CMD	161	Winter	2002	т		TD.
CMP	101	Winter	2002		ogin	11):

READ ME FIRST

• Don't spend too much time on any one problem. This exam will take approximately 60 minutes.

1

- Amount of time spent on a problem is not necessarily proportional to the points.
- Scan through the entire test and do the easy problems first.
- If something is not clear, ASK.
- BE NEAT. We cannot give you points for something that we can't read.
- Write down your assumptions.
- Don't just write your answer, show how you got them.
- $\bullet\,$ This is a CLOSED BOOK, CLOSED NOTES exam. You are allowed one 8.5x11 "cheat sheet".

1	20 points	Shepard's	
2	20 points	Trilinear	
3	30 points	Flow Vis	
4	10 points	DVR	
5	20 points	Contour Lines	
	100 points	GRAND TOTAL	

1. Shepard's Interpolation (20 points)

Given the three points: P1(2,-2), P2(0,2), P3(-2,0) and their corresponding values 100, 20, 30 (see figure below). Find the value at P(0,0) using Shepard's Interpolation when u=3, i.e. inverse distance cube.

2. Trilinear Interpolation (20 points)

The cube below has the corresponding values at each vertex. Assume that this is a unit cube with the origin at one of the vertices as shown in the figure. Find the value of an interior point where $r=0.2,\ s=0.5,\ t=0.1.$

4

3. Flow Visualization (30 points)

A 2D flow field flows uniformly in one derection, but changes 45 degrees clockwise each time unit (see illustration below). Use the origin (0,0) as the seed location, an integration step of 1 unit, and Euler integration.

(a) 10 points

Starting at t = 0, draw the *streamline* after two integration steps. Show coordinates of points along the streamline. Yes, knowing which flow field(s) to use in the calculation is part of the problem.

(b) **10 points**

Starting at t = 0, draw the *pathline* after two integration steps. Show coordinates of points along the pathline.

CMP 161 Winter 2002	Login ID:	

(c) **10 points**

Starting at t = 0, draw the *streaklines* after two integration steps. Show coordinates of points along the streaklines.

5

4. Direct Volume Rendering (10 points)

What are the two major methods of doing direct volume rendering? Sketch an outline of each algorithm (not more than 5 lines each).

Login ID:	CMP 1	61	Winter	2002

5. Contour Lines (20 points)

6

The values at each grid vertex can be obtained by evaluating the following function: $g(x,y) = x + y^2$. Evaluate this function for x = -2, -1, 0, 1, 2 and y = -2, -1, 0, 1, 2. You should end up with a 5 x 5 grid. Now, draw the contour line(s) of this data set when the threshold value is set to 2.5.