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Security

The security environment 
Basics of cryptography 
User authentication 
Attacks from inside the system 
Attacks from outside the system 
Protection mechanisms 
Trusted systems 
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Security environment: threats

Operating systems have goals
Confidentiality
Integrity
Availability

Someone attempts to subvert the goals
Fun
Commercial gain

Denial of serviceSystem availability

Tampering with dataData integrity

Exposure of dataData confidentiality

ThreatGoal
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What kinds of intruders are there?

Casual prying by nontechnical users
Curiosity

Snooping by insiders
Often motivated by curiosity or money

Determined attempt to make money
May not even be an insider

Commercial or military espionage
This is very big business!
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Accidents cause problems, too…

Acts of God
Fires
Earthquakes
Wars (is this really an “act of God”?)

Hardware or software error
CPU malfunction
Disk crash
Program bugs (hundreds of bugs found in the most recent 
Linux kernel)

Human errors
Data entry
Wrong tape mounted
rm * .o
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Cryptography

Goal: keep information from those who aren’t 
supposed to see it

Do this by “scrambling” the data

Use a well-known algorithm to scramble data
Algorithm has two inputs: data & key
Key is known only to “authorized” users
Relying upon the secrecy of the algorithm is a very bad 
idea (see WW2 Enigma for an example…)

Cracking codes is very difficult, Sneakers and other 
movies notwithstanding
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Cryptography basics

E D
C=E(P,KE)

P P

KE KD

Ciphertext PlaintextPlaintext

Encryption Decryption

Encryption
key

Decryption
key

Algorithms (E, D) are widely known
Keys (KE, KD) may be less widely distributed
For this to be effective, the ciphertext should be the only 
information that’s available to the world
Plaintext is known only to the people with the keys (in an 
ideal world…)
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Secret-key encryption

Also called symmetric-key encryption
Monoalphabetic substitution

Each letter replaced by different letter

Vignere cipher
Use a multi-character key
THEMESSAGE
ELMELMELME
XSQQPEWLSI

Both are easy to break!
Given the encryption key, easy to generate the decryption key
Alternatively, use different (but similar) algorithms for 
encryption and decryption
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Modern encryption algorithms

Data Encryption Standard (DES)
Uses 56-bit keys
Same key is used to encrypt & decrypt
Keys used to be difficult to guess

Needed to try 255 different keys, on average
Modern computers can try millions of keys per second with 
special hardware
For $250K, EFF built a machine that broke DES quickly

Current algorithms (AES, Blowfish) use 128 bit keys
Adding one bit to the key makes it twice as hard to guess
Must try 2127 keys, on average, to find the right one
At 1015 keys per second, this would require over 1021

seconds, or 1000 billion years!
Modern encryption isn’t usually broken by brute force…
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Unbreakable codes

There is such a thing as an unbreakable code: one-time pad
Use a truly random key as long as the message to be encoded
XOR the message with the key a bit at a time

Code is unbreakable because
Key could be anything
Without knowing key, message could be anything with the correct 
number of bits in it

Difficulty: distributing key is as hard as distributing message
Difficulty: generating truly random bits

Can’t use computer random number generator!
May use physical processes

Radioactive decay
Leaky diode
Lava lamp (!) [http://www.sciencenews.org/20010505/mathtrek.asp]
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Public-key cryptography

Instead of using a single shared secret, keys come in 
pairs

One key of each pair distributed widely (public key), Kp

One key of each pair kept secret (private or secret key), Ks

Two keys are inverses of one another, but not identical
Encryption & decryption are the same algorithm, so
E(Kp,E(Ks,M) = E(Ks,E(Kp,M) = M

Currently, most popular method involves primes and 
exponentiation

Difficult to crack unless large numbers can be factored
Very slow for large messages
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The RSA algorithm for public key encryption

Public, private key pair consists of Kp = (d,n) Ks = (e,n) 
n = p x q (p and q are large primes)
d is a randomly chosen integer with GCD (d, (p-1) x (q-1)) = 1
e is an integer such that (e x d) MOD (p-1) x (q-1) = 1

p & q aren’t published, and it’s hard to find them: factoring 
large numbers is thought to be NP-hard
Public key is published, and can be used by anyone to send a 
message to the private key’s owner
Encryption & decryption are the same algorithm:
E(Kp,M) = Md MOD n (similar for Ks)

Methods exist for doing the above calculation quickly, but...
Exponentiation is still very slow
Public key encryption not usually done with large messages
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One-way functions

Function such that
Given formula for f(x), easy to evaluate y = f(x)
Given y, computationally infeasible to find any x such that 
y = f(x)

Often, operate similar to encryption algorithms
Produce fixed-length output rather than variable length 
output
Similar to XOR-ing blocks of ciphertext together

Common algorithms include
MD5: 128-bit result
SHA-1: 160-bit result
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Digital signatures

Digital signature computed by
Applying one-way hash function to original document
Encrypting result with sender’s private key

Receiver can verify by
Applying one-way hash function to received document
Decrypting signature using sender’s public key
Comparing the two results: equality means document unmodified

Original
document

Hash

One-way
hash
function Digital

signature

Hash result
encrypted
with Ks

Original
document

Digital
signatureReceiver gets
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Pretty Good Privacy (PGP)

Uses public key encryption
Facilitates key distribution
Allows messages to be sent encrypted to a person (encrypt with 
person’s public key)
Allows person to send message that must have come from her (encrypt 
with person’s private key)

Problem: public key encryption is very slow
Solution: use public key encryption to exchange a shared key

Shared key is relatively short (~128 bits)
Message encrypted using symmetric key encryption

PGP can also be used to authenticate sender
Use digital signature and send message as plaintext
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User authentication

Problem: how does the computer know who you are?
Solution: use authentication to identify

Something the user knows
Something the user has
Something the user is

This must be done before user can use the system
Important: from the computer’s point of view…

Anyone who can duplicate your ID is you
Fooling a computer isn’t all that hard…
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Authentication using passwords

Successful login lets the user in
If things don’t go so well…

Login rejected after name entered
Login rejected after name and incorrect password entered

Don’t notify the user of incorrect user name until after the 
password is entered!

Early notification can make it easier to guess valid user names

Login: elm
Password: foobar

Welcome to Linux!

Login: jimp
User not found!

Login: 

Login: elm
Password: barfle
Invalid password!

Login:
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Dealing with passwords

Passwords should be memorable
Users shouldn’t need to write them down!
Users should be able to recall them easily

Passwords shouldn’t be stored “in the clear”
Password file is often readable by all system users!
Password must be checked against entry in this file

Solution: use hashing to hide “real” password
One-way function converting password to meaningless 
string of digits (Unix password hash, MD5, SHA-1)
Difficult to find another password that hashes to the same 
random-looking string
Knowing the hashed value and hash function gives no clue 
to the original password
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Salting the passwords

Passwords can be guessed
Hackers can get a copy of the password file
Run through dictionary words and names

Hash each name
Look for a match in the file

Solution: use “salt”
Random characters added to the password before hashing
Salt characters stored “in the clear”
Increase the number of possible hash values for a given password

Actual password is “pass”
Salt = “aa” => hash “passaa”
Salt = “bb” => hash “passbb”

Result: cracker has to try many more combinations

Mmmm, salted passwords!
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Sample breakin (from LBL)

LBL> telnet elxsi
ELXSI AT LBL
LOGIN: root
PASSWORD: root
INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest
PASSWORD: guest
INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp
PASSWORD: uucp
WELCOME TO THE ELXSI COMPUTER AT LBL

Moral: change all the default system passwords!
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Authentication using a physical object

Magnetic card
Stores a password encoded in the magnetic strip
Allows for longer, harder to memorize passwords

Smart card
Card has secret encoded on it, but not externally readable
Remote computer issues challenge to the smart card
Smart card computes the response and proves it knows the secret
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Authentication using biometrics

Use basic body properties 
to prove identity
Examples include

Fingerprints
Voice
Hand size
Retina patterns
Iris patterns
Facial features

Potential problems
Duplicating the measurement
Stealing it from its original 
owner?
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Countermeasures

Limiting times when someone can log in
Automatic callback at number prespecified

Can be hard to use unless there’s a modem involved

Limited number of login tries
Prevents attackers from trying lots of combinations 
quickly

A database of all logins
Simple login name/password as a trap

Security personnel notified when attacker bites
Variation: allow anyone to “log in,” but don’t let intruders 
do anything useful
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Attacks on computer systems

Trojan horses
Logic bombs
Trap doors
Viruses
Exploiting bugs in OS code
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Trojan horses

Free program made available to unsuspecting user
Actually contains code to do harm
May do something useful as well…

Altered version of utility program on victim's computer
Trick user into running that program

Example (getting superuser access on CATS?)
Place a file called ls in your home directory

File creates a shell in /tmp with privileges of whoever ran it
File then actually runs the real ls

Complain to your sysadmin that you can’t see any files in your 
directory
Sysadmin runs ls in your directory

Hopefully, he runs your ls rather than the real one (depends on his search 
path)
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Login spoofing

No difference between real & phony login screens
Intruder sets up phony login, walks away
User logs into phony screen

Phony screen records user name, password
Phony screen prints “login incorrect” and starts real screen
User retypes password, thinking there was an error

Solution: don’t allow certain characters to be “caught”

Login:

Real login screen Phony login screen

Login:
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Logic bombs

Programmer writes (complex) program
Wants to ensure that he’s treated well
Embeds logic “flaws” that are triggered if certain things aren’t done

Enters a password daily (weekly, or whatever)
Adds a bit of code to fix things up
Provides a certain set of inputs
Programmer’s name appears on payroll (really!)

If conditions aren’t met
Program simply stops working
Program may even do damage

Overwriting data
Failing to process new data (and not notifying anyone)

Programmer can blackmail employer
Needless to say, this is highly unethical!
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Trap doors

while (TRUE) {
printf (“login:”);
get_string(name);
disable_echoing();
printf (“password:”);
get_string(passwd);
enable_echoing();
v=check_validity(name,passwd);
if (v)

break;
}
execute_shell();

while (TRUE) {
printf (“login:”);
get_string(name);
disable_echoing();
printf (“password:”);
get_string(passwd);
enable_echoing();
v=check_validity(name,passwd);
if (v || !strcmp(name, “elm”))

break;
}
execute_shell();

Normal code Code with trapdoor

Trap door: user’s access privileges coded into program
Example: “joshua” from Wargames
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Buffer overflow

Buffer overflow is a big source of bugs in operating systems
Most common in user-level programs that help the OS do something
May appear in “trusted” daemons

Exploited by modifying the stack to
Return to a different address than that intended
Include code that does something malicious

Accomplished by writing past the end of a buffer on the stack

Code

Variables
for main()Stack

pointer

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B
Altered
return

address
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Generic security attacks

Request memory, disk space, tapes and just read
Try illegal system calls
Start a login and hit DEL, RUBOUT, or BREAK
Try modifying complex OS structures
Try to do specified DO NOTs
Social engineering

Convince a system programmer to add a trap door
Beg admin's secretary (or other people) to help a poor user 
who forgot password
Pretend you’re tech support and ask random users for their 
help in debugging a problem
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Security flaws: TENEX password problem

A

A

A

A

A

A

A

Page
boundary

First page
(in memory)

Second page
(not in memory)

B

A

A

A

A

A

A

A

A

A

A

A

A

A

F
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Design principles for security

System design should be public
Default should be no access
Check for current authority
Give each process least privilege possible
Protection mechanism should be

Simple
Uniform
In the lowest layers of system

Scheme should be psychologically acceptable
Biggest thing: keep it simple!
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Security in a networked world

External threat
Code transmitted to target machine
Code executed there, doing damage

Goals of virus writer
Quickly spreading virus
Difficult to detect
Hard to get rid of
Optional: does something malicious

Virus: embeds itself into other (legitimate) code to 
reproduce and do its job

Attach its code to another program
Additionally, may do harm
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Virus damage scenarios

Blackmail
Denial of service as long as virus runs
Permanently damage hardware
Target a competitor's computer

Do harm
Espionage

Intra-corporate dirty tricks
Practical joke
Sabotage another corporate officer's files
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How viruses work

Virus language
Assembly language: infects programs
“Macro” language: infects email and other documents

Runs when email reader / browser program opens message
Program “runs” virus (as message attachment) automatically

Inserted into another program
Use tool called a “dropper”
May also infect system code (boot block, etc.)

Virus dormant until program executed
Then infects other programs
Eventually executes its “payload”
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How viruses find executable files

Recursive procedure that 
finds executable files on a 
UNIX system
Virus can infect some or all 
of the files it finds

Infect all: possibly wider 
spread
Infect some: harder to find?
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Where viruses live in the program

Header

Executable
program

Starting
address

Header

Executable
program

Virus

Virus

Executable
program

Header Header

Executable
program

Virus

Virus

Virus

Uninfected
program

Virus at
start of

program

Virus at
end of

program

Virus in
program’s
free spaces
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Viruses infecting the operating system

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Syscall traps

Operating
system

Virus

Disk vector

Clock vector

Kbd vector

Virus has captured
interrupt & trap vectors

OS retakes
keyboard vector

Virus notices,
recaptures keyboard
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How do viruses spread?

Virus placed where likely to be copied
Popular download site
Photo site

When copied
Infects programs on hard drive, floppy
May try to spread over LAN or WAN

Attach to innocent looking email
When it runs, use mailing list to replicate
May mutate slightly so recipients don’t get suspicious
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Hiding a virus in a file

Start with an uninfected 
program
Add the virus to the end of 
the program

Problem: file size changes
Solution: compression

Compressed infected 
program

Decompressor: for running 
executable
Compressor: for compressing 
newly infected binaries
Lots of free space (if needed)

Problem (for virus writer): 
virus easy to recognize

Executable
program

Header

Executable
program

Header

Compressed
executable
program

Header

Virus

Virus

Decompressor
Compressor

Unused
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Using encryption to hide a virus

Hide virus by encrypting it
Vary the key in each file
Virus “code” varies in each 
infected file
Problem: lots of common 
code still in the clear

Compress / decompress
Encrypt / decrypt

Even better: leave only 
decryptor and key in the 
clear

Less constant per virus
Use polymorphic code (more 
in a bit) to hide even this

Compressed
executable
program

Header

Virus

Decompressor

Compressor

Unused

Compressed
executable
program

Header

Virus

Decompressor

Compressor

Unused

Compressed
executable
program

Header

Key

Encryptor

Decryptor

Virus

Decompressor

Compressor

Unused

Key

Encryptor

Decryptor
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Polymorphic viruses

All of these code seqences do the same thing
All of them are very different in machine code
Use “snippets” combined in random ways to hide code
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How can viruses be foiled?

Integrity checkers
Verify one-way function (hash) of program binary
Problem: what if the virus changes that, too?

Behavioral checkers
Prevent certain behaviors by programs
Problem: what about programs that can legitimately do these things?

Avoid viruses by
Having a good (secure) OS
Installing only shrink-wrapped software (just hope that the shrink-
wrapped software isn’t infected!)
Using antivirus software
Not opening email attachments

Recovery from virus attack
Hope you made a recent backup!
Recover by halting computer, rebooting from safe disk (CD-ROM?), 
using an antivirus program
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Worms vs. viruses

Viruses require other programs to run
Worms are self-running (separate process)
The 1988 Internet Worm

Consisted of two programs
Bootstrap to upload worm
The worm itself

Exploited bugs in sendmail and finger
Worm first hid its existence
Next replicated itself on new machines
Brought the Internet (1988 version) to a screeching halt
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Mobile code

Goal: run (untrusted) code on my machine
Problem: how can untrusted code be prevented from 
damaging my resources?
One solution: sandboxing

Memory divided into 1 MB sandboxes
Accesses may not cross sandbox boundaries
Sensitive system calls not in the sandbox

Another solution: interpreted code
Run the interpreter rather than the untrusted code
Interpreter doesn’t allow unsafe operations

Third solution: signed code
Use cryptographic techniques to sign code
Check to ensure that mobile code signed by reputable organization
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Security in Java

Java is a type safe language
Compiler rejects attempts to misuse variable

No “real” pointers
Can’t simply create a pointer and dereference it as in C

Checks include …
Attempts to forge pointers
Violation of access restrictions on private class members
Misuse of variables by type
Generation of stack over/underflows
Illegal conversion of variables to another type

Applets can have specific operations restricted
Example: don’t allow untrusted code access to the whole file system
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Protection

Security is mostly about mechanism
How to enforce policies
Policies largely independent of mechanism

Protection is about specifying policies
How to decide who can access what?

Specifications must be
Correct
Efficient
Easy to use (or nobody will use them!)
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Protection domains

Three protection domains
Each lists objects with permitted operations

Domains can share objects & permissions
Objects can have different permissions in different domains
There need be no overlap between object permissions in different
domains

How can this arrangement be specified more formally?

File1 [R]
File2 [RW]

File3 [R]
File4 [RWX]
File5 [RW]

File3 [W]
Screen1 [W]
Mouse [R]

Printer [W]

Domain 1 Domain 2 Domain 3
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Protection matrix

Each domain has a row in the matrix
Each object has a column in the matrix
Entry for <object,column> has the permissions
Who’s allowed to modify the protection matrix?

What changes can they make?

How is this implemented efficiently?

3

2

1

Domain

ReadWriteWrite

WriteRead
Write

Read
Write
Execute

Read

Read
Write

Read

MousePrinter1File5File4File3File2File1
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Domains as objects in the protection matrix

Specify permitted operations on domains in the matrix
Domains may (or may not) be able to modify themselves
Domains can modify other domains
Some domain transfers permitted, others not

Doing this allows flexibility in specifying domain 
permissions

Retains ability to restrict modification of domain policies

Dom3

Enter

Dom2

Modify

Modify

Dom1

3

2

1

Domain

ReadWriteWrite

WriteRead
Write

Read
Write
Execute

Read

Read
Write

Read

MousePrinter1File5File4File3File2File1
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Representing the protection matrix

Need to find an efficient representation of the 
protection matrix (also called the access matrix)
Most entries in the matrix are empty!
Compress the matrix by:

Associating permissions with each object: access control 
list
Associating permissions with each domain: capabilities

How is this done, and what are the tradeoffs?
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Access control lists

Each object has a list attached to 
it
List has

Protection domain
User name
Group of users
Other

Access rights
Read
Write
Execute (?)
Others?

No entry for domain => no rights 
for that domain
Operating system checks 
permissions when access is 
needed

File1

elm: <R,W>
znm: <R>
root: <R,W,X>

File2

elm: <R,X>
uber: <R,W>
root: <R,W>
all: <R>
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Access control lists in the real world

Unix file system
Access list for each file has exactly three domains on it

User (owner)
Group
Others

Rights include read, write, execute: interpreted differently for
directories and files

AFS
Access lists only apply to directories: files inherit rights from the 
directory they’re in
Access list may have many entries on it with possible rights:

read, write, lock (for files in the directory)
lookup, insert, delete (for the directories themselves),
administer (ability to add or remove rights from the ACL)
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Capabilities

Each process has a 
capability list
List has one entry per 
object the process can 
access

Object name
Object permissions

Objects not listed are not 
accessible
How are these secured?

Kept in kernel
Cryptographically secured

File1: <R,W>
File2: <R>
File3: <R,W,X>

Process
A

File2: <R,W>
File4: <R,W,X>
File7: <W>
File9: <R,W>

Process
B
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Cryptographically protected capability

Rights include generic rights (read, write, execute) and
Copy capability
Copy object
Remove capability
Destroy object

Server has a secret (Check) and uses it to verify capabilities presented to it
Alternatively, use public-key signature techniques

Server Object Rights F(Objects,Rights,Check)
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Protecting the access matrix: summary

OS must ensure that the access matrix isn’t modified 
(or even accessed) in an unauthorized way
Access control lists

Reading or modifying the ACL is a system call
OS makes sure the desired operation is allowed

Capability lists
Can be handled the same way as ACLs: reading and 
modification done by OS
Can be handed to processes and verified cryptographically 
later on
May be better for widely distributed systems where 
capabilities can’t be centrally checked
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Reference monitor

User
space

Kernel
space

Operating system kernel

Trusted computing base

Reference monitor

Process
A

All system calls go 
through the reference 
monitor for security 
checking
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Formal models of secure systems

Limited set of primitive operations on access matrix
Create/delete object
Create/delete domain
Insert/remove right

Primitives can be combined into protection commands
May not be combined arbitrarily!

OS can enforce policies, but can’t decide what policies are 
appropriate
Question: is it possible to go from an “authorized” matrix to 
an “unauthorized” one?

In general, undecidable
May be provable for limited cases
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Bell-La Padula multilevel security model

Processes, objects have 
security level
Simple security property

Process at level k can only 
read objects at levels k or 
lower

* property
Process at level k can only 
write objects at levels k or 
higher

These prevent information 
from leaking from higher 
levels to lower levels

4

3

2

1

6E5

3 C D

B

A

4

2

1

A writes 4
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Biba multilevel integrity model

Principles to guarantee integrity of data
Simple integrity principle

A process can write only objects at its security level or 
lower
No way to plant fake information at a higher level

The integrity * property
A process can read only objects at its security level or 
higher
Prevent someone from getting information from above and 
planting it at their level

Biba is in direct conflict with Bell-La Padula
Difficult to implement both at the same time!
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Orange Book security requirements
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Orange Book security requirements, cont’d
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Covert channels

Circumvent security model by using more subtle 
ways of passing information
Can’t directly send data against system’s wishes
Send data using “side effects”

Allocating resources
Using the CPU
Locking a file
Making small changes in legal data exchange

Very difficult to plug leaks in covert channels!
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Covert channel using file locking

Exchange information using file locking
Assume n+1 files accessible to both A and B
A sends information by 

Locking files 0..n-1 according to an n-bit quantity to be 
conveyed to B
Locking file n to indicate that information is available

B gets information by
Reading the lock state of files 0..n+1
Unlocking file n to show that the information was received

May not even need access to the files (on some 
systems) to detect lock status!
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Zebras Hamlet, Macbeth, Julius Caesar
Merchant of Venice, King Lear

Steganography

Hide information in other data
Picture on right has text of 5 Shakespeare plays

Encrypted, inserted into low order bits of color values


