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The management of Pacific sardine off the California coast is used to
motivate a number of problems associated with egg or larvae sampling.
The use of the negative binomial distribution as a model for the spatial
distribution of eggs is discussed and inference for the negative binomial
by classical and Bayesian methods is introduced. A particular problem,
that of presence-absence sampling when not all sampling sites are
habitats, is analyzed in detail. The paper closes with a number of open
questions, ranging from improvements in the modeling, to prescriptive
problems associated with survey design.

INTRODUCTION

The work discussed in this paper was motivated by problems associated with
the management of the Pacific sardine (Sardinops Sagax) in and near the California
current. This particular stock - immortalized by John Steinbeck's Doc, Mac and the
boys - is estimated to have peaked at a spawning biomass of more than 11,000,000
metric tons and during the cannery heydays (say 1900-1935) fluctuated between about 5
2,000,000 metric tons and 9,200,000 metric tons (see Smith, 1978 for details about
these estimates). By 1965, the spawning biomass had dropped to less than 10,000
metric tons. Currently, state law requires the California Department of Fish and
Game to determine on an annual basis whether or not the spawning biomass exceeds
20,000 short tons (1 short ton = .907 metric tons); if it does, then a modest fishery
for sardine may be opened. The problem of estimating such a small biomass by
standard methods is a very thorny one (see McCall, 1984a,b; Wolf, 1985 for details)
and most of the existing methods simp1y> will not work with any accuracy.
Consequently, Wolf and Smith (1985) proposed an "“inverse egg production method"
(IEPM) for determining the spawning biomass. This method is based on the idea that

as the spawning biomass increases, the area in which eggs are found will increase.

*Address correspondence to the Department of Mathematics.
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Operationally, the method proceeds as-follows. One lays down a sampling pattern, as
shown in Figure 1. Each dot in Figure 1 represents a station at which eggs are

sampled. The region shown in Figure 1 is about five times larger than areas occupied
by the Pacific sardine in recent years. Stations are 10 nm (nm = nautical miles;
1 nm = 1853 meters) apart going NW to SE and 4 nm going offshore so that each
station represents 40 (nm)2. The idea behind the IEPM is to estimate a priori the
area that a 20,000 short ton spawnings biomass would occupy, then to sample for eggs
and determine if this critical area A. is exceeded. If it is, then it is likely that
the spawning biomass exceeds 20,000 short tons. When this method was applied in
1985, 419 stations were sampled. Eleven of these stations had eggs; about 85 eggs
were discovered. On the basis of these data and IEPM, a 1000 ton sardine fishery
was recommended in 1985 (P, Smith, NMFS, La Jolla, personal communication),

This paper 1is concerned with various modelling and analytical issues
associated with egg surveys similar to the one just described. (These kinds of
problems, however, are broader than egg surveys - see Downing (1979) or Resh (1979)
for other kinds of applications and motivations.)

I 1 ! 1 T
SARDINE SURVEY
— 20 PROPOSED 8505 -

Francisco

36

33

Figure 1. The sampling sites for the 1985 sardine egg survey proposed by NMFS
Scientists (taken from Wolf and Smith (1984)).
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o Some of these issues . are the fo]low1ng v what kinds of mode]s should" be used
for highly aggregated populations. and: why; how does one extract the maxrmum

1nformat1on, how does one deal” w1th data - that involve a preponderance of zero s in

the samples? In the spirit of a: workshop paper; these issues are discussed from the
current viewpoint of the author (i.e., subgect to possible change) and various
untested ideas are presented as-.a way to probe their usefulness.

MODELING IDEAS AND- ISSUES

This section contains a 'diScussioh of ~a number of pertinent questions

‘associated with modeling sampl1ng surveys “for highly aggregated popu]at1ons. To

begin, one Should. th1nk ‘about the spatlal sca]es of lnterest These are

Entity _ Spatial Scale
1nd1v1dua1 f1sh - o o~.cm A
school _ ~ 100 m
egg patches. A ~ 1000 m
SChoo] groups o ~ 10000 m
:samp}ihg scale - ~ 10000 m

Thus, the sampling scale is -large enough to justify the assumption that numbers of
eggs taken at different stations are independent random variables. Let X; be-a

random variable representing the number of eggs taken in the sample at the ith

station, which; will henceforth be called a Site.‘ Some of the properties of. Xj should
be the fo]]ow1ng ones: ' ' '

PriX; = 0} should be considerable ' (1)
Vin} >> E{Xi} » (2)

where V{Xj} is the var1ance of Xj :and E{Xj}.is the .expected value {mean of Xj).

Properties of (1) and (2) are based on the exper1menta1 real1ty, not any theoretical

conceptua11zat10n. :

For most of th1s paper, ‘the fOIIOW1ng model is used: If .the ith site is a

'habItat the conditional drstr1but1on of ‘Xi.is a negat1ve binomial with parameters m
and k (wr1tten NB(m,k)). That is

_T(k+x) S
Pr{X1 = x ] s1te is a habItatA}A,_r(k)xl [ e } [Fﬁ?i] - t3)

‘where r() is. the gamma functlon. The d1str1but1on (3) has’ the properttes (1) and (Z)m
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(see Johnson and Kotz (1969) for a dnscussion of -more properties of the NB(m k)
~d1stribution) F1rst ' : :

pr{x,.-._ 0} = [k__J ,. - ' B _ (4)

which can be consxderab]e even 1f mis large {see Figure 2).. Second

E{Xi} m

(5)

ViXi} = m o+ I-

so that if k.is sniall pr0pert_y (2) is saﬁsfied What value of k should be used?
'Smth and Richardson (1977) prov1de the following data

Spawning Biofness‘ '

(Millions of Tons) . . Estimate of k

3.9 | . .14

2.7 | .19

1.0 S 21

2 ‘ .08

Average S aes. o 1ss

' Coeff1c1ent of Vamatmn 1.8 . .65
1.0 -
ol

loq,om

g '-;..’Fig‘ure‘ 2’.’ : leehhood of a zero observation m a NB dlstnbutlon mth parameters m.
R ‘ and k - A .
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As’ the spawmng blomass varies over a range of 19. 5,- note that k- varles by a factor'-
'.of 2.6,  For all- intents . and purposes-- and deﬁmtely for this paper -. k mll -be -

. treated as’a constant presumed known, in the range of 0.1 to 0.2,

, One’ can leg1t1mately ask if - there 1s a true . bwolog1cal -or. operat1onal< g

.mot1vat1on for choosmg Xj. ~ NB(m k). Here is one. - Let. B(t) denote the. spawning '
biomass at time t. and assume that it- satlsﬁes the followmg stochastic differential
".equation: ' '

B(t){r(l B(t)/K)dt + odN} - (6)

where dB B(t+dt) - B(t), r. K and o are parameters and dW = N(t+dt) - w(t), where:
_"_N(t) Browman motion (see, e, g., Ludw1g, 1975 Schuss, 1980 general.
d1$cuss1ons of Browman motlon or Mangel 1985a for a. d1scuss1on related to natural._ '
'resource models). If- B(t) sat1sf1es (6), then the equ1l1br1um dens1ty for B is a -

gamma density (see Denms and Patil, 1984, for an elaboratzon) Assume that given .a-

value of the equilibrium- biomass Beq, the d1str1but1on of eggs encountered is a . -
'Po1sson with parameter A= AoBeq. Then ‘the - uncond1t10nal density for the number. of"

eggs is a negative b1nom1al ‘(see, e. g., Mangei; 1985b, for details). )
One can also ask if there 1s a legitimate biological reason for choosing.
constant k. The answer is, to some extent yes. In order for eggs to be fert1hzed

:'they need to be. h19hly clumped - regardless of ‘the s1ze of the spawning biomass.
- This w1ll part1ally JustIfy the’ use of constant k. ’

In the analysis which follows in ‘the next section, it is assumed that Xj has
the dlstr1butlon (3) with known k but unknown m and it is ‘assumed that if the

‘spawmng blomass exceeds a cr1t1cal value, then m will exceed a g1ven cr1t1cal value,

mc.
Before presentmg thlS analy51s however, a number of - points . need to be._'

| cleared up. F1rst the NB(m k) model” is not the only one. w1th propert1es (1) and" (2) .
For example, one can use other . conta_gjous d1str1but10ns such as the Neyman Type A .
" in which - V - -

o ayd ‘ -
Prexy - .y e;_* e-jo L) o
.I‘ 7 j=1 ' . : :

. and A and ¢ are. parameters (see Johnson and Kotz, 1969, Chapter 9) In thi,_s_ model,

- Pr{X{ =:(‘)}"_=’e_","‘(_i1‘e,"?_) o R R o PR
CEOGREae o e rT e (8]
VAX{} = ap(I+¢) ' P -

-0 that the propertles (1) and (2) can’ be sat1sf1ed The N_l}(m,k)_ model is used here,. .
. but others are feasibles - = : . o

Sec0nd, note that (3) lS cond1ttoned on a 51te be1ng a habitat. Thus"',.':on‘e';

' ﬂneeds to append to (3) ey
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A pi'=*Pr{iih.sjtefis a habitat}.;L' N )

- Some choices for.p; are

Pos @ constant

: .[ . p(m), a fUnction»of m .
Pi = ' (10)
a0 _ l o h), a funct1on of - s1te locat1on
p(T m), a funct1on of- s1te location and m
~For example, one could use .
p(m):='1 - ejm : : (11)
where Y 15 a constant
Us1ng (9) and (3) leads to the follow1ng model
- Pr{xj =,.°} e +_ Py [;,,—m] o (12)
on . K k] ;
Pr‘{)(]ﬂ> 0}.=pi |1 - (=) ,_ (13)

.ThlS wlll be the basic model in the next sect1on. Note that, in th1s model, one

still assumes that if . eggs are present they re found But the cell 512e is 40 nm2

" and the sampler size is roughly ~ .05 m2 ‘s6 that even lf eggs are’ present they
. could be mlssed A -way around thlS problem is d1scussed in the last sect1on.;

Thlrd one should separate descr1pt1ve and prescrxpt1ve sampling problems.

The prescr1pt1ve problems are "survey opt1m1zat1on" ones: ~how. _should opt1mal surveys

be. connected7 These are sexy problems, but often of less use to managers than the
descr1pt1ve problem of "here S. the data, what does it mean7“l In the next sect1on, a

o descr1pt1ve problem -and 1ts analys1s are descrlbed 0pt1mal surveys are d1scussed in
the last sect1on. :

rneseucs-nsseuoe ;SAuPL?mc F'_oR' Eecs

In thlS sect1on the 1deas developed thus far are appl1ed to a problem which
is. analogous to the sard1ne egg sampl1ng problem (the details of where the analogy

- fails are dlscussed in the next section) ‘The set-up for the problem is- th15'? the -
- ith 51te is a hab1tat with probablllty Pi and one. samples for the presence or absence
‘-_.of eggs (1gnor1ng ‘the actual number -of . eggs, 1f there are eggs present) Th1S»
»scheme, in operatlonal terms, would allow the survey sc1ent1st to br1ng the samples'
L back ln, hold it up to the l1ght and determ1ne the presence or absence of eggs.u
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As bef‘ore, X, is the number of eggs in the. sample at- the 1“‘ s1te and X,.- 0

-is called a negative" samp1e, Xi > 0 is called a- pos1twe samp'le. Equations (12) and

(13) gwe the probab1]1t1es that Xj = O ‘and Xj >.0° respectwely. .
Assume that there are Nn negatwe samp]es and N posnlve samples.. Let n"'

'denote those 51tes at which a negatlve sample was _obtained and P denote those s1tes, ‘

at which a- posnlve sample was obtained. The likelihood of {n,p} is

B ' k yk 'k \k
- &myplm) = TT {1-pi*pi (5)"} TT lpi-py (Fﬁ)‘ } - (1a)
o : " ien - iep - o C A

A number of d1fferent kmds of samphng schemes can. be derwed based on assumptwns

about the values of Pie Some of these. will now be d1scussed
‘ First cons1der the case. in wh1ch al] the p1 ‘take the same value, p. Then-

) (14) becomes

A.,?(N"'"““)%4[1‘P*P‘j(k—5;'i)k]Nn [p‘-p (-kf—m)k]N | o (15)

Note ‘the fo'llowing about (15): the'model"'is.now essentially a binomial model, with’
- success. probab111ty p-p(k/(k+m)) ‘ Th'-us,' the Tikelihood in (15) is the unnormalized
probab1hty of N successes in Nn +N trials. The normahzatwn constant a b1nom1a1; ; '
' -coeff1c1ent, 1s not needed for any - of ‘the ca]culatlons that foHow.

The maximum hkehhood value of m,m is found by taking the derivative of the
logarithm of £(Np, N|m) with respect to m and setting it equal to 0. This leads to a
nonh‘near equation :for m, which is easily solved on a desktop microcomputer. Once '
the MLE m is known, one can. investigate likelihood ratios for -other -values of 'm. -
This. approach will be reported elsewhere (Mangel and Sm1th 1987) .

Instead, conSIder a. Bayes1an approach in- wh1ch one wishes to compute thev'f

;.’posterlor probabﬂ]ty that mo> me, g1ven “the data. “In- order to do th1s, one needs a
prior dlstmbutlon of m. Two chmces are the uniform pr1or :

_'fo(m).~= 1 o 0% mv <mp : - (16) -

-where mp is a specified value, and the noni‘nformative prior

fo(m) = —=— Ceooan -
;'o(m)o._/m‘+m e

,-..(The noninformatwe pnor (17) 1s derwed in the append1x ) .
These are chosen to represent “1gnorance" about the va]ue of m. Hhen the~; '
_uniform prior -(UP) is - used; ‘all ‘values: of m between 0 and .mg are g1ven equa1 e
k_"weightmg., When' ‘the: nomnformatlve prior’ (NP) is - used data change the positwn, but.j._,“ o
' -"not the shape of . the postemorl dlstrlbutlon (see Martz and Ha]ler, 1982 for further- -
N discusswn) IR ' o .
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If the umform pnor is- used, the postemor probab1hty that m’exceeds mc is

g1ven by

. [1 p+p(k—)] [b-p(.tf—m)k]ndm

Pup(m > mc) = — — (18)
L -y kK ‘
) p+p(k—-)] "[p-p(ks)] em
Since my may be quite.large (say of the order "of'lOOO) it helps to introduce
_ k
W = m- )
dw = -—K _dam= -2 gn (19)
» (k+m)2 k. | _
_ ko ' - _k
Ye = k¥m¢ "m(_, k¥mg
The integral in (18) becomes
: N N
‘ _ p )
Me [.1-p+pwk] Ep-pwk] dw
Lo W _ .
Pyp(m > m) = — ¥ . ~ (20)
fl [1 -p*pw ] [p -pw ] dw’
These inteQralstre eésﬂykcomp'ut.e'd' o.n...a d'esk"t‘bp micr‘_oco'mpute'r;
When the noninformative prior is used, one makes the transformation
= 2 tane de/cos% .. = o
. (21)
k+m= k/cosze :
= arc tan [‘/
and finds that the postemor probablhty 1s-}_;g1'ven by
w0 Ny N
se [1-p+p(cos 0)%1 - [p-p(cos )] —d&_ :
_ T FTTPTRREES B : ~~ _cos 2 . ;
Pnp(m > me) = SR T N (22)
£om [1-p+p.(cos-'é)2."-] “[p-plcos @)k] 48 .
o TR T A -'cosez

F1gure 3 shows P{m > mc} as a functwn of the number of- pos1t1ve samples usmg both
- 'prlors. . The NP is more. “conservatwe than the UP ‘ ‘ : :
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Pr (m>mc) S

)
S 10 15 20 25 30 3%

"Probabﬂity that m exceeds,mc"= 1.14 .as a function of the number of
positive samples (N) in a total of N = 100 samples. Other parameters:
my = 1000, k = .2, p = .8 B ‘
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Sequential sampling charts in which the number of negative samples (N)

is plotted against the total number of samples Nr. If the data fall in
the shaded region, one can conclude with 99% confidence (Figure 4a) or. -
95% -confidence (Figure "4b) that m < m¢. Other parameters:. mc = 1,14,
k =.2, p=.8 myp= 1000. The uniform prior -was  used .in. the.
calculations. ‘ : : LT
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» thure 3 is an ex post facto probab1hty statement made after the data are
collected. On thée other hand, for many situations a sequential sampling plan is

often more useful, ngure 4 is a sequential sampling diagram used to compute the

probability that m < mc under the uniform prior. In this diagram, one plots N
versus Nt = N + Ny. If an observation falls in the shaded region, then one can
conclude that m < mc with probability .99 (Fig. 4a) or .95 (Fig. 4b). If the current
data point (NT,Nn).does not ‘fall -in the shaded region, then an additional site is
sampled. ' . ‘

These same kinds of calculations can be performed when the generalized
Tikelihood (14) is used. For example, when the UP is used, one finds

TT Q-pitpiw} TT (Pi-pw¥) Qiz
ien iep w

Pyp(m < m¢) = (23)

WS TT Qepirpin’} TT (pi-piw®) &2
"m jen iep W

The only difficulty is that one cannot develop charts similar to Figures 3 and 4. On
the dther hand, (23) is ideal for use in real‘-time with a microcomputer. For
example, assume that mc = 1.14, mp = 1000, k = .2 and let each data point (pj,Xj) be
represented with X; =1 for a positive sample and Xj = 0 for a negative sample.
Suppose that the first 10 data points are (1,0), (1, 0), (.95,0), (.95,0), (.9,0), (.9,0),
(.85,0), (.85,0), (.8,0), and (.8,0). Using (23) shows that PUp(m < me¢) = .82, If the
next five data points are (1,0), . (1,0), (.95,0), (.95,0), and (.9,1), then
Pup(m-< m¢) = .86. If the next five data points are (1,0), (1,0), (.95,0), (.95, 0) and
(.9,0), then PUp(m <me) = 96 and sampling - can stop if -a 95% confidence level is
desired. : :

Two points a'rev worth noting. First, there is a prepon_deranee of zeroes *in
the data. This kind of result is, in fact, observed in sampling. Second, a large
'amount of negative mformatwn fs needed to insure that m < me with a high
confidence level. One must - remember, however, that with the UP, the initial
probability that m < me is mc/mm. So, for examplie, for the values presented here,
the prior probability that m < me is 1.1 x 10-3, In add1t10n smce not every site is
a habitat, the effects of negative information on the updated distribution are
mitigated (i.e., as Pj » 0, the dete have_decreas_mg effects on the Bayesian update).

OPEN QUESTIONS
Slnce a major purpose of a workshop 1s to. ‘raise questions, a workshop paper

can (and perhaps should) end with open’ questmns rather than concluswns. In. this
smmt a number of open questlons and’ d1rect1ons for future work are md1cated
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1) - Many Age Classes.of Eggs. In the actual sardine 'survey, four age Classes, of:
eggs (<1 day;jlfzidays;-2-3'déys old and >3 days old) are Séhpied.;éécﬁ_wifh;é'
different .m- and k. Thus, the data are more complicated, consisting of p‘t‘ésence-
absence of the four age ‘classes or the actual counts of the four age classes. The
questwn of how to usé these data is complex. One could assume, for example, that .
the "four ‘age classes . represent completely independent events (probably ‘;énl"

unrealistic assumption). The other extreme is one of complete correlation: if any
age class.is present, then they all are. Reality probably lies somewhere between -
the two extr‘émes,.with a partial correlation. A Bayesian approach to this problem
can also beA developed (see Mangel et al., 1984, pg.'568) where the correlation level
is a user-mputted vamable., o

~ For example, et mj and kj denote the unknown mean and known aggregatlon_'
parameter for the jth egg class. A reasonable model is the following one (P. Smith,
NMFS, La Jolla, personal communication):

A -kj = ,1j j=1,2,3,4

mj = sjm where m is unknown and

s; =1
(24)
Sp = .8
s§ = .6
Sy = .4

Finally, let p. denote a correlation parameter, in the following sense: with
probabih'ty pc, if eggs of one age class are present, then eggs of all age classes:
are present. With this kind of model, the probability of a negative sample is

K Ky o
Pr{X1 =0} = (1 pc) Tr [-k—_‘_s-j-"?] + pc max [](_-Q-S-:]Tn- J (25)

One can do similar sorts of analyses using (25). Preliminary investigations based on
(25) with four age c¢lasses of eggs (as in (24)) support the recommendation of opening
a small sardine fishery in 1985, ‘

2) Imperfect Sampling. Another possible extension .allows for the chahce of..
imperfect’ sampling, One way to do this is to use ‘the weighted NB(NNB) mode] of.
Bissell (1972). Accordmg to that model, if a-site is' a hab1tat ; :

k RS S :
peiyieey o DkHX) [ k]S [_mHi L oEY.
P = Siri. ““f‘i+k] e
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where Wi is a measure of sampling efficiency. (Zwe1fel and Smith (1981). discuss the
1nterpretat1on of Wj.) The- data now consist of tr1p]ets (piWj,Xj). The methods of

the previous sections- can be extended to cover this case  with essentially no
conceptual difficulty and only minor computational difficulty.

Another way to do imperfect sampling is to take into account explicitly the
chance that. an egg. patch .might be missed during the samplings. For example, let By
“denote the number.of .eqgs in the cell containing the ith site and let A(b) denote the
area of patch with b eggs. One choice is '

A(b) = Ap(1 - &™) (27)

where Ay and y are constants. One expects Ay << S where S is the 40 nm2 area of
each cell. Finally, assume that

Pr{detecting eggs | Bj=b} = A—(,-Sb—) ' (28)

There are now two ways for X5 = 0: no eggs present (Bj = 0) or eggs present, but
-missed. Thus,

Pr{xj=0} = Pr{Bj=0} + 2  Pr{Bi=b} Pr(no detection|B;=b}
B=1

After a little a]gebra and use of the generating function for a NB dlstr1but1on one
can deve]op an explicit formula for Pr{Xj=0} in terms of m, k, An, S and y. The
development and use of this formula will be gwen in Mangel and Smith (1987),

3) Joint Est1mat10n of Habitat Boundames and m. An open question, -which may

require a new formulation of the problem, involves the simultaneous estimation of
the habitat boundary and m. That is, one might consider the joint.-_densi.ty that
Pi =0 and m takes a certain value. The approach to this problem is not clear,
although a Bayesiah formulation seems natural,

4) Ideal-Free -Sardine Eggs. At the workshop, Mike Rosenzweig po1nted out the

ecolagical theory of habitat selection could be used to generate stratified sampling
plans. That . is, use habitat theory (see Rosenzwe1g 3 art1c]e in. this. volume) to
predict the proportwn of sites with eggs in habitats of different quality as a

function of spawmng biomass. . 'If one could identify habitat quality on the basis of

oceanograpmc factors (e g., satelhte photographs of temperature and ch]orophyl]

dlstrlbutions), then 1t wou]d be possm]e to use a samphng scheme based on habltatﬂ

[N
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quality. Such a scheme might require considerably less information (i.e., fewer
samples).

5) Adaptive Survey Optimization. Of all the possible prescriptive problems,
perhaps the most interesting one is the development of an adaptive (i.e., closed
loop) algorithm which can be used to guide the survey vessel. That is, based on the
sampling history thus far, which site should be visited next.

6) Economic Modeling. Recall that the purpose of the egqg survey is to determine
a level of confidence about the biomass and that if the biomass exceeds a critical
level, then a complete stock survey will be conducted. One can extend the methods
of this paper to include the costs of the egg survey, the cost of the complete stock
survey,. and the cost of not al]ow1ng fishing when the stock exceeds the critical

level,

7) . Egg Surveys as Priors. Assuming that one decides to pursue a complete stock
survey.f The results of the egg survey can be used as a prior density when planning
the larger survey. The results presénted in the previous section on estimating the
extent of the habitat could be especially useful. '

ACKNOWLEDGMENTS

This work was partially supported by NSF Grant MCS-81-21659, by the
Agricultural ‘Experiment Station of the University of California, and by NOAA through
the California Sea Grant Project. I thank Richard Plant, Patti w01f, Don Ludwig and
Carl Walters for useful discussions and Paul Smith for his willingness to share
ideas, time and data.

REFERENCES

Anscombe, F.J. 1950. Sampling theory of negative binomial and logarithmic series
distributions. Biometrika, Vol. 34, pp. 358-382,

Bissell, A.F. 1972, A negative binomial model with varying element sizes.
Biometrika, Vol. 59, pp. 435-441,

Bliss, C.I. 1958, : The analys1s of insect counts as negative b1nomial distributions.
Proc, Tenth Intl, Cong. Entom., pp. 1015-1032,

Box, G.E.P. and G.C. Tiao. 1973. Bayesian Inference in Statistical Analysis. Addison
Wesley, Reading, MA, 588 pp.

DeGEoot,'M. 1970, Optimal Statistical Decisions. McGraw-Hi11, NY, 489 pp.

Dennis, B. and G.,P. Patil. 1984, The gamma distribution and weighted multimodal
gamma distributions as models of population abundance.  Mathematical Biosciences,
Vol, 68, pp. 187-212, o




iy
l
b
i

260

Downing, J.A. 1979, Aggregation, transformation and the design of benthos sampling
programs, J, Fisheries Res. Board of Can., Vol. 36, pp. 1454-1463,

Feller, W. 1968, - An Introduction to Probability Theory and its Applications, Vol. 1,
John Wiley, NY, 509 pp.

Gefard, G, and P, Berthet, 1971, Sampling strategy in censusing patchy populations.
In G.P, Patil, E.C. Pielou .and W.E., Waters (eds.), Statistical Ecology, Vol. 1,
pp. 59-68, Pennsylvania State University Press, University Park, PA,

Gunderson, D.R., G.L. Thomas, P, Cullenberg, D.M. Eggers and R.F. Thorne. 1980,
Rockfish investigations off the coast of Washington, Report FRI-UW-8021, Fisheries
Research Institute, University of Washington, Seattle.

Hewitt, R, 1976. Sonar mapping in the California Current area: A review of recent
developments. . Cal. COFI Report, Vol, 18, pp, 149-154,

Hewitt, R. 1981, The value of pattern in the distribution of young fish, Rapp. P-v,
Reun. Cons, Int., Explor. Mer., Vol. 178, pp. 229-236,

Hewitt, R, 1984, 1984 Spawning biomass of Northern Anchovy, Administrative Report
LJ-84-18, Southwest Fisheries Center, National Marine Fisheries Service, La Jolla, CA.

Hewitt, R. and P, Smith, 1979, Seasonal distributions of epipelagic fish schools and
fish biomass over portions of the California Current region, Cal. COFI Report,
Vol, 20, pp. 102-110.

Hewitt, R., P.E, Smith, and J.C. Brown. 1976. Development and use of sonar mapping
for pelagic stock assessment in the California Current area. Fish Bull. US, Vol, 74,
pp. 281-300,

Hewitt, R, and P.E, Smith, 1982, Sonar mapping of the California Current area: Some
considerations of sampling strategy. Report, Southwest Fisheries Center,

Johnson, N. and S, Kotz. 1969, Discrete Distributions in Statistics. Wiley, NY,

Leaman, B,M. 1981, A brief review of survey methodology with regard to groundfish
sto;k assessment. Can, Spec. Pub, Fish. Aq. Sci., Vol. 58, pp. 113-123,

Lloyd, M. 1967. Mean crowding, J. Anim. Ecol., Vol. 36, pp. 1;30.

Ludwig, D. 1975, Persistence of dynamical systems under random perturbations.
SIAM Review, Vol, 17, pp. 605-640,

MacCall, A.D. (ed.) 1984a, Repoft on a NMFS-CDFG workshop on estimating pelagic
fish abundance. Administrative Report LJ-84-40, Southwest Fisheries Center,
POB 271, La Jolla, CA 92038, :

MacCall, A.D. (ed.) = 1984b. ~ Management information document for California coastal
pelagic fishes, Southwest Fisheries Center .Administrative Report LJ-84-39,
Southwest Fisheries Center, POB 271, La Jolla, CA 92038,

' Mangel, M. 1985a. Decision and Control in Uncertain Resource Systems. Academic

Press, NY.
Mangel, M. 1985b. ASearch models 1n.fisheries and agriculture. In M. Mangel, (ed.),
Proc., of the Ralf Yorque Workshop on Resource Management, Springer Verlag, NY.

Mangel, M..and'P;E. Smith, 1987, ﬁresence-absence plankton sampling for fisheries
management. Can., J. Fish. Agq. Sci., to appear.




261

Martz, H. and R. Na1ler.. 1982, Bayesian Reliability Analysis. John Wiley and Sons,
NY. 745 pp. -

Pennington, M. 1983, Efficient estimators of abundance, for fish and plankton
surveys. Biometrics, Vol. 39, pp. 281-286.

Pennington, M, and P. Berrien. 1984. Measuring the precision of estimates of total
egg production based on plankton surveys. J. Plankton Res., Vol. 6, No. 5,
pp. 869-880. '

Pielou, E.C. 1977. Mathematical Ecology. Wiley, NY. 385 pp.

Resh, V.H. 1979, Sampling variability and 1life history features: Basic
considerations in the design of aquatic insect studies. J. Fish. Res. Board Can.,
vol. 36, pp. 290-311,

Schuss, Z. 1980, Theory and Application of Stochastic Differential Equations.
Wiley, NY. i

Smith, P.E. 1978, Biological effects of ocean variability: Time and space scales of
biological response. Rapp. P-v. Reun. Cons. Int. Explor. Mer., Vol. 173, pp. 117- 127

Smith, P.E. and S.L. Richardson. 1977, Standard techniques for pelagic fish egg and
larva surveys. FAO Fisheries Technical Paper 175, Food and Agr1cu1ture Organization
of the United Nations, Rome, Italy.

Taylor, C.C. 1953. Nature of variability in trawl catches. Fish. Bull. 83, U.S.
Department of the Interior, Vol. 54, pp. 145-166. :

Taylor, L.R. 1971, Aggregation as a species characteristic. In G.P. Patil, E.C.
Pielou and W.E. Waters (eds.), Statistical Ecology, Vol. 1, pp. 357-377, Pennsy]van1a
State University Press, University Park, PA.

Wald, A. 1947. Sequential Analysis. Dover, NY, 121 pp.

No]f P. 1985, Status of the spawning biomass. of the Pacific Sardine, 1984- 85,
Marine Resources Report to the Leg1s]ature California Department of Fish and Game.

Wolf, P. and P.E. Smith. 1985 An inverse egg production method for determining the
relat1ve magnitude of Pacific sardine spawning biomass off California. Cal. COFI
Report, Vol. 26, pp. 130-138. .

Zweife1, J.R. and P.E. Smith, 1981, Estimates of abundance and mortality of larval
anchovies (1951-75): Application of a new method. Rapp. P-v. Cons Int. Explor. Mer.,
Vol..178,:pp. 248-259, . ,

APPENDIX: DERIVATION OF THE NONINFORMATIVE PRIOR

_ The approximate non1nformat1ve pr1or for the NB distribut1on is der1ved as’ .
descr1bed by Martz and Waller (1982, Pg. . 224) View1ng (3) as the 11ke11hood of m :”
given x, the log- 11ke11hood is

L(m|x) = -k log(k+m$ + xflog m -‘1og(m;k)j +:z(x,k)  ~:: il{(A?I)}'.f‘
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"Qhere-.‘z(.xj;k): centains‘"‘te_rﬁs_ independent of .m.- The derivatives of the log-likelihood
‘are ‘ ' ' '

(A-2)

= + X
am2  (k+m)2  m2  (m+k)?

Setting aL/arh = 0 shows that the maxihum Tikelihood estimate is m=x. (For n

independent observations, the MLE m is eésﬂy. shown to be the sample mean.) Define

-~

@) - - B

N L " )
n= @ /(_k+v?l)2 ke ) .

The approximate non-informative prior is then

fo(m) « I(M)V/2 « m=1/2 (k+m)-1/2 (A-4)

. PARTICIPANT'S COMMENTS

"Mangel's paper addresses a relatively common problem experienced by field
biologists, .i.e., the non-random distribution of organisms in nature. The approach he
is suggesting, use of discrete distribution statistics rather than strict reliance
upon the Central- Limit Theorem and large numbers of samples to yield good
approximations to the Gausian distribution, is likely to become increasingly popular
as microcomputers become standard field equipment. The negative binomial
distribution has enjoyed some attention among b1olog1sts in the past (see Elliott
(1977) for examplesJ) ‘but the Pacific sardme examp]e is a particularly interesting
case. because the presence- or absence of eggs in the spawning ground survey
determines ‘whether or ‘not the fishery will open in a given year. The 1985 results,
85 eggs at 11 stations, led to the very surprising recommendation to open a 1000 ton
sardine fishery! This appears to be very little empirical information upon which to
base such a decision, and it immediately raises other technical questions such as the
certainty of identif’ication of the.eggs or determination »of their ages.

. In the Open Questwns sectlon, Mangel ra1ses several 1nterest1ng possibilities
for . further development. of the model. - If the negative binomial is really a good
model for the underlying distribution of eggs, then the k parameter may be a useful
index of dispersion. It is sensitive to size and number of sampling units but within
a particular survey it ‘should bé useful as a refative index. The four different age
classes of eggs (each with different m and k). should show a progression of
dispersion with time since spawn1ng. .This may allow inference about the number of
spawning aggregations present in the reg1on._ This ‘hypothesis could be tested with
historical data if survey information is available’ from penods in which there has
been some variation in abundance of the spawning stock. :

~ Further cpnswderatwn of sampling methods ' appropriate' to contagious
distributions is .long past due in fisheries management. The problem of estimating
angler effort in recreational fishing surveys (creel: surveys) may be amenable to
sampling . from satellite imagery where  the boats or ice-houses concentrate over
known habitats or, more directly, on schools of fish.” The degree of aggregation of
fishing units may prove to be a useful index of habitat quality or a covariate with
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the . catchabll1ty coefficient. Improvements in our ab111ty to estimate the latter
statistic would greatly enhance the utility of most of the catch-effort mode]s
currently used in fishery management .
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Cumbria: 160 pp. -

George R. Spangler

The Mangel method promises a revolution in management techniques. As I have
indicated in my- own chapter of the workshop, it may be possible to refine it by -
consciously sort1ng the sampling sites according to habitat quality, and then
sampling them in inverse order of their quality (poorest first, etc.).

It is not often that good management practices can actually improve the.
theory that produces them, but this time that may happen. Practicing the Mangel
method will requ1re developing a habitat quality index, Q(h), for the species being
managed (where h is a vector of habitat propert1es) IT also requires knowing at
which populat1on density each quality of habitat is added. Let us standardize the
densities by dividing them by a constant obtained through sampling (say Y, the
average yield per un1t fishing effort). Then the management data will determIne theA
function: '

Qh)* = f3(N/Y5)

where Q(h)* is the habitat_quality which is marginally used when the standard density
of the’i- “th species is Ni/Y.

The subscript i introduces the possibility of a multispecies view, and here
is where the need for data collection by managers will enhance the basic science on
which they rely. Community eco]og1sts are investigating the fundamental structure
of sets of niches (Rosenzweig, in press; P.S. Giller and J.H.R. Gee (eds.), 27th
British "Ecological Symposium, 1986: Organization of Communities: past and present).
Eventually, this know]edge should also benefit the management of = exploited
populatlons, but it is still too rudimentary for that. However, obtaining the set of
functions, f fi, for a guild of species on one quality index, Q(h), will illuminate what
is happening among the species. If, for example, all the fi are positive functions,
then the species rank the habitats simi]arly. If some are negative, then they have
at least two distinct habitat preferences. If they are all unimodal, but peak at
various places along the N/Y axis, then they all have distinct: preferences. .Other
patterns, of which no one "has yet conceived, may emerge. But there is no question
that knowing the peaks-of the various species and how they relate to each other will
advance community ecology and may suggest improvements in management policies. .

Michael L. Rosenzweig.



