Usage of the critical

Software Engineering Journal May 1991

section is undertaken by this server process on behalf of
client processes. Requests take the form of interprocess
communications, e.g. rendezvous.

To access a remote server process requires some sort of
remote call. This could take the form of a procedure activa-
tion but could also be a remote rendezvous. Where critical
sections are embodied in processes, remote preemption is
minimised only if these processes are given higher priorities
than other processes.

5 Scheduling Ada tasks

Given the importance of Ada in the real-time domain, this
review will conclude by assessing the impact of the above
analysis is having on the use and future of Ada.

Ada’s limitations for real-time work have been the subject
of four international workshops and numerous studies.
Many of Ada’s difficulties accrue from its inability to
accommodate deadline scheduling. These difficulties have
been well documented [74-81].

One class of problems concerns the specification of period
activity and deadline information. As Ada does not directly
provide these features, it has been proposed that extensions
in the form of runtime libraries can be used [39, 82]. The
other major difficulty concerns the priority model defined in
the Ada Language Reference Manual (Ada LRM) [83].
There are two important issues here; the requirement that
priorities are static, and the FIFO queues that are defined
for entries.

In order to apply the results discussed earlier, which
incorporate critical sections and mutual exclusion synchro-
nisation, Ada programs must be structured so that
resources are controlled by server tasks and used by client
tasks. Server tasks are characterised as having entries;
client tasks do not (there are other restrictions on server
[84]). Without this structure, the schedulability of the
program would be exceedingly difficult to analyse (NP-
hard).

The requirement that priorities are static precludes pri-
ority inheritance but can be circumvented in one of two
ways.

e Assign all tasks the same priority and use a new
measure (‘importance’ or ‘preference’) that is defined to be
dynamic.

e Do not assign priorities to any task (server) that could
inherit a priority. The Ada LRM says that a task without a
priority can be assigned one of any value [83]. A creative
interpretation of this ‘feature’ would allow the priority of
such a task to change dynamically.

If either of these approaches is taken, and the non-
determinacy of the select statement is used to prescribe a
partial ordering (of alternatives) based on priority, then only
the FIFO entry queue presents an (almost) insurmountable
hurdle. To stop the ‘fair’ queue protocol from undermining
the priority-based view of the system, it is necessary to
ensure that, at all times, the maximum number of tasks on
any entry is one. This can possibly be achieved by judicious
preemptions on the part of the runtime systems. Alterna-
tively, programs themselves can be designed so that each
entry is used by only one calling task. With this approach,
methods such as the ceiling protocol could be applied to
Ada [75, 84, 85].

125

In a distributed Ada program, the non-preemption of
critical sections can be interpreted as executing complete
tasks or accept statements at high priority. Yet again, the
Ada LRM (just) allows the latter if one of the tasks involved
(the server) does not have a priority defined:

If only one of the two priorities is defined, the rendezvous
is executed with at least that priority’ [83].

5.1 Protected records in Ada 9X

Clearly, Ada, as it is currently defined, is deficient in terms
of its priority model. A specifically tailored runtime system,
together with a creative reading of the Ada LRM, will allow
solutions to be constructed for hard real-time systems, but
more appropriate solutions must be sought in the revisions
to the language which are due by 1993. The form these
changes will take is not yet fully defined; however, it seems
likely that mandatory FIFO queues and static priorities will
be removed. A less prescribed language model, which
leaves more freedom to the implementation, will have the
advantage of allowing real-time schedulers to be con-
structed, where necessary, but will allow other applications
to use simpler schemes.

One of the more far-reaching changes being considered is
the incorporation into the language of a monitor-like passive
synchronisation primitive [37]. This protected record will
encapsulate a critical section and allow ceiling priorities to
be assigned (see Section 3.5). It will also have guards to
allow condition synchronisation to be programmed. This
represents quite a fundamental addition to the concurrency
model of Ada; but, it will significantly improve the effec-
tiveness of Ada in building hard real-time systems.

6 Conclusion

The complexity of general scheduling has been seen to be
NP-hard. Hence, the emphasis in the literature has been to
address the limited problems generated from a constrained
model of hard real-time systems. This was seen in the dis-
cussion on scheduling algorithms in simple uniprocessor
systems, where resources, process precedence constraints
and arbitrary process timing constraints were not initially
considered.

Owing to these complexity considerations, suboptimal
scheduling schemes must be used in architectures designed
for realistic hard real-time systems. Such schemes include
the prescheduling approach of MARS [86], the develop-
ments of the rate-monotonic algorithm in ARTS [87], and
the heuristic scheduling approaches of the Spring Kernel
[52] and Alpha Kernel [73]. Together, these indicate the
feasibility of scheduling the following aspects of realistic
hard real-time systems:

O guaranteeing both periodic and non-periodic hard real-
time processes on the same processor;

(] utilisation of spare time by non-critical processes;

[0 initial static allocation of processes;

[] migration of processes in response to changing
environment conditions or local overload.

Guaranteeing process deadlines introduces a predictability/
flexibility trade-off. In the MARS kernel, all processes are
periodic and have guaranteed deadlines. However, the con-

126

straints imposed on the process characteristics of the
system reduces flexibility. The Alpha kernel takes a more
dynamic viewpoint, based on the use of utility functions
(called, in Alpha, time-value functions). This enables great
flexibility, but no absolute guarantees are given to process
deadlines.

The point at which a scheduling scheme resides in predic-
tability/flexibility space is determined, to a large extent, by
the degree of non-determinism, failure, degradation and
dynamic change expected in the system’s lifetime. If this is
high, then an inflexible solution may not be appropriate. For
most systems, a hybrid scheme is suitable. This entails
guaranteeing hard real-time process deadlines off-line or
statically, but with the kernal able to make dynamic utility-
related scheduling decisions when the system changes.

In order to perform adequate hard real-time scheduling,
the following problems must be addressed.

e Guaranteeing hard deadlines requires constraints to be
used that are based on worst-case execution times and
arrival rates. The calculation of these times relies on the
accuracy of maximum blocking bounds.

e The utilisation of the CPU during runtime is low when
worst-case execution times are used to calculate a sched-
ulability bound. Thus, the scheduler is required to make
decisions regarding the best usage of the spare time avail-
able. Decisions are likely to be of better quality the earlier
the scheduler knows that a hard real-time process is
running within its maximum execution time. Methods of
communicating such information to the scheduler and algo-
rithms, to utilise such information, are required.

e For generalised hard real-time systems, schedule
analysis and scheduling algorithms must be able to cope
with processes that have generalised timing characteristics;
for example, periods not equal to deadline and processes
with multiple deadlines in a single execution.

e Tasks in hard real-time systems are unlikely to be inde-
,pendent. Hence, consideration needs to be given to schedule
tests and scheduling algorithms for interdependent pro-
cesses.

e The implications of fault-tolerant programming tech-
niques require consideration. For example, the recovery
block technique atlows for an additional block of code to be
executed in an attempt to overcome a failure. This block of
code must be accounted for during any worst-case execution
time analysis. Similar problems exist for other fault-tolerant
programming techniques.

The current research in this problem domain should lead to
the development of execution environments appropriate for
the next generation of real-time systems.

7 Acknowledgments

The author would like to thank the many constructive com-
ments made on an earlier version of this text by Neil
Audsley, Gerhard Fohler, Mike Richardson and Werner
Schiitz.

8 References

[1] JENSON, ED, LOCKE, CD., and TOKUDA, H.: ‘A time-
driven scheduling model for real-time operating systems’.
Proc. 6th IEEE Real-Time Systems Symp., December 1985

Software Engineering Journal May 1991

[2] JENSON, ED,, NORTHCOTT,].D., CLARK, RK., SHIPMAN,
SE., REYNOLDS, F.D, MAYNARD, DP., and LOEPERE,
K.P.: ‘Alpha: an operating system for mission-critical inte-
gration and operation of large, complex, distributed real-time
systems’. Proc. 1989 Workshop on Mission Critical Operating
Systems, September 1989

[3] BURNS, A, and McKAY, C.W.: ‘A portable common execu-
tion environment for Ada’ in ALVAREZ, A. (Ed.) ‘Ada: the
design choice (Cambridge University Press, Madrid 1989) pp.
80-89

[4] JOSEPH, M., and GOSWAM], A.: ‘Formal description of real-
time systems: a review’. Report RR129, Department of Com-
puter Science, University of Warwick, 1988

[5] STANKOVIC, J.A.: ‘Real-time computing systems: the next
generation’ in STANKOVIC, J.A., and RAMAMRITHAM, K.
(Eds) ‘Tutorial: hard real-time systems’ (IEEE, 1988) pp.
14-38

[6] CHENG, S, STANKOVIC, J.A, and RAMAMRITHAM, K.:

‘Scheduling algorithms for hard real-time systems: a brief

survey’ i STANKOVIC, J.A, and RAMAMRITHAM, K.

(Eds.): ‘Tutorial: hard real-time systems’ (IEEE, 1988) pp.

150-173

BURNS, A.: Distributed hard real-time systems: what

restrictions are necessary? Proc. 1989 Real-Time Systems

Symposium: Theory and Applications, pp. 207-304

[8] MOK, AK.: Fundamental design problems of distributed

systems for hard real-time environments’. PhD Thesis,

Laboratory for Computer Science, MIT/MIT/LCS/TR-297,

1983

TOKUDA, H.: ‘Realtime critical section: not - preempt,

preempt or restart” CMU Technical Report, Computer

Science Department, Carnegie-Mellon University, 1989

[10] BURNS, A, and WELLINGS, AJ.: ‘Real-time systems and
their programming languages’ (Addison Wesley, Woking-
ham, 1990)

[11] LIU, CL, and LAYLAND, J.W.: ‘Scheduling algorithms for
multiprogramming in a hard real-time environment’, /. ACM,
1973, 20, (1), pp. 46-61

[12] SHA, L., and LEHOCZKY, J.P.: ‘Performance of real-time bus
scheduling algorithms’, ACM Perform. Eval. Rev., 1986, 14,
(0))

[13] LEHOCZKY,].P., SHA, L., and DING, V.: ‘The rate monot-
onic scheduling algorithm: exact characterization and
average case behavior’. Technical Report, Department of Sta-
tistics, Carnegie-Mellon University, 1987

[14] SHA, L, and GOODENOUGH,].B.: ‘A review of analytic
real-time scheduling theory and its application to Ada’ in
ALVAREZ, A. (Ed.): ‘Ada: the design choice’ (Cambridge
University Press, Madrid, 1989) pp. 137-148

[15] LEUNG, J.Y.T., and WHITEHEAD,].: ‘On the complexity of
fixed-priority scheduling of periodic, realtime tasks’,
Perform. Eval., 1982, 2, (4), pp. 237-250 :

[16] AUDSLEY, N.: ‘Deadline monotonic scheduling’. Report
YCS.146, Department of Computer Science, University of
York, 1990

[17] HORN, W.A.: ‘Some simple scheduling algorithms’, Nav. Res.
Logist. Q. 1974, 21

[18] BLAZEWICZ, J.: ‘Deadline scheduling of tasks — a survey’,
Found. Control Eng., 1977, 1, (4), pp. 203-216

[19] MOK, A K, and DERTOUZOS, M.L.: ‘Multiprocessor sched-
uling in a hard real-time environment’. Proc. 7th Texas Conf.
Computer Systems, November 1978

[20] SHA, L., LEHOCZKY,]J.P, and RAJKUMAR, R.; ‘Task
scheduling in distributed real-time systems’. Proc. IEEE
Industrial Electronics Conf., 1987

[21] DERTOUZOS, M.: ‘Control robotics: the procedural control
of physical processes’ in ‘Artificial intelligence and control
applications’ (IFIP Congress, Stockholm, 1974) pp. 807-813

[22] LEHOCZKY, J.P.,, SHA, L., and STROSNIDER, J.X.: ‘Enhanc-

[7

—

[9

—

Software Engineering Journal May 1991

ing aperiodic responsiveness in hard real-time environment’.

Proc. 8th IEEE Real-Time Systems Symp., San Jose, Califor-

nia, December 1987

SHA, L., GOODENOUGH,].B,, and RALYA, T.: ‘An analyti-

cal approach to real-time software engineering’. Software

Engineering Institute Draft Report, 1988

SPRUNT, B,, SHA, L., and LEHOCZKY,].: ‘Scheduling spor-

adic and aperiodic events in a hard real-time systems’.

Department of Computer Science, Carnegie-Mellon Uni-

versity, 1988

DIJKSTRA, EW.: ‘Cooperating sequential processes’ in

GENUYS, F. (Ed): ‘Programming languages’ (Academic

Press, London, 1968)

[26] HOARE, C.AR.: ‘Monitors: an operating system structure
concept’, CACM, 1974, 17, (10), pp. 549-557

[27] BURNS, A.: ‘Programming in occam 2’ (Addison Wesley,
Wokingham, 1988)

[28] BURNS, A.: ‘Concurrent programming in Ada’ (Ada Com-
panion Series, Cambridge University Press, 1985)

[29] GAREY, MR, and JOHNSON, D.S.: ‘Complexity results for
multiprocessor scheduling under resource constraint’, SIAM -
J. Comput., 1975, 4, pp. 397-411

[30] LENSTRA, JK., RINNOOY, AHG. and BRUCKER, P.:

‘Complexity of machine scheduling problems’, Ann. Discrete

Math., 1977, 1

BABAOGLU, O, MARZULLO, K., and SCHNEIDER, F.B.:

‘Priority inversion and its prevention in real-time systems’.

PDCS Report 17, Dipartimento di Matematica, Universita di

Bologna, 1990

SHA, L, RAJKUMAR, R, and LEHOCZKY, J.P.: ‘Priority

inheritance protocols: an approach to real-time synchro-

nisation’, IEEE Trans., 1990, C-39, (9), pp. 1175-1185

[33] BURNS, A, and WELLINGS, AJ.: ‘Priority inheritance and
message passing: a formal treatment’, Real-time Syst., 1991

[34] BURNS, A, and WELLINGS, A].: ‘Occam’s priority model
and deadline scheduling’. Proc. 7th Occam User Group
Meeting, Grenoble, September 1987

[35] BURNS, A, and WELLINGS, A].: ‘Priority inheritance and
message passing — a formal treatment’. Report YCS.116,
Department of Computer Science, University of York, Feb-
ruary 1989

[36] PILLING, M., BURNS, A., and RAYMOND, K.: ‘Formal spe-
cification and proofs of inheritance protocols for real-time
scheduling’, Softw. Eng. J., 1990, 5, (5), pp. 263-279

[37] KLEIN, M.H, and RALYA, T.: ‘An analysis of input/output
paradigms for real-time systems’. Software Engineering
Institute Report CMU/SEI-90-TR-19, 1990

[38] BAKER, T.P.: ‘Protected records, time management and dis-
tribution’, Ada Lett., 1990, X, (9), pp. 17-28

[39] Ada Run Time Environments Working Group: ‘A catalog of
interface features and options’. ACM, ARTEWG, 1991

[40] GAREY, MR, and JOHNSON, D.S.: ‘Computers and intrac-
tability’ (Freeman, New York, 1979)

[41] GRAHAM, R.L, et al.: ‘Optimization and approximation in
deterministic sequencing and scheduling: a survey’, Ann.
Discrete Math., 1979, 5, pp. 287-326

[42] LEINBAUGH, D.W.: ‘Guaranteed response times in a hard
real-time environment, [EEE Trans., 1980, SE-6, (1), pp.
85-91

[43] LEUNG, J.Y.T., and MERRILL, M.L.: ‘A note on preemptive
scheduling of periodic real-time tasks’, Inf. Process. Lett.,
1980, 11, (3), pp. 115-118

[44] GAREY, MR, GRAHAM, RL., and JOHNSON, DS.: ‘Per-
formance guarantees for scheduling aigorithms’, Oper. Res.,
1978, 26, (1), pp. 3-21

[45] MARTEL, C.: ‘Preemptive scheduling with release times,
deadlines, and due times’, ACM, 1982, 29, (3)

[46] RAMAMRITHAM, K, and STANKOVIC, J.A.: ‘Dynamic
task scheduling in hard real-time distributed systems’, IEEE

(23]

(24]

[25]

[31]

(32]

127

Sofw., 1984, 1, (3), pp. 6575

[47] STANKOVIC, J.A., RAMAMRITHAM, K, and CHENG, S.:
‘Evaluation of a flexible task scheduling algorithm for dis-
tributed hard real-time systems’, IEEE Trans., 1985, C-34,
(12), pp. 1130-1143

[48] CHANG, H.Y, and LIVNY, M.: Distributed scheduling
under deadline constraints’ a comparison of sender-initiated
and receiver-initiated approaches’. Proc. 7th IEEE Real-Time
Systems Symposium, December 1986, pp. 175-180

[49] KRUEGER, P., and LIVNY, M.: ‘The diverse objectives of
distributed scheduling policies’. Proc. 8th IEEE Real-Time
Systems Symp., December 1987, pp. 242-249

[50] STANKOVIC, J.A., RAMAMRITHAM, K, and ZHAO, W.:
‘Distributed scheduling of tasks with deadlines and resource
requirements’, IEEE Trans., 1989, C-38, (8), pp. 1110-1123

{51] ZHAO, W., and RAMAMRITHAM, K.: Distributed sched-
uling using bidding and focussed addressing’. Proc. 6th
IEEE Real-Time Systems Symp., December 1985, pp.
103-111

[52] STANKOVIC, J.A,, and RAMAMRITHAM, K.: ‘The design
of the Spring Kernel'. Proc. 8th IEEE Real-Time Systems
Symp., San Jose, California, December 1987, pp. 146-157

[53] STANKOVIC, J.A,, and RAMAMRITHAM, K.: “The Spring
Kernel’ a new paradigm for real-time operating systems’,
ACM Oper. Sys. Rev., 1989, 23, (3), pp. 54-71

[54] BOKHAR], SH.: ‘A shortest tree algorithm for optimal
assignment across space and time in a distributed processor
system’, IEEE Trans., 1981, SE-17, (6), pp. 583-589

[55] ULLMAN,]D.: ‘Complexity of sequence problems’,
COFFMAN, EG. (Ed.): ‘Computers and job/shop scheduling
theory’ (Wiley, 1976)

[56] ZHAO, W.: ‘A heuristic approach to scheduling hard real-
time tasks with resource requirements in distributed
systems’. PhD Thesis, Laboratory for Computer Science,
MIT, 1986

[57} ZHAO, W, RAMAMRITHAM, K, and STANKOVIC, JA.:
‘Preemptive scheduling under time and resource constraints’,
IEEE Trans., 1987, C-388, (8), pp. 949-960

[58] ZHAO, W., RAMAMRITHAM, K, and STANKOVIC, JA.:
‘Scheduling tasks with resource requirements in hard real-
time systems’, [EEE Trans., 1987, SE-13, (5), pp. 564-577

[59] RAJKUMAR, R, SHA, L., and LEHOCZKY,].P.: ‘Real-time
synchronization protocols for multiprocessors’. Department
of Computer Science, Carnegie-Mellon University, April 1988

[60] DHALL, SK., and LIU, CL.: ‘On a realtime scheduling
problem’, Oper. Res., 1978, 26, (1), pp. 127-140

[61] BANNISTER, J.A, and TRIVEDI, KS.: ‘Task allocation in
fault tolerant distributed systems’, Acta Inform., 1983, 20,
pp. 261-281

[62] DAVARI, S, and DHALL, SK.: ‘An on-line algorithm for
real-time task allocation’. Proc. 7th IEEE Real-Time Systems
Symp., December 1986, pp. 194-200

[63] CHEN, G., and YUR, J.: ‘A branch-and-bound-with-underesti-
mates algorithm for the task assignment problem with prece-
dence constraint’. 10th Int. Conf. on Distributed Computing
Systems, 1990, pp. 494-501.

[64] RAMAMRITHAM, K.: ‘Allocation and scheduling of
complex periodic tasks’. 10th Int. Conf. on Distributed Com-
puting Systems, 1990, pp. 108-115.

[65] AARTS, EHL., and KORST, J.: ‘Simulated annealing and
Boltzmann machines’ (Wiley Interscience, 1988)

[66] KIRKPATRICK, S, GELATT, CD, and VECCHI, M.P.:
‘Optimisation by simulated annealing’, Science, 1983, (220),
pp. 671-680

(67] TINDELL, K.: ‘Allocating real-time tasks (an NP-hard
problem made easy). Report YCS.147, Department of Com-
puter Science, University of York, 1990

[68] LE LANN, G.: ‘Critical issues in distributed real-time com-
puting’. Proc. Workshop on Communication Networks and

128

Distributed Operating Systems within the Space Environ-
ment, ESA(ESTEC), October 1989

[69] GRANT, K.: ‘Interim report of the TCCA rapporteurs’ group
of ISO/TC184/SC5/WG2 on time-critical communications
architecture and systems’. N220, BSI, June 1990

[70] CHIPALKATTI, R, KUROSE, JF., and TOWSLEY, D.:
‘Scheduling policies for real-time and non-real-time traffic in
a statistical multiplexer’. Proc. IEEE INFOCOM 89, 1989, pp.
774-783

[71] STROSNIDER, JK., and MARCHOK, TE.: ‘Responsive,
deterministic IEEE 802.5 Token Ring Scheduling’, /. Real-
Time Syst., 1989, 1, (2), pp. 133-158

[72] RODD, M., IZIKOWITZ, I, and ZHAO, W.: ‘RTMMS — an

OSl-based real-time messaging system’, Real-Time Syst. J.,

1990, 2, (3)

NORTHCOTT,]D.: ‘Mechanisms for reliable distributed

real-time operating systems: the Alpha Kernel' (Academic

Press, Orlando, 1987

[74] BURNS, A., LISTER, AM,, and WELLINGS, A]J.: ‘A review
of Ada tasking’ (Lecture Notes in Computer Science,
Springer-Verlag, 1987) Vol. 262

[75] BORGER, M, KLEIN, M., WEIDERMAN, N, and SHA, L.:
‘A testbed for investigating real-time Ada issues’. Proc. 2nd
Int. Workshop on Real-Time Ada Issues, Ada Lett., 1988, 8,
(), pp. 7-11

[76] BURNS, A, and WELLINGS, AJ.: ‘Real-time Ada issues’.
Proc. 1st Int. Workshop on Real-Time Ada Issues, ACM Ada
Lett., 1987, 7, (6) pp. 4346

[77] CORNHILL, D., ‘Tasking — session summary’. Proc. 1st Int.
Workshop on Real-Time Ada Issues, ACM Ada Lett., 1987,
7, (6), pp. 29-32

[78] CORNHILL, D., SHA, L., LEHOCZKY,].P, RAJKUMAR, R,
TOKUDA, H.: ‘Limitations of Ada for real-time scheduling’.
Proc. 1st Int. Workshop on Real-Time Ada Issues, ACM Ada
Lett., 1987, 1, (6), pp. 33-39

[79] CORNHILL, D., and SHA, L.: ‘Priority inversion in Ada’,
Ada Lett, 1987, 7, pp. 30-32

[(80] LOCKE, CD., and VOGEL, DR.: ‘Problems in Ada runtime
task scheduling’. Proc. 1st Int. Workshop on Real-Time Ada
Issues, ACM Ada Lett., 1987, 7, (6), pp. 51-56

[81] McCORMICK, F.: ‘Scheduling difficulties of Ada in the hard
real-time environment’. Proc. 1st Int. Workshop on Real-
Time Ada Issues, ACM Ada Lett., 1987, 7, (6), pp. 49-50

[82] Ada Run Time Environments Working Group. ‘A catalog of
interface features and options’. SIG-ADA, ARTEWG, Decem-
ber 1987

[83] US. Department of Defense. ‘Reference manual for the Ada
programming language’. ANSI/MIL-STD 1815 A, January
1983

[84] GOODENOUGH,].B, and SHA, L.: “The priority ceiling pro-
tocol: a method for minimizing the blocking of high priority
Ada tasks’. Proc. 2nd Int. Workshop on Real-Time Ada
Issues, ACM Ada Lett., 1988, 8, (7), pp. 20-31

[85] LOCKE, C.D., and GOODENOUGH,].B.: ‘A practical applica-
tion of the ceiling protocol in a real-time system’. Report of
the Software Engineering Institute, March 1988

[86] DAMM, A, REISINGER,], SCHWABL, W, and KOPETZ,
H.: ‘The real-time operating system of MARS, ACM Oper.
Syst. Rev., 1989, 23, (3), pp. 141-157

[87] TOKUDA, H, and MERCER, CW.: ‘ARTS: a distributed
real-time kernel’, ACM Oper. Syst. Rev., 1989, pp. 29-53

[73

The author is with the Department of Computer Science, Uni-
versity of York, Heslington, York YO1 5DD.

The paper was first received on 15th November 1989 and in final
revised form on 5th February 1991.

Software Engineering Journal May 1991

