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abstract: Among-individual heterogeneity in growth is a com-
monly observed phenomenon that has clear consequences for pop-
ulation and community dynamics yet has proved difficult to quantify
in practice. In particular, observed among-individual variation in
growth can be difficult to link to any given mechanism. Here, we
develop a Bayesian state-space framework for modeling growth that
bridges the complexity of bioenergetic models and the statistical
simplicity of phenomenological growth models. The model allows
for intrinsic individual variation in traits, a shared environment,
process stochasticity, and measurement error. We apply the model
to two populations of steelhead trout (Oncorhynchus mykiss) grown
under common but temporally varying food conditions. Models al-
lowing for individual variation match available data better than mod-
els that assume a single shared trait for all individuals. Estimated
individual variation translated into a roughly twofold range in re-
alized growth rates within populations. Comparisons between pop-
ulations showed strong differences in trait means, trait variability,
and responses to a shared environment. Together, individual- and
population-level variation have substantial implications for variation
in size and growth rates among and within populations. State-
dependent life-history models predict that this variation can lead to
differences in individual life-history expression, lifetime reproductive
output, and population life-history diversity.

Keywords: individual heterogeneity, von Bertalanffy, bioenergetics,
Bayesian state space, Oncorhynchus mykiss.

Introduction

The expression of among-individual variation results from
a complex interaction among genetic variation, phenotypic
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plasticity, population structure, and environmental con-
ditions. An important goal of both ecology and evolu-
tionary biology is documenting the presence of individual
variation, the mechanisms underlying its maintenance,
and its consequences for populations and communities.
Both theory and empirical results suggest that the presence
of persistent individual variation can have significant con-
sequences for populations (Pfister and Stevens 2003; Vin-
denes et al. 2008; Zuidema et al. 2009; Kendall et al. 2011)
as well as for communities (Bolnick et al. 2011). Fur-
thermore, individual physiology and behavior mediate re-
sponses to environmental change (whether natural or an-
thropogenic). Thus, an understanding of individual
heterogeneity is important for predicting the persistence
of populations in the face of environmental change.

Somatic growth is an important but variable component
of life histories. Persistent individual differences in growth
are well documented for a range of taxa (plants: Harper
1977; Clark et al. 2007; mammals: Tinker et al. 2008; algae
and invertebrates: Pfister and Stevens 2002). Because sur-
vival, maturity, reproductive success, and other vital rates
are frequently related to an individual’s size, variation in
somatic growth has implications for both individual fitness
and population dynamics (Kendall and Fox 2002). The
link between size and vital rates has motivated the wide-
spread use of structured population models (e.g., matrix
models; Caswell 2001), but these models generally assume
that individuals of a given size or state are equivalent (but
see Parma and Deriso 1990; Pfister and Wang 2005; Coul-
son et al. 2006; Kendall et al. 2011; Jansen et al. 2012).
Thus, the implications for incorporating individual vari-
ation in growth for population processes are largely unex-
plored (Pfister and Stevens 2003).
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Among-individual variation in somatic growth can arise
from a variety of processes. For example, individuals
within a population can vary in metabolic rates (von Ber-
talanffy 1938, 1957; Beverton and Holt 1959; Metcalfe et
al. 1995) or behavioral traits (e.g., aggressiveness or ter-
ritoriality; Magnuson 1962; Biro and Stamps 2010). Re-
alized growth for an individual arises as a function of (1)
an individual’s phenotypic traits, (2) the environmental
conditions shared by the entire population, and (3) sto-
chasticity (Kruuk 2004). Stochasticity encompasses a range
of unmeasured random processes affecting individual
growth that could include (1) fluctuations in food captured
by an individual, (2) variable responses to fluctuations in
temperature, or (3) factors not directly linked to growth
(e.g., predation avoidance). Methods that seek to docu-
ment and understand individual variation must account
for these distinct factors. This goal has proven elusive in
practice (e.g., Knape et al. 2011).

There is a well-developed and sophisticated body of
theory describing the physiology of growth (Kitchell 1977;
Kooijman 2000), but often it is difficult to match this
theory to available data and to estimate all the parameters
from size trajectories alone (Fujiwara et al. 2005); there
are usually too many free parameters and unobserved
states to be estimable from available data. At the other
extreme, there are growth models for which parameters
are easy to estimate (e.g., von Bertalanffy growth) but that
describe patterns in growth that may be difficult to link
to underlying biological mechanisms. Thus, an unsolved
question is how to represent individual variation efficiently
in growth models. Recent analyses suggest that although
individuals may vary across a wide suite of traits, genetic
correlations among traits constrain the effective number
of traits to a much smaller number (Kirkpatrick 2009).
This observation motivates the development of low-
dimensional summaries of among-individual variation
that can be potentially connected to evolutionary models.

Here, we develop and apply a parametric Bayesian state-
space framework for jointly estimating among-individual,
environmental, and stochastic variation from observed time
series. We strike a compromise between the simple but diffi-
cult-to-interpret growth models and the biologically so-
phisticated but statistically unidentifiable full bioenergetic
models. We then describe a rearing experiment conducted
with two California steelhead (Oncorhyncus mykiss) popu-
lations under common conditions and apply our statistical
methods to estimate parameters for each population. We
compare patterns of among-individual and between-pop-
ulation variation. We then use a state-dependent model of
steelhead life history developed by Satterthwaite et al. (2009)
to predict the optimal life-history strategies and expected
lifetime output associated with projected growth trajectories.
This allows us to quantify the predicted effect of individual

growth rate variability and stochasticity on the diversity of
life-history pathways observed in populations. Furthermore,
it provides a method for understanding the fitness conse-
quences of individual variation under a range of environ-
mental conditions.

Methods

Growth Model

We use as our starting point a general model of somatic
growth, where the rate of growth of an individual of length
x is

dx
p q � kx. (1)

dt

Equation (1) is known as the specialized von Bertalanffy
growth function (VBGF; von Bertalanffy 1957; Pauly 1981;
Essington et al. 2001). Biologically, the parameter q contains
processes contributing to energetic gains (anabolism; e.g.,
consumption rates linked to the quality of the environ-
ment), while the parameter k represents processes pertaining
to energetic costs (catabolism; e.g., metabolic rates and as-
sociated behavioral traits). The VBGF arises from bioener-
getic principles and is based on specific but reasonable as-
sumptions about how growth rate scales with individual size
(Essington et al. 2001; Mangel 2006). Descriptions of the
derivation of the VBGF from bioenergetic principles and
additional assumptions of the VBGF can be found elsewhere
(e.g., von Bertalanffy 1938, 1957; Beverton and Holt 1959;
Essington et al. 2001; Mangel 2006), and we refer readers
to those references for a complete discussion.

Equation (1) describes the growth process of an indi-
vidual. However, almost all applications of the VBGF in-
volve fitting an integrated form of equation (1) to pop-
ulation-level data and interpreting estimated parameters
as the values for an average individual in the population.
As noted by many investigators (Sainsbury 1980; Wang
1998; Eveson et al. 2007), this interpretation is valid only
if there is no heterogeneity among individuals; estimating
parameters by ignoring individual variation will yield bi-
ased parameter estimates. Thus, two key questions are Is
there biological evidence of among-individual variation,
and How can we estimate its magnitude in the face of a
variable environment and stochastic variation?

We develop a general model derived from equation (1)
and apply it to steelhead trout. While we motivate and
frame our analysis in the context of salmonid fish, our
approach is applicable to a wide range of species. For
salmonids, detailed studies of physiology show individual
variation in physiological rates (Paszkowski and Olla 1985;
Metcalfe et al. 1995; Gilmour et al. 2005; Burton et al.
2011) that can drive differences in activity, determine be-
havioral dominance hierarchies, and result in variation in
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growth (Martin-Smith and Armstrong 2002; Morinville
and Rasmussen 2003). However, the link between indi-
vidual variation in traits and realized growth in a tem-
porally variable environment is largely undescribed
(Burton et al. 2011). We integrate equation (1) to obtain

qi�k �ki i( )x (t) p x (t � 1)e � 1 � e , (2)i i k i

and we include the subscript i to make explicit that the
parameters are tied to individuals.

Thus, we assume that there is fixed individual variation
in the gain and cost parameters. Because qi is related to the
amount of resources available to an individual, it is related
to both the shared environment and the behavioral traits
of that individual. The relationship between physiology, the
environment, and growth reflects complicated trade-offs
that vary as a result of differences in behavior and life his-
tory. We adopt a flexible form for relating qi and ki proposed
by Snover et al. (2005, 2006). We let gt denote the shared
environment at time t and w be a parameter that determines
the degree to which q depends on environmental versus
metabolic and behavioral factors; then

wq p gk , (3)i, t t i

and qi, t represents the growth conditions for an individual,
given its traits and a shared environment at time t. Note
that w is a population-level parameter; all individuals are
assumed to have a shared link between behavior and the
environment. Snover et al. (2005) explain why 0 ≤ w ≤

. If , then ki and qi are independent, and individual1 w p 0
activity has no effect on an individual’s success at obtaining
resources from the environment. Therefore, when w p

, individuals with high ki have slower growth. At the other0
extreme, , individuals with high ki always have in-w p 1
creased access to resources and therefore experience faster
length-specific growth. For intermediate values of w, the
relative growth rate for individuals with different ki will
change with an individual’s length. For , the0 ! w ! 1
value of k that has the highest growth rate at a given length
depends on the shared environment, gt (fig. A1, available
online). Thus, this model can qualitatively match the em-
pirical observation that the relative success of individuals
with different traits varies with the quality of the envi-
ronment (Alvarez and Nicieza 2005; Burton et al. 2011).

Combining equations (2) and (3) gives

�k w�1 �ki ix (t � 1) p x (t)e � gk (1 � e ), (4)i i t i

and after n intervals (nominally days), the length of an
individual is

n�1

�k n w�1 �k �k ji i ix (t � n) p x (t)e � k (1 � e ) g e . (5)�i i i t�j
jp0

Equation (5) is a deterministic model for individual

growth in a time-varying environment. We also expect
stochastic processes to contribute to growth. To account
for stochasticity, we assume that the environment the in-
dividual experiences is a random variable, , and can beg̃t

approximated by a normal density, . Note2g̃ ∼ N(g , j )t t

that gt can, in theory, take on negative values and produce
negative growth (shrinking). In this stochastic framework,
length is a random variable (denoted by capital letters;
Xi(t)) and individuals are measured with error, so we let
Yi(t) denote observed length. If the interval between ob-
servations is nw (for intervals) and thew p 1, 2, … , W
mean environment between measurement intervals can be
approximated by a single constant, gw, then the full time-
series model that incorporates process stochasticity and
measurement error is

�k ni wX (t) p x (t � n )ei i w

n �1w

w�1 �k �k ji i� k (1 � e )g e � z , (6a)�i w t
jp0

where

n �1w

2 w�1 �k 2 �2k ji iz ∼ N 0, j [k (1 � e )] e ,�t i( )
jp0

and

Y (t) p X (t) � z , (6b)i i obs

where (also see the appendix, available on-2z ∼ N(0, t )obs

line). Equations (6a) and (6b) constitute an individual time-
series model where fixed individual traits, a shared envi-
ronment, and stochastic variation are all incorporated
(Prado and West 2010). Note that both the expected value
and the variance of an individual’s length depend on an
individual’s trait, ki. This model matches the structure of
many data sets where uniquely marked individuals living
in a shared but variable environment are observed repeat-
edly over time.

We note that this is far from the only possible model that
could be derived and that a variety of alternative structures
for modeling growth are reasonable. For example, various
approaches with stochastic differential equations have been
developed (e.g., Fujiwara et al. 2005; Gudmundsson 2005;
Lv and Pitchford 2007). The model presented here has dis-
tinct advantages for parameter estimation (see below). In
the sections that follow, we describe a rearing experiment
on steelhead trout and then apply our model to estimate
parameters from the steelhead data.

Study Species and Rearing Experiment

We apply the time-series model to a rearing experiment
on California steelhead (Oncorhynchus mykiss; see Beakes
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et al. 2010 and the appendix for the details of the exper-
iment). Age-0 steelhead from two populations were raised
in aquarium tanks at the National Marine Fisheries Service
Laboratory in Santa Cruz, California. The first population
derives from a conservation hatchery on a small coastal
stream, Scott Creek (denoted CCC, for central California
coast). The CCC population derives from a lineage of pre-
dominantly wild fish (Hayes et al. 2004). The second stock
comes from a production hatchery, Coleman National Fish
Hatchery, on Battle Creek, a tributary to the Sacramento
River (denoted NCCV, for northern California Central
Valley). Steelhead broodstock for Coleman hatchery derive
predominantly from hatchery origin (Campton et al. 2004;
USFWS 2011). Thus, while the populations derive from
distinct rivers in different parts of California, the contrast
between the CCC and NCCV populations also incorpo-
rates a comparison between fish of predominantly wild
and predominantly hatchery backgrounds.

Fish were grown in cylindrical tanks (490 L), with 20
fish per tank and eight tanks of each stock (initial length
∼40 mm), and raised on a diet supporting moderate but
restricted growth, except for a period in which an ad lib.
ration was available (hereafter “low” and “high” rations,
respectively). Tanks were assigned to one of four feeding
treatments, with two replicate tanks per treatment. In July,
all tanks were placed on low rations distributed four days
a week. The fish were kept on low rations, except during
the treatment period, when one of the four treatment
groups received eight continuous weeks of high rations
daily (see fig. 1). Thus, all treatment groups received iden-
tical amounts of time at each ration level and experienced
equivalent cumulative food per unit body mass over the
course of the year, although the timing of food availability
varied. The length of each individual was observed ap-
proximately every 4 weeks for a 10-month period. We
included 100 CCC and 138 NCCV individuals in our anal-
ysis (see appendix).

Parameter Estimation

We were interested in estimating the joint posterior dis-
tribution of the parameters and unobserved, latent states
for each individual (the length of individuals at each day
of interest) by using Bayesian hierarchical methods (Cres-
sie and Wikle 2011; appendix). We estimated parameters
for each population independently, but within populations
we estimated parameters for individuals in all treatments
simultaneously. We estimated three shared environmental
states for each population: gS, gL, and gH, corresponding
to the first month of the experiment and the low- and
high-ration treatments, respectively. We used a separate
parameter for the first month because introducing fish into
a novel environment should affect growth in addition to

the ration treatment. We estimated the length of each in-
dividual on each day it was measured and on the days
when feeding treatments were changed (17 and 18 days
for CCC and NCCV, respectively). We initially investigated
the potential for tank-specific blocking effects, but there
were no evident differences between tanks within a treat-
ment, so we combined tanks into one analysis (fig. A4,
available online). We did not attempt to estimate the mea-
surement error but treated t2 as fixed (see below).

Preliminary analyses showed that w and the g’s were
only weakly identifiable. To improve estimation, we per-
formed all of our analyses conditioned on values of w. We
estimated parameters for a range of values of w (from 0.1
to 1.0, in increments of 0.1) to investigate the effects of
changing the relationship between individual traits and the
environment. Models with (the classic von Ber-w p 0
talanffy model) failed to converge in most cases; we do
not discuss further.w p 0

We considered two model structures for individual var-
iation in k. In the first, we estimated a single, shared k for
all individuals, so for this model we estimated {k, gS, gL,
gH, j2} (hereafter the single-k model). In the second, we
estimated a ki for each individual and assumed that the
similarity among individuals in a population was hierar-
chical (hereafter the hierarchical-k model); we modeled
each ki as a random sample from a shared normal distri-
bution, , where mk and are the mean and2 2k ∼ N(m , r ) rk k k

variance of k, respectively. Thus, for I individuals we es-
timated {k1, k2, ..., kI, mk, , gS, gL, gH, j2}. For all param-2rk

eters we used diffuse prior distributions (summarized in
table A1, available online).

Incorporating measurement error is an important con-
sideration in ecological models (Clark 2007). Steelhead
measurements of length were relatively precise, but no
empirical estimates of measurement error were made dur-
ing the experiment (Beakes et al. 2010). Therefore, we
fitted models assuming two values of measurement error
( or 4 mm2) to understand the consequences of2t p 1
including measurement error for other parameters.

We estimated the posterior distribution of parameters
and latent states by using a mix of Gibbs and Metropolis
Markov chain Monte Carlo (MCMC) algorithms to sample
parameters (Gelman et al. 2004) and used standard tech-
niques to assess model convergence and diagnostics (see
the appendix). All results represent 4,500 samples from
the posterior distribution. We performed all analyses in R
(ver. 2.13.1; R Development Core Team 2011).

To compare the single-k and hierarchical-k models, we
used posterior predictive loss (Gelfand and Ghosh 1998;
Clark and Bjørnstad 2004). Predictive loss identifies the
model, m, that provides a balance between a goodness-of-
fit term, Gm, and model complexity term, Pm. The preferred
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Individual Variation in Growth 803

Figure 1: Observed growth trajectories for steelhead from two populations (CCC, left; NCCV, right) in the four feeding treatments (rows) in
2006–2007. Lines indicate length trajectories for individual steelhead. “S” indicates the first month of the experiment, “L” indicates the low-
ration treatment, and “H” and shading indicate the high-ration experiment. From top to bottom, the rows correspond to treatments 1–4.

model is the one that minimizes the sum D p G � Pm m m

(see the appendix).

Connecting Individual Variation to
Populations and Fitness

We performed two simulation exercises to examine the con-
sequences of individual variation for populations. First, we

used the estimated parameters to simulate steelhead growth
and to examine the consequences of individual heteroge-
neity and process stochasticity for the distribution of lengths
in the population. We performed independent simulations
of more than 50,000 steelhead individuals, using the pos-
terior parameter estimates for both the single-k and hier-
archical-k models and both with and without process sto-
chasticity (four scenarios in total). We compared the
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Figure 2: Model comparison using a posterior predictive loss criterion
for . Lower values of Dm indicate a better match between model2t p 1
and data. Both populations had minimum Dm at . Compar-w p 0.2
isons of model fit are valid only within populations (see appendix for
details).

simulated lengths to the observed distribution of lengths at
the end of the growth experiment (see appendix).

Next, we connected projected individual growth trajec-
tories with a state-dependent life-history model to un-
derstand the consequences of individual variability in
growth on life-history expression and reproductive output
of female steelhead. Steelhead are facultatively anadro-
mous, able to complete their entire life cycle in freshwater
or emigrating to the ocean at various ages before returning
to spawn. Both fecundity (DuBois et al. 1989) and marine
survival (Bond et al. 2008) are size dependent. Given this
biology, life-history theory predicts that optimal life his-
tories will depend on size-dependent trade-offs between
increased growth opportunities (and thus, ultimately,
higher fecundity) and higher mortality risks in different
habitats. Mangel (1994) and Thorpe et al. (1998) for-
malized these trade-offs and showed how dynamic state-
variable models (Mangel and Clark 1988; Clark and
Mangel 2000) could be used to predict life histories and
fitness of Atlantic salmon (Salmo salar). Satterthwaite et
al. (2009) adapted this model to Scott Creek steelhead
(corresponding to the CCC population), using length as
a state variable and using local measurements of growth,
survival, and fecundity to quantify these trade-offs. The
parameterized model identifies optimal life-history deci-
sions as a function of individual fish sizes and growth rates.
Then, given a specified growth trajectory, forward iteration
(Mangel and Clark 1988) along each individual growth
trajectory yields a predicted life history (resident vs. anad-
romous and, if anadromous, age at ocean entry).

We adapted the Satterthwaite et al. (2009) model to
explore how variation in growth trajectories due to both
variation in k and environmental quality affects the dis-
tribution of reproductive output among individuals, life-
history diversity, and, for the hierarchical-k model, the
relative fitness of individuals with different traits. We sim-
ulated individuals under six scenarios: two methods for
modeling k (single k or hierarchical k) under three growth
environments (high, low, and very low growth: gH, gL, and
gVL, respectively). The first two environments correspond
to the feeding treatments in the tank experiment, and the
third, gVL, was chosen to approximate the growth curves
of wild CCC fish documented by Hayes et al. (2008; pa-
rameter values and details of the simulations are presented
in the appendix). We produced 50,000 individual growth
trajectories in each scenario, all of which included process
stochasticity. We used such a large number of simulated
growth trajectories because large amounts of stochasticity
in growth required many replicates to provide relatively
smooth plots of fitness as a function of k. We then used
the Satterthwaite et al. (2009) model to predict the life
history for each simulated individual, as described in the
appendix. We characterized life-history diversity by using

the Shannon diversity index ( , where pi is�� p log (p )i ii

the proportion of the population adopting life history i,
summed over all nonzero pi). Given a life-history predic-
tion for each growth trajectory, we calculated expected
lifetime egg production for each individual. Lifetime egg
production is discounted by survival until reproduction,
but when tracking life-history diversity we tracked poten-
tial pathways rather than accounting for fish dying before
expressing a life history. We analyzed the CCC population
only, because we lacked site-specific survival and fecundity
estimates for the NCCV population.

Results

Inspection of empirical growth trajectories suggests both
individual and population differences in growth as well as
strong growth responses to experimental feeding treat-
ments (fig. 1). For both populations, predictive-loss cri-
teria showed that growth models incorporating individual
variation were preferred to models without individual var-
iation (fig. 2). This was true for all values of w considered
and for both measurement error scenarios (figs. 2 and,
available online, A2). In both populations, pro-w p 0.2
vided the lowest value of Dm among the models considered
and therefore best matched observed growth. For the re-
mainder of the article, we focus on and .2w p 0.2 t p 1
Results using other values of w and produce very2t p 4
similar results (see appendix).

Both the estimated posterior median k among individ-
uals in the population and the individual variability in k
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Figure 3: Estimated among-individual variation in k for and . Histograms of median estimates of k in each population. Dashed2w p 0.2 t p 1
lines show the estimated median k among individuals in each population. Note different X-axis scales between the populations.

differed substantially between the populations. We esti-
mate a nearly twofold difference in median k (0.00031 and
0.00017 for CCC and NCCV, respectively; fig. 3). Higher
k’s indicate higher estimated average activity costs within
the CCC population, although there is substantial overlap
in estimates of k between populations. Posterior estimates
of ki show strongly left-skewed distributions for both pop-
ulations (fig. 3). The left-skewed distribution in k is evident
in all four treatments of both populations. As measured
by the coefficient of variation (CV), individual variation
is higher in the CCC population (posterior median CV
[95% credible intervals] p 0.57 [0.49–0.65] and 0.48
[0.41–0.56] for CCC and NCCV, respectively; fig. A5, avail-
able online).

Among-individual variation in k resulted in strong
among-individual and between-population differences in
growth in response to ration treatments. At the low ration,
the populations had similar mean estimated growth rates,
but variation in individual k translated into a roughly two-
fold range in individual growth rates (fig. 4). However,
the majority of individuals were estimated to have growth
rates near 0.4 mm day�1 at the low ration. While both
populations exhibited a strong growth response to the
high-ration treatment (figs. 1, 4), the magnitude of the
growth response to the high-ration treatment differed sub-
stantially between populations. The CCC population at
the high ration grew at a rate ≈1.6 times that of the fish
at low ration ( , ; pos-g p 2.08 � 0.06 g p 3.38 � 0.12L H

terior median � SD), while under the high ration the
NCCV population grew at a rate ≈2.4 times that under

the low ration ( , ).g p 2.60 � 0.20 g p 6.27 � 0.08L H

When the treatment groups were compared at a standard
length of 50 mm, the difference in growth rates was par-
ticularly striking (fig. 5). Under the high ration, there was
virtually no overlap in growth rates between CCC and
NCCV individuals. Furthermore, the CCC individual with
the lowest k under high rations had growth similar to the
population median growth in the low-ration treatment
(figs. 4, 5, and, available online, A6). In contrast, even the
individual with the smallest estimated k in the NCCV pop-
ulation had higher expected growth under the high ration
than any individual under low-ration conditions.

We compared growth and variability on a monthly time
step to match the time between measurements in the ex-
periment. The NCCV population had significantly higher
estimated variation than the CCC, but in both populations
the standard deviation of process stochasticity was much
less than the expected growth rate (fig. 5). Generally, ex-
pected growth was more than twice as large as the sto-
chasticity in monthly growth.

We found evidence of an effect of feeding treatment on
the estimates of k (fig. A4). Lower estimates of k were
associated with treatments 3 and 4, which correspond to
the treatments that received high rations at the end of the
experiment (fig. 1). While this pattern is arguably present
in the CCC population, it is striking in the NCCV (fig.
A4). This result indicates an interaction between the early
environment experienced by individuals and their sub-
sequent growth.
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Figure 4: Estimated among-individual variation in growth for CCC and NCCV steelhead populations under the two feeding treatments for
and . Solid lines indicate among-individual median growth, dashed lines show the interquartile range, and dash-dotted lines2w p 0.2 t p 1

show individuals with maximum and minimum estimated ki. Median posterior estimated ki were used for each individual. Points show extreme
estimates of growth for individuals. Expected daily growth rates are plotted across the range of lengths observed in each population (30–211
mm for CCC and 30–275 mm for NCCV).

For all individuals in both ration treatments, individuals
with higher k had higher growth rates. While models with

allow for individuals with high k to have lower0 ! w ! 1
growth than low-k individuals (see fig. A1), we found no
evidence that individuals with high estimated k experi-
enced reduced growth across the range of lengths observed
in the population under the conditions of this experiment.

Population processes. Simulations showed the conse-
quences of including individual variation for the distri-
bution of lengths (fig. 6). The distribution of lengths
resulting from individual variation without process sto-
chasticity was peaked and strongly left-skewed, reflecting
the estimated distribution of k in both populations. Sim-
ulations using both a single k for all individuals and process
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Figure 5: Growth responses to feeding treatments in the CCC and NCCV populations with and . Left, distribution of expected2w p 0.2 t p 1
monthly growth rate for 50-mm individuals under two ration treatments. Growth rates were calculated from the posterior median estimate of
ki for each individual. Boxplots show median, interquartile range, and whiskers 1.5 times the length of the interquartile range. Individuals
beyond the whiskers are shown with circles. Diamonds indicate within-group mean. Right, posterior estimates of process stochasticity in growth
for the two populations. Median (solid line) and 95% credible intervals (dashed lines) are shown. Results are plotted across the range of ki

estimated for each population.

stochasticity generated an approximately normal distri-
bution of lengths. Incorporating both individual variation
and process stochasticity generated distributions of lengths
with a mean length similar to the shared k distribution
but with a higher variance and a negatively skewed dis-
tribution. Such heavy-tailed distributions provided the
closest match to the empirical distribution of lengths ob-
served in the CCC and NCCV populations (fig. 2).

Output from the state-dependent life-history model
showed how predicted patterns of life-history variation are
strongly tied to both the environment and an individual’s
k. For both single- and hierarchical-k simulations, high-
growth environments (gH) were dominated by individuals
that emigrated to the ocean at age 1, with a small number
of fish maturing as freshwater residents (table 1). Low-
growth environments (gL) saw a mix of residents and age-
1 and age-2 emigrants, while the very-low-growth envi-
ronments (gVL) showed the greatest diversity of life
histories, and individuals were split nearly evenly among
residents and age-2 and age-3 emigrants. Overall, the
single-k models produced less life-history variation than
did hierarchical-k models, but the predicted life-history
proportions were usually within 5% (table 1).

Our analysis showed strong effects of the environmental
quality on the range and distribution of expected lifetime
reproductive output in the CCC population. The distri-
bution of reproductive output was approximately sym-
metric, right-skewed, and extremely right-skewed in the
high-, low-, and very-low-growth environments, respec-
tively (fig. 7). In very-low-growth environments, more
than 30% of individuals (newly emerged fry) had expected
reproductive output of fewer than 2 eggs, while that of a
few individuals was more than 50. Note that the variation
in the single-k simulations arose exclusively from sto-
chastic processes, because all individuals had identical val-
ues of k, while that in the hierarchical-k simulations re-
sulted from a mix of individual differences and stochastic
forces. While there were some mild differences between
the single- and hierarchical-k models—most notably in
high-growth environments, where the hierarchical model
clearly had larger variance than the single-k model—the
qualitative patterns of individual variation in reproductive
output were similar between the scenarios.

With the hierarchical-k model, life-history strategies and
fitness are predicted to vary across individuals with different
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Figure 6: Simulated and observed distributions of length at the end
of the steelhead growth experiment for the CCC (top) and NCCV
(bottom) populations. Lines show the smoothed densities of 50,000
simulated individuals for three scenarios: (1) individual variation in k
(hierarchical) without process stochasticity (dashed line), (2) a single,
shared k with process stochasticity (dash-dotted line), and (3) indi-
vidual variation in k with process stochasticity (solid line). Histograms
show observed distribution of lengths at the end of the experiment
( for CCC and for NCCV). See text for simulationn p 75 n p 106
details. Note that X-axis scales differ between panels.

k’s (fig. 8). Importantly, the range of life-history strategies
employed and fitness differed across values of k (fig. 8). For
example, in the low-growth environment, individuals with
low k (e.g., ) were predominantly age-2 emi-k p 0.0001
grants, while individuals with high k (e.g., ) werek p 0.0006
predominantly age-1 emigrants. In all three environments,
there was a strong pattern of variation in fitness with k.

Under high-growth conditions, fitness increased dramati-
cally with k before leveling off. Similar patterns were ob-
served under low-growth conditions, with expected fitness
increasing quickly before flattening out at high k. In con-
trast, under very-low-growth conditions, mean fitness was
virtually flat across all values of k. In all three scenarios, the
range of fitnesses predicted increased with k. An increase
in skew with k was very evident in the very-low-growth
environment, where individuals with high k predominantly
had very low (near 0) fitness while a small number of in-
dividuals had very high fitness (fig. 8).

Discussion

Our analysis provides strong evidence for fixed individual
heterogeneity within populations, strong differences be-
tween populations, and between-population differences in
response to a variable environment. The high levels of
individual variation motivate three main questions: (1) Are
the estimated amounts of individual variation attributable
to fixed differences reasonable? (2) What might drive
between-population differences? and (3) How do these
methods and laboratory experiments inform our under-
standing of natural populations? We address each question
in turn.

Individual heterogeneity estimated in both populations
was greater than the reported range in metabolic rate var-
iation in salmonids (Burton et al. 2011). Studies of salm-
onids have documented at least threefold variation among
individuals in resting metabolic rate (Metcalfe et al. 1995;
Burton et al. 2011), which is much less than the range
between the lowest and highest k’s in our study (≈25-fold
in NCCV and ≈60-fold in CCC; fig. 3). However, variation
in k should be much larger than the observed variation
in resting metabolic rates. For example, the maximum
metabolic rate may be up to 7 times resting metabolism
(Mangel and Munch 2005), and increasing consumption
likely implies higher activity and a larger multiplier of
baseline metabolic rate (Mangel and Munch 2005; Sat-
terthwaite et al. 2010). Thus, while variation in metabolic
rates should contribute to variation in k, this parameter
represents the net cost effects of metabolism and behavior
and also interacts with the food environment to determine
the gains from foraging success and food conversion. Es-
timated variation in k translates into a roughly twofold
range in growth rates in both populations (fig. 5), which
is consistent with the wide variation in size-at-age docu-
mented in the field (e.g., Sogard et al. 2009). Thus, k likely
conflates variation in basal metabolic rates with other
mechanisms, such as behavioral choices and activity costs,
affirming the complexity of the relationship among met-
abolic rates, behavior, and realized growth (Biro and
Stamps 2010; Burton et al. 2011).
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Table 1: Life-history pathways taken by simulated steelhead assuming a single, shared k (single k)
or with each individual having a unique k (hierarchical k)

Emigrants

Model, environment Resident Age 1 Age 2 Age 3 Uncommitted Shannon diversity

Single k:
gH 9.3 90.7 0 0 0 .13
gL 9.2 63.4 27.4 0 0 .37
gVL 23.6 0 33.7 39.1 3.6 .52

Hierarchical k:
gH 8.6 87.4 4.0 !.1 !.1 .20
gL 8.1 59.1 32.4 .4 !.1 .39
gVL 27.3 !.1 26.7 38.7 7.3 .55

Note: Values are percentages of 50,000 simulated individuals predicted to take on a resident, stream-dwelling life

history or emigrate to the ocean at one of three ages, assuming survival. “Uncommitted” indicates fish that had not

committed to a life-history pathway after 3 years. We show the variation in life history expected under three environmental

conditions (gH, gL, and gVL) that correspond to high, low, and very low food availability, respectively (see appendix).

“Shannon diversity” is a measure of the population-level variation in life history, with higher values indicating greater

population variability in life history.

The NCCV population showed both reduced individual
variation and a stronger growth response to feeding treat-
ment relative to the CCC population. This indicates that
identical food environments were experienced very dif-
ferently by the two fish populations; individual hetero-
geneity and population-level traits mediate the interaction
between the food environment and growth. The popula-
tions differ in their origin (California’s Central Valley vs.
coastal California) and in the history of the populations:
NCCV fish derive mainly from a long-term hatchery pop-
ulation, whereas CCC individuals come from a conser-
vation hatchery that uses parents of wild origin each gen-
eration. Thus, our analysis is not ideally situated to
explicitly separate the effects of hatchery rearing from local
adaptation to river conditions. However, the observation
of lower base activity costs and strong responses to high-
ration conditions in the NCCV population are consistent
with the effects of hatchery domestication observed in ex-
perimental studies (van Leeuwen et al. 2011; Lorenzen et
al. 2012). Furthermore, since growth rates have been doc-
umented to trade off with swimming performance and
mortality risk (Munch and Connover 2003), we speculate
that the NCCV population may have gained growth po-
tential but lost aspects of predator avoidance behavior
(Johnsson and Abrahams 1991). Indeed, our behavioral
observations while feeding these fish indicated that NCCV
fish would rapidly surface and consume added food while
CCC fish remained in their PVC shelters, sometimes al-
lowing uneaten food to accumulate even during low-ration
periods (Beakes et al. 2010).

The preferred model occurred with for the0 ! w ! 1
hierarchical-k model (figs. 2, A2). With w in this range, at
large sizes individuals with low k experience faster growth
than fish with high k; this crossover occurred at progressively

smaller sizes as the quality of the environment declined (fig.
A1). We do not have data from fish growing under low-
ration or starvation conditions to directly assess this pattern
of growth, but the behavior of the model matches experi-
mental evidence of context-dependent growth (Burton et
al. 2011) and suggests a mechanism by which variation in
k may be maintained. In times of abundant resources, in-
dividuals with high k achieve faster growth than low-k in-
dividuals, but in times of limited resources the converse
occurs. An additional possibility is that fish with different
intrinsic k’s correspond to alternative life histories (fig. 8;
Morinville and Rasmussen 2003).

Our simulations show strong environmental depen-
dence for the diversity of life histories and relative fitness
of individuals with different k’s in the CCC population.
The importance of individual heterogeneity in k relative
to stochasticity for population dynamics also varied across
environments. Individual variation in k generated some
increased variation in life history under all environmental
scenarios (table 1), and values of k were associated with
distinct sets of life-history strategies (fig. 8), but the effects
of variation in k were most apparent in the gH environment
(fig. 7). Similarly, patterns in variation of fitness as a func-
tion of k suggest different selective regimes under different
environments. In an environment with high food avail-
ability, we predict strong selection for increasing k across
the range of k modeled and thus that variability in k has
the strongest effects on fitnesses in this environment. As
food availability decreases, the expected reproductive out-
put becomes nearly flat across values of k, suggesting a
weak selective surface. This reduced variation in repro-
ductive output across values of k results in the convergence
of the distribution of reproductive output expected for
single-k versus hierarchical-k models in low-growth en-
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Figure 7: Distribution of individual fitnesses under three environmental conditions (high growth [gH], low growth [gL], or very low growth
[gVL]) for the single-k (top) and hierarchical-k (bottom) models. Histograms represent 50,000 simulated female steelhead.

vironments (fig. 7). The equivalent fitness of different val-
ues of k might be expected in the gVL scenario, since gVL

most closely approximates natural conditions. In a pop-
ulation subject to selection, values of k that are not strongly
selected against will persist (Mangel and Stamps 2001).
Thus, the CCC population appears to maintain a range of
k that results in roughly equivalent expected fitness in a
low-growth environment but includes some values that
would have low fitness in a higher-growth environment.
Our results therefore suggest that variability in k can have
important consequences for population dynamics, partic-
ularly in populations that experience shifting or variable
environmental conditions. Thus, modeling and under-
standing individual variability are important, even if the
realized variability in fitness between models that ignore
individual variation and those that include it is relatively
small in a particular environment.

In this analysis, we find no case in which an individual
with an intermediate or low k is explicitly favored over
individuals with a high k. However, recall that we assumed

no relation between k and freshwater survival because
there are no data available on this relationship. As higher
k should be associated with bolder or more aggressive
behavior (Snover et al. 2005), in nature we expect in-
creased mortality or predation risk for high-k individuals.
With this additional mechanism, our results suggest that
selection more strongly favors cautious fish in lower-pro-
ductivity environments, since the advantages of high k, as
expressed through growth alone, would be reduced. How-
ever, this mechanism must remain speculative for now.

Our worked example predicts life histories based on a
growth-survival trade-off parameterized in the field and
then applied to three growth environments. However, the
conclusion that variation in size-at-age leads to variation
in life histories is likely general, and it is certainly the case
that variation in size-at-age would be expected to affect
fitness even without life-history plasticity. The amount of
variation in size-at-age that we predict to be due to var-
iation in k and/or stochasticity is likely to have substantial
impacts on both fitness and life-history diversity. For ex-
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Figure 8: Life-history variation and fitness consequences of variation in k for the CCC population under three environmental conditions: high
growth (gH; left), low growth (gL; middle), and very low growth (gVL; right) Top, proportions of 50,000 simulated female steelhead employing
different life-history strategies as a function of k. Proportions as a function of k were LOWESS smoothed for clarity. Bottom, simulated fitness
of female steelhead under three environmental conditions (for figure clarity, only 10,000 individuals are plotted). Points show individual fish,
the shaded region with dashed borders shows the smoothed interquartile range of fitness, and the white line with black borders shows mean
fitness. Note that the Y-axis differs among panels.

ample, larger fish are more fecund and more likely to
survive emigration, so the amount of variation in size-at-
age that we predict to be due to variation in k is likely to
have a substantial impact on fitness regardless of life-his-
tory expression.

An additional point of interest is the effect of feeding
treatment on estimated k. In particular, NCCV fish that
experienced high rations late in the year (treatments 3 and
4) had estimates of k noticeably lower than those of in-
dividuals that experienced high rations early (treatments
1 and 2; fig. A4). While extreme conditions, such as star-
vation, greatly affect the potential for future growth (com-
pensatory growth; Morgan and Metcalfe 2001; Metcalfe et
al. 2002; Sogard and Olla 2002; Mangel and Munch 2005),
we observed strong evidence of treatment effects on growth
under moderate-ration conditions. One potential expla-
nation for observed patterns may be changes in allocation
to growth in length versus growth in weight, as individuals
who experience low-quality environments early in life may

shift to a strategy of adding weight over one of increasing
in length (Metcalfe et al. 2002). More generally, this result
suggests that the environment experienced early in life
strongly affects performance later in life (Mangel 2008).
Thus, the inclusion of context-dependent, individual-level
traits in the growth model may be warranted and high-
lights the necessary simplifications made in our model of
growth. We collapsed all individual variation to a single
parameter, ki, and assumed that this parameter was fixed
regardless of an individual’s experiences. Reducing indi-
vidual heterogeneity to a single parameter has statistical
benefits as well as biological motivation (Kirkpatrick
2009), but this result motivates future models that can
incorporate such context-dependent individual effects.

We recognize that the VBGF has limitations and that
by necessity our model is a simplification of a complicated
growth process; there are many factors that affect growth
that are not explicitly incorporated into our model (see
Kooijman 2000; Fujiwara et al. 2004). The estimated pro-
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cess stochasticity, j2, absorbs both truly random processes
that affect growth and uncertainty that arises from model
misspecification. Examples of potential misspecification
include the assumption that the range of temperatures
experienced during the experiment does not affect growth
and that the quality of the environment can be described
by constant parameters linked to feeding treatments (gH

and gL). In light of the extensive literature on temperature
effects on growth and size-dependent consumption rates
(e.g., Railsback and Rose 1999), neither of these assump-
tions is strictly true. However, our estimates of process
stochasticity are reasonably low (fig. 5), suggesting that
our model matches the available data well and that the
consequences of misspecification are relatively minor. Fur-
thermore, such assumptions are necessary to ensure that
the statistical model can be estimated.

A reasonable question is how state-space methods like
the one outlined here to might be applied to studying
somatic growth in natural populations. Generally, using
time-series models for the growth of individuals has in-
herent appeal. Most notably, it avoids the many biases that
arise from ignoring the time-series structure of growth data
(see Fujiwara et al. 2005; Clark et al. 2007; Eveson et al.
2007). In practical terms, this type of analysis provides
several avenues for integrating data from captive and nat-
ural populations. First, the estimates of individual varia-
tion in terms of CV(k) from captive populations can be
used as reasonable prior information for individual vari-
ation in natural populations. Second, the Bayesian frame-
work provides the potential for the direct incorporation
of auxiliary prior information. In our example, we knew
the timing and abundance of food because it was exper-
imentally controlled. In natural populations, information
about food availability is sparse. However, surveys of the
abundance of food resources (e.g., insect abundance, in
the case of riverine salmonids) are available in some in-
stances and could be incorporated as a covariate to inform
estimation of g. More generally, expressing and estimating
g as a function of measurable proxy environmental var-
iables instead of as free parameters could enable this type
of model to be fitted to natural population data.

Finally, the estimated distribution of k is of interest for
modeling individual variation in k in natural populations.
In the absence of information, other authors have used
gamma (e.g., Snover et al. 2005, 2006), normal (e.g., Pilling
et al. 2002; Eveson et al. 2007), or lognormal density to
describe individual variation in k. Our results show a
strongly left-skewed distribution for k (fig. 3), which none
of those distributions can accommodate. The empirical
distribution of k generates left-skewed distributions of
length-at-age (fig. 6). While there are certainly other pro-
cess that can generate skewed distributions in length-at-
age (e.g., size-dependent mortality; Carlson et al. 2010),

the observation of skewed distributions in length-at-age
in many fish species may be at least partially attributable
to individual variation (e.g., Pfister and Stevens 2002; Fu-
jiwara et al. 2004). Clearly, additional research is needed
to understand the interaction between individual variation
in growth and observed patterns of size in natural
populations.
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