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Abstract: The relationship between current abundance and future recruitment to the stock is fundamental to managing
fish populations. However, many different recruitment models are plausible and the data are insufficient to distinguish
among them. Although nonparametric methods may be used to circumvent this problem, these are devoid of biological
underpinnings. Here, we present a Bayesian nonparametric approach that allows straightforward incorporation of prior
biological information and use it to estimate several fishery reference points. We applied this method to artificial data
sets generated from a variety of parametric models and compare the results with the fit of Ricker and Beverton–Holt
models. We found that the Bayesian nonparametric method fit the data nearly as well as the true parametric model and
always performed better than incorrect parametric alternatives. The estimated reference points agree closely with true
values calculated for the underlying parametric model. Finally, we apply the method to empirical data for lingcod
(Ophiodon elongatus) and several salmonids. Since this method is capable of reproducing the behavior of any of the
parametric models and provides flexible, data-driven estimates of stock–recruitment relationships, it should be of great
value in fisheries applications where the true functional relationship is always unknown.

Résumé : La relation entre l’abondance actuelle et le recrutement futur du stock est d’importance capitale dans la
gestion des populations de poissons. Plusieurs modèles de recrutement sont cependant plausibles et les données sont
insuffisantes pour les distinguer. Bien que des méthodes non paramétriques puissent servir à résoudre le problème,
celles-ci ne possèdent pas de fondement biologique. Nous présentons ici une méthode bayésienne non paramétrique qui
permet une inclusion directe des renseignements biologiques a priori et nous l’utilisons pour estimer plusieurs points de
référence halieutiques. Nous appliquons la méthode à des séries de données artificielles générées par divers modèles
paramétriques et comparons les résultats à l’ajustement des modèles de Ricker et de Beverton–Holt. La méthode non
paramétrique bayésienne s’ajuste aux données presque aussi bien que le véritable modèle paramétrique et elle fonc-
tionne toujours mieux que les modèles de rechange paramétriques incorrects. Les points de référence estimés corres-
pondent de près aux valeurs réelles calculées par le modèle paramétrique sous-jacent. Nous appliquons enfin la
méthode à des données empiriques sur la morue-lingue (Ophiodon elongatus) et plusieurs salmonidés. Puisque la mé-
thode peut reproduire le comportement de tous les modèles paramétriques et fournir des estimations des relations
stock–recrutement flexibles et basées sur les données, elle peut s’avérer d’une grande utilité dans les applications aux
pêches dans lesquelles les véritables relations fonctionnelles restent toujours inconnues.

[Traduit par la Rédaction] Munch et al. 1821

Introduction

The relationship between stock size and subsequent re-
cruitment is one of the keystone concepts of fishery science,
since the parameters for this function translate directly into
management reference points and set the ultimate limits on
sustainable fishing (Quinn and Deriso 1999; Bravington et
al. 2000). However, it is also one of the most problematic:
data are difficult to measure and generally noisy, the rela-
tionship is surely nonlinear over a range of stock sizes, and a
variety of plausible biological mechanisms are consistent

with very different functional relationships between spawn-
ing stock and recruitment. There is, of course, general agree-
ment about the properties that a stock–recruitment model
should possess. First, any extant stock must be able to re-
place itself so that recruitment should exceed losses owing
to mortality over some range of stock sizes. Second, we ex-
pect there to be density dependence; recruitment may be
nearly proportional to stock close to the origin, but per ca-
pita recruitment is expected to decrease at large stock sizes.
Third, for closed populations, recruitment should tend to
zero as stock goes to zero, although the spatial scale on
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which the population is closed is often unclear. Many mod-
els may be derived from this set of principles and the data
are frequently insufficient to distinguish among them. Con-
sequently, selection of a parametric model is often rather ar-
bitrary.

Over the last decade, parametric Bayesian approaches have
been increasingly applied in fisheries (Hilborn and Mangel
1997; McAllister and Kirkwood 1998; Millar 2002). One of
the great advantages of the Bayesian approach is that it al-
lows a statement of model probability to be made in cases
where there is no a priori biological basis for model selec-
tion. However, this approach will not work if the appropriate
model is not included in the set of candidates. Moreover,
even if the model is appropriately specified, important man-
agement parameters such as the slope at the origin may be
unduly influenced by points far away (Ludwig 1995). Con-
sequently, several authors have proposed nonparametric ap-
proaches. Rothschild and Mullen (1985) and Brodziak et al.
(2002) divided the stock–recruitment plane into several re-
gions and estimated transition probabilities among them
from the observed time series. Nonparametric density esti-
mators have also been used to construct the distribution of
recruitment given stock biomass (e.g., Evans and Rice 1988;
Cook 2000). Nonparametric regression and spline methods
that fit some locally weighted smoothing function to the
stock–recruit data have also been used (e.g., Chapman 1973;
Cook 1998).

The chief benefit of these nonparametric approaches is
that they allow the data to speak for themselves. This is a
highly desirable property, once we recognize that the avail-
able biological information is typically insufficient to spec-
ify a functional form a priori. However, there are several
drawbacks to existing methods. First, they all require the ad
hoc specification of a smoothing parameter. Although cross-
validation methods may be used to circumvent this problem
to some extent, they do not perform well on the relatively
small data sets available in fisheries. Second, uncertainty
bounds for estimates from these methods rely heavily on
asymptotics; given the relatively small samples available in
fisheries, these uncertainty bounds will be unreliable. Third,
these methods lack biological underpinnings. This makes re-
sults hard to interpret and sometimes biologically unreason-
able. Bravington et al. (2000) have made some progress in
this regard by developing a smoother that is forced to pass
through the origin and produce diminishing gains in recruits
as spawning stock size increases. Although elegantly incor-
porated, these biological constraints are by no means cer-
tainties and the inclusion of hard constraints is at odds with
the nonparametric philosophy of letting the data speak for
themselves. We still lack a method that allows prior informa-
tion about the biology of the stock to be incorporated while
simultaneously allowing the data to determine the overall
shape of the fitted relationship. Here, we present a method,
based on Bayesian nonparametrics (e.g., see Walker et al.
1999; Müller and Quintana 2004), that solves the difficulty.
The approach provides a nonparametric fit to the data with
several advantages over previous methods. First, the distribu-
tions of the parameters that determine the smoothness of the
fitted nonparametric function are driven primarily by the
data, given limited amounts of prior information. Second,

full specification of model uncertainty is possible for the
regression function and reference points derived from it
without recourse to asymptotic approximations. Third, and
most importantly, biological information is consistently in-
corporated through specification of the prior but does not
rigidly constrain the shape of the model within the range of
the data. Since this is the first application of Bayesian non-
parametric methods to understanding the relationship between
stock size and recruitment, we develop the statistical back-
ground for our Bayesian nonparametric (BNP) model in
some detail. We demonstrate the flexibility of the method on
artificial data sets generated from a suite of parametric mod-
els and then apply the method to five actual data series.

Methods

Model specification
For simplicity, we assume that spawning stock size (S) is

measured without error and is proportional to total egg pro-
duction. This assumption may be relaxed, although at the
cost of increased complexity (see Discussion). We model re-
cruitment (R) as a function of stock size and random pro-
cesses, although other covariates may be incorporated where
appropriate. We assume that stochastic effects are multipli-
cative and lognormally distributed. Alternative choices for
the distribution of stochastic effects are readily incorporated
in this framework. We also use log-transformed variables, spe-
cifically, x = ln S and y = ln R. Thus, our stock–recruitment
(SR) model becomes

(1) y x= +�( ) ε

where ε is normally distributed with mean zero and variance
σε

2. In the standard context, �( )x is the log-transformed SR
model (e.g., �( )x = ln a + x – bex for a Ricker model). In the
BNP context, however, the function �( )x is uncertain and de-
scribed by a prior probability distribution over random func-
tions. When thought of in this manner, fitting a parametric
model, say Ricker or Beverton–Holt, corresponds to assign-
ing positive prior probability to a very narrow region of the
biologically plausible space of SR functions. We seek a
broader prior specification, encompassing the space of bio-
logically possible regression functions. One very general
prior specification for �( )x is the Gaussian process (GP).
Other prior specifications are possible (Denison et al. 2002)
but the GP prior is quite flexible, allows ready interpretation,
and lends itself to relatively simple prior specification and
posterior inference (e.g., see Neal (1999) and references
therein for Bayesian GP regression).

As we are about to describe a GP model with five parame-
ters governing the mean and covariance functions, some
discussion of what makes this method nonparametric is in
order. This method is referred to as a nonparametric
Bayesian approach because we are seeking an SR relation-
ship without specifying parameters that rigidly govern the
functional form of the regression model. However, the model
clearly makes specific distributional assumptions and in this
regard differs from traditional nonparametric methods. De-
spite this, we retain the nonparametric Bayesian appellation
in keeping with the rapidly developing statistical literature
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on the subject rather than generate confusion by introducing
new terminology.

The GP prior for �( )x is fully described by a mean func-
tion µ( )x and covariance function C(x,x′), denoted as �( )x ~
GP(µ( )x , C(x,x′)). Note that this specification for �( )x is
equivalent to saying that �( )x = µ( )x + z(x), where µ( )x can
be any of the standard SR models on a log scale (or any
other plausible choice for the mean function) and z(x) is a
zero mean GP with covariance function C(x,x′). Thus, this
approach may be thought of as an analysis based on one of
the standard SR models in which C(x,x′) provides the means
by which we can account for systematic deviations from the
hypothesized SR function. Consequently, it is mainly
through specification of µ( )x that we may incorporate our
prior beliefs about the relationship between stock size and
recruitment. In keeping with a long tradition in fisheries bi-
ology, we assume that the population is closed, so that there
should be no recruits in the absence of any adult stock (i.e.,
R = 0 when S = 0) and that recruitment is proportional to
stock size near the origin. Because the actual mechanisms of
density dependence are unknown for most stocks, we choose
to let the data tell us. With this in mind, we choose as our
prior mean function

(2) µ β β( )x x= +0 1

which corresponds directly to Cushing’s (1973) power func-
tion model. Obviously, other choices of the prior mean func-
tion are possible. For instance, if we had strong prior
evidence that the stock in question exhibited Ricker-type
density dependence, we could choose µ( )x = ln(α) + x – βex.

Choosing the covariance function is important because it
determines how closely related values of �( )x are for nearby
values of x. Thus, prior specification of the covariance func-
tion allows us to incorporate our biological beliefs regarding
the smoothness of the underlying relationship between stock
size and recruitment.

A generally useful choice for the covariance function is

(3) C x x x x( , ) exp( | | )′ = − − ′τ ,α2 φ

τ > 0, αφ > ∈0, 0, 2](

Here, τ2 is the variance and parameters φ and α control the
interdependence of �( )x and �( )x′ as a function of the dis-
tance between x and x′. Specifically, α affects the fine-scale
variability or graininess in �( )x , while φ (for a fixed α) con-
trols the large-scale variability or range of dependence. To
build intuition, we illustrate the effects of each of these
parameters on a realization of �( )x (Fig. 1). Note a key
assumption here: the covariance function is more properly
C(�( )x , �( )x′ ) but we assume that the interdependence of
values in the stock recruitment relationship arise only
through the distance between log-stock sizes (i.e., we as-
sume that deviations from the mean function are isotropic).
In the limiting case where the prior mean function accu-
rately describes the behavior of the data, deviations from
µ( )x possess no systematic behavior and C(x, x′) should tend
toward a delta function.

Other choices of C(x, x′) are possible, although care must
be taken to ensure that C(x, x′) is a proper covariance func-

tion (i.e., a symmetrical, nonnegative definite function). For
example, a simple extension is

(4) C x x xx x x( , ) exp( | | ),′ = + ′ + − − ′γ γ τ α
0 1

2 φ
γ γ0 1> >0 0,

In this case, in the limit as τ goes to zero, the first two terms
enforce a linear dependence of �( )x (more specifically, devi-
ations from the mean function) on x where the variability in
the slope is determined by γ1.

To simplify notation, we collect the parameters specifying
the prior for �( )x in the vector � = (β0, β1, τ2, φ, α). Given
the specifications in eqs. 1–3, the full Bayesian model be-
comes

(5) y x N x i ni i i| ( ), ~ ( ( ), ), ...,� �σ σε ε
2 2 1,=

�( ) | ~ ( ( ), ( , ))x x C x x� GP µ ′

� �, ~ ( ) ( )σ σε ε
2 2p p

where p(�) and p( )σε
2 are independent priors for � and σε

2.
We discuss prior specification for these parameters below.

It is helpful to interpret the general model in the following
way: given a specific set of observed recruitment and stock
sizes, (x, y) = ((x1,..., xn), (y1,..., yn)), the GP prior for �( )x
means that {� �( ), ..., ( )x xn1 } is n-variate normal, i.e.,

(6) ( ( ), ..., )) | ~ ( ( ), ( ))� �x x Nn n
n n

1 ( � � � �C

© 2005 NRC Canada

1810 Can. J. Fish. Aquat. Sci. Vol. 62, 2005

Fig. 1. Effects of parameters of the covariance function on the
sampled Gaussian process. Functions are sampled from a
multivariate normal with the given covariance function on a grid
of 50 points using the same random seed for each panel. The
mean function is zero throughout. (a) The covariance function
parameters are φ = 0.4, α = 2, and τ = 0.4. The remaining pan-
els show the results of individually halving each parameter sin-
gly while holding the others constant: (b) φ = 0.2, (c) α = 1, and
(d) τ = 0.2. Note that reducing φ (Fig. 1b) decreases the number
of turning points in the sampled function, reducing α (Fig. 1c)
sharpens the corners, and reducing τ (Fig. 1d) merely changes
the scale.



where the mean vector �n(�) = {β0 + β β1 0x1, ..., + β1xn} and
the (i, j)th entry of the covariance matrix is Cn(�)i j, =
τ2 exp(–φ|xi – xj|

α).

Prior specification
In general, care must be taken with improper priors for

the parameters θ and σε
2, as these may lead to improper pos-

teriors (e.g., see Berger et al. 2001). We choose proper priors
that can be specified with small amounts of prior informa-
tion. Specifically, we take

(7) β ββ β β β0 10 0 1 1
~ ( , ), ~ ( , ),N a b a bΓ

τ στ τ ε σ σ
2 2IG IG( IG~ ( , ), ~ , ), ~ ( , )a b a f b a bφ φ φ

where Γ( , )a b denotes a gamma density with mean a/b and
IG(a, b) denotes an inverse gamma density with mean b/(a – 1)
for a > 1.

From previous studies (Myers 2001), we expect that the
slope at the origin should be between 2 and 7 and we there-
fore set aβ 0

= ln(4.5). For the exponent in our Cushing prior,
we expect recruits to be nearly proportional to stock size at
low density and set a bβ β1 1

= so that E(β1) = 1, allowing for
the possibility of both compensation (β1 < 1) and depensation
(β1 > 1) in the mean function. We also set aτ = aφ = aσ = 2,
resulting in infinite prior variances for τ2, φ, and σε

2. To fully
specify the priors for β0, β1, τ, and σε

2, we note that the
marginal response variance is Var

0
( )y b b bi = + +σ τ β +

Var 1
2( )β xi (see eq. 9 below). We base our prior on a prior

guess at the range of response variables ry and use (ry /4)2 as
a guess at Var(yi). We then inflate this guess by a factor of
40 in determining the parameter variances. Hence, using a
prior guess ~x as a rough center for the predictor, we divide
the variance in yi evenly among the four components by set-
ting b b bσ τ β= =

0
= 10(ry /4)2 and a bβ β1 1

= = 1.6~x ry
− 2, so

that Var(β1) = 10(ry /4)2~x − 2. It is more difficult to imagine
appropriate prior information for φ and α. We note that φ
controls the correlation among points and how rapidly the
correlation dies away with distance. From the spatial statis-
tics literature where GP priors are common (Cressie 1993),
3/φ is called the range of dependence, i.e., the value of the
distance |x – x′| that gives Corr(�( )x , �( )x′ ) ≈ 0.05. We use
one-half the range of observed xis, rx /2, as a guess at the
range of dependence. Thus, we set the prior mean of φ, bφ,
equal to 6/rx.

The remaining parameter for which prior specification is
required is α. For C(x,x′) to remain nonnegative definite, α
must lie within the interval (0, 2). As noted previously, α
controls the fine-scale variability in �( )x . More specifically,
α determines whether or not realizations of �( )x are differen-
tiable. Most commonly employed SR models are differentia-
ble (the chief exception being the “hockey stick”
(Barrowman and Myers 2000)), in keeping with the notion
that abrupt changes in the biology of the recruitment process
at a specific, single stock size are unlikely. From standard
theory of random processes (Papoulis 1984), the derivative
of �( )x exists in a mean-square sense only if ∂2C(x, x′)/∂x∂x′
exists. From eq. 3, this is only true if α = 2. Thus, for all
subsequent analyses, we set α = 2 and the parameter vector �
is reduced to (β0, β1, τ2, φ).

Posterior inference for θ and σε
2

Although it is possible to sample from the joint posterior
distribution for �( )x , θ, and σε

2 given x, y under the model
specification, posterior sampling is greatly simplified by
marginalizing over �( )x to obtain a model with one less
layer in the hierarchy. To do so, first note that, as in eq. 5, y
is conditionally n-variate normal. The expected value of y
taken over �( )x is then �n(�) (defined below eq. 6). From
eq. 1, the covariances for y are given by

(8) Cov Cov[ ( ) ), ( ( ) )] [ ( ), ( )]� � � �x x x xi i j j i j+ + =ε ε
+ = +Cov 2[ , ] ( , ) ( , )ε ε σεi j i j nC x x I i j

with In(i, j) = 1 for i = j and 0 otherwise. Thus, a two-level
model in which the explicit conditioning of y on �( )x has
been integrated out is

(9) y| , ~ ( ( ), ( ) )� � � �σ σε ε
2 2N C In

n n
n+

� �, ~ ( ) ( )σ σε ε
2 2p p

We use the Metropolis–Hastings algorithm (Hastings 1970)
to obtain draws from the joint posterior of (�, σε

2, p( )� ,
σε

2 data| ). Details on the specific implementation of the algo-
rithm are given in Appendix A.

Posterior prediction for �( )x
Based on the observed data (x, y), our goal is to predict

values for y and �( )x over a range of values of x. That is, we
estimate the SR function over a grid of k points that we will
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Model Parameterization α β1 β2 C d

Ricker R S S= −α βe 1 5.437 0.004 na na na

Beverton–Holt
R

S

S
=

+
α

β1 2

5.000 na 0.010 na na

Shepherd
R

S

S C
=

+
α
β1 2( )

6.000 na 0.0063 1.50 na

Saila–Lorda R S C S= −α βe 1 0.006 0.010 na 2.50 na

Open-mixture R
S S

S
d

C S

= +
+

+
−α α

β

βe

1000 1

1

2

6.200 0.0200 0.015 2.65 20

Note: “na” under a parameter heading indicates that a given model does not include that parameter.

Table 1. Model formulations and parameters used to generate each of the simulated data sets.
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denote by xnew = (xnew 1,..., xnew k). As derived in Appendix
B, ynew and �( )newx are multivariate normal conditional on
particular choices of �, σε

2. Specifically

(10) p N M Sk( | , , , ) ( , )y xnew
2

new new newdata� σε =

(11) p N M S Ik
k( ( ) | , , , ) ( , )� x xnew

2
new new new

2data� σ σε ε= −

where Mnew and Snew are the conditional mean vector and
conditional covariance matrix described in Appendix B. Of
course, we want the posterior distributions for ynew and
�( )xnew conditioned only on the data, not a particular choice

of the parameter vector. Although marginalizing over � can-
not be done analytically, the posterior distributions
p(ynew|data, xnew) and p( ( ) | , )� x xnew newdata may be obtained
through Monte Carlo integration by sampling from the con-
ditional densities 10 and 11 at each step of the Metropolis–
Hastings algorithm. All calculations were implemented in
Matlab v. 6.5 (The MathWorks, Inc., Natick, Massachu-
setts).

Reference points
For any method of estimating the SR relationship to be of

Fig. 2. Fits to simulated data: low-variance simulations (Vp = 0.01). The figures illustrate the fit of parametric (Ricker and Beverton–
Holt) and Bayesian nonparametric estimates of stock–recruitment relationships when the data are generated by a known model. True
models are (a) Ricker, (b) Beverton–Holt, (c) Shepherd, (d) Saila–Lorda, and (e) open-mixture. In each panel, the true model is de-
picted by the blue line. Blue points are data sampled from the true model. Under the Bayesian nonparametric method, the solid black
line gives the posterior mean and the broken lines are 95% pointwise uncertainty bands. Fitted Ricker and Beverton–Holt models are
shown by the green and magenta lines. A LOESS smoother is indicated by the red line.



practical value, it is important that certain biological refer-
ence points may be calculated in a straightforward manner.
Here, we outline how posterior predictive distributions for
unfished biomass (B0), the steepness (h) of the SR curve
(Mace and Doonan 1988), and the stock biomass at maxi-
mum sustainable yield (BMSY) can be obtained in our BNP
framework.

Although more realistic models are certainly possible, we
assume for simplicity that the stock dynamics on an annual
time step are given by

(12) S S M F S R St t t t+ = − + +1 ( ) ( )

where M and F are the fractions of the population removed
by natural and fishing mortality over the course of a year
and R(St) is recruitment written explicitly as a function of
stock at time t. Thus, at equilibrium in the absence of fish-
ing, B0 is the solution of R(S) = MS. Correspondingly, x0 =
ln(B0) is the value of x at which �( )x crosses the line y = x +
ln(M). For any posterior predictive realization of �( )xnew ,
there may be several such points, the number of which de-
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Fig. 3. Fits to simulated data: high-variance simulations (Vp = 0.1). The figures illustrate the fit of parametric (Ricker and Beverton–
Holt) and Bayesian nonparametric estimates of stock–recruitment relationships when the data are generated by a known model. True
models are (a) Ricker, (b) Beverton–Holt, (c) Shepherd, (d) Saila–Lorda, and (e) open-mixture. In each panel, the true model is de-
picted by the blue line. Blue points are data sampled from the true model. Under the Bayesian nonparametric method, the solid black
line gives the posterior mean and the broken lines are 95% pointwise uncertainty bands. Fitted Ricker and Beverton–Holt models are
shown by the green and magenta lines. A LOESS smoother is indicated by the red line.



pends strongly on the amount of variability in the data.
Here, we focus attention solely on those points that corre-
spond to locally stable equilibria, i.e., where �( )x is greater
than x + ln(M) for x less than x0 and less than x + ln(M) for x
greater than x0. Specific values of x0 and �( )x0 may be ob-
tained by interpolating between the grid points of a realiza-
tion from �( )xnew . For this purpose, we found that a grid of
k = 150 points provided sufficient resolution. The steepness
of the SR curve is defined as recruitment at 20% of B0 ex-
pressed as a fraction of recruitment at B0 (Mace and Doonan
1988). Therefore, after interpolating �( ln( ))x0 0.2+ from the
realization of �( )xnew , steepness can be estimated by calcu-
lating exp[ ( ln( )]� �x x0 00.2)) (+ − . Since yield in this model
is given by FS, BMSY is simply the value of S for which R(S) –
MS is maximized and can be found directly from
exp[ ( )]� xnew and exp(xnew). Posterior predictive distributions
for each of these reference points were estimated from the
collection of values obtained from realizations of �( )xnew
calculated at each step of the Metropolis–Hastings algo-
rithm.

Testing the method
We demonstrate application of the method on two sets of

data. The first are data simulated from a suite of five para-
metric models (Table 1): Ricker (Ricker 1954), Beverton–
Holt (Beverton and Holt 1957), Shepherd (Shepherd 1982),
Saila–Lorda (Iles 1994), and an atypical model for a poten-
tially open population. Model formulations and parameters
used in the simulations are provided in Table 1. The fifth
parametric model, open-mixture, is a linear combination of
the Beverton–Holt and Saila–Lorda models with an addi-
tional supply of recruits (d) from outside the specified stock
area.

We chose parameters for all models so that the maximum
and equilibrium recruitment levels were nearly the same. For
each of the simulations, we sampled 40 stock sizes from a
triangular distribution with support on [0,750] and mode
250. Given the chosen parameters, this sampling tends to
emphasize points near the stock size of maximum recruit-
ment. For each sampled stock size, observed recruitment
was sampled as R f S= ( )eω, where ω ~ N(–1/2Vp, Vp). We
conducted simulations using a small residual error Vp = 0.01

and a larger observation error Vp = 0.1. For each data set so
constructed, we fit the BNP model with priors as described
above using a burn-in period of greater than 10 000 draws
(see Appendix A) followed by a posterior sampling period
of another 10 000 draws.

For quantitative measures of fit, we calculated the residual
sum of squares (SS = Σ(y – E[�( )x ])2) and Akaike’s Informa-
tion Criterion (AIC) (Burnham and Anderson 1998). For
comparison, we calculated sum of squares and AIC for
Ricker and Beverton–Holt models fit to each data set as well
using a Bayesian approach with uninformative priors for all
of the parameters. We did not compare the fit of Shepherd
and Sailia–Lorda models to our simulated data because our
intention is merely to demonstrate the unifying flexibility of
the nonparametric approach. We also fit a LOESS (Cleve-
land 1981) smoother to each. Since the stiffness of the
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Residual sum of squares AIC

Error variance True model Ricker Beverton–Holt BNP Ricker Beverton–Holt BNP

Low Ricker 0.48 3.18 0.49 –171.22 –95.32 –163.79
Beverton–Holt 1.07 0.46 0.44 –138.82 –172.80 –168.74
Shepherd 0.65 0.79 0.33 –159.00 –151.06 –180.48
Saila–Lorda 13.35 19.62 0.40 –37.89 –22.50 –172.48
Open-mixture 1.69 1.24 0.36 –120.53 –133.11 –176.53

High Ricker 6.21 8.65 5.94 –68.49 –55.27 –64.31
Beverton–Holt 3.87 3.42 2.98 –87.40 –92.40 –91.83
Shepherd 3.54 4.83 2.75 –90.95 –78.54 –95.09
Saila–Lorda 16.35 22.90 3.32 –29.78 –16.32 –87.53
Open-mixture 5.27 4.27 2.82 –75.07 –83.52 –94.10

Note: True models used to simulate the data are as described in the text and parameterized in Table 1. Residual sums of squares
were calculated from the deviation between the observed data and the posterior mean model. AIC, Akaike’s Information Criterion;
BNP, Bayesian nonparametric model.

Table 2. Goodness of fit to the simulated data sets with low and high variance.

Fig. 4. True σε
2 and posterior expectations for data simulated from

Ricker (open circles) and Beverton–Holt models (solid circles).



LOESS is arbitrary and the minimum sum of squares is zero,
we do not calculate a measure of fit but include LOESS with
stiffness set to 0.6 in the figures for visual comparison.

One of the chief parameters of interest that come directly
from this model specification is the error variance σε

2. To ad-
dress how reliably our nonparametric approach could re-
cover estimates of error variance, we simulated data from
the Ricker and Beverton–Holt models in the manner de-
scribed above for 100 values of Vp ranging from 0.01 to 0.5.
We also calculate posterior distributions for B0, h, and BMSY
based on 5000 realizations of �( )xnew on a grid of 150 points.

We demonstrate the method on actual observations of stock
and recruits for sockeye (Oncorhynchus nerka), chum
(Oncorhynchus keta), and pink salmon (Oncorhynchus
gorbuscha) from the Weaver Creek spawning channel, Brit-
ish Columbia (Essington et al. 2000), and northern and
southern lingcod (Ophiodon elongatus) stocks from central
California through Alaska (Jagielo et el. 2000). For each of
these series, we fit the BNP model as well as the Ricker
Beverton–Holt models and a LOESS smoother (stiffness =
0.6). To explore how much could be learned about the pa-
rameters of our GP model from typical fisheries data, poste-
rior distributions were generated for the most and least
informative of these data sets (sockeye salmon and southern
lingcod, respectively).

Results

The fit of the BNP model to each of the simulated data
sets was quite good (Figs. 2 and 3). In each of the low-
variance cases, the shape of the BNP model closely follows
that of the simulated model over most of the range covered
by the data. Departures from the true model are somewhat
greater in the high-variance cases. Posterior predictive un-

certainty bands for �( )x obtained from the Monte Carlo sam-
ples tend to be fairly narrow in regions with sufficient data
and wider in regions where data are scarce. The most sub-
stantial departures from the model occur when overcompen-
sation is present (i.e., Ricker, Shepherd, and Saila–Lorda)
primarily at the largest stock sizes. This deviation is a reflec-
tion of the choice of prior mean function and the scarcity of
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Fig. 5. Posterior predictive distributions of (a and b) B0, (c and
d) BMSY, and (e and f) and steepness for Ricker model (left pan-
els) and Beverton–Holt model (right panels). Solid triangles indi-
cate the true value and open triangles indicate the posterior
mean. Lines are kernel density estimates for the posteriors.

Fig. 6. Stock–recruitment functions for three salmon species:
(a) chum (Oncorhynchus keta), (b) pink (Oncorhynchus
gorbuscha), and (c) sockeye (Oncorhynchus nerka). Blue points
are observed data. Under the Bayesian nonparametric method,
the solid black line gives the posterior mean and the broken
lines denote 95% pointwise uncertainty bands. Fitted Ricker and
Beverton–Holt models are shown by the green and magenta
lines. A LOESS smoother is indicated by the red line. Data are
from Essington et al. (2000).



data at the largest stock sizes; had we assumed an overcom-
pensating prior mean function, this deviation would not oc-
cur. Given that we have explicitly used the incorrect prior
mean function for all of the simulated data sets, these results
indicate that the BNP method is robust to misspecification
of the mean and can be expected to work quite well when
sufficient shape information is present in the data.

Comparison with the fit of the parametric models is gen-
erally quite favorable. The BNP fit (sum of squares or AIC)
(Table 2) was usually close to the fit of the correct paramet-
ric model and was always better than the fit of the incorrect
model. While it is not surprising that the Ricker and
Beverton–Holt models were not adequate to describe data
generated from more complicated models, we argue that the
ecology underlying the recruitment process is likely to be
more complicated than all of the standard models. The salient
point is that, having demonstrated that the BNP approach is
adequate to describe data from any of the parametric mod-
els, it provides a unifying approach that should be preferable
when none of the standard models can be assumed to be cor-
rect. In real fisheries, the relationship between stock and re-
cruitment is likely to involve several different sources of
density dependence and, potentially, sources of recruits from
other stocks. The open-mixture model is a simple example.

The BNP method was the only one to accurately describe
data from this model, highlighting its utility in situations
where the underlying dynamics are complex and unknown.

A common concern when fitting nonparametric models to
noisy data is that the resulting model may be over-fit. How-
ever, estimates of the error variance with the BNP model
were quite good (Fig. 4). The expected value of the posterior
σε

2 was, on average, within 15% of the true value for σε
2 >

0.2. For σε
2 < 0.2, the estimated variance was substantially

greater than the true value, although confidence regions from
the posterior σε

e typically contained the true value for σε
2 as

small as 0.1. Overall, the estimated variance was more accu-
rate for data generated using the Beverton–Holt model than
for the Ricker model. This, again, is a consequence of our
choice of the prior mean function. Overcompensatory
choices of prior mean function would produce substantially
better estimates of the variance under the Ricker model. In
contrast with smoother-based methods, overfitting rarely oc-
curred. Although the error variance estimated using a para-
metric model is strongly influenced by proper model choice,
the BNP method allows reasonably accurate estimation of
the error variance in the absence of model specification.
Since recruitment variability is probably the single most im-
portant variable driving uncertainty in future stock sizes, this
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Fig. 7. Lingcod (Ophiodon elongatus) stock–recruitment models for (a) northern and (b) southern stocks. Blue points are observed
data. Under the Bayesian nonparametric method, the solid black line gives the posterior mean and the broken lines denote 95%
pointwise uncertainty bands. Fitted Ricker and Beverton–Holt models are shown by the green and magenta lines. A LOESS smoother
is indicated by the red line. Data are from Jagielo et al. (2000).



feature of the BNP approach will be of great utility in risk
assessments.

Reference points
The ability of the BNP method to estimate reference

points was generally good (Fig. 5). Posterior means for B0
and steepness were within a few percent of the true values
for data sampled from both the Ricker and Beverton–Holt
models. For Beverton–Holt data, the posterior mean esti-
mated BMSY to within <1% of the true value. When there are
little or no data near the origin, estimates of �( )xnew from
the Ricker model tend to show large variability close to zero.
This is a consequence of the isotropic specification for
C(x,x′) and the overcompensatory departures from the prior
mean at large stock sizes. As a result, the posterior mean for
BMSY for Ricker data was substantially biased owing to a
large number of samples with solutions near the origin.

Fit to actual data
For each of the salmon stocks (Fig. 6), the Ricker,

Beverton–Holt, and BNP models all indicate recruitment in-
creasing continuously with stock size. In the case of both
chum and pink salmon, the BNP fit increases from the ori-
gin, flattens slightly at stock sizes around 25% of the ob-
served maximum, and then increases again. Although it is
impossible to say for certain, this pattern of recruitment may
indicate alternative regimes, each characterized by different

relationships. In contrast, the fit to the lingcod data (Fig. 7)
is essentially flat for both northern and southern stocks. Note
that the BNP extrapolation to the origin appears consider-
ably more reasonable than that obtained with the LOESS
smoother and more closely approximates the extrapolation
obtained using the parametric models. However, uncertainty
bands near the origin widen dramatically, indicating that
there is no SR information in this region and that the extrap-
olations are based primarily on the prior mean function. In
contrast, extrapolations from the LOESS are simply regres-
sion lines based on the 60% of the data closest to the origin.

Each of the posterior distributions for the parameters of
the BNP model fit to the sockeye salmon data (Fig. 8)
showed substantial reductions in variance and shifts of the
mean. This indicates that when the data are reasonably infor-
mative, it is possible to learn about all of the parameters of
the BNP model. Similarly, posterior distributions based on
the southern lingcod stock (Fig. 9) indicate learning for the
mean function and residual variance. However, the posterior
distributions for the parameters of the covariance function
showed little change from the priors.

Discussion

The BNP approach that we have described offers a num-
ber of advantages over previous methods of defining the re-
lationship between stock size and subsequent recruitment.
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Fig. 8. Prior and posterior probability densities for the parameters of the Bayesian nonparametric model fit to the sockeye salmon
(Oncorhynchus nerka) data. The broken lines show the prior distributions for each parameter. The solid lines are kernel density esti-
mates for the posteriors. (a) β 0; (b) β1; (c) φ; (d) τ; (e) σε

2.



Regarding previous nonparametric approaches, the advan-
tages are clear: no ad hoc smoothing parameter need be cho-
sen, and biological information is easily incorporated through

specification of the prior mean function. Moreover, choice
of the prior mean function does not strictly dictate the shape
of �(x) within the range of the data.

As with other nonparametric methods (and parametric
models as well; Ludwig 1995), biologically unreasonable
fits are possible outside the range of the data. However, out-
side the range of the data, confidence limits grow rapidly
and the posterior returns to the prior mean function, indicat-
ing that there is little information added by the data to points
outside the range of the data (Ludwig 1995). Consequently,
choosing a prior mean function close to the true underlying
function will produce better extrapolations. Similarly, uncer-
tainty bands near the origin tend to be large when there are
no data near the origin, as in the lingcod example. Although
this may at first glance appear to be a drawback, we argue
that this is precisely what one wants from an inferential
technique; regardless of their importance as management
tools, point estimates of recruitment from parametric models
far outside the observed range of the data are little more than
elegantly concocted fictions.

The chief advantage of BNP over parametric approaches
to inference is that only one model is required to fit the data
regardless of the true underlying dynamics; dealing with
model uncertainty is explicitly part of the BNP approach.
Thus, one could envision a scenario in which Ricker density
dependence is postulated in the choice of prior mean func-
tion, but the posterior mean behaves as a Beverton–Holt.
Moreover, it is certainly possible to use any of the three pa-
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Fig. 10. Comparison of confidence bounds. The blue dots are the
same data sampled from a Ricker model shown in Fig. 3a. The
solid and broken black lines are the Bayesian nonparametric
mean and confidence interval. The solid and broken green lines
are the fit of the Ricker model including a 95% posterior uncer-
tainty region for the Ricker fit.

Fig. 9. Prior and posterior probability densities for the parameters of the Bayesian nonparametric model fit to the southern lingcod
(Ophiodon elongatus) data. The broken lines show the prior distributions for each parameter. The solid lines are kernel density esti-
mates for the posteriors. (a) β 0; (b) β1; (c) φ; (d) τ; (e) σε

2.



rameter models as the prior mean function and retain the bi-
ological interpretations of the parameters in cases where the
deviations from the prior mean function are not significant
(as would be evidenced from a nearly diagonal structure in
the posterior covariance function). With previous methods,
multiple models (parametric or nonparametric) would have
to be fit. Subsequently, researchers could either conduct a
probabilistic assessment (e.g., via AIC) of which model was
better or use the posterior probabilities associated with each
model in Bayesian model averaging. Model averaging is an
effective means of dealing with uncertainty in model formu-
lation, provided that linear combinations of the candidate
models span all of the SR relationships that are plausible for
a given stock. If this condition cannot be met, then more
flexible methods are preferable.

The BNP model allows good description of data sampled
from parametric models, coming nearly as close to the un-
derlying true model as fitted parametric curves. Moreover,
with an unknown true model, BNP is the only single method
that works effectively in all cases. It is, for example, the
only single model that came close to the true model in the
case of the open-mixture SR relationship. It should be noted,
however, that the added flexibility of the BNP method does
not come without costs. First, as a consequence of relaxing
the prior specification of the functional form of the model,
posterior confidence bounds for the fitted function are sub-
stantially wider than those of a correct parametric model
(Fig. 10). However, it should be noted that the uncertainty
bounds for the Ricker model are somewhat pathological in
that they are insensitive to the uncertainty in the observed
data; the bounds are of a uniform width in data-rich and
data-poor regions alike. Second, when the correct model is
known, parametric models allow easy analytical calculation
of management reference points. Calculation of comparable
reference points for any nonparametric method must be done
numerically. However, given the large number of complex
ecological and abiotic factors contributing to recruitment, it
seems likely that there is no single SR relationship and cer-
tainly no analytical formula for one, so that there are no for-
mulae (simple or complex) relating parameters of the SR
relationship to reference points. As begun in this manuscript,
it is possible to develop probabilistic definitions for impor-
tant reference points. Further efforts are needed, particularly
in developing an index of depensation free from rigid para-
metric specifications.

While the BNP approach represents a step forward in
modeling the SR relationship, there are a number of issues
that we have not explicitly addressed. These problems in the
modeling of SR data have been raised by other authors (re-
viewed in Needle 2002) and are raised here to point out di-
rections in which the BNP approach may be expanded. The
first is that we have assumed measurement errors in stock
biomass are small compared with estimates of recruitment.
This may be explicitly addressed in the BNP framework by
including an additional layer in the model hierarchy repre-
senting the unobserved, true state of the stock. Second, we
have explicitly ignored the time series nature of SR data and
have also explicitly assumed a stationary covariance func-
tion. However, it is possible to incorporate a time series
structure in the BNP framework and it is straightforward to
allow nonstationarity in the GP prior over stock sizes. More-

over, it is possible to incorporate temporal nonstationarity in
the BNP framework by adopting approaches commonly used
in dynamic linear models (West and Harrison 1997), which
would allow us to account for the possibility that the nature
of the relationship between stock and recruits is not constant
over time. Third, stock biomass may not be an appropriate
indicator of reproductive output (Rochet 2000). This is a
valid concern, but it cannot be addressed in a statistical
framework. Rather, the realities of reproductive biology need
to be addressed by the regular collection of relevant data. A
future paper will address these and other extensions cur-
rently under development.

Stock assessment using BNP methods provides a new tool
for fishery management that allows one to use the data to
dictate the shape of the SR relationship. Given the great ob-
jective flexibility of this method and the certainty that for
real fish populations the true underlying SR relationship, if
one exists, is unknown, the potential contribution to fishery
management of this new approach is great.
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Appendix A. Markov chain Monte Carlo (MCMC) sampling for the parameters governing �( )x .

This appendix describes an MCMC algorithm (Gamerman 1997) for sampling � in the more general setting where α is not
fixed at 2. Because the elements of � and σε

2 have restricted support, sampling is facilitated by defining a new set of parame-
ters (�) with support on R6. This new parameter vector is given by � = {β0, log β1, log τ2, log φ, log[α/(2 – α)], log σε

2} and is
sampled from a six-variate Gaussian (N6) proposal distribution with mean given by the current value of � and covariance ma-
trix D. These proposed values were accepted or rejected using the standard Metropolis–Hastings algorithm (Hastings 1970).
Since we sample the vector of proposed values, �, from a multivariate normal, the corresponding density for proposed new
parameter values {�new, σε

2 new} is given by

(A1) q D( , | , , )
( )

� �new 2 new 2

1
new 2 new new new new

2
2

σ σ
β τ α αε ε =

−φ σ
σ σ

ε
ε ε2 new 6

new 2 new 2N D( ( , )| , , )� � �

where the fraction following the equal sign is the Jacobian of the transformation relating � to (�new 2 new,σε ).
Because of the symmetry of the Gaussian proposal density, the acceptance probability (p) for a particular draw (�new 2 new,σε )

simplifies to
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−
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where p( , )� σε
2 is the unnormalized posterior from the model in eq. 9.

During the initial sampling, the elements of � are sampled independently (i.e., D is initially diagonal), but substantial im-
provements in sampling may be had with a better choice of D. We improved sampling by iteratively updating D based on the
covariance of the sampled parameters after each 5000 draws. After four such iterations, we used a burn-in period of another
5000 samples, which was sufficient to ensure convergence.
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Appendix B. Posterior sampling for ynew and �(xnew).

The quantities of interest are p( ( ) | , )� x xnew newdata and p( | , )y xnew newdata . Note that

(B1) p p p( ( | ) ( ) | , , ) (� �x x x xnew new new
2

newdata, ( data,= ∫ � �σε , | )σ σε ε
2 2data d�

and

(B2) p p p( | ) ( | , , ) ( , |y x y xnew new new
2

new
2data, data,= ∫ � �σ σε ε data d 2) �σε

Thus, the posterior predictive distributions B1 and B2 can be obtained by Monte Carlo integration of the conditional distribu-
tions for �( )xnew and ynew. To do so, we require the distribution for ynew = {ynew 1, ..., ynew k} given the data, parameters, and
xnew. Based on eq. 1, the analogous distribution for �( )x follows directly.

The distribution for ynew given the data, parameters, and xnew is obtained from the joint distibution of y and ynew:

(B3) p
p

p
( | , , )

( , | , , , )
( |

y x y y x x
y

new
2

new
new

2
newdata,�

�σ σ
ε

ε=
�, , )σε

2 x

The term in the denominator is the density Nn(�
n(�), Cn(�) + σε

2In) given in eq. 9, while the term in the numerator is an (n +
k)-variate normal distribution. The mean vector for this distribution is given by (�n(�)′, �k(�)′)′, where �k(�) = (β0 + β1xnew 1,...,
β0 + β1xnew k)′. The covariance matrix is given by Cn+k(�) + σε

2In+k where Cn+k(�) is
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where C new(� j i, ) = τ2 exp(– φ |xnew i – xnew j |
α) and C n,new( ) ,� i j

T = τ2 exp(– φ|xnew i – xj|
α).

Based on standard theory for multivariate normal variables, the conditional distribution for ynew in eq. B3 is also multi-
variate normal with mean vector (Mnew) and covariance matrix (Snew) given by

(B5) M ynew
new 2= + + −−� � � � � �k n T n

n
nC C I( ) ( ) ( ( ) ) ( ( )), σε

1

and

(B6) Snew
new 2 new 2 new= + − + −C I C C I Ck

n T n
n

n( ) ( ) ( ( ) ), ,� � �σ σε ε
1 ( )�

It can be readily seen from eq. B1 that the corresponding conditional distribution for �(xnew) is also multivariate normal with
mean vector Mnew and covariance matrix given by Snew

2− σεIk. Having established p( | , , )y xnew
2

newdata,� σε and
p( ( ) | , , )� x xnew

2
newdata,� σε through eqs. B3–B6, draws from the posterior predictive distributions for ynew and �( )xnew are

readily obtained using eqs. B1 and B2 and the posterior draws for � and σε
2. Hence, full inference is available for any feature

of the posterior predictive distribution for the stock–recruitment relationship.
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