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ON THE PROBABILITY FUNCTIONAL
OF DIFFUSION PROCESSES*

R. L. STRATONOVIC

It is known that the multivariate probability density of a Markov diffusion
rocess X (0),0< 4 < T described by the equatlon

R ] e

be written approximately in the form

N-—1 1
Pxo, Xpo v ovy X1)=p4 (%) n [an(x,, t)]
Rl - '
xep{ —3 5 [B555 ae, )] s}
i=0

“where x; = x(2,); L —5=8;,>0; 1, =T, t, = 0.

The smaller A =max [A,, Ay 1] the higher the accuracy of the

T

.l f [i‘*{l(x, of sty (x=x0)

[V] +
ere and in the sequel a dot denotes the time derivative.)

It is natural to inquire whether one can assign some precise significance to
Such an integral, and not just a symbolic one.

The realizations of x(¢) almost certainly do not have finite derivatives and,
fortiori, the latter are not square-integrable. Moreover the consideration of
nctionals of the type (3) is rather interesting from the point of view of applica-
ons, since in practice, as a rule, the realizations of a diffusion process are not
cth -kov, but smooth ones with a finite derivative. For such processes an

) Translatxon of Proc. Sixth All-Union Conf Theory Prob. and Math. Statist. (Vilnius,
560), Gosudarstv. Izdat. Politidesk . i Nau&n. Lit. Litovsk. SSR, Vilnius, 1962, pp. 471-482.
Russian) MR 34 #5164.
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274 R. L. STRATONOVIC

integral of the type (3) has an exact meaning.

One can conduct a systematic study of such smooth processes and their fun,.

tionals by an explicit introduction to the theory of the operation of smoothirg,
However a simpler approach is also of interest, one without an explicit consider.
tion of smoothing but which deals with functionals of smooth functions. For ok
functions one can take, within a known approximation, observed smoothed seys.
izations.

A useful step in that direction is the introduction of the probability func.
tional W[x(z)] defined on the space B of functions x(#) having a bounded cce.
tinuous derivative X (¢) of bounded variation.

L. Let z(#) be a Wiener process with initial condition z(0) =z, described
by the equation -

Iz t) 1 dp(, 1)
) ot N a2

The multivariate density (2)"‘»is defined in this case by the exact equality

) o (zy, ceos zn|2z,) =const exp{ —_,—;- Z (z_‘tzi—zi )ZA,-}.

i=1

It is'natural to define the probability functional by the formula

(6) W[z(t)]=exp{ —%—fr[;(t)rdl}.

Both in this case and in more general cases, the probébility functional is defined ~
only up to an arbitrary (finite) constant factor. We shall choose this factor in

r

such a way as to obtain the simplest possible expression.
Let the functions z () € B for which the functional (6) is defined fulfil
the conditions

) ' ’2'(1)i <M, 0<t<7":

® 2|2t - 2| <.
k

(Bere «++ <71, <7, < *** are points at which z (¢) takes extremal values.)
Condition (8) may be replaced by the inequality

PROBABILITY

Such replacement is alway.
Lrivative Z and its integral are

THEOREM. 1. Let z(V) (p)
S 0) =z, B () >0,0<t <

fim P{z0<
esp P{z®<

ProoF . Let us make the

z(1):

‘he last process is described by t

pE _
er =

According to the results of
- ntinuous, and the correspondin,

dﬁ;'t;mfexp{ f &

i
=EXp { )

1

- [
4

" the Radon-Nikodym theorem w

i, (2

AE={ 2() : 22 < 2 (1)

Substituting (12) into (13), v
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such smooth Processes anq y,.... .
ity of the opx.ratxon of smooyy.

t, one " Yt an explicit ¢, . v' _
ionals of smooth tunctions. ., '
oximation, observed SmMoothe.q

‘oduction of the probability ;...
ictions x (¢) having a bound.;:

itial condition z(0)

l!p (Z. ‘) -
8z °

this case by the exact equalit,
N-1

7 5 (5 e

f==1

>tional by the formula
r

| {z' (t)rdt}.

probabil* -~ functional is defis- -

We sha. _Joose this factor m
pression.

functional (6) is defined fult::

S S

<M,

h z(f) takes extremal values

=20’ dl‘\."-
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T
f |z]dr <M,
0

Such replacement is always permissible without further restrictions if the
g vative Z and its integral are understoed in the generalized sense.

§ ~ Tusorem. 1. Ler z) (1), 23 (1), h(2) belong to B, and let z(1)(0) =
= 1(0) =20, 1(6) >0,0<:<T and €> 0. Then

lim P{zM<z<aWiech, 0<t<T} W[
o P{2®<z<z®eh, 0<t<T} ~ Wiz *

PrOOF . Let us make the change of variables
z(f)=z(t) + 29 (1) -2V (¢).

2 [he last process is described by the equation

EY _ ey P,1 O
o ==Y =g 5.

* According to the results of [1] the processes z (f) and Z'(¢) are absolutely
:untmuous and the corresponding functional derivative is equal to

dypy[z (1)1 —exp { f[é(z)_z(u] dz(t)-_fl— f [z'(a)-z(l)]z dt }

duz [z ()]
T T
. LI } :
"7[2”)’4""2 fz de+1 ¢, )
] 0

B (12) : =exp {

T
I=.". f (z® — 2] dfa -7,
v 0 I
y the Radon-Nikodym theorem we have

dp,;

Az={ 2() 129 <z(1) <Dyeh, 0<t<T; 2(0)=2 }

Substituting (12) into (13), we find
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P{z(l)<z<z(l)+eh, 0<t<T} = P'; (A‘)
P{z® <z<iW+tch, 01T} ke (A;)

T T
1 . ] o B
(14) =exp{ —7_[2(” dt+7fz(2) dt} o (5) ;\[e'dy.,.
0 0 "

In the expression

T
T
; 5 @)} 15(@ 0y
1= f [£® — 2] d[z — 2P} =[P — 2] T2, — 2P] - f [z—z®@) [P -3 &
6
0

one can, according to inequalities (7), (9), carry out the following estimates

‘z'~z‘2’i<sh<eM,,, 0<t<T for z(DeA;

f~z_z(2)
ssM,,f[

'l'z‘<2>+z<1>|qx<sth!'z'w-—zw!dt

2ol ]50 ] o < o 0]

\z’%?)-—-z.g) ! < Mzm"” Mz(=) v

from which follows

\I < EMhlAI_(1)+M_(2)+M;_(1)+ M;(ﬂ =M,

for all z () € Ag. Therefore | — 1} <eM + % e’M? + -+« and

ling (L,(lAg)f (' =1) dp,=0,
£ AE

(15) ) lim --‘Lz—'(lwe—---f e dp,=1.

As a consequence of this and of (14), after passing to the limit as € —>

follows. | .
5 Consider the Markov diffusion process z(), 0 <7< T, corresp

to the equation

2

1 o%
(16) "L’_(ait_’)_ = — —(%— '[m (z, ) p] +5 G

ondir

PROBABILITY FUNC

+here m(z, 1) is a bounded funct
«ith respect to z. The probability
atisfies the same equation (16),

‘(= —z,). Let us transform this e
‘efined by the equality

17) p’t'(zl Z)=‘

«here f(z, 1) is a function which 1
.dculations lead to the equation

W 0 1 &p @ af
ayy 97 _ 1L op o LA
) 5T e [(”’+az)

Choose the function f(z, 1) s

a1 2ero, i. e, set

T af(z’ t)
19 = -
) 5 =m (z, ),

The solution of the resuiting e

% _1 o
-0) o= =t

~ay be written, as we know, in the

:l) p’lf:(zb Zz)= [exp{ —-7!

Czy

~:th respect to the conditional Wien
fiere and in the sequel

C,l_m_k={ 25

According to (17), the multiva:

p(zb LIS ] zb’ -70)::]}'.):.{

u be written in the form

£z, 037
Pz ..., zrgzo)'—'e

~if we take (21) into account,



B (Az)

T (A

1
Al

T
[ oo o
s]_ [z—z z)] [z‘~’—- (1)
/

t the following cstimutes
roz{eA;

3@ 50 | gy

- M ;"‘ =zM,

242 + -+ and

“to the limit as € — 0. o

1), 0 <t < 7, corresponi

1 9%
PR
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-where m (z, 1) is a bounded function with uniformly continuous first derivative

with respect to z. The probability density ptlt(zl, z) of jump from zZ, toz
catisfies the same equation (16), but with initial condition Py (2, 2) =

§(z — z;)- Let us transform this equation, going over to the function 7 Py, t( 1+ 2)

& defined by the cquality

(17) Poe(zy 2)=e/Gu 0 Pra (24, z) e/,

. here f(z, £) is a function which will be defined explicitly in the sequel. Direct
lculations lead to the equation '

"if(l8) B _1op_ 0 [(I)l+ /) ]'*'["’ oj"‘ ot +>l 5f+ (Of)Jp

at 2 022 0z 2 0dz*

Choose the function f(z,'f) such that the term with first derivative reduces

o zero, i. e. set

19) oDz, 0, 1@ )=~ f mz, 1) dz,
’ 0
. The solution of the resulting equation

0) 9 -1 [_6/'_1 . @]

or adz2 or 2 n Y ez

ay be written, as we know, in the form of the functional integral

[

pi) e (2n 2= f exp'{ -1 f [+ Q-2 & ]dt}dw[zlzo]ﬂ
. &4

Czlzl

with respect to the conditional Wiener measure w fAlz,] =P(AJz () =2,).

ere and in the sequel
’k={ z(8): z(t) =z, i;l, e k }

According to (17), the multivariate distribution
Al

pZy, «e0y Zy

20)=p01. (2‘0, -ZL) P p,N_l N (ZN——h ZN)

be written in the form

F(za. 0= Sz, T) -

) plzy ..., 2zr ' z)=e (Zo» Z) oo D (Zn-1s ZT):—

N-1, 1

if we take (21) into account,

o
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Cpzy, ..., 2p z°)=ef_'(.—n: 0)—"(’T-T)x
T
g -4 om of
22) X f exp{ 5 f [n12+_62_- W] dt}dw[zlzu]_
1}

L 0

Integrating the last expression, we find

(L[Alzo]=f exP{f(?-o, 0)—flzr, T)
A .
r :

(23) —-—;— f [mz-i-%;-— —ng] dt } dwlz]zg],

0 '.
[}
where

A=A, ., { z(t):z(t)eE, i=1,..., N }

Since in this formula N, £, -, ty, Ey, »*+, Ey are arbitrary, equataas
(23) holds for an arbitrary set A of more general form by virtue of the separs
bility and continuity of the process under consideration. Therefore the measss
u[A |z5] and wiA | zy] are absolutely continuous, and the correspondirzg

functional derivative is equal to
T

r

T
(24) felzlzd _opp {f(zo, 0)—f(zr T)+ f g’; dr——;— f [m+fj"] & ;

dwiz| z]
) 0

Taking into account that dp [z] = P(dzy) dulz|z,] and assuming ts
existence of an initial probability density p, (zq) = P(dz,)/ dzg, We have

T
duL1=po(z) €3 { 7200 )~ (er, T)+ f L
” 0
(25) ——% f [m‘+%m7] dt } dw [z | z,] dz,.
0

Since the probability functional (6) corresponds to the Wiener mc‘néﬂf
w [A | z4], it is natural then, as is seen from (25), to define the probability
functional of the given process z () by the formula

PROBABILITY FUNCI

W [z(0)|=po(zo) ex

T

- 1 [
o ) n

0

Theorem 1 in turn holds for t
_ushion similar to that of the prev
as. After substitution of the pro

- ap(z, 1) _ _ a f. o
b "———a' =3 [m(z

Applying formula (24) to this

i [213]

dw (2] 70}

~exp { f(zo, 0)~f(zr,
T
+ f [2® — ;0] d; _%
0
T

- - f m(z, &) [Z®9 -2

0
-:th

“wpressing dpg. {27} [dw,(Z) as the

4 _p(a- )

dy. (7] po (2o
T

+ f i (,}__z(a) +Z(1))

0

Xp

T

o -1 S0 L
3 f 2 dt+ 5 ]
. 0

0

D(2)=— —;— m*

If in (29) one replaces the fur
_‘:o =2 + 200y In po(Z,) **
Po(z{D)), -+ | expression (29) bec



'

\
‘ v
VIC

b 0=/ T)

-2 _3_{‘ } dwiz]z)

0)—f(zr. T)
] dt } dwiz] z,),

i,

, ===, Epy are arbitrary, cqi
eral form by virtue of the
sideration. Therefore the .

tinuous, and the correspond:: .

T T

af 1 2y
{‘Fx_dt—-‘l f[m+

0

o) Al [z/Lzo] and assuminy -

= 1)/ dz,, we have
z) =" p)/d2os V¢
T
of
s [
0

} dwz | zo) 42,

responds to the Wiener meny s
1 (25), to define the probab:

formula
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r

W [0 )= exp { o O—ster, Y4 [ 2 4

(26) —%f[m%%'—'zl]dt—%fz'ﬁ dr}.
0 0

Theorem 1 in turn holds for this functional. Its proof can be carried out in
2 fashion similar to that of the previous proof, with some unessential complica-
tions. After substitution of the process (11), the equation for z(f) takes the form

PGy __ 9 7 — 7@ 4 ;O @ _ L op
)] o =5 {[m(z—z +zW, I)+z(”—z(1’]p }_,_? Z.

Applying formula (24)-to this case, we find
T

(2] 20) o (z, o (z, @) 4
eTa] =P { f(z0r 0)=f(zr, T)+ f [Lo: 4 YD (o4 50)] 4
T T ’ '
@ s ae am (z,
+f (2@ — 0147 -5 f[mz(z. 0+ m‘gi f ] dt‘
0 ‘ 0
T T
_..f m(z, 1) [2'(2)_2'(1)] dt-—% f [z'm—'z‘”]z dt }
0 0

7=3— Z(E) +Z(D.

Expressing duy [Z)/du,(Z) as the ratio of (28) to (24), we find

da 8 pu(fo2§ +24°) _ :
= €xp \ f(Z— 20+ 20, O)~f(zr—20+ 2. T)
: \

dp. 7] T P (20)
T T
+ f G (3 — 29 4 20) dr—f(z, 0)+/(Gp, T)— f ® () dr
0 ; 0
r T T

—%fﬂ”‘ dt+%fi<2)' a't+f[z"‘2>—z"1’] diz—2z9) }
0 0 [

q’(z):...é_ m(z, ,)__;_ amg. 1) +of(az", 0

.. If'in (29) one replaces the functions & (2" — z(2) + z(1)) @),
#

o =2 +200) In po(Z,), +++ by the functions & 1), & (z)), (D) ,
s“170(2((,2)), +++, expression (29) becomes W [z(1)] /W [z(®)]. Let us find an
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upper estimate for the difference between the first group of functions and (.
second one. Since these functions are uniformly continuous in z, this differcr:.
can be made arbitrarily small (for € sufficiently small) simultaneously for 4y
trajectories 2'(f) € A,. As an example let us take the integral

T
[ l O (2 — 22 4 2 0) - P (z0) ! dt
6 '

and let us show that it can be made smaller than any & > 0. As a consequence
of the uniform continuity we can find a u such that

| ©(z— 20 420~ @ 2) | <2 for [i-2®| <y, O<i<T,
Choosing € = u/M,,, we have
(30) f | @20 4+20) - 0 z0) |dt <8 i@eA.
i

Therefore one can prove a limiting relation of the type (15) for the sum -
all the terms in the exponent that give the difference between (29) and
w[z(]/w 23], whence

L IO )
hm =TT = Wi

For the special case when m is independent of ¢, when there exists a st
tionary distribution, and when it is taken as p,(z,), the functional (26} is g

by a formula that is symmetric in the sign of time:
T

0
TR —
0

which was found in [2].
Note that by virtue of the equality df — (3f/d7) dt = (3f/dz) dz formul
(26) may be written in the form

] dt —f(zo) ~f(zr) }v

T

(1) W[z 0] onf —+ [ [e-me+]af.

0

3. Consider now the process x () corresponding to the equation

os _ 1 0 - ) 9x
(32) ‘af ——72— a [b()«, f) ax ],

where the function & (x, £) = 02(x, £) is differentiable once with respect 10 d

and twice with respect to x, and fulfills,the conditions

PROBABILITY FUNC?

0<s

It is a feature of equation (31)

1 =(dtf2) (8/ox) b (x, £) 3/0x is sy
- the first and second kind coincide
Let x(¢) satisfy the initial con
Define the probability function

1) € B, satisfying the same condil
Wixoe

3) =]

i@ @) ~ M

P

P { xt

~hen this limit exists and is indepen

¢ ratio in the right-hand side of (3
x(t)

) z (l) = a

[

By virtue of the conditions imy
s and takes the function x(f) € B
wae B. Clearly

P { xO <L x<<x

5) =.P{ 20 <z <204
~here
() =2Z (x“’ o, ,); 20
“d therefore h; () = k(1) + O(e}.
After the usual calculations rek

"« probability density p, =p, dx/d
“ifies the equation

) . @ 1 dn
Pz _ -

Tor T ox 0z

If we now apply the results of

=y . P{z<z<A
fim P{P<cz<z"

0
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en the first group of functions
dhG

niformly continuous in z,
fficient’” “pall) simultaneously
let us tan<’the integral

V2 D) — D ()| g

rler than any § > 0. Asa conse.;: -

M such that

for Jz-2] <y, 0<ier

DM dr < §; z(H e A..

relation of the type. (15) for the . .-

1e difference between (29) and

1 wize

T~ Wiz@

lependent of #, when there cxist- ..

-as py(z,), the functional (20) i .-

n Of tirr ) ‘\\
i

v
am (z)

*(2) +

df — (8f/or) dt = (0ffoz) dz form

-~f [i=m 422

corresponding to the equation

b(x. 1) ‘”’*]

lifferentiable once with respect t+ -

he conditions

this dy: -

Tor .

Jdt—re -1 |
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0<s<b(x, N <L

It is a feature of cquation (31) that its infinitesimal operator
=(dt/2) (8/0x) b(x, r) 9/dx is symmetric, 0 thet the Kolmogorov equations
first and second kind coincide in form.
Let x(¢) satisfy the initial condition x(0)=x, .
Define the probability functional W [(x()] on the space of functions
) € B, satisfying the same condition x (0) = x4, by means of the equality

o the

g (¢

! W) PLx® < x < xO kel (x0), 0<r<T}
3 Wix® ()] o P{x® < x < x@+ eho (x@), 0<1<TY?

when this limit exists and is independent of A(f) > 0 of B. In order to calculate
j_me [atio in the right-hand side of (33) let us make the change of variables

. %)

?, (34) z(f) = G—g;%EZ (x (). t) .

§ By virtue of the conditions imposed on b (x, 1), this transform always ex-
" its and takes the function x(¢f) € B into a function z (1) belonging to the same

space B. Clearly
‘P { XL x<xD teho (x), 01T }

{35) =P{ 20 < z < 2O +chy, ngsT}. (i=1, 2.

() =Z (;ém 0, &) OW+h0)=2 (3 @)+ ¢ () 0 (¥, f)

'-."i:.and therefore #; (f) = h(2) + O(€).
After the usual calculations related to the change of variable, we find that
the probability density p, = p, dx/dz corresponding to the new process z(?)

tisfies the equation

9 om0 ffL ame ozten], Yl %
) ot ox {[_? 0z + ot P: 2 9z "’

[¥8)

If we now apply the results of the previous section, we obtain

P{zW<z<zW+eh 0t<T) W[z

37 i
) 12‘; P(s0<z<z®feh, 0<I<T} W,z

.
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PROBABILITY FUNCTIC

] -
T'o make the term with the first
_ ___i _._l E—-az(x 3 1 d%Ine 9 (0Z{(
w,l=exp | ~3 f[(z %o a) by Tt g (55" oo ¥
0 i
or =

By virtue of (33), (35), we have By analogy with §2, one can prove

T v respect to the auxiliary process 3

1 .1 0 0Z(x,1)\?2 1 02 14 e .
W["“)]=e""{“7f[(z‘5 s e g o Fire TiEM @/ bofox. By vinue of Gy
0
where we must set z () =Z(x (1), 1), i. e. gﬁ% =€xp { S(x,
z o '
T
i ¥ 1 do\? a (1 T
wleo)=ew 5 [[(E-3 ol (Ya) [ox
P + a 5— dl-*
X
1 T ’
2 39 2 ] e -
(:grg;)) exp { __% f [%+% (_g_;i)z_'_% . %] ” } fh.e probab.lllty functional W [x (
o ; » ~sbution density (Po(xp) multiplied
N r e indicated auxiliary process x(z)
_[bxr, D) _1 L T N A B I
(38) =[Sy ] e"p{ 2 f[b i 7 (o) v )4
‘ 0 ‘ D‘ ’)] VG (xﬂ' 0) c(xT- T) p, (xo)
3
J 4. Finally let us consider the general case of a one-dimensional diffuss 4 .
process x(¢) having the infinitesimal operator f { % + : ( g:) +§I ch%] dt
1 & 9
(39) dL() = b(x, 1) 5z +a(x, ) 5o Substituting (42), we transform thi

where b (x, £), a (x, ) are functions with properties similar to those mentxs=4

" above. ' .‘ »((I)Jz V‘;(—"O‘-O—)T(x:ﬂ Po (o)

If we set its transition probability equal to ,

< 1 .
Sx, 1Y f(.t) - a Jd fa 1
a5 )=/ 5 ) €7 o 2 [[b o5 (5)-7¢

the infinitesimal operator Introducing the notation m = o~ 1,

(40) dl.=e™ 7" gL ¢’ P +Qﬂ(;;—‘)' dt, * : lunctional in the following form:
will correspond to the function p, ,(x,, x), or, substituting €) : _.r(r)] 6 (%o, 0) py(x,) €Xp { _ _1_7
' 1 9 , @ of 1 b ] o of \2 4
Pk a—ba—i-[b % 75;—-}-(1]‘0—)("}-0 +5 b[( ) d\]

this expression coincides with 31
Dpo(xe) by 3, amfdz, py(zy)- It
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To make the term with the first dervative vanish, let us set

By analogy with §2, one can prove that the process x(¢) is absolutely continuous
ﬁﬂl respect to the auxiliary process X' (f) determined by the infinitesimal opera-

:'__’))24._;. 3_"’ ¢ $Zx 0 B o % (3/0x) b 3/ox. By virtue of (39)—(42) the functional derivative s equal to
x? dx ut .
g T
dy:[x | x) _ - &
el —exp { F(%or O)=f(xp, T)+ [ T ar
- 0
9 1 ; T T
5 — {— R B
pe ( )a't} - of i o\, &S
. 0 0
Nl ( o )2+ A ] ol The probability functional W [x (£)] is defined as the product of the initial
4 \ox 2% %al ¢ f § mtibution density (py(x,) multiplied by 0(xg, 0)), the probability functional

'the indicated auxiliary process x(f) (38), and the functional (43):

G
 of di foy g £ 7
» Of a one-dimensional diffuy-.. -

T T
J Gt oz ae [ adhans [of() e g8}
»a(x,t)gax-,

erties sk to those menty s -

. T
3 oS D & _1 Lpp L (ay_ L g9 (1 by _ 1 i oy
X} e, ) 2./‘[b\+bdx(b> 4b0x(b E)‘le ?(E)]d’}'
0 A - . : N ’

# - Introducing the notation m = o @ -% (0b/0x)), we can write the prob-

.Qf_(g’v*‘)_ dt, & Bty functional in the following form:
T

» substituting (39) 7 x0]=cC0 0) g e { 1 f [5 -2 5vmivo G|,
F 1 [, ), ). ¢
stz b{(g) il

¢ This expressidn coincides with (31) if we replace % /o, 0dm/dx,

8 1l,, 0) Po(xy) by Z, dmfoz, Po(z4). It follows from this that Theorem 1
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(which is proved with the help of the substitution of variables {34)) holds e
functional (44).

It is clear from the above that Theorem' 1 may be taken as the definstim o

the probability functional. Then from this definition follow the rules for 11300
forming the functional by a change of variables and the formulas for the retytys

of the probability functionals of processes that are mutually absolutely contzrmng

Thus we have

TueoreM 2. If the processes x(8),y(t), 0<t<

uous and if the corresponding functional derivative has the form
.

_fii‘_[f_]_.-_—_-exp{ F(x(O), x(T))+f P (x(t), t) dr } ,
0

duy [x]

where F(x, x'), ®(x, t) are bounded functions the first of which is contirturns
and the second is uniformly continuous in x, and if they have probability fum:

(46) :E:Eﬂ =exp { F(x(O), x(T))+f 1) (x(t), !) dt }, x{f) e &
)

For the proof, one must take into consideration that‘by definition of e

probability functionals

1 (2) 2
Welx®) Wy X1y m(A0) (A ) (A<f>={x(r):x"’<x<x“’ i
A AL )] U (A‘ )) &0 Py (Agl)) » {43 : :

and therefore

W [x®) Wy [x®)] =lim (A(l)) Jad (A(.z))
“ o) Wl 1, (60) ()

Making use of the continuity hypothesis, we can easily verify that the i#

ferences

T T

F(x(0). x(M)=F(x(©), 2(D)): f O(x, 1) dt— f YR
0

0

| | i P
can be made, for e sufficiently small, arbitrary small simultaneously for £
e (13} BypadiH

x(t) € Agi) by znalogy with (30). Therefore an equality of the type

for these differences, and we have the convergence
T

X 1 l
(48) lim .- E %%—exp{ (lm(()) x(x)(T)) f O (X, 1) df f-

0

T, are absolutely cvum,
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: (47) we replace the limit of the ;
‘he ratio of the limits lim (e (AL
€ .

.- und formula (46), in accordance wi

It is important to note that unde,
.1 behaves like a scalar, and nbt as .

Comiparing (44) with (3), we see |

:ral (3), there appeared a considerat

All of the above can be generalize
process. Let x () = {x,(2), <+~ , x

z:tesimal operator

> equation

ot 2 9x,

The functions a (x, 1), boglx, 1) =

-~ derivatives 0a,/3x,, 8%b,q[0x.,0)

0<d<o®(x, n<L; o (x,

The probability functional W [x (@

"> by the formula

Wix® 01 _ = lim P{ x

Wix® @] . 0 P
Here SO (1) is a sphere in R, con
2ue measure

L [sgv(z)]:s/; () (s, ) 0

I we take bog(x, t) as the metric |

“*he volume of domain S(') () equal

Cdleulations lezd to the following ex
W [x 0= . \
o {x(0), 0) Po (x (O);j

= 2m, (071),q Xg + i1, 1,
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n 1 may be taken as the defy; -

efinitic” llow the rules for .- .
les and" .6 formulas for the ;.-
1at are mutually absolutely Cort -

), 0St< T are absolu:cr
vative has the form
7

>)+0f ® (. )},

ns the first of which is consie., .
. and if they have probab;:: -

(1) (x(t), t) dt } x{n) &

deration that by definition .- -

; (A(‘)—-{x(t) A< v

v (Ag)) By (A(_?))

AT Yoo
{28 3 (a?)
, we can easily verify that -%-

T

D (x, 0 dt-f P

0

r small simultaneously for 2.
an equality of the typc ti~:*
fce

T

7))+ f ® (x4, 1) e }

0
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_' < (47) we replace the limit of the ratio u, (A('))/uy(/\(')) U (A( ),/ﬂ‘( ’))
: te ratio of the limits lim (u, (/\(”)/p (A(l))) and lim (u, (A(2))/ #y(/\(v)),)
- find formula (46), in accordance with (48)

3
Q It is important to note that under a change of variables the probability func-
_};f waal behaves like a scalar, and not as a scalar density.

Comiparing (44) with (3), we see that after we gave a precise meaning to the
§ ool (3), there appeared a considerable number of additional terms.
' All of the above can be generalized to the case of a multidimensional diffu-
& gmprocess. Let x(£) = {x,(¢), -+~ , x, (1)} be such a process with corresponding

pd equation

G =T dngoxy Pl g laapl.

The functions « (x, ©), baﬁ (x, 0= ay Oyp are such that there exist contin-
» gus derivatives da,/ox,, 02 baﬁ/ax axs, 0b,g/ 3t, and

-,50)’ L0<8 <o?(x, t)<L; o (x, ;):Detl

Guﬂ

1
|=Dct2 I [

The probability functional W[x (r)], where x(1) €B; i=1, -, n, is de-
§ %ed by the formula

T}
% -

: Here S(') () isa sphere in R containing x®(7), i=1, 2, and having
% idesgue measure

W[x(l)(:)] . P{x(yesP @), o<1
<

<
WIS 0]~ P{x ® esN(), 0<sr<

L[Sf’(t)]-——sh(t) o‘(x(")(t), t); 0<h(tyeB; i=1,2 O<t<T.

3 If we take baﬁ(x t) as the metric tensor in the space R,, then we must
% % the volume of domain S(‘) (1) equal to ek (¥).

Calculations lead to the following expression for the probability functional

T

W @]=o (0. 0) no(x@) exp { =3 [ [s60s 5,

0

—2m, (¢~ )anB+m My + G, gm:]dt},
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- ‘.A‘.xlu]
where
_ 1 do
(54) my=(c Dep (aﬁ—7 W‘:{ Gys) »
and py(x) is the initial probability density; in formulas (49),-(53), (54), sup »E
tion is carried out over repeated indices. *
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* Editor’s note. The bibliography has been omitted in the original. -



