
Chapter 5: I/O Systems
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Input/Output

Principles of I/O hardware
Principles of I/O software
I/O software layers
Disks
Clocks
Character-oriented terminals
Graphical user interfaces
Network terminals
Power management
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How fast is I/O hardware?

4 MB/secDigital camcorder

500 MB/secPCI bus

60 MB/secXGA monitor

50 MB/secFireWire (IEEE 1394)

20 MB/secHard drive

12.5 MB/secFast Ethernet

1.5 MB/secUSB

200 KB/secPrinter / scanner

7 KB/sec56K modem

100 bytes/secMouse

10 bytes/secKeyboard

Data rateDevice
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Device controllers

I/O devices have components
Mechanical component 
Electronic component

Electronic component controls the device
May be able to handle multiple devices
May be more than one controller per mechanical 
component (example: hard drive)

Controller's tasks
Convert serial bit stream to block of bytes
Perform error correction as necessary
Make available to main memory
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Memory-Mapped I/O

Separate
I/O & memory

space

0xFFF…

0

Memory

I/O ports

Memory-mapped I/O Hybrid: both
memory-mapped &

separate spaces
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How is memory-mapped I/O done?

Single-bus
All memory accesses go over 
a shared bus
I/O and RAM accesses 
compete for bandwidth

Dual-bus
RAM access over high-speed 
bus
I/O access over lower-speed 
bus
Less competition
More hardware (more 
expensive…)

CPU Memory I/O

CPU Memory I/O

This port allows I/O devices
access into memory
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Direct Memory Access (DMA) operation
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Hardware’s view of interrupts

Bus
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I/O software: goals

Device independence
Programs can access any I/O device 
No need to specify device in advance 

Uniform naming
Name of a file or device is a string or an integer
Doesn’t depend on the machine (underlying hardware)

Error handling
Done as close to the hardware as possible
Isolate higher-level software

Synchronous vs. asynchronous transfers
Blocked transfers vs. interrupt-driven

Buffering
Data coming off a device cannot be stored in final destination

Sharable vs. dedicated devices
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Programmed I/O: printing a page

Printed
page

ABCD
EFGH
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Printed
page
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EFGH

ABCD
EFGH

AB

Printed
page

ABCD
EFGH

ABCD
EFGH
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Code for programmed I/O

copy_from_user (buffer, p, count);  // copy into kernel buffer
for (j = 0; j < count; j++) {  // loop for each char

while (*printer_status_reg != READY)
;                          // wait for printer to be ready

*printer_data_reg = p[j];    // output a single character
}
return_to_user();
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Interrupt-driven I/O

copy_from_user (buffer, p, count);
j = 0;
enable_interrupts();
while (*printer_status_reg != READY)

;
*printer_data_reg = p[0];
scheduler(); // and block user

if (count == 0) {
unblock_user();

} else {
*printer_data_reg = p[j];
count--;
j++;

}
acknowledge_interrupt();
return_from_interrupt();

Code run by system call

Code run at interrupt time
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I/O using DMA

copy_from_user (buffer, p, count);
set_up_DMA_controller();
scheduler(); // and block user

acknowledge_interrupt();
unblock_user();
return_from_interrupt();

Code run by system call

Code run at interrupt time
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Layers of I/O software

User-level I/O software & libraries

Device-independent OS software

Device drivers

Interrupt handlers

Hardware

Operating
system
(kernel)

User
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Interrupt handlers

Interrupt handlers are best hidden
Driver starts an I/O operation and blocks
Interrupt notifies of completion

Interrupt procedure does its task
Then unblocks driver that started it
Perform minimal actions at interrupt time

Some of the functionality can be done by the driver after it is 
unblocked

Interrupt handler must
Save regs not already saved by interrupt hardware
Set up context for interrupt service procedure
DLXOS: intrhandler (in dlxos.s)
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What happens on an interrupt

Set up stack for interrupt service procedure
Ack interrupt controller, reenable interrupts
Copy registers from where saved
Run service procedure
(optional) Pick a new process to run next
Set up MMU context for process to run next
Load new process' registers
Start running the new process
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Device drivers

Device drivers go between 
device controllers and rest 
of OS

Drivers standardize interface 
to widely varied devices

Device drivers 
communicate with 
controllers over bus

Controllers communicate 
with devices themselves

User
space

Kernel
space

User
program

Keyboard
driver

Disk
driver

Rest of the OS

Keyboard
controller

Disk
controller
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Device-independent I/O software

Device-independent I/O software provides common 
“library” routines for I/O software
Helps drivers maintain a standard appearance to the 
rest of the OS
Uniform interface for many device drivers for

Buffering
Error reporting
Allocating and releasing dedicated devices
Suspending and resuming processes

Common resource pool
Device-independent block size (keep track of blocks)
Other device driver resources
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Why a standard driver interface?

Non-standard driver interfaces Standard driver interfaces
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Buffering device input

User
space

Kernel
space

User
space

Kernel
space

User
space

Kernel
space

User
space

Kernel
space

Unbuffered
input

Buffering in
user space

Buffer in kernel
Copy to user space

Double buffer
in kernel

1

2

1 3

2
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Anatomy of an I/O request
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Disk drive structure

sector

cylinder

platter

spindle

track

head

actuator

surfaces

Data stored on surfaces
Up to two surfaces per platter
One or more platters per disk

Data in concentric tracks
Tracks broken into sectors

256B-1KB per sector

Cylinder: corresponding 
tracks on all surfaces

Data read and written by 
heads

Actuator moves heads
Heads move in unison
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Disk drive specifics

17 µsec22 msSector transfer time

20 sec250 msSpinup time

8.33 ms200 msRotation time

6.9 ms77 msSeek time (average)

0.8 ms6 msSeek time (minimum)

18.3 GB360 KBCapacity

512512Bytes per sector

35742000720Sectors per disk

281 (average)9Sectors per track

122Tracks per cylinder

1060140Cylinders

WD 18GB HDIBM 360KB floppy
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Disk “zones”

Outside tracks are longer 
than inside tracks
Two options

Bits are “bigger”
More bits (transfer faster)

Modern hard drives use 
second option

More data on outer tracks

Disk divided into “zones”
Constant sectors per track in 
each zone
8–20 (or more) zones on a 
disk
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Disk “addressing”

Millions of sectors on the disk must be labeled
Two possibilities

Cylinder/track/sector
Sequential numbering

Modern drives use sequential numbers
Disks map sequential numbers into specific location
Mapping may be modified by the disk

Remap bad sectors
Optimize performance

Hide the exact geometry, making life simpler for the OS
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Building a better “disk”

Problem: CPU performance has been increasing 
exponentially, but disk performance hasn’t

Disks are limited by mechanics

Problem: disks aren’t all that reliable
Solution: distribute data across disks, and use some 
of the space to improve reliability

Data transferred in parallel
Data stored across drives (striping)
Parity on an “extra” drive for reliability
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RAIDs, RAIDs, and more RAIDs

strip strip
Stripe

RAID 0
(Redudant Array of Inexpensive Disks

RAID 1
(Mirrored copies)

RAID 4
(Striped with parity)

RAID 5
(Parity rotates through disks)
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CD-ROM recording

CD-ROM has data in a 
spiral

Hard drives have concentric 
circles of data

One continuous track: just 
like vinyl records!
Pits & lands “simulated” 
with heat-sensitive material 
on CD-Rs and CD-RWs
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Structure of a disk sector

Preamble contains information about the sector
Sector number & location information

Data is usually 256, 512, or 1024 bytes
ECC (Error Correcting Code) is used to detect & correct 
minor errors in the data

Preamble Data ECC
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Sector layout on disk

Sectors numbered 
sequentially on each track
Numbering starts in 
different place on each 
track: sector skew

Allows time for switching 
head from track to track

All done to minimize delay 
in sequential transfers
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Sector interleaving

On older systems, the CPU was slow => time elapsed 
between reading consecutive sectors
Solution: leave space between consecutively numbered 
sectors
This isn’t done much these days…

0

1

2

34

5

6

7 0

4

1

52

6

3

7 0

3

6

14

7

2

5

No interleaving Skipping 1 sector Skipping 2 sectors
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What’s in a disk request?

Time required to read or write a disk block 
determined by 3 factors

Seek time
Rotational delay

Average delay = 1/2 rotation time
Example: rotate in 10ms, average rotation delay = 5ms

Actual transfer time
Transfer time = time to rotate over sector
Example: rotate in 10ms, 200 sectors/track => 10/200 ms = 
0.05ms transfer time per sector

Seek time dominates, with rotation time close
Error checking is done by controllers
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Disk request scheduling

Goal: use disk hardware efficiently
Bandwidth as high as possible
Disk transferring as often as possible (and not seeking)

We want to
Minimize disk seek time (moving from track to track)
Minimize rotational latency (waiting for disk to rotate the desired 
sector under the read/write head)

Calculate disk bandwidth by
Total bytes transferred / time to service request
Seek time & rotational latency are overhead (no data is transferred), 
and reduce disk bandwidth

Minimize seek time & rotational latency by
Using algorithms to find a good sequence for servicing requests
Placing blocks of a given file “near” each other
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Disk scheduling algorithms

Schedule disk requests to minimize disk seek time
Seek time increases as distance increases (though not linearly)
Minimize seek distance -> minimize seek time

Disk seek algorithm examples assume a request queue & head position 
(disk has 200 cylinders)

Queue = 100, 175, 51, 133, 8, 140, 73, 77
Head position = 63

100 17551 1338

140

73

77

read/write head position
disk requests

(cylinder in which block resides)

Outside edge Inside edge
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First-Come-First Served (FCFS)

Requests serviced in the order in which they arrived
Easy to implement!
May involve lots of unnecessary seek distance

Seek order = 100, 175, 51, 133, 8, 140, 73, 77
Seek distance = (100-63) + (175-100) + (175-51) + (133-51) +
(133-8) + (140-8) + (140-73) + (77-73) = 646 cylinders

100
175

51
133

8
140

73
77

read/write head start
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Shortest Seek Time First (SSTF)

Service the request with the shortest seek time from the current head 
position

Form of SJF scheduling
May starve some requests

Seek order = 73, 77, 51, 8, 100, 133, 140, 175
Seek distance = 10 + 4 + 26 + 43 + 92 + 33 + 7 + 35 = 250 cylinders

100

175

51

133

8

140

73
77

read/write head start
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SCAN (elevator algorithm)

Disk arm starts at one end of the disk and moves towards the other end, 
servicing requests as it goes

Reverses direction when it gets to end of the disk
Also known as elevator algorithm

Seek order = 51, 8, 0 , 73, 77, 100, 133, 140, 175
Seek distance = 12 + 43 + 8 + 73 + 4 + 23 + 33 + 7 + 35 = 238 cyls

100

175

51

133

8

140

73
77

read/write head start
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C-SCAN

Identical to SCAN, except head returns to cylinder 0 when it reaches the 
end of the disk

Treats cylinder list as a circular list that wraps around the disk
Waiting time is more uniform for cylinders near the edge of the disk

Seek order = 73, 77, 100, 133, 140, 175, 199, 0, 8, 51
Distance = 10 + 4 + 23 + 33 + 7 + 35 + 24 + 199 + 8 + 43 = 386 cyls

100

175

51

133

8

140

73
77

read/write head start
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C-LOOK

Identical to C-SCAN, except head only travels as far as the last request in 
each direction

Saves seek time from last sector to end of disk

Seek order = 73, 77, 100, 133, 140, 175, 8, 51
Distance = 10 + 4 + 23 + 33 + 7 + 35 + 167 + 43 = 322 cylinders

100

175

51

133

8

140

73
77

read/write head start
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How to pick a disk scheduling algorithm

SSTF is easy to implement and works OK if there aren’t too 
many disk requests in the queue
SCAN-type algorithms perform better for systems under 
heavy load

More fair than SSTF
Use LOOK rather than SCAN algorithms to save time

Long seeks aren’t too expensive, so choose C-LOOK over 
LOOK to make response time more even
Disk request scheduling interacts with algorithms for 
allocating blocks to files

Make scheduling algorithm modular: allow it to be changed without 
changing the file system

⇒ Use SSTF for lightly loaded systems
⇒ Use C-LOOK for heavily loaded systems
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When good disks go bad…

Disks have defects
In 3M+ sectors, this isn’t surprising!

ECC helps with errors, but sometimes this isn’t enough
Disks keep spare sectors (normally unused) and remap bad 
sectors into these spares

If there’s time, the whole track could be reordered…
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Clock hardware
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Maintaining time of day
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Doing multiple timers with a single clock
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Soft timers

A second clock may be available for timer interrupts
Specified by applications
No problems if interrupt frequency is low

Soft timers avoid interrupts
Kernel checks for soft timer expiration before it exits to 
user mode
How well this works depends on rate of kernel entries
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Character-oriented terminals

An RS-232 terminal communicates with computer 1 bit at a 
time
Called a serial line – bits go out in series, 1 bit at a time
Windows uses COM1 and COM2 ports, first to serial lines
Computer and  terminal are completely independent
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Buffering for input
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Special terminal characters
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Special output characters



Chapter 5 50CMPS 111, UC Santa Cruz

Driver writes directly into display's video RAM

Parallel port

Memory-mapped display
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A video RAM image 
simple monochrome display
character mode

Corresponding screen
the xs are attribute bytes

How characters are displayed



Chapter 5 52CMPS 111, UC Santa Cruz

Input software

Keyboard driver delivers a number
Driver converts to characters
Uses a ASCII table

Exceptions, adaptations needed for other languages
Many OS provide for loadable keymaps or code pages
Example: characters such as ç
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Output software for Windows

Sample window located at (200,100) on XGA display
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Skeleton of a Windows program
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Skeleton of a Windows program (cont’d)
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Character outlines at different point sizes
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X Windows
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Architecture of the SLIM terminal system
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The SLIM Network Terminal
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Power Management (1)

Power consumption of various parts of a laptop computer
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Power management (2)

The use of zones for backlighting the display
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Power Management (3)

Running at full clock speed
Cutting voltage by two 

cuts clock speed by two, 
cuts power by four
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Power Management (4)

Telling the programs to use less energy
may mean poorer user experience

Examples
change from color output to black and white
speech recognition reduces vocabulary
less resolution or detail in an image


