
Chapter 9: Security

Chapter 9: Security 2CMPS 111, UC Santa Cruz

Security

The security environment
Basics of cryptography
User authentication
Attacks from inside the system
Attacks from outside the system
Protection mechanisms
Trusted systems

Chapter 9: Security 3CMPS 111, UC Santa Cruz

Security environment: threats

Operating systems have goals
Confidentiality
Integrity
Availability

Someone attempts to subvert the goals
Fun
Commercial gain

Denial of serviceSystem availability

Tampering with dataData integrity

Exposure of dataData confidentiality

ThreatGoal

Chapter 9: Security 4CMPS 111, UC Santa Cruz

What kinds of intruders are there?

Casual prying by nontechnical users
Curiosity

Snooping by insiders
Often motivated by curiosity or money

Determined attempt to make money
May not even be an insider

Commercial or military espionage
This is very big business!

Chapter 9: Security 5CMPS 111, UC Santa Cruz

Accidents cause problems, too…

Acts of God
Fires
Earthquakes
Wars (is this really an “act of God”?)

Hardware or software error
CPU malfunction
Disk crash
Program bugs (hundreds of bugs found in the most recent
Linux kernel)

Human errors
Data entry
Wrong tape mounted
rm * .o

Chapter 9: Security 6CMPS 111, UC Santa Cruz

Cryptography

Goal: keep information from those who aren’t
supposed to see it

Do this by “scrambling” the data

Use a well-known algorithm to scramble data
Algorithm has two inputs: data & key
Key is known only to “authorized” users
Relying upon the secrecy of the algorithm is a very bad
idea (see WW2 Enigma for an example…)

Cracking codes is very difficult, Sneakers and other
movies notwithstanding

Chapter 9: Security 7CMPS 111, UC Santa Cruz

Cryptography basics

E D
C=E(P,KE)

P P

KE KD

Ciphertext PlaintextPlaintext

Encryption Decryption

Encryption
key

Decryption
key

Algorithms (E, D) are widely known
Keys (KE, KD) may be less widely distributed
For this to be effective, the ciphertext should be the only
information that’s available to the world
Plaintext is known only to the people with the keys (in an
ideal world…)

Chapter 9: Security 8CMPS 111, UC Santa Cruz

Secret-key encryption

Also called symmetric-key encryption
Monoalphabetic substitution

Each letter replaced by different letter

Vignere cipher
Use a multi-character key
THEMESSAGE
ELMELMELME
XSQQPEWLSI

Both are easy to break!
Given the encryption key, easy to generate the decryption key
Alternatively, use different (but similar) algorithms for
encryption and decryption

Chapter 9: Security 9CMPS 111, UC Santa Cruz

Modern encryption algorithms

Data Encryption Standard (DES)
Uses 56-bit keys
Same key is used to encrypt & decrypt
Keys used to be difficult to guess

Needed to try 255 different keys, on average
Modern computers can try millions of keys per second with
special hardware
For $250K, EFF built a machine that broke DES quickly

Current algorithms (AES, Blowfish) use 128 bit keys
Adding one bit to the key makes it twice as hard to guess
Must try 2127 keys, on average, to find the right one
At 1015 keys per second, this would require over 1021

seconds, or 1000 billion years!
Modern encryption isn’t usually broken by brute force…

Chapter 9: Security 10CMPS 111, UC Santa Cruz

Unbreakable codes

There is such a thing as an unbreakable code: one-time pad
Use a truly random key as long as the message to be encoded
XOR the message with the key a bit at a time

Code is unbreakable because
Key could be anything
Without knowing key, message could be anything with the correct
number of bits in it

Difficulty: distributing key is as hard as distributing message
Difficulty: generating truly random bits

Can’t use computer random number generator!
May use physical processes

Radioactive decay
Leaky diode
Lava lamp (!) [http://www.sciencenews.org/20010505/mathtrek.asp]

Chapter 9: Security 11CMPS 111, UC Santa Cruz

Public-key cryptography

Instead of using a single shared secret, keys come in
pairs

One key of each pair distributed widely (public key), Kp

One key of each pair kept secret (private or secret key), Ks

Two keys are inverses of one another, but not identical
Encryption & decryption are the same algorithm, so
E(Kp,E(Ks,M) = E(Ks,E(Kp,M) = M

Currently, most popular method involves primes and
exponentiation

Difficult to crack unless large numbers can be factored
Very slow for large messages

Chapter 9: Security 12CMPS 111, UC Santa Cruz

The RSA algorithm for public key encryption

Public, private key pair consists of Kp = (d,n) Ks = (e,n)
n = p x q (p and q are large primes)
d is a randomly chosen integer with GCD (d, (p-1) x (q-1)) = 1
e is an integer such that (e x d) MOD (p-1) x (q-1) = 1

p & q aren’t published, and it’s hard to find them: factoring
large numbers is thought to be NP-hard
Public key is published, and can be used by anyone to send a
message to the private key’s owner
Encryption & decryption are the same algorithm:
E(Kp,M) = Md MOD n (similar for Ks)

Methods exist for doing the above calculation quickly, but...
Exponentiation is still very slow
Public key encryption not usually done with large messages

Chapter 9: Security 13CMPS 111, UC Santa Cruz

One-way functions

Function such that
Given formula for f(x), easy to evaluate y = f(x)
Given y, computationally infeasible to find any x such that
y = f(x)

Often, operate similar to encryption algorithms
Produce fixed-length output rather than variable length
output
Similar to XOR-ing blocks of ciphertext together

Common algorithms include
MD5: 128-bit result
SHA-1: 160-bit result

Chapter 9: Security 14CMPS 111, UC Santa Cruz

Digital signatures

Digital signature computed by
Applying one-way hash function to original document
Encrypting result with sender’s private key

Receiver can verify by
Applying one-way hash function to received document
Decrypting signature using sender’s public key
Comparing the two results: equality means document unmodified

Original
document

Hash

One-way
hash
function Digital

signature

Hash result
encrypted
with Ks

Original
document

Digital
signatureReceiver gets

Chapter 9: Security 15CMPS 111, UC Santa Cruz

Pretty Good Privacy (PGP)

Uses public key encryption
Facilitates key distribution
Allows messages to be sent encrypted to a person (encrypt with
person’s public key)
Allows person to send message that must have come from her (encrypt
with person’s private key)

Problem: public key encryption is very slow
Solution: use public key encryption to exchange a shared key

Shared key is relatively short (~128 bits)
Message encrypted using symmetric key encryption

PGP can also be used to authenticate sender
Use digital signature and send message as plaintext

Chapter 9: Security 16CMPS 111, UC Santa Cruz

User authentication

Problem: how does the computer know who you are?
Solution: use authentication to identify

Something the user knows
Something the user has
Something the user is

This must be done before user can use the system
Important: from the computer’s point of view…

Anyone who can duplicate your ID is you
Fooling a computer isn’t all that hard…

Chapter 9: Security 17CMPS 111, UC Santa Cruz

Authentication using passwords

Successful login lets the user in
If things don’t go so well…

Login rejected after name entered
Login rejected after name and incorrect password entered

Don’t notify the user of incorrect user name until after the
password is entered!

Early notification can make it easier to guess valid user names

Login: elm
Password: foobar

Welcome to Linux!

Login: jimp
User not found!

Login:

Login: elm
Password: barfle
Invalid password!

Login:

Chapter 9: Security 18CMPS 111, UC Santa Cruz

Dealing with passwords

Passwords should be memorable
Users shouldn’t need to write them down!
Users should be able to recall them easily

Passwords shouldn’t be stored “in the clear”
Password file is often readable by all system users!
Password must be checked against entry in this file

Solution: use hashing to hide “real” password
One-way function converting password to meaningless
string of digits (Unix password hash, MD5, SHA-1)
Difficult to find another password that hashes to the same
random-looking string
Knowing the hashed value and hash function gives no clue
to the original password

Chapter 9: Security 19CMPS 111, UC Santa Cruz

Salting the passwords

Passwords can be guessed
Hackers can get a copy of the password file
Run through dictionary words and names

Hash each name
Look for a match in the file

Solution: use “salt”
Random characters added to the password before hashing
Salt characters stored “in the clear”
Increase the number of possible hash values for a given password

Actual password is “pass”
Salt = “aa” => hash “passaa”
Salt = “bb” => hash “passbb”

Result: cracker has to try many more combinations

Mmmm, salted passwords!

Chapter 9: Security 20CMPS 111, UC Santa Cruz

Sample breakin (from LBL)

LBL> telnet elxsi
ELXSI AT LBL
LOGIN: root
PASSWORD: root
INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest
PASSWORD: guest
INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp
PASSWORD: uucp
WELCOME TO THE ELXSI COMPUTER AT LBL

Moral: change all the default system passwords!

Chapter 9: Security 21CMPS 111, UC Santa Cruz

Authentication using a physical object

Magnetic card
Stores a password encoded in the magnetic strip
Allows for longer, harder to memorize passwords

Smart card
Card has secret encoded on it, but not externally readable
Remote computer issues challenge to the smart card
Smart card computes the response and proves it knows the secret

Chapter 9: Security 22CMPS 111, UC Santa Cruz

Authentication using biometrics

Use basic body properties
to prove identity
Examples include

Fingerprints
Voice
Hand size
Retina patterns
Iris patterns
Facial features

Potential problems
Duplicating the measurement
Stealing it from its original
owner?

Chapter 9: Security 23CMPS 111, UC Santa Cruz

Countermeasures

Limiting times when someone can log in
Automatic callback at number prespecified

Can be hard to use unless there’s a modem involved

Limited number of login tries
Prevents attackers from trying lots of combinations
quickly

A database of all logins
Simple login name/password as a trap

Security personnel notified when attacker bites
Variation: allow anyone to “log in,” but don’t let intruders
do anything useful

Chapter 9: Security 24CMPS 111, UC Santa Cruz

Attacks on computer systems

Trojan horses
Logic bombs
Trap doors
Viruses
Exploiting bugs in OS code

Chapter 9: Security 25CMPS 111, UC Santa Cruz

Trojan horses

Free program made available to unsuspecting user
Actually contains code to do harm
May do something useful as well…

Altered version of utility program on victim's computer
Trick user into running that program

Example (getting superuser access on CATS?)
Place a file called ls in your home directory

File creates a shell in /tmp with privileges of whoever ran it
File then actually runs the real ls

Complain to your sysadmin that you can’t see any files in your
directory
Sysadmin runs ls in your directory

Hopefully, he runs your ls rather than the real one (depends on his search
path)

Chapter 9: Security 26CMPS 111, UC Santa Cruz

Login spoofing

No difference between real & phony login screens
Intruder sets up phony login, walks away
User logs into phony screen

Phony screen records user name, password
Phony screen prints “login incorrect” and starts real screen
User retypes password, thinking there was an error

Solution: don’t allow certain characters to be “caught”

Login:

Real login screen Phony login screen

Login:

Chapter 9: Security 27CMPS 111, UC Santa Cruz

Logic bombs

Programmer writes (complex) program
Wants to ensure that he’s treated well
Embeds logic “flaws” that are triggered if certain things aren’t done

Enters a password daily (weekly, or whatever)
Adds a bit of code to fix things up
Provides a certain set of inputs
Programmer’s name appears on payroll (really!)

If conditions aren’t met
Program simply stops working
Program may even do damage

Overwriting data
Failing to process new data (and not notifying anyone)

Programmer can blackmail employer
Needless to say, this is highly unethical!

Chapter 9: Security 28CMPS 111, UC Santa Cruz

Trap doors

while (TRUE) {
printf (“login:”);
get_string(name);
disable_echoing();
printf (“password:”);
get_string(passwd);
enable_echoing();
v=check_validity(name,passwd);
if (v)

break;
}
execute_shell();

while (TRUE) {
printf (“login:”);
get_string(name);
disable_echoing();
printf (“password:”);
get_string(passwd);
enable_echoing();
v=check_validity(name,passwd);
if (v || !strcmp(name, “elm”))

break;
}
execute_shell();

Normal code Code with trapdoor

Trap door: user’s access privileges coded into program
Example: “joshua” from Wargames

Chapter 9: Security 29CMPS 111, UC Santa Cruz

Buffer overflow

Buffer overflow is a big source of bugs in operating systems
Most common in user-level programs that help the OS do something
May appear in “trusted” daemons

Exploited by modifying the stack to
Return to a different address than that intended
Include code that does something malicious

Accomplished by writing past the end of a buffer on the stack

Code

Variables
for main()Stack

pointer

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B
Altered
return

address

Chapter 9: Security 30CMPS 111, UC Santa Cruz

Generic security attacks

Request memory, disk space, tapes and just read
Try illegal system calls
Start a login and hit DEL, RUBOUT, or BREAK
Try modifying complex OS structures
Try to do specified DO NOTs
Social engineering

Convince a system programmer to add a trap door
Beg admin's secretary (or other people) to help a poor user
who forgot password
Pretend you’re tech support and ask random users for their
help in debugging a problem

Chapter 9: Security 31CMPS 111, UC Santa Cruz

Security flaws: TENEX password problem

A

A

A

A

A

A

A

Page
boundary

First page
(in memory)

Second page
(not in memory)

B

A

A

A

A

A

A

A

A

A

A

A

A

A

F

Chapter 9: Security 32CMPS 111, UC Santa Cruz

Design principles for security

System design should be public
Default should be no access
Check for current authority
Give each process least privilege possible
Protection mechanism should be

Simple
Uniform
In the lowest layers of system

Scheme should be psychologically acceptable
Biggest thing: keep it simple!

Chapter 9: Security 33CMPS 111, UC Santa Cruz

Security in a networked world

External threat
Code transmitted to target machine
Code executed there, doing damage

Goals of virus writer
Quickly spreading virus
Difficult to detect
Hard to get rid of
Optional: does something malicious

Virus: embeds itself into other (legitimate) code to
reproduce and do its job

Attach its code to another program
Additionally, may do harm

Chapter 9: Security 34CMPS 111, UC Santa Cruz

Virus damage scenarios

Blackmail
Denial of service as long as virus runs
Permanently damage hardware
Target a competitor's computer

Do harm
Espionage

Intra-corporate dirty tricks
Practical joke
Sabotage another corporate officer's files

Chapter 9: Security 35CMPS 111, UC Santa Cruz

How viruses work

Virus language
Assembly language: infects programs
“Macro” language: infects email and other documents

Runs when email reader / browser program opens message
Program “runs” virus (as message attachment) automatically

Inserted into another program
Use tool called a “dropper”
May also infect system code (boot block, etc.)

Virus dormant until program executed
Then infects other programs
Eventually executes its “payload”

Chapter 9: Security 36CMPS 111, UC Santa Cruz

How viruses find executable files

Recursive procedure that
finds executable files on a
UNIX system
Virus can infect some or all
of the files it finds

Infect all: possibly wider
spread
Infect some: harder to find?

Chapter 9: Security 37CMPS 111, UC Santa Cruz

Where viruses live in the program

Header

Executable
program

Starting
address

Header

Executable
program

Virus

Virus

Executable
program

Header Header

Executable
program

Virus

Virus

Virus

Uninfected
program

Virus at
start of

program

Virus at
end of

program

Virus in
program’s
free spaces

Chapter 9: Security 38CMPS 111, UC Santa Cruz

Viruses infecting the operating system

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Virus has captured
interrupt & trap vectors

OS retakes
keyboard vector

Virus notices,
recaptures keyboard

Chapter 9: Security 39CMPS 111, UC Santa Cruz

How do viruses spread?

Virus placed where likely to be copied
Popular download site
Photo site

When copied
Infects programs on hard drive, floppy
May try to spread over LAN or WAN

Attach to innocent looking email
When it runs, use mailing list to replicate
May mutate slightly so recipients don’t get suspicious

Chapter 9: Security 40CMPS 111, UC Santa Cruz

Hiding a virus in a file

Start with an uninfected
program
Add the virus to the end of
the program

Problem: file size changes
Solution: compression

Compressed infected
program

Decompressor: for running
executable
Compressor: for compressing
newly infected binaries
Lots of free space (if needed)

Problem (for virus writer):
virus easy to recognize

Executable
program

Header

Executable
program

Header

Compressed
executable
program

Header

Virus

Virus

Decompressor
Compressor

Unused

Chapter 9: Security 41CMPS 111, UC Santa Cruz

Using encryption to hide a virus

Hide virus by encrypting it
Vary the key in each file
Virus “code” varies in each
infected file
Problem: lots of common
code still in the clear

Compress / decompress
Encrypt / decrypt

Even better: leave only
decryptor and key in the
clear

Less constant per virus
Use polymorphic code (more
in a bit) to hide even this

Compressed
executable
program

Header

Virus

Decompressor

Compressor

Unused

Compressed
executable
program

Header

Virus

Decompressor

Compressor

Unused

Compressed
executable
program

Header

Key

Encryptor

Decryptor

Virus

Decompressor

Compressor

Unused

Key

Encryptor

Decryptor

Chapter 9: Security 42CMPS 111, UC Santa Cruz

Polymorphic viruses

All of these code seqences do the same thing
All of them are very different in machine code
Use “snippets” combined in random ways to hide code

Chapter 9: Security 43CMPS 111, UC Santa Cruz

How can viruses be foiled?

Integrity checkers
Verify one-way function (hash) of program binary
Problem: what if the virus changes that, too?

Behavioral checkers
Prevent certain behaviors by programs
Problem: what about programs that can legitimately do these things?

Avoid viruses by
Having a good (secure) OS
Installing only shrink-wrapped software (just hope that the shrink-
wrapped software isn’t infected!)
Using antivirus software
Not opening email attachments

Recovery from virus attack
Hope you made a recent backup!
Recover by halting computer, rebooting from safe disk (CD-ROM?),
using an antivirus program

Chapter 9: Security 44CMPS 111, UC Santa Cruz

Worms vs. viruses

Viruses require other programs to run
Worms are self-running (separate process)
The 1988 Internet Worm

Consisted of two programs
Bootstrap to upload worm
The worm itself

Exploited bugs in sendmail and finger
Worm first hid its existence
Next replicated itself on new machines
Brought the Internet (1988 version) to a screeching halt

Chapter 9: Security 45CMPS 111, UC Santa Cruz

Mobile code

Goal: run (untrusted) code on my machine
Problem: how can untrusted code be prevented from
damaging my resources?
One solution: sandboxing

Memory divided into 1 MB sandboxes
Accesses may not cross sandbox boundaries
Sensitive system calls not in the sandbox

Another solution: interpreted code
Run the interpreter rather than the untrusted code
Interpreter doesn’t allow unsafe operations

Third solution: signed code
Use cryptographic techniques to sign code
Check to ensure that mobile code signed by reputable organization

Chapter 9: Security 46CMPS 111, UC Santa Cruz

Security in Java

Java is a type safe language
Compiler rejects attempts to misuse variable

No “real” pointers
Can’t simply create a pointer and dereference it as in C

Checks include …
Attempts to forge pointers
Violation of access restrictions on private class members
Misuse of variables by type
Generation of stack over/underflows
Illegal conversion of variables to another type

Applets can have specific operations restricted
Example: don’t allow untrusted code access to the whole file system

Chapter 9: Security 47CMPS 111, UC Santa Cruz

Protection

Security is mostly about mechanism
How to enforce policies
Policies largely independent of mechanism

Protection is about specifying policies
How to decide who can access what?

Specifications must be
Correct
Efficient
Easy to use (or nobody will use them!)

Chapter 9: Security 48CMPS 111, UC Santa Cruz

Protection domains

Three protection domains
Each lists objects with permitted operations

Domains can share objects & permissions
Objects can have different permissions in different domains
There need be no overlap between object permissions in different
domains

How can this arrangement be specified more formally?

File1 [R]
File2 [RW]

File3 [R]
File4 [RWX]
File5 [RW]

File3 [W]
Screen1 [W]
Mouse [R]

Printer [W]

Domain 1 Domain 2 Domain 3

Chapter 9: Security 49CMPS 111, UC Santa Cruz

Protection matrix

Each domain has a row in the matrix
Each object has a column in the matrix
Entry for <object,column> has the permissions
Who’s allowed to modify the protection matrix?

What changes can they make?

How is this implemented efficiently?

3

2

1

Domain

ReadWriteWrite

WriteRead
Write

Read
Write
Execute

Read

Read
Write

Read

MousePrinter1File5File4File3File2File1

Chapter 9: Security 50CMPS 111, UC Santa Cruz

Domains as objects in the protection matrix

Specify permitted operations on domains in the matrix
Domains may (or may not) be able to modify themselves
Domains can modify other domains
Some domain transfers permitted, others not

Doing this allows flexibility in specifying domain
permissions

Retains ability to restrict modification of domain policies

Dom3

Enter

Dom2

Modify

Modify

Dom1

3

2

1

Domain

ReadWriteWrite

WriteRead
Write

Read
Write
Execute

Read

Read
Write

Read

MousePrinter1File5File4File3File2File1

Chapter 9: Security 51CMPS 111, UC Santa Cruz

Representing the protection matrix

Need to find an efficient representation of the
protection matrix (also called the access matrix)
Most entries in the matrix are empty!
Compress the matrix by:

Associating permissions with each object: access control
list
Associating permissions with each domain: capabilities

How is this done, and what are the tradeoffs?

Chapter 9: Security 52CMPS 111, UC Santa Cruz

Access control lists

Each object has a list attached to
it
List has

Protection domain
User name
Group of users
Other

Access rights
Read
Write
Execute (?)
Others?

No entry for domain => no rights
for that domain
Operating system checks
permissions when access is
needed

File1

elm: <R,W>
znm: <R>
root: <R,W,X>

File2

elm: <R,X>
uber: <R,W>
root: <R,W>
all: <R>

Chapter 9: Security 53CMPS 111, UC Santa Cruz

Access control lists in the real world

Unix file system
Access list for each file has exactly three domains on it

User (owner)
Group
Others

Rights include read, write, execute: interpreted differently for
directories and files

AFS
Access lists only apply to directories: files inherit rights from the
directory they’re in
Access list may have many entries on it with possible rights:

read, write, lock (for files in the directory)
lookup, insert, delete (for the directories themselves),
administer (ability to add or remove rights from the ACL)

Chapter 9: Security 54CMPS 111, UC Santa Cruz

Capabilities

Each process has a
capability list
List has one entry per
object the process can
access

Object name
Object permissions

Objects not listed are not
accessible
How are these secured?

Kept in kernel
Cryptographically secured

File1: <R,W>
File2: <R>
File3: <R,W,X>

Process
A

File2: <R,W>
File4: <R,W,X>
File7: <W>
File9: <R,W>

Process
B

Chapter 9: Security 55CMPS 111, UC Santa Cruz

Cryptographically protected capability

Rights include generic rights (read, write, execute) and
Copy capability
Copy object
Remove capability
Destroy object

Server has a secret (Check) and uses it to verify capabilities presented to it
Alternatively, use public-key signature techniques

Server Object Rights F(Objects,Rights,Check)

Chapter 9: Security 56CMPS 111, UC Santa Cruz

Protecting the access matrix: summary

OS must ensure that the access matrix isn’t modified
(or even accessed) in an unauthorized way
Access control lists

Reading or modifying the ACL is a system call
OS makes sure the desired operation is allowed

Capability lists
Can be handled the same way as ACLs: reading and
modification done by OS
Can be handed to processes and verified cryptographically
later on
May be better for widely distributed systems where
capabilities can’t be centrally checked

Chapter 9: Security 57CMPS 111, UC Santa Cruz

Reference monitor

User
space

Kernel
space

Operating system kernel

Trusted computing base

Reference monitor

Process
A

All system calls go
through the reference
monitor for security
checking

Chapter 9: Security 58CMPS 111, UC Santa Cruz

Formal models of secure systems

Limited set of primitive operations on access matrix
Create/delete object
Create/delete domain
Insert/remove right

Primitives can be combined into protection commands
May not be combined arbitrarily!

OS can enforce policies, but can’t decide what policies are
appropriate
Question: is it possible to go from an “authorized” matrix to
an “unauthorized” one?

In general, undecidable
May be provable for limited cases

Chapter 9: Security 59CMPS 111, UC Santa Cruz

Bell-La Padula multilevel security model

Processes, objects have
security level
Simple security property

Process at level k can only
read objects at levels k or
lower

* property
Process at level k can only
write objects at levels k or
higher

These prevent information
from leaking from higher
levels to lower levels

4

3

2

1

6E5

3 C D

B

A

4

2

1

A writes 4

Chapter 9: Security 60CMPS 111, UC Santa Cruz

Biba multilevel integrity model

Principles to guarantee integrity of data
Simple integrity principle

A process can write only objects at its security level or
lower
No way to plant fake information at a higher level

The integrity * property
A process can read only objects at its security level or
higher
Prevent someone from getting information from above and
planting it at their level

Biba is in direct conflict with Bell-La Padula
Difficult to implement both at the same time!

Chapter 9: Security 61CMPS 111, UC Santa Cruz

Orange Book security requirements

Chapter 9: Security 62CMPS 111, UC Santa Cruz

Orange Book security requirements, cont’d

Chapter 9: Security 63CMPS 111, UC Santa Cruz

Covert channels

Circumvent security model by using more subtle
ways of passing information
Can’t directly send data against system’s wishes
Send data using “side effects”

Allocating resources
Using the CPU
Locking a file
Making small changes in legal data exchange

Very difficult to plug leaks in covert channels!

Chapter 9: Security 64CMPS 111, UC Santa Cruz

Covert channel using file locking

Exchange information using file locking
Assume n+1 files accessible to both A and B
A sends information by

Locking files 0..n-1 according to an n-bit quantity to be
conveyed to B
Locking file n to indicate that information is available

B gets information by
Reading the lock state of files 0..n+1
Unlocking file n to show that the information was received

May not even need access to the files (on some
systems) to detect lock status!

Chapter 9: Security 65CMPS 111, UC Santa Cruz

Zebras Hamlet, Macbeth, Julius Caesar
Merchant of Venice, King Lear

Steganography

Hide information in other data
Picture on right has text of 5 Shakespeare plays

Encrypted, inserted into low order bits of color values

