
OVERVIEW

SCOORE is a high performance Out-of-Order SPARC V8 processor currently under implementation by the MASC research lab at UCSC.

SCOORE has several novel aspects; it is an Out-of-Order implementation of the SPARC V8 ISA, it is also being developed with full FPGA and ASIC compatibility as a major design goal. In comparison with current Intel and AMD processors, SCOORE has a larger Issue Logic, Reorder Buffer (ROB), and Register File size. Design specifications call for an operating frequency of 1.4 GHz on 90 nm ASIC, and 175 MHz on an FPGA.

FPGA IMPLEMENTATION

SCOORE is being used as a development platform to define a set of guidelines for FPGA-friendly Out-of-Order CPU designs. An Out-of-Order CPU completely implementable on an FPGA has not yet been efficiently achieved. This is a valuable feature that allows researchers to perform realistic evaluations and simulations.

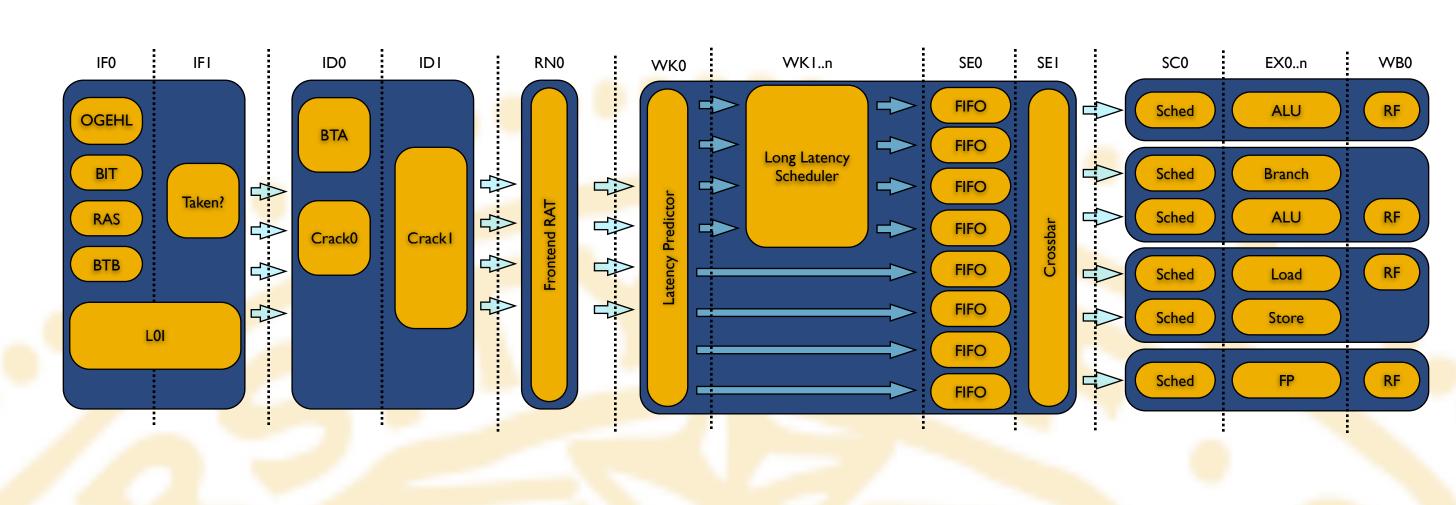
- Xilinx Virtex-5
- •XUP Board
- •DDR2 SODIMM
- •Shared Board with OpenSPARC

•Full System

- •Nallatech FSB
- •X86 Host Boots Linux

Rigo Dicochea, Tom Golubev, Abhishek Sharma, Anupam Garg, David Munday, Gregory Jackson, Carlos Cabrera, Elnaz Ebrahimi, Jose Renau

- 1.4 GHz ASIC Frequency
- Efficient FPGA Synthesis
- 2 Way SMP


0-bit History – 3-bit or 31-bit History – 5-bit History 8-bit or 50-bit History 12-bit History 19-bit or 80 bit History

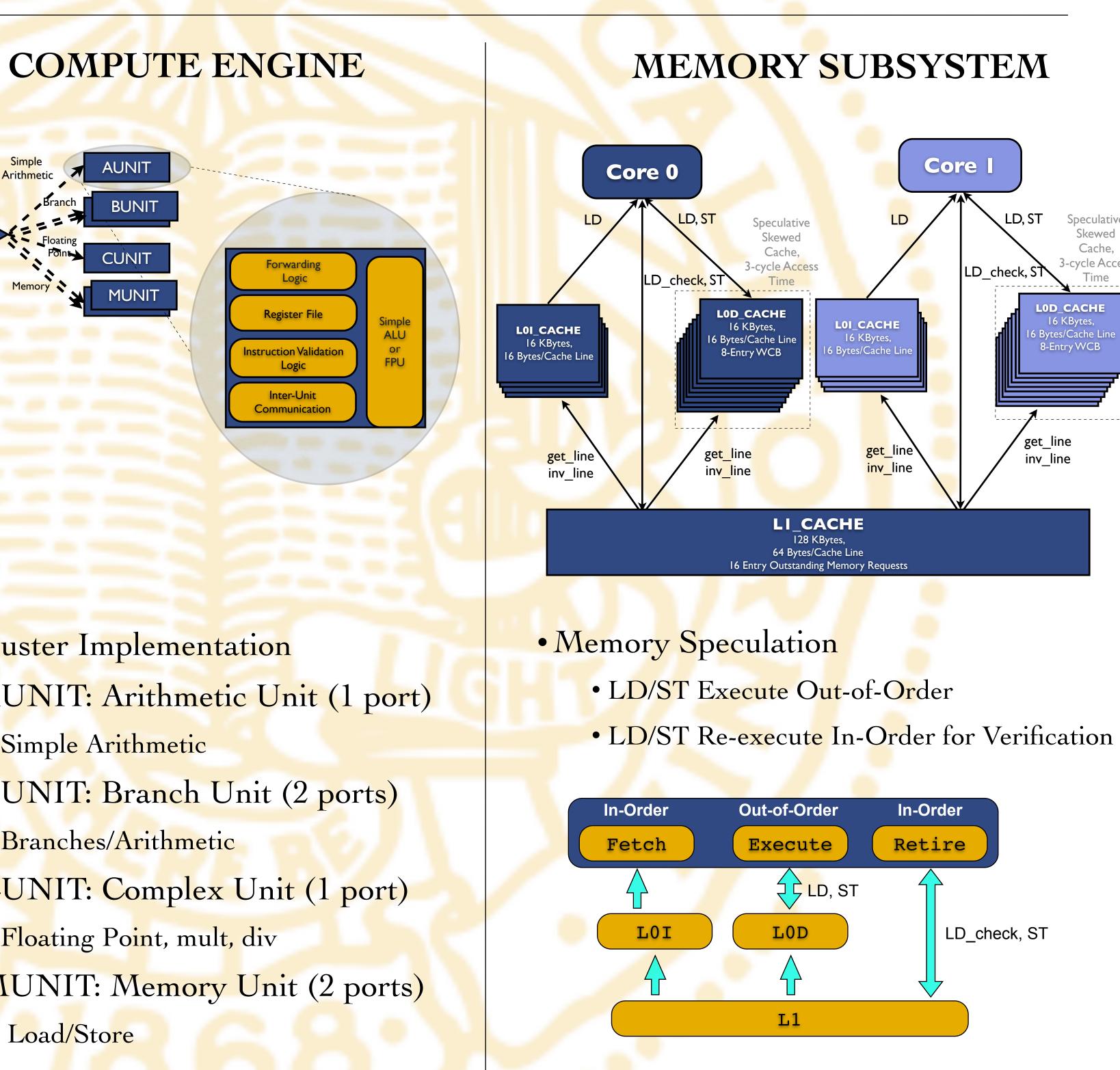
- 6 Table Predictor
- Variable Branch History: 0 to 80 bits
- Speculative Update with Fixup
- 4 KByte direct map BTB prediction
 - 2 Predictions per Cycle
- 32-entry RAS predictor

BPRED
CRAC
LOI CA
LOD C
SCHED
RAT/R
SELEC
FPU
COMP
LI CAG
TOTAL

SCOORE Santa Cruz Out-of-Order Risc Engine

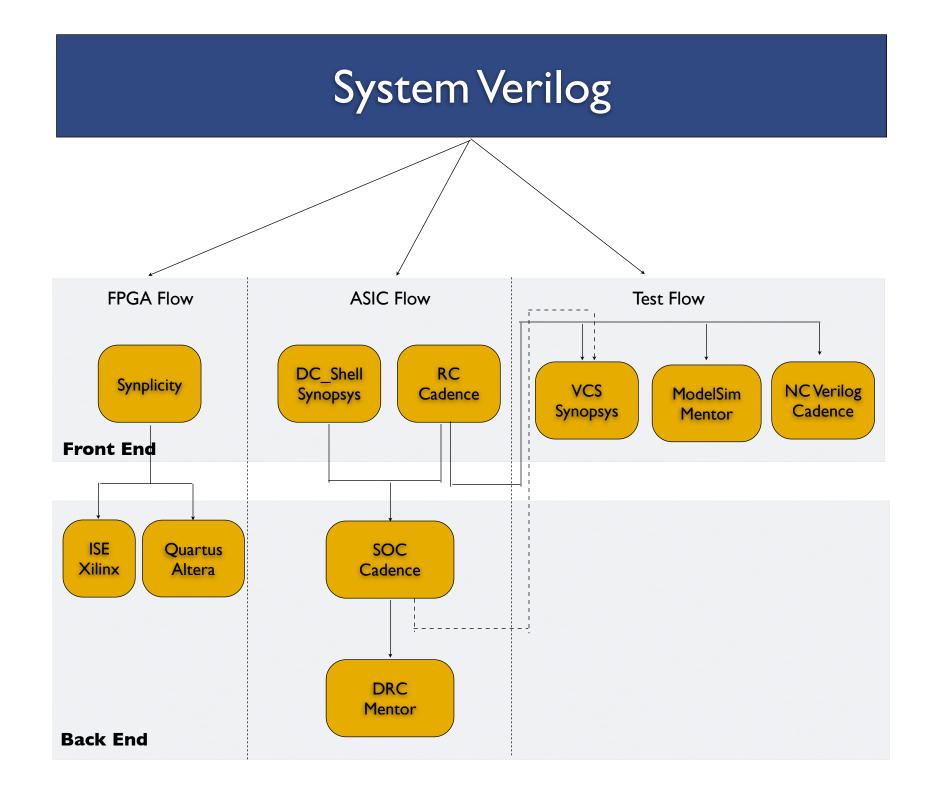
Micro-Architecture Santa Cruz (MASC Group) Dept. of Computer Engineering, UCSC

INSTRUCTION FETCH


- •100 Kbits OGEHL predictor
- AUNIT
- 4 Cluster Implementation
- AUNIT: Arithmetic Unit (1 port) •Simple Arithmetic
- BUNIT: Branch Unit (2 ports) •Branches/Arithmetic
- CUNIT: Complex Unit (1 port) •Floating Point, mult, div
- MUNIT: Memory Unit (2 ports)
 - Load/Store

	FPGA		ASIC						
UNIT	LUTS	RAMS	AREA (COMB) (mm ²)	SRAM AREA (mm ²)	MAXIMUM POWER (mW)	LEADERS	STATUS	ESTIMATED COMPLETION DATE	
D	2,000	12	0.10	0.70	200	Tom	60%	IQ'10	
CK/DECODE	5,000	2	0.20	0.10	300	Carlos	35%	2Q'10	
ACHE	2,000	8	0.10	0.20	200	Tom	95%	2Q'10	
САСНЕ	7,000	12	0.30	0.70	500	David/Anupam	80%	IQ'10	
DULER	17,000	4	0.20	0.70	500	Abhishek/Elnaz	95%	3Q'09	
ROB	25,000	8	0.60	0.70	500	Gregory	5%	IQ'10	
СТ	5,000	2	0.20	0.00	200	Elnaz	40%	4Q'09	
	7,000	2	0.30	0.00	200	Rigo	90%	4Q'09	
PUTE ENGINE	35,000	18	I.40	I.20	١,000	Rigo	70%	3Q'09	
ACHE	12,000	40	0.50	3.00	3,000	David/Anupam	5%	2Q'10	
\L	117,000	108	3.90	7.30	6,900			2 Q ' 10	

TARGETS


The design and implementation of SCOORE has been a completely collaborative effort. It has been a completely collaborative effort. It has been used extensively in undergraduate and graduate courses as a practical teaching tool. In addition to the previous and CMPE 125 students who participated in this project. Funding provided by NSF, NASA, Sun Microsystems, and Xilinx.

- 4-Issue Superscalar
- SPARC V8 Processor
- Out-of-Order Execution

Baskin Engineering

DESIGN FLOW

GOALS / MILESTONES

•Summer 2009

- •Complete AUNIT, CUNIT
- •Implement Extensive Testbenches
- •Implement BUNIT, MUNIT
- •Integrate the Scheduler

•Fall 2009

- •Integrate the RAT/ROB
- •FPGA Preparation

FUTURE RESEARCH

This project will serve as an infrastructure to advance research and education in micro-architectural topics such as: simulation, thermal modeling, thermal validation, architectural pruning, design complexity analysis, and hardware bug realization.

- Add Thread Level Speculation
- Implement 'Pruned' Versions of SCOORE
- Boot µCLinux