
Chapter 2

Chapter 2: Processes & Threads

Chapter 2 2CMPS 111, UC Santa Cruz

Processes and threads

Processes
Threads
Scheduling
Interprocess communication
Classical IPC problems

Chapter 2 3CMPS 111, UC Santa Cruz

What is a process?

Code, data, and stack
Usually (but not always) has its own address space

Program state
CPU registers
Program counter (current location in the code)
Stack pointer

Only one process can be running in the CPU at any
given time!

Chapter 2 4CMPS 111, UC Santa Cruz

The process model

Multiprogramming of four
programs
Conceptual model

4 independent processes
Processes run sequentially

Only one program active at any
instant!

That instant can be very short…

A

C

D

Single PC
(CPU’s point of view)

A
B

C D

Multiple PCs
(process point of view)

B

B

A
B
C
D

Time

Chapter 2 5CMPS 111, UC Santa Cruz

When is a process created?

Processes can be created in two ways
System initialization: one or more processes created when
the OS starts up
Execution of a process creation system call: something
explicitly asks for a new process

System calls can come from
User request to create a new process (system call executed
from user shell)
Already running processes

User programs
System daemons

Chapter 2 6CMPS 111, UC Santa Cruz

When do processes end?

Conditions that terminate processes can be
Voluntary
Involuntary

Voluntary
Normal exit
Error exit

Involuntary
Fatal error (only sort of involuntary)
Killed by another process

Chapter 2 7CMPS 111, UC Santa Cruz

Process hierarchies

Parent creates a child process
Child processes can create their own children

Forms a hierarchy
UNIX calls this a “process group”
If a process exits, its children are “inherited” by the
exiting process’s parent

Windows has no concept of process hierarchy
All processes are created equal

Chapter 2 8CMPS 111, UC Santa Cruz

Blocked
(waiting)

Created

Exit

Ready

Running

Process states

Process in one of 5 states
Created
Ready
Running
Blocked
Exit

Transitions between states
1. Process enters ready queue
2. Scheduler picks this process
3. Scheduler picks a different

process
4. Process waits for event (such as

I/O)
5. Event occurs
6. Process exits
7. Process ended by another

process

1

5

4

3

2

7

7
6

Chapter 2 9CMPS 111, UC Santa Cruz

Processes in the OS

Two “layers” for processes
Lowest layer of process-structured OS handles interrupts,
scheduling
Above that layer are sequential processes

Processes tracked in the process table
Each process has a process table entry

Scheduler

0 1 N-2 N-1…

Processes

Chapter 2 10CMPS 111, UC Santa Cruz

What’s in a process table entry?

File management
Root directory
Working (current) directory
File descriptors
User ID
Group ID

Memory management
Pointers to text, data, stack

or
Pointer to page table

Process management
Registers
Program counter
CPU status word
Stack pointer
Process state
Priority / scheduling parameters
Process ID
Parent process ID
Signals
Process start time
Total CPU usage

May be
stored

on stack

Chapter 2 11CMPS 111, UC Santa Cruz

What happens on a trap/interrupt?

1. Hardware saves program counter (on stack or in a
special register)

2. Hardware loads new PC, identifies interrupt
3. Assembly language routine saves registers
4. Assembly language routine sets up stack
5. Assembly language calls C to run service routine
6. Service routine calls scheduler
7. Scheduler selects a process to run next (might be

the one interrupted…)
8. Assembly language routine loads PC & registers

for the selected process

Chapter 2 12CMPS 111, UC Santa Cruz

Threads: “processes” sharing memory

Process == address space
Thread == program counter / stream of instructions
Two examples

Three processes, each with one thread
One process with three threads

Kernel Kernel

ThreadsThreads
System

space

User
space

Process 1 Process 2 Process 3 Process 1

Chapter 2 13CMPS 111, UC Santa Cruz

Process & thread information

Per process items
Address space
Open files
Child processes
Signals & handlers
Accounting info
Global variables

Per thread items
Program counter
Registers
Stack & stack pointer
State

Per thread items
Program counter
Registers
Stack & stack pointer
State

Per thread items
Program counter
Registers
Stack & stack pointer
State

Chapter 2 14CMPS 111, UC Santa Cruz

Threads & stacks

Kernel

Process

Thread 1 Thread 2 Thread 3

Thread 1’s
stack

Thread 3’s
stack

Thread 2’s
stack

User space

=> Each thread has its own stack!

Chapter 2 15CMPS 111, UC Santa Cruz

Why use threads?

Allow a single application
to do many things at once

Simpler programming model
Less waiting

Threads are faster to create
or destroy

No separate address space
Overlap computation and
I/O

Could be done without
threads, but it’s harder

Example: word processor
Thread to read from keyboard
Thread to format document
Thread to write to disk

Kernel

When in the Course of human events, it
becomes necessary for one people to
dissolve the political bands which have
connected them with another, and to
assume among the powers of the earth,
the separate and equal station to which
the Laws of Nature and of Nature's God
entitle them, a decent respect to the
opinions of mankind requires that they
should declare the causes which impel
them to the separation.

We hold these truths to be self-evident,
that all men are created equal, that they
are endowed by their Creator with
certain unalienable Rights, that among
these are Life, Liberty and the pursuit of
Happiness.--That to secure these rights,
Governments are instituted among
Men, deriving their just powers from
the consent of the governed, --That
whenever any Form of Government
becomes

destructive of these ends, it is the Right
of the People to alter or to abolish it,
and to institute new Government, laying
its foundation on such principles and
organizing its powers in such form, as
to them shall seem most likely to effect
their Safety and Happiness. Prudence,
indeed, will dictate that Governments
long established should not be changed
for light and transient causes; and
accordingly all

Chapter 2 16CMPS 111, UC Santa Cruz

Multithreaded Web server

Kernel

Network
connection

Dispatcher
thread

Worker
thread

Web page
cache

while(TRUE) {
getNextRequest(&buf);
handoffWork(&buf);

}

while(TRUE) {
waitForWork(&buf);
lookForPageInCache(&buf,&page);
if(pageNotInCache(&page)) {

readPageFromDisk(&buf,&page);
}
returnPage(&page);

}

Chapter 2 17CMPS 111, UC Santa Cruz

Three ways to build a server

Thread model
Parallelism
Blocking system calls

Single-threaded process: slow, but easier to do
No parallelism
Blocking system calls

Finite-state machine
Each activity has its own state
States change when system calls complete or interrupts
occur
Parallelism
Nonblocking system calls
Interrupts

Chapter 2 18CMPS 111, UC Santa Cruz

Implementing threads

Kernel

Run-time
system

Thread
table

Process
table

Kernel

Thread

Process

Thread
table

Process
table

User-level threads
+ No need for kernel support
- May be slower than kernel threads
- Harder to do non-blocking I/O

Kernel-level threads
+ More flexible scheduling
+ Non-blocking I/O
- Not portable

Chapter 2 19CMPS 111, UC Santa Cruz

Scheduling

What is scheduling?
Goals
Mechanisms

Scheduling on batch systems
Scheduling on interactive systems
Other kinds of scheduling

Real-time scheduling

Chapter 2 20CMPS 111, UC Santa Cruz

Why schedule processes?

Bursts of CPU usage alternate with periods of I/O wait
Some processes are CPU-bound: they don’t many I/O
requests
Other processes are I/O-bound and make many kernel
requests

CPU bound

I/O bound

CPU bursts I/O waits

Total CPU usage

Total CPU usage

Time

Chapter 2 21CMPS 111, UC Santa Cruz

When are processes scheduled?

At the time they enter the system
Common in batch systems
Two types of batch scheduling

Submission of a new job causes the scheduler to run
Scheduling only done when a job voluntarily gives up the CPU
(i.e., while waiting for an I/O request)

At relatively fixed intervals (clock interrupts)
Necessary for interactive systems
May also be used for batch systems
Scheduling algorithms at each interrupt, and picks the next
process from the pool of “ready” processes

Chapter 2 22CMPS 111, UC Santa Cruz

Scheduling goals

All systems
Fairness: give each process a fair share of the CPU
Enforcement: ensure that the stated policy is carried out
Balance: keep all parts of the system busy

Batch systems
Throughput: maximize jobs per unit time (hour)
Turnaround time: minimize time users wait for jobs
CPU utilization: keep the CPU as busy as possible

Interactive systems
Response time: respond quickly to users’ requests
Proportionality: meet users’ expectations

Real-time systems
Meet deadlines: missing deadlines is a system failure!
Predictability: same type of behavior for each time slice

Chapter 2 23CMPS 111, UC Santa Cruz

Measuring scheduling performance

Throughput
Amount of work completed per second (minute, hour)
Higher throughput usually means better utilized system

Response time
Response time is time from when a command is submitted until results
are returned
Can measure average, variance, minimum, maximum, …
May be more useful to measure time spent waiting

Turnaround time
Like response time, but for batch jobs (response is the completion of
the process)

Usually not possible to optimize for all metrics with the same
scheduling algorithm

Chapter 2 24CMPS 111, UC Santa Cruz

First Come, First Served (FCFS)

Goal: do jobs in the order
they arrive

Fair in the same way a bank
teller line is fair

Simple algorithm!
Problem: long jobs delay
every job after them

Many processes may wait for
a single long job

A B C D

4 3 6 3

Current job queue

Execution order

FCFS scheduler

A B C D

4 3 6 3

Chapter 2 25CMPS 111, UC Santa Cruz

Shortest Job First (SJF)

Goal: do the shortest job
first

Short jobs complete first
Long jobs delay every job
after them

Jobs sorted in increasing
order of execution time

Ordering of ties doesn’t
matter

Shortest Remaining Time
First (SRTF): preemptive
form of SJF
Problem: how does the
scheduler know how long a
job will take?

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF scheduler

Chapter 2 26CMPS 111, UC Santa Cruz

Three-level scheduling

CPU

Main
memory

CPU scheduler

Memory
scheduler

Admission
scheduler

Input
queue

Arriving
jobs

Jobs held in input queue until moved into memory
Pick “complementary jobs”: small & large, CPU- & I/O-intensive
Jobs move into memory when admitted

CPU scheduler picks next job to run
Memory scheduler picks some jobs from main memory and
moves them to disk if insufficient memory space

Chapter 2 27CMPS 111, UC Santa Cruz

Round Robin (RR) scheduling

Round Robin scheduling
Give each process a fixed
time slot (quantum)
Rotate through “ready”
processes
Each process makes some
progress

What’s a good quantum?
Too short: many process
switches hurt efficiency
Too long: poor response to
interactive requests
Typical length: 10–50 ms

A B C D E

Time

A
B
C
D
E

Chapter 2 28CMPS 111, UC Santa Cruz

Priority scheduling

Assign a priority to each process
“Ready” process with highest
priority allowed to run
Running process may be
interrupted after its quantum
expires

Priorities may be assigned
dynamically

Reduced when a process uses
CPU time
Increased when a process waits
for I/O

Often, processes grouped into
multiple queues based on
priority, and run round-robin per
queue

Priority 4

Priority 3

Priority 2

Priority 1

High

Low

“Ready” processes

Chapter 2 29CMPS 111, UC Santa Cruz

Shortest process next

Run the process that will finish the soonest
In interactive systems, job completion time is unknown!

Guess at completion time based on previous runs
Update estimate each time the job is run
Estimate is a combination of previous estimate and most
recent run time

Not often used because round robin with priority
works so well!

Chapter 2 30CMPS 111, UC Santa Cruz

Lottery scheduling

Give processes “tickets” for CPU time
More tickets => higher share of CPU

Each quantum, pick a ticket at random
If there are n tickets, pick a number from 1 to n
Process holding the ticket gets to run for a quantum

Over the long run, each process gets the CPU m/n of
the time if the process has m of the n existing tickets
Tickets can be transferred

Cooperating processes can exchange tickets
Clients can transfer tickets to server so it can have a higher
priority

Chapter 2 31CMPS 111, UC Santa Cruz

Policy versus mechanism

Separate what may be done from how it is done
Mechanism allows

Priorities to be assigned to processes
CPU to select processes with high priorities

Policy set by what priorities are assigned to processes

Scheduling algorithm parameterized
Mechanism in the kernel
Priorities assigned in the kernel or by users

Parameters may be set by user processes
Don’t allow a user process to take over the system!
Allow a user process to voluntarily lower its own priority
Allow a user process to assign priority to its threads

Chapter 2 32CMPS 111, UC Santa Cruz

Scheduling user-level threads

Kernel

Run-time
system

Thread
table

Process
table

Kernel picks a process to
run next
Run-time system (at user
level) schedules threads

Run each thread for less than
process quantum
Example: processes get 40ms
each, threads get 10ms each

Example schedule:
A1,A2,A3,A1,B1,B3,B2,B3
Not possible:
A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Chapter 2 33CMPS 111, UC Santa Cruz

Scheduling user-level threads

Kernel schedules each
thread

No restrictions on ordering
May be more difficult for
each process to specify
priorities

Example schedule:
A1,A2,A3,A1,B1,B3,B2,B3
Also possible:
A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Kernel

Thread
table

Process
table

Chapter 2

Chapter 2: Processes & Threads

Part 2:
Interprocess Communication & Synchronization

Chapter 2 35CMPS 111, UC Santa Cruz

Why do we need IPC?

Each process operates sequentially
All is fine until processes want to share data

Exchange data between multiple processes
Allow processes to navigate critical regions
Maintain proper sequencing of actions in multiple
processes

These issues apply to threads as well
Threads can share data easily (same address space)
Other two issues apply to threads

Chapter 2 36CMPS 111, UC Santa Cruz

Shared variables
const int n;
typedef … Item;
Item buffer[n];
int in = 0, out = 0,

counter = 0;

Atomic statements:
Counter += 1;

Counter -= 1;

Consumer
Item citm;
while (1) {

while (counter == 0)
;

citm = buffer[out];
out = (out+1) % n;
counter -= 1;
…
consume the item in citm
…

}

Producer
Item pitm;
while (1) {

…
produce an item into pitm
…
while (counter == n)

;
buffer[in] = pitm;
in = (in+1) % n;
counter += 1;

}

Example: bounded buffer problem

Chapter 2 37CMPS 111, UC Santa Cruz

Problem: race conditions

Cooperating processes
share storage (memory)
Both may read and write
the shared memory
Problem: can’t guarantee
that read followed by write
is atomic

Ordering matters!

This can result in erroneous
results!
We need to eliminate race
conditions…

R1 <= x

R1 = R1+1

R1 => x

R3 <= x

R3 = R3+1

R3 => x

P1 P2
x=3

x=5
R1 <= x

R1 = R1+1

R1 => x

R3 <= x

R3 = R3+1

R3 => x
x=6!

Chapter 2 38CMPS 111, UC Santa Cruz

Critical regions

Use critical regions to provide mutual exclusion and help fix race conditions
Four conditions to provide mutual exclusion

No two processes simultaneously in critical region
No assumptions made about speeds or numbers of CPUs
No process running outside its critical region may block another process
No process must wait forever to enter its critical region

Process A

Process B B blocked

A enters
critical region

B tries to enter
critical region

B enters
critical region

A leaves
critical region

B leaves
critical region

Time

Chapter 2 39CMPS 111, UC Santa Cruz

Busy waiting: strict alternation

Use a shared variable (turn) to keep track of whose turn it is
Waiting process continually reads the variable to see if it can
proceed

This is called a spin lock because the waiting process “spins” in a tight
loop reading the variable

Avoids race conditions, but doesn’t satisfy criterion 3 for
critical regions

while (TRUE) {
while (turn != 0)

; /* loop */
critical_region ();
turn = 1;
noncritical_region ();

}

while (TRUE) {
while (turn != 1)

; /* loop */
critical_region ();
turn = 0;
noncritical_region ();

}

Process 0 Process 1

Chapter 2 40CMPS 111, UC Santa Cruz

Busy waiting: working solution

#define FALSE 0
#define TRUE 1
#define N 2 // # of processes
int turn; // Whose turn is it?
int interested[N]; // Set to 1 if process j is interested

void enter_region(int process)
{

int other = 1-process; // # of the other process
interested[process] = TRUE; // show interest
turn = process; // Set it to my turn
while (turn==process && interested[other]==TRUE)

; // Wait while the other process runs
}

void leave_region (int process)
{

interested[process] = FALSE; // I’m no longer interested
}

Chapter 2 41CMPS 111, UC Santa Cruz

intn; // # of processes
intchoosing[n];
intnumber[n];

Bakery algorithm for many processes

Notation used
<<< is lexicographical order on (ticket#, process ID)
(a,b) <<< (c,d) if (a<c) or ((a==c) and (b<d))
Max(a0,a1,…,an-1) is a number k such that k>=ai for all I

Shared data
choosing initialized to 0
number initialized to 0

Chapter 2 42CMPS 111, UC Santa Cruz

Bakery algorithm: code

while (1) { // i is the number of the current process
choosing[i] = 1;
number[i] = max(number[0],number[1],…,number[n-1]) + 1;
choosing[i] = 0;
for (j = 0; j < n; j++) {

while (choosing[j]) // wait while j is choosing a
; // number

// Wait while j wants to enter and has a better number
// than we do. In case of a tie, allow j to go if
// its process ID is lower than ours
while ((number[j] != 0) &&

((number[j] < number[i]) ||
((number[j] == number[i]) && (j < i))))

;
}
// critical section
number[i] = 0;
// rest of code

}

Chapter 2 43CMPS 111, UC Santa Cruz

Hardware for synchronization

Prior methods work, but…
May be somewhat complex
Require busy waiting: process spins in a loop waiting for
something to happen, wasting CPU time

Solution: use hardware
Several hardware methods

Test & set: test a variable and set it in one instruction
Atomic swap: switch register & memory in one instruction
Turn off interrupts: process won’t be switched out unless
it asks to be suspended

Chapter 2 44CMPS 111, UC Santa Cruz

Code for process Pi
while (1) {
while (TestAndSet(lock))
;
// critical section
lock = 0;
// remainder of code
}

Code for process Pi
while (1) {
while (Swap(lock,1) == 1)
;
// critical section
lock = 0;
// remainder of code
}

intlock = 0;

Mutual exclusion using hardware

Single shared variable lock
Still requires busy waiting,
but code is much simpler
Two versions

Test and set
Swap

Works for any number of
processes
Possible problem with
requirements

Non-concurrent code can lead
to unbounded waiting

Chapter 2 45CMPS 111, UC Santa Cruz

Eliminating busy waiting

Problem: previous solutions waste CPU time
Both hardware and software solutions require spin locks
Allow processes to sleep while they wait to execute their critical
sections

Problem: priority inversion (higher priority process waits for
lower priority process)
Solution: use semaphores

Synchronization mechanism that doesn’t require busy waiting
Implementation

Semaphore S accessed by two atomic operations
Down(S): while (S<=0) {}; S-= 1;
Up(S): S+=1;

Down() is another name for P()
Up() is another name for V()
Modify implementation to eliminate busy wait from Down()

Chapter 2 46CMPS 111, UC Santa Cruz

Critical sections using semaphores

Code for process Pi
while (1) {
down(mutex);
// critical section
up(mutex);
// remainder of code
}

Shared variables
Semaphore mutex;

Define a class called
Semaphore

Class allows more complex
implementations for
semaphores
Details hidden from processes

Code for individual process
is simple

Chapter 2 47CMPS 111, UC Santa Cruz

class Semaphore {
int value;
ProcessList pl;
void down ();
void up ();

};

Semaphore code
Semaphore::down ()
{

value -= 1;
if (value < 0) {

// add this process to pl
Sleep ();

}
}
Semaphore::up () {
Process P;

value += 1;
if (value <= 0) {

// remove a process P
// from pl
Wakeup (P);

}
}

Implementing semaphores with blocking

Assume two operations:
Sleep(): suspends current
process
Wakeup(P): allows process P
to resume execution

Semaphore is a class
Track value of semaphore
Keep a list of processes
waiting for the semaphore

Operations still atomic

Chapter 2 48CMPS 111, UC Santa Cruz

Process P0
.
.
.

// Execute code for A
flag.up ();

Process P1
.
.
.

flag.down ();
// Execute code for B

Shared variables
// flag initialized to 0
Semaphore flag;

Semaphores for general synchronization

We want to execute B in P1 only after A executes in P0
Use a semaphore initialized to 0
Use up() to notify P1 at the appropriate time

Chapter 2 49CMPS 111, UC Santa Cruz

Types of semaphores

Two different types of semaphores
Counting semaphores
Binary semaphores

Counting semaphore
Value can range over an unrestricted range

Binary semaphore
Only two values possible

1 means the semaphore is available
0 means a process has acquired the semaphore

May be simpler to implement

Possible to implement one type using the other

Chapter 2 50CMPS 111, UC Santa Cruz

Monitors

A monitor is another kind of high-level synchronization
primitive

One monitor has multiple entry points
Only one process may be in the monitor at any time
Enforces mutual exclusion - less chance for programming errors

Monitors provided by high-level language
Variables belonging to monitor are protected from simultaneous
access
Procedures in monitor are guaranteed to have mutual exclusion

Monitor implementation
Language / compiler handles implementation
Can be implemented using semaphores

Chapter 2 51CMPS 111, UC Santa Cruz

monitor mon {
int foo;
int bar;
double arr[100];
void proc1(…) {
}
void proc2(…) {
}
void mon() { // initialization code
}

};

Monitor usage

This looks like C++ code, but it’s not supported by C++
Provides the following features:

Variables foo, bar, and arr are accessible only by proc1 & proc2
Only one process can be executing in either proc1 or proc2 at any time

Chapter 2 52CMPS 111, UC Santa Cruz

Condition variables in monitors

Problem: how can a process wait inside a monitor?
Can’t simply sleep: there’s no way for anyone else to enter
Solution: use a condition variable

Condition variables support two operations
Wait(): suspend this process until signaled
Signal(): wake up exactly one process waiting on this
condition variable

If no process is waiting, signal has no effect
Signals on condition variables aren’t “saved up”

Condition variables are only usable within monitors
Process must be in monitor to signal on a condition
variable
Question: which process gets the monitor after Signal()?

Chapter 2 53CMPS 111, UC Santa Cruz

Monitor semantics

Problem: P signals on condition variable X, waking Q
Both can’t be active in the monitor at the same time
Which one continues first?

Mesa semantics
Signaling process (P) continues first
Q resumes when P leaves the monitor
Seems more logical: why suspend P when it signals?

Hoare semantics
Awakened process (Q) continues first
P resumes when Q leaves the monitor
May be better: condition that Q wanted may no longer hold when P leaves the
monitor

Chapter 2 54CMPS 111, UC Santa Cruz

Locks & condition variables

Monitors require native language support
Provide monitor support using special data types and procedures

Locks (Acquire(), Release())
Condition variables (Wait(), Signal())

Lock usage
Acquiring a lock == entering a monitor
Releasing a lock == leaving a monitor

Condition variable usage
Each condition variable is associated with exactly one lock
Lock must be held to use condition variable
Waiting on a condition variable releases the lock implicitly
Returning from Wait() on a condition variable reacquires the lock

Chapter 2 55CMPS 111, UC Santa Cruz

class Lock {
Semaphore mutex(1);
Semaphore next(0);
int nextCount = 0;

};

Lock::Acquire()
{

mutex.down();
}

Lock::Release()
{

if (nextCount > 0)
next.up();

else
mutex.up();

}

Implementing locks with semaphores

Use mutex to ensure
exclusion within the lock
bounds
Use next to give lock to
processes with a higher
priority (why?)
nextCount indicates
whether there are any
higher priority waiters

Chapter 2 56CMPS 111, UC Santa Cruz

class Condition {
Lock *lock;
Semaphore condSem(0);
int semCount = 0;

};

Condition::Wait ()
{

semCount += 1;
if (lock->nextCount > 0)

lock->next.up();
else

lock->mutex.up();
condSem.down ();
semCount -= 1;

}

Condition::Signal ()
{

if (semCount > 0) {
lock->nextCount += 1;
condSem.up ();
lock->next.down ();
lock->nextCount -= 1;

}
}

Are these Hoare or Mesa
semantics?
Can there be multiple
condition variables for a
single Lock?

Implementing condition variables

Chapter 2 57CMPS 111, UC Santa Cruz

Message passing

Synchronize by exchanging messages
Two primitives:

Send: send a message
Receive: receive a message
Both may specify a “channel” to use

Issue: how does the sender know the receiver got the
message?
Issue: authentication

Chapter 2 58CMPS 111, UC Santa Cruz

Barriers

Used for synchronizing multiple processes
Processes wait at a “barrier” until all in the group arrive
After all have arrived, all processes can proceed
May be implemented using locks and condition variables

B and D at
barrier

A

B

C

D

All at
barrier

A

B

C

D

Barrier releases
all processes

A

B

C

D

Processes approaching
barrier

A

B

C

D

Chapter 2 59CMPS 111, UC Santa Cruz

Process P0
A.down();
B.down();
.
.
.

B.up();
A.up();

Process P1
B.down();
A.down();
.
.
.

A.up();
B.up();

Shared variables
Semaphore A(1),B(1);

Deadlock and starvation

Deadlock: two or more processes are
waiting indefinitely for an event that
can only by caused by a waiting
process

P0 gets A, needs B
P1 gets B, needs A
Each process waiting for the other to
signal

Starvation: indefinite blocking
Process is never removed from the
semaphore queue in which its
suspended
May be caused by ordering in queues
(priority)

Chapter 2 60CMPS 111, UC Santa Cruz

Classical synchronization problems

Bounded Buffer
Multiple producers and consumers
Synchronize access to shared buffer

Readers & Writers
Many processes that may read and/or write
Only one writer allowed at any time
Many readers allowed, but not while a process is writing

Dining Philosophers
Resource allocation problem
N processes and limited resources to perform sequence of tasks

Goal: use semaphores to implement solutions to these problems

Chapter 2 61CMPS 111, UC Santa Cruz

Producer
int in = 0;
Item pitem;
while (1) {

// produce an item
// into pitem
empty.down();
mutex.down();
buffer[in] = pitem;
in = (in+1) % n;
mutex.up();
full.up();

}

const int n;
Semaphore empty(n),full(0),mutex(1);
Item buffer[n];

Consumer
int out = 0;
Item citem;
while (1) {

full.down();
mutex.down();
citem = buffer[out];
out = (out+1) % n;
mutex.up();
empty.up();
// consume item from
// citem

}

Bounded buffer problem

Goal: implement producer-consumer without busy waiting

Chapter 2 62CMPS 111, UC Santa Cruz

Readers-writers problem

Reader process
…
mutex.down();
nreaders += 1;
if (nreaders == 1) // wait if

writing.down(); // 1st reader
mutex.up();
// Read some stuff
mutex.down();
nreaders -= 1;
if (nreaders == 0) // signal if

writing.up(); // last reader
mutex.up();
…

Shared variables
int nreaders;
Semaphore mutex(1), writing(1);

Writer process
…
writing.down();
// Write some stuff
writing.up();
…

Chapter 2 63CMPS 111, UC Santa Cruz

Dining Philosophers

N philosophers around a
table

All are hungry
All like to think

N chopsticks available
1 between each pair of
philosophers

Philosophers need two
chopsticks to eat
Philosophers alternate
between eating and thinking
Goal: coordinate use of
chopsticks

Chapter 2 64CMPS 111, UC Santa Cruz

Code for philosopher i
while(1) {

chopstick[i].down();
chopstick[(i+1)%n].down();
// eat
chopstick[i].up();
chopstick[(i+1)%n].up();
// think

}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

Dining Philosophers: solution 1

Use a semaphore for each
chopstick
A hungry philosopher

Gets the chopstick to his right
Gets the chopstick to his left
Eats
Puts down the chopsticks

Potential problems?
Deadlock
Fairness

Chapter 2 65CMPS 111, UC Santa Cruz

Code for philosopher i
int i1,i2;
while(1) {

if (i != (n-1)) {
i1 = i;
i2 = i+1;

} else {
i1 = 0;
i2 = n-1;

}
chopstick[i1].down();
chopstick[i2].down();
// eat
chopstick[i1].up();
chopstick[i2].up();
// think

}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

Dining Philosophers: solution 2

Use a semaphore for each
chopstick
A hungry philosopher

Gets lower, then higher
numbered chopstick
Eats
Puts down the chopsticks

Potential problems?
Deadlock
Fairness

Chapter 2 66CMPS 111, UC Santa Cruz

Dining philosophers with locks

Shared variables
const int n;
// initialize to THINK
int state[n];
Lock mutex;
// use mutex for self
Condition self[n];

Code for philosopher j
while (1) {

// pickup chopstick
mutex.Acquire();
state[j] = HUNGRY;
test(j);
if (state[j] != EAT)

self[j].Wait();
mutex.Release();
// eat
mutex.Acquire();
state[j] = THINK;
test((j+1)%n); // next
test((j+n-1)%n); // prev
mutex.Release();
// think

}

void test(int k)
{

if ((state[(k+n-1)%n)]!=EAT) &&
(state[k]==HUNGRY) &&
(state[(k+1)%n]!=EAT)) {

state[k] = EAT;
self[k].Signal();

}
}

Chapter 2 67CMPS 111, UC Santa Cruz

The Sleepy Barber Problem

Chapter 2 68CMPS 111, UC Santa Cruz

Code for the Sleepy Barber Problem

void barber(void)
{
while(TRUE) {
// Sleep if no customers
customers.down();
// Decrement # of waiting people
mutex.down();
waiting -= 1;
// Wake up a customer to cut hair
barbers.up();
mutex.up();
// Do the haircut
cut_hair();
}

}

#define CHAIRS 5
Semaphore customers=0;
Semaphore barbers=0;
Semaphore mutex=0;
int waiting=0;

void customer(void)
{
mutex.down();
// If there is space in the chairs
if (waiting<CHAIRS) {
// Another customer is waiting
waiting++;
// Wake up the barber. This is
// saved up, so the barber doesn’t
// sleep if a customer is waiting
customers.up();
mutex.up();
// Sleep until the barber is ready
barbers.down();
get_haircut();
} else {
// Chairs full, leave the critical
// region
mutex.up ();
}

}

