
Chapter 5: I/O Systems

Chapter 5 2CMPS 111, UC Santa Cruz

Input/Output

Principles of I/O hardware
Principles of I/O software
I/O software layers
Disks
Clocks
Character-oriented terminals
Graphical user interfaces
Network terminals
Power management

Chapter 5 3CMPS 111, UC Santa Cruz

How fast is I/O hardware?

4 MB/secDigital camcorder

500 MB/secPCI bus

60 MB/secXGA monitor

50 MB/secFireWire (IEEE 1394)

20 MB/secHard drive

12.5 MB/secFast Ethernet

1.5 MB/secUSB

200 KB/secPrinter / scanner

7 KB/sec56K modem

100 bytes/secMouse

10 bytes/secKeyboard

Data rateDevice

Chapter 5 4CMPS 111, UC Santa Cruz

Device controllers

I/O devices have components
Mechanical component
Electronic component

Electronic component controls the device
May be able to handle multiple devices
May be more than one controller per mechanical
component (example: hard drive)

Controller's tasks
Convert serial bit stream to block of bytes
Perform error correction as necessary
Make available to main memory

Chapter 5 5CMPS 111, UC Santa Cruz

Memory-Mapped I/O

Separate
I/O & memory

space

0xFFF…

0

Memory

I/O ports

Memory-mapped I/O Hybrid: both
memory-mapped &

separate spaces

Chapter 5 6CMPS 111, UC Santa Cruz

How is memory-mapped I/O done?

Single-bus
All memory accesses go over
a shared bus
I/O and RAM accesses
compete for bandwidth

Dual-bus
RAM access over high-speed
bus
I/O access over lower-speed
bus
Less competition
More hardware (more
expensive…)

CPU Memory I/O

CPU Memory I/O

This port allows I/O devices
access into memory

Chapter 5 7CMPS 111, UC Santa Cruz

Direct Memory Access (DMA) operation

Chapter 5 8CMPS 111, UC Santa Cruz

Hardware’s view of interrupts

Bus

Chapter 5 9CMPS 111, UC Santa Cruz

I/O software: goals

Device independence
Programs can access any I/O device
No need to specify device in advance

Uniform naming
Name of a file or device is a string or an integer
Doesn’t depend on the machine (underlying hardware)

Error handling
Done as close to the hardware as possible
Isolate higher-level software

Synchronous vs. asynchronous transfers
Blocked transfers vs. interrupt-driven

Buffering
Data coming off a device cannot be stored in final destination

Sharable vs. dedicated devices

Chapter 5 10CMPS 111, UC Santa Cruz

Programmed I/O: printing a page

Printed
page

ABCD
EFGH

K
er

ne
l

U
se

r

A

Printed
page

ABCD
EFGH

ABCD
EFGH

AB

Printed
page

ABCD
EFGH

ABCD
EFGH

Chapter 5 11CMPS 111, UC Santa Cruz

Code for programmed I/O

copy_from_user (buffer, p, count); // copy into kernel buffer
for (j = 0; j < count; j++) { // loop for each char

while (*printer_status_reg != READY)
; // wait for printer to be ready

*printer_data_reg = p[j]; // output a single character
}
return_to_user();

Chapter 5 12CMPS 111, UC Santa Cruz

Interrupt-driven I/O

copy_from_user (buffer, p, count);
j = 0;
enable_interrupts();
while (*printer_status_reg != READY)

;
*printer_data_reg = p[0];
scheduler(); // and block user

if (count == 0) {
unblock_user();

} else {
*printer_data_reg = p[j];
count--;
j++;

}
acknowledge_interrupt();
return_from_interrupt();

Code run by system call

Code run at interrupt time

Chapter 5 13CMPS 111, UC Santa Cruz

I/O using DMA

copy_from_user (buffer, p, count);
set_up_DMA_controller();
scheduler(); // and block user

acknowledge_interrupt();
unblock_user();
return_from_interrupt();

Code run by system call

Code run at interrupt time

Chapter 5 14CMPS 111, UC Santa Cruz

Layers of I/O software

User-level I/O software & libraries

Device-independent OS software

Device drivers

Interrupt handlers

Hardware

Operating
system
(kernel)

User

Chapter 5 15CMPS 111, UC Santa Cruz

Interrupt handlers

Interrupt handlers are best hidden
Driver starts an I/O operation and blocks
Interrupt notifies of completion

Interrupt procedure does its task
Then unblocks driver that started it
Perform minimal actions at interrupt time

Some of the functionality can be done by the driver after it is
unblocked

Interrupt handler must
Save regs not already saved by interrupt hardware
Set up context for interrupt service procedure
DLXOS: intrhandler (in dlxos.s)

Chapter 5 16CMPS 111, UC Santa Cruz

What happens on an interrupt

Set up stack for interrupt service procedure
Ack interrupt controller, reenable interrupts
Copy registers from where saved
Run service procedure
(optional) Pick a new process to run next
Set up MMU context for process to run next
Load new process' registers
Start running the new process

Chapter 5 17CMPS 111, UC Santa Cruz

Device drivers

Device drivers go between
device controllers and rest
of OS

Drivers standardize interface
to widely varied devices

Device drivers
communicate with
controllers over bus

Controllers communicate
with devices themselves

User
space

Kernel
space

User
program

Keyboard
driver

Disk
driver

Rest of the OS

Keyboard
controller

Disk
controller

Chapter 5 18CMPS 111, UC Santa Cruz

Device-independent I/O software

Device-independent I/O software provides common
“library” routines for I/O software
Helps drivers maintain a standard appearance to the
rest of the OS
Uniform interface for many device drivers for

Buffering
Error reporting
Allocating and releasing dedicated devices
Suspending and resuming processes

Common resource pool
Device-independent block size (keep track of blocks)
Other device driver resources

Chapter 5 19CMPS 111, UC Santa Cruz

Why a standard driver interface?

Non-standard driver interfaces Standard driver interfaces

Chapter 5 20CMPS 111, UC Santa Cruz

Buffering device input

User
space

Kernel
space

User
space

Kernel
space

User
space

Kernel
space

User
space

Kernel
space

Unbuffered
input

Buffering in
user space

Buffer in kernel
Copy to user space

Double buffer
in kernel

1

2

1 3

2

Chapter 5 21CMPS 111, UC Santa Cruz

Anatomy of an I/O request

Chapter 5 22CMPS 111, UC Santa Cruz

Disk drive structure

sector

cylinder

platter

spindle

track

head

actuator

surfaces

Data stored on surfaces
Up to two surfaces per platter
One or more platters per disk

Data in concentric tracks
Tracks broken into sectors

256B-1KB per sector

Cylinder: corresponding
tracks on all surfaces

Data read and written by
heads

Actuator moves heads
Heads move in unison

Chapter 5 23CMPS 111, UC Santa Cruz

Disk drive specifics

17 µsec22 msSector transfer time

20 sec250 msSpinup time

8.33 ms200 msRotation time

6.9 ms77 msSeek time (average)

0.8 ms6 msSeek time (minimum)

18.3 GB360 KBCapacity

512512Bytes per sector

35742000720Sectors per disk

281 (average)9Sectors per track

122Tracks per cylinder

1060140Cylinders

WD 18GB HDIBM 360KB floppy

Chapter 5 24CMPS 111, UC Santa Cruz

Disk “zones”

Outside tracks are longer
than inside tracks
Two options

Bits are “bigger”
More bits (transfer faster)

Modern hard drives use
second option

More data on outer tracks

Disk divided into “zones”
Constant sectors per track in
each zone
8–20 (or more) zones on a
disk

Chapter 5 25CMPS 111, UC Santa Cruz

Disk “addressing”

Millions of sectors on the disk must be labeled
Two possibilities

Cylinder/track/sector
Sequential numbering

Modern drives use sequential numbers
Disks map sequential numbers into specific location
Mapping may be modified by the disk

Remap bad sectors
Optimize performance

Hide the exact geometry, making life simpler for the OS

Chapter 5 26CMPS 111, UC Santa Cruz

Building a better “disk”

Problem: CPU performance has been increasing
exponentially, but disk performance hasn’t

Disks are limited by mechanics

Problem: disks aren’t all that reliable
Solution: distribute data across disks, and use some
of the space to improve reliability

Data transferred in parallel
Data stored across drives (striping)
Parity on an “extra” drive for reliability

Chapter 5 27CMPS 111, UC Santa Cruz

RAIDs, RAIDs, and more RAIDs

strip strip
Stripe

RAID 0
(Redudant Array of Inexpensive Disks

RAID 1
(Mirrored copies)

RAID 4
(Striped with parity)

RAID 5
(Parity rotates through disks)

Chapter 5 28CMPS 111, UC Santa Cruz

CD-ROM recording

CD-ROM has data in a
spiral

Hard drives have concentric
circles of data

One continuous track: just
like vinyl records!
Pits & lands “simulated”
with heat-sensitive material
on CD-Rs and CD-RWs

Chapter 5 29CMPS 111, UC Santa Cruz

Structure of a disk sector

Preamble contains information about the sector
Sector number & location information

Data is usually 256, 512, or 1024 bytes
ECC (Error Correcting Code) is used to detect & correct
minor errors in the data

Preamble Data ECC

Chapter 5 30CMPS 111, UC Santa Cruz

Sector layout on disk

Sectors numbered
sequentially on each track
Numbering starts in
different place on each
track: sector skew

Allows time for switching
head from track to track

All done to minimize delay
in sequential transfers

Chapter 5 31CMPS 111, UC Santa Cruz

Sector interleaving

On older systems, the CPU was slow => time elapsed
between reading consecutive sectors
Solution: leave space between consecutively numbered
sectors
This isn’t done much these days…

0

1

2

34

5

6

7 0

4

1

52

6

3

7 0

3

6

14

7

2

5

No interleaving Skipping 1 sector Skipping 2 sectors

Chapter 5 32CMPS 111, UC Santa Cruz

What’s in a disk request?

Time required to read or write a disk block
determined by 3 factors

Seek time
Rotational delay

Average delay = 1/2 rotation time
Example: rotate in 10ms, average rotation delay = 5ms

Actual transfer time
Transfer time = time to rotate over sector
Example: rotate in 10ms, 200 sectors/track => 10/200 ms =
0.05ms transfer time per sector

Seek time dominates, with rotation time close
Error checking is done by controllers

Chapter 5 33CMPS 111, UC Santa Cruz

Disk request scheduling

Goal: use disk hardware efficiently
Bandwidth as high as possible
Disk transferring as often as possible (and not seeking)

We want to
Minimize disk seek time (moving from track to track)
Minimize rotational latency (waiting for disk to rotate the desired
sector under the read/write head)

Calculate disk bandwidth by
Total bytes transferred / time to service request
Seek time & rotational latency are overhead (no data is transferred),
and reduce disk bandwidth

Minimize seek time & rotational latency by
Using algorithms to find a good sequence for servicing requests
Placing blocks of a given file “near” each other

Chapter 5 34CMPS 111, UC Santa Cruz

Disk scheduling algorithms

Schedule disk requests to minimize disk seek time
Seek time increases as distance increases (though not linearly)
Minimize seek distance -> minimize seek time

Disk seek algorithm examples assume a request queue & head position
(disk has 200 cylinders)

Queue = 100, 175, 51, 133, 8, 140, 73, 77
Head position = 63

100 17551 1338

140

73

77

read/write head position
disk requests

(cylinder in which block resides)

Outside edge Inside edge

Chapter 5 35CMPS 111, UC Santa Cruz

First-Come-First Served (FCFS)

Requests serviced in the order in which they arrived
Easy to implement!
May involve lots of unnecessary seek distance

Seek order = 100, 175, 51, 133, 8, 140, 73, 77
Seek distance = (100-63) + (175-100) + (175-51) + (133-51) +
(133-8) + (140-8) + (140-73) + (77-73) = 646 cylinders

100
175

51
133

8
140

73
77

read/write head start

Chapter 5 36CMPS 111, UC Santa Cruz

Shortest Seek Time First (SSTF)

Service the request with the shortest seek time from the current head
position

Form of SJF scheduling
May starve some requests

Seek order = 73, 77, 51, 8, 100, 133, 140, 175
Seek distance = 10 + 4 + 26 + 43 + 92 + 33 + 7 + 35 = 250 cylinders

100

175

51

133

8

140

73
77

read/write head start

Chapter 5 37CMPS 111, UC Santa Cruz

SCAN (elevator algorithm)

Disk arm starts at one end of the disk and moves towards the other end,
servicing requests as it goes

Reverses direction when it gets to end of the disk
Also known as elevator algorithm

Seek order = 51, 8, 0 , 73, 77, 100, 133, 140, 175
Seek distance = 12 + 43 + 8 + 73 + 4 + 23 + 33 + 7 + 35 = 238 cyls

100

175

51

133

8

140

73
77

read/write head start

Chapter 5 38CMPS 111, UC Santa Cruz

C-SCAN

Identical to SCAN, except head returns to cylinder 0 when it reaches the
end of the disk

Treats cylinder list as a circular list that wraps around the disk
Waiting time is more uniform for cylinders near the edge of the disk

Seek order = 73, 77, 100, 133, 140, 175, 199, 0, 8, 51
Distance = 10 + 4 + 23 + 33 + 7 + 35 + 24 + 199 + 8 + 43 = 386 cyls

100

175

51

133

8

140

73
77

read/write head start

Chapter 5 39CMPS 111, UC Santa Cruz

C-LOOK

Identical to C-SCAN, except head only travels as far as the last request in
each direction

Saves seek time from last sector to end of disk

Seek order = 73, 77, 100, 133, 140, 175, 8, 51
Distance = 10 + 4 + 23 + 33 + 7 + 35 + 167 + 43 = 322 cylinders

100

175

51

133

8

140

73
77

read/write head start

Chapter 5 40CMPS 111, UC Santa Cruz

How to pick a disk scheduling algorithm

SSTF is easy to implement and works OK if there aren’t too
many disk requests in the queue
SCAN-type algorithms perform better for systems under
heavy load

More fair than SSTF
Use LOOK rather than SCAN algorithms to save time

Long seeks aren’t too expensive, so choose C-LOOK over
LOOK to make response time more even
Disk request scheduling interacts with algorithms for
allocating blocks to files

Make scheduling algorithm modular: allow it to be changed without
changing the file system

⇒ Use SSTF for lightly loaded systems
⇒ Use C-LOOK for heavily loaded systems

Chapter 5 41CMPS 111, UC Santa Cruz

When good disks go bad…

Disks have defects
In 3M+ sectors, this isn’t surprising!

ECC helps with errors, but sometimes this isn’t enough
Disks keep spare sectors (normally unused) and remap bad
sectors into these spares

If there’s time, the whole track could be reordered…

Chapter 5 42CMPS 111, UC Santa Cruz

Clock hardware

Chapter 5 43CMPS 111, UC Santa Cruz

Maintaining time of day

Chapter 5 44CMPS 111, UC Santa Cruz

Doing multiple timers with a single clock

Chapter 5 45CMPS 111, UC Santa Cruz

Soft timers

A second clock may be available for timer interrupts
Specified by applications
No problems if interrupt frequency is low

Soft timers avoid interrupts
Kernel checks for soft timer expiration before it exits to
user mode
How well this works depends on rate of kernel entries

Chapter 5 46CMPS 111, UC Santa Cruz

Character-oriented terminals

An RS-232 terminal communicates with computer 1 bit at a
time
Called a serial line – bits go out in series, 1 bit at a time
Windows uses COM1 and COM2 ports, first to serial lines
Computer and terminal are completely independent

Chapter 5 47CMPS 111, UC Santa Cruz

Buffering for input

Chapter 5 48CMPS 111, UC Santa Cruz

Special terminal characters

Chapter 5 49CMPS 111, UC Santa Cruz

Special output characters

Chapter 5 50CMPS 111, UC Santa Cruz

Driver writes directly into display's video RAM

Parallel port

Memory-mapped display

Chapter 5 51CMPS 111, UC Santa Cruz

A video RAM image
simple monochrome display
character mode

Corresponding screen
the xs are attribute bytes

How characters are displayed

Chapter 5 52CMPS 111, UC Santa Cruz

Input software

Keyboard driver delivers a number
Driver converts to characters
Uses a ASCII table

Exceptions, adaptations needed for other languages
Many OS provide for loadable keymaps or code pages
Example: characters such as ç

Chapter 5 53CMPS 111, UC Santa Cruz

Output software for Windows

Sample window located at (200,100) on XGA display

Chapter 5 54CMPS 111, UC Santa Cruz

Skeleton of a Windows program

Chapter 5 55CMPS 111, UC Santa Cruz

Skeleton of a Windows program (cont’d)

Chapter 5 56CMPS 111, UC Santa Cruz

Character outlines at different point sizes

Chapter 5 57CMPS 111, UC Santa Cruz

X Windows

Chapter 5 58CMPS 111, UC Santa Cruz

Architecture of the SLIM terminal system

Chapter 5 59CMPS 111, UC Santa Cruz

The SLIM Network Terminal

Chapter 5 60CMPS 111, UC Santa Cruz

Power Management (1)

Power consumption of various parts of a laptop computer

Chapter 5 61CMPS 111, UC Santa Cruz

Power management (2)

The use of zones for backlighting the display

Chapter 5 62CMPS 111, UC Santa Cruz

Power Management (3)

Running at full clock speed
Cutting voltage by two

cuts clock speed by two,
cuts power by four

Chapter 5 63CMPS 111, UC Santa Cruz

Power Management (4)

Telling the programs to use less energy
may mean poorer user experience

Examples
change from color output to black and white
speech recognition reduces vocabulary
less resolution or detail in an image

