
Chapter 10: Case Studies

So what happens in a real operating system?



Chapter 10 2CMPS 111, UC Santa Cruz

Operating systems in the real world

Studied mechanisms used by operating systems
Processes & scheduling
Memory management
File systems
Security

How are these done in real operating systems?
Examples from:

Linux
BSD
Windows NT



Chapter 10 3CMPS 111, UC Santa Cruz

But first, a history of Unix and its relatives

Started in the late 1960’s 
with MULTICS
Ken Thompson at Bell Labs 
developed UNICS on a 
discarded PDP-7

Name changed to UNIX

Important variants:
AT&T version 7
BSD (Berkeley Software 
Distribution)
Linux (not strictly a Unix 
derivative!)



Chapter 10 4CMPS 111, UC Santa Cruz

Process control block
Process kernel stack

Process structure in BSD

Process
entry

Machine
dependent

info

Other
info

Process group Session Contents of process control 
block include

Process identifier
Scheduling info
Process state

Wait channel

Signal state
Tracing info
Machine state
Timers

Other stuff is pointed to by 
process entry

Process group implements 
hierarchy of processes

Proc credential User credential

VM space Region list

File descriptors File entries

Resource limits

Statistics

Signal actions

User structure



Chapter 10 5CMPS 111, UC Santa Cruz

Process scheduling in BSD

Uses multilevel feedback queues
Processes placed in queues according to priority
Priorities adjusted dynamically

Processes in highest priority queue run round-robin
Processes in lower-priority queues may not be run, but…
Dynamic priority quickly moves such processes into a 
higher queue!

Quantum is always 0.1 second
Short enough for good response time
Long enough to dramatically reduce context switch 
overhead



Chapter 10 6CMPS 111, UC Santa Cruz

Calculating process priority in BSD

Two values in process structure
Estimated CPU utilization: p_estcpu
“Nice” value (user-settable): p_nice

Between -20 and 20
Lower is better (and below 0 requires root)

Priority calculated every 40ms as
Priority = PUSER+(p_estcpu/4)+2*p_nice
Result moved into range PUSER–127

P_estcpu incremented each time the clock ticks while the 
process is running
P_estcpu decays over time: recalculated each minute

P_estcpu = ((2*load)/(2*load+1))*p_estcpu+p_nice
Load is a function of the number of runnable processes

Penalizes CPU-intensive processes, but intensive CPU use is 
eventually forgotten



Chapter 10 7CMPS 111, UC Santa Cruz

Scheduling in Linux

Fully preemptive
Scheduler called whenever any process switches from 
blocked to runnable
Higher priority processes preempt lower priority ones

Scheduling done by epochs
Each process gets a fixed fraction of the time in an epoch
Time remaining is decremented when the process runs
Variable-length scheduling quantum!

Fields used by the scheduler are:
Priority: base priority of the process
Counter: number of ticks of CPU time remaining in this 
epoch for this process



Chapter 10 8CMPS 111, UC Santa Cruz

Calculating priority in Linux

Scheduler picks the next process by
Finding the highest value of counter+priority
1 point bonus for sharing memory space with current 
process (better use of cache & TLB)

Epoch ends when all runnable processes exhaust 
their quantum (counter = 0)

For each process, new counter = (counter >> 1) + priority
If process was blocked, counter > 0, increasing priority
Note: counter can never become greater than 2*priority
because it’s a geometric series

Linux also supports other scheduling algorithms
Real-time
True FIFO scheduling (non-preemptive)



Chapter 10 9CMPS 111, UC Santa Cruz

So how well does this scheduling work?

BSD: fixed-length quantum, vary priorities frequently
Bump up priorities of processes that haven’t been using the CPU,
penalize processes that use the CPU often
Run highest priority processes => long-running processes can run if 
there’s nothing better to do

Linux: variable-length quantum, reschedule after every 
process has had its turn

Epoch length varies by number of processes
Priority can only change after each epoch
Limits to CPU time in each epoch

Research at UCSC: real-time scheduler that still handles 
“regular” processes well



Chapter 10 10CMPS 111, UC Santa Cruz

Memory allocation in BSD & Linux

Problem: kernel memory allocation can cause 
internal fragmentation

Space wasted due to inefficiently handling small objects
Memory difficult to reclaim: can’t just kill the process!

Solution: build efficient memory allocators
Use “powers of 2” to allocate variably-sized objects
Allow allocation of small as well as large objects

BSD has a relatively simple system
Linux has a more complex system (powers of 2 and 
“slab” allocation”)



Chapter 10 11CMPS 111, UC Santa Cruz

Memory allocation in BSD

Allocation “chunk” constrained to 2k bytes if less than a page
Keep a free list for each chunk size
Keep a list of chunk size for each page to quickly free chunks
Difficult to reclaim a page that has been subdivided into chunks

Allocation in whole pages if greater than a page
Use first fit to find consecutive free pages

kmemsize[]={ 512, 8192, cont, 1024, free, 4096, free, free}



Chapter 10 12CMPS 111, UC Santa Cruz

Buddy system for memory allocation in Linux

Uses powers of two to allocate regions
Buddy system used to coalesce regions into larger regions

Keep a bitmap for regions of 1, 2, 4, …, 512 pages
Each bit tracks two buddies: 2k page regions that start on a 2k+1-aligned 
address
0 => both buddies are free or both are allocated
1 => exactly one buddy is allocated

On allocation
Check to see if there’s a region of the desired size free
If not, split the next larger region
Continue this way until the desired region is free
If no space, return an error
Update bitmap aaccordingly

When a page is freed, check to see if its buddy is free
If so, mark the larger region as free
Recursively move up the list in this way

Also uses slab allocation for lots of fixed-size objects



Chapter 10 13CMPS 111, UC Santa Cruz

Slab allocation in Linux

Buddy system is good, but not for small (less than one page) 
objects
For frequently-used small objects, use slab allocation

Keep a free list of objects of a particular type (size)
Allocate new pages when needed, dividing them into objects of the 
appropriate size
Keep track of slabs: areas of contiguous memory that have been 
subdivided

This allows them to be freed when no objects in them are in use

When dividing up pages, shift objects slightly to avoid CPU caching 
issues

Vary the free space at the start and end of the slab

Infrequently-used objects handled by “generic” slab with 
objects ranging from 32 bytes – 128 KB by powers of 2



Chapter 10 14CMPS 111, UC Santa Cruz

Real-world file systems

File systems have two layers
Virtual file system layer: does directory management, 
caching, file locking, bookkeeping, etc.
Physical file system layer: does data layout and disk free 
space management

Lots of physical file systems in BSD & Linux
FFS (Berkeley Fast File System)
LFS (log-structured file system)
Ext2 (Linux standard file system)
Ext3 (ext2 with journaling)



Chapter 10 15CMPS 111, UC Santa Cruz

VFS layer

VFS does the things that all file systems need to do
Directory management

Directories == files in Linux & BSD, so VFS translates 
directory operations into file reads & writes
Allows the lower-level file system to take over some or all 
of this functionality: permits more efficient directories in 
systems such as XFS

Metadata management
Returns information about a given file
Metadata kept in a consistent format (underlying physical 
file system must convert into this format)

Caching…



Chapter 10 16CMPS 111, UC Santa Cruz

Caching in Linux

Linux uses a buffer cache to store frequently-used disk data
Cache consists of

Buffer heads: one per buffer, describes the buffer and its contents
Hash table: quickly find the buffer head for a given block
Buffers themselves: just pages from memory

Buffer heads contain
Block number, size, ID
Status information
Pointers to buffer, other buffer heads in lists & hash table

File buffers reclaimed in same way as pages from VM
Kernel process goes through memory in a clock-like way
If pages haven’t been used recently, they’re freed up



Chapter 10 17CMPS 111, UC Santa Cruz

Writing data back to disk

File writes go to buffers, then to disk
Delay in writing depends on the type of block

Regular buffers: defaults to 30 seconds
Superblocks (contain info about the file system): defaults to 5 sec

Buffers flushed every 5 seconds (by default)
Buffers may be flushed more frequently if too many are 
dirty

Entire cache may be written to disk at once
Usually done with a sync() system call
All buffers for a file can be written with fsync() call

Caches for metadata are handled separately



Chapter 10 18CMPS 111, UC Santa Cruz

Caching in BSD

Same kinds of structures as in 
Linux

Buffer heads
Hash tables

Look up buffer by logical block 
number and file ID

Buffers themselves
Kernel keeps several lists

Locked
LRU
AGE

Prefetched buffers
Data not likely to be reused

Empty (free buffers)
Buffers moved off AGE when 
they’re referenced
Buffers reclaimed first from 
AGE, then from LRU

LOCKED LRU AGE EMPTY



Chapter 10 19CMPS 111, UC Santa Cruz

Ext2 file system: data layout

Disk divided into block groups
Each block group has inodes, data blocks
File system tries to keep data from a file in a single block group

Bitmaps showing which blocks & inodes are free
Limited in size to 1 block => max of 8*BLOCKSIZE data blocks (or inodes) 
in any one block group

Super block and group descriptors are backups in case of file system 
corruption

Boot
block

Block group 0 Block group n

Super
block

Group
descriptors

Data block
bitmap

Inode
bitmap

Inode
table

Data
blocks

1 block 1 block 1 block



Chapter 10 20CMPS 111, UC Santa Cruz

Ext2: directory layout

Each entry is a variable 
length

File names up to 255 
characters long
Records padded to a multiple 
of 4 bytes

File type indicates whether 
it’s a directory, file, 
symbolic link, device, etc.
Record length & file name 
are kind of redundant…

21

12

4
1

Record length (2 bytes)

Inode number (4 bytes)

File name length (1 byte)

File type (1 byte)
a
b
c
d
\0
\0
\0
\0



Chapter 10 21CMPS 111, UC Santa Cruz

Ext3 vs. ext2

Ext3 is very similar to ext2
Ext2 can be converted to ext3 without reformatting!
Ext3 can be read by ext2 file system!

Big difference: journal
Ext2 was unreliable if a crash occurred
Inconsistency because an operation didn’t complete
Ext3 uses a journal to prevent this

Journal: write (to a file / region of the disk) the operation 
you’re about to perform before actually doing it

Journal is relatively small, and circular
On recovery from a crash, read the journal to see what operations 
were recently written to the journal
Check to see if those operations actually completed
Perform the operations that hadn’t completed



Chapter 10 22CMPS 111, UC Santa Cruz

BSD: Fast File System (FFS)

Very similar to ext2 (FFS came first, though!)
Disk divided into cylinder groups (similar to block groups)
Inodes have similar structure
Bitmap for tracking free blocks in a cylinder group
Multiple copies of superblock, descriptors

FFS has fragments
2k fragments per block
Allow files to efficiently use fractions of a block
Fragments can only be used as the last block of a file
Tracking fragments adds complexity
Using fragments dramatically reduces internal fragmentation

Tries to keep a file within a cylinder group
Large files spread across multiple cylinder groups
Goal: big chunks of files kept together 


