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Abstract. Analyses of changes in size distributions over time frequently suggest that
mortality rates depend on body size. Such observations, however, are probably confounded
with changes in size due to growth. We describe a parametric method by which the size
dependence of both mortality and growth may simultaneously be inferred from pairs of
size distributions collected at different times. The method is tested in a Monte Carlo study
and found to have sampling properties similar to those of other methods that require more
data.

Survival of the first winter of life appears to be size dependent in a diverse array of
taxa, although few prior studies have accounted for growth. Analysis of sizes of Menidia
menidia (Atlantic silverside) from three different latitudes revealed that changes in size
distributions through winter resulted from growth in southern populations and mortality in
the north. Winter mortality was better described by a power function of size than an
exponential. Allometric exponents increased with latitude and were greater than predicted
from metabolic- or starvation-based models. The steepness of the estimated survivorship
curves imply that winter mortality in M. menidia is more consistent with a threshold effect
perhaps attributable to offshore migration.

Key words: Atherinidae; Atlantic silverside; Bergmann size clines; body size; latitudinal gradient;
maximum likelihood; Menidia menidia; Monte Carlo simulation; selection; size-dependent mortality;
winter mortality.

INTRODUCTION

Substantial advances have been made in the mea-
surement of selection in wild populations (e.g., Lande
1979), and the techniques developed are well suited to
the study of selection on phenotypes that remain con-
stant through a study interval. However, there are many
traits of interest in ecology and evolutionary biology
that do not remain constant through significant periods
in the life history. Body size, for example, is an im-
portant determinant of fitness (Roff 1992), but one that
constantly changes through the course of development.
Because the distribution of such dynamic traits may
change for a variety of reasons in wild populations, the
measurement of natural selection on dynamic traits in
the field is fraught with obstacles. We present a novel
method for the estimation of selection on dynamic
traits. The method is then applied to selection on body
size during the first winter of life, a period of time
when both size-dependent mortality and growth are
possible.
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Survival of the first winter is thought to be a pivotal
determinant of cohort abundance in many taxa. Juve-
nile Soay sheep, mule deer, and several bird species
experience mortality rates as high as 70% over their
first winter (Massemin and Handrich 1997, Loison et
al. 1999, Milner et al. 1999). Turtles, green anoles, and
many species of fish also experience substantial first-
winter mortality (Toneys and Coble 1979, Distler et al.
1998, Bodie and Semlitsch 2000, Nagle et al. 2000).
Field studies typically show an increase in mean size
and a decrease in variance from beginning to end of
winter, usually interpreted as mortality of smaller in-
dividuals (Toneys and Cobble 1979, Miranda and Hub-
bard 1994, Milner et al. 1999, Nagle et al. 2000). Ac-
cordingly, larger individuals are more likely to survive
periods of exposure to winter conditions in laboratory
experiments (Oliver et al. 1979, Post and Evans 1989,
Hurst and Conover 1998). Because growth through the
first year is density dependent in many species, the size
dependence of first-winter mortality may be a mech-
anism contributing to density-dependent population
dynamics (Johnson and Evans 1990, Milner et al.
1999). Predictive population dynamics models should
therefore incorporate the effects of winter. A well-de-
fined functional relationship among size, winter du-
ration/severity, and survival is needed to do so.

Size-dependent winter mortality may play an im-
portant role in the evolution of body size and growth



August 2003 2169SIZE SELECTION QUANTIFIED BY FIELD DATA

FIG. 1. A hypothetical example. The size distribution be-
fore winter (left) was sampled from a normal distribution (m
5 7.5, s 5 2). The center panel shows corresponding tra-
jectories for each size class under allometric growth (g1 5
0.0025, g2 5 0.15, t 5 100 days). The size distribution after
winter (right) is determined by the number of fish in each
size class before winter and survival under exponential mor-
tality (m1 5 0.025, m2 5 2).

rate in temperate animals. Adult body size tends to
increase with latitude in a pattern known as Bergmann’s
Rule (Lindsey 1966). The genetic capacity for growth
also increases with latitude in many temperate species
(Conover and Shultz 1995). Because temperature and
the seasonal opportunity for growth decrease with lat-
itude, this pattern of local adaptation in growth is re-
ferred to as countergradient variation (Levins 1968).
Both Bergmann’s rule and countergradient variation
may be explained, in part, by a latitudinal gradient in
the size dependence of first-winter mortality (Conover
1992). Although Bergmann’s Rule is well documented
and the evolution of juvenile growth rate has received
increasing attention in recent years, few (if any) studies
have examined the size dependence of winter mortality
at multiple latitudes.

Conover and Present (1990) reviewed data on the
mean size of the Atlantic silverside, Menidia menidia
(Pisces: Atherinidae), before and after winter. At all
latitudes, the mean size of this annual estuarine fish
species increased from beginning to end of winter and
the magnitude of this increase was strongly tied to lat-
itude. These data suggest that the size dependence of
winter mortality increased with latitude. However, it is
unclear how much of the change in mean size was due
to growth vs. mortality at any latitude (Post and Evans
1989).

Although there is a well-developed literature on es-
timating mortality and growth from size distributions
(e.g., Banks et al. 1991, Wood 1994) these methods
require more data than are typically available in studies
of winter mortality. In M. menidia and many other spe-
cies, winter migrations (Conover and Murawski 1982)
make multiple censuses impossible. We developed a
new method based on paired size distributions, col-
lected before and after winter, and tested its perfor-
mance in a Monte Carlo study. We then applied our
method to size distributions of M. menidia from three
latitudes to test the hypothesis that the changes over
winter represent growth at low latitudes and mortality
at high latitudes.

METHODS

The model

For simplicity, we refer throughout to collections
made before winter as ‘‘autumn’’ and after winter as
‘‘spring,’’ regardless of date of collection. Our goal
was to obtain estimates of winter mortality as a function
of body size from a pair of autumn and spring size
distributions, given that some growth may have oc-
curred. If we knew how winter growth depended on
body size, we could simply predict the spring size of
the individuals collected in autumn. We then could es-
timate relative survivorship from the numbers in each
predicted spring size class divided by the numbers in
the observed spring size classes (Fig. 1). The ratio of
the number of individuals in the corresponding size

classes (spring/autumn) is an estimate of survival, as-
suming that growth over winter is solely a function of
size. Although we do not know the size dependence of
growth, the estimation of survival from corresponding
size classes before and after winter forms the basis of
our method.

We assume that the rate of growth through the winter
G(x) is allometric. That is,

12g2G(x) 5 g x1 (1)

where x is body size and g1 and g2 are the parameters
governing growth. Allometric growth results in size
trajectories that are nearly exponential to nearly linear
for g2 in (0, 1). For g2 . 1, small individuals grow
faster than large ones and size trajectories converge,
resulting in decreasing variance in size over time and
giving the appearance of mortality.

Survival (S) of individuals growing along a given
size trajectory is given by

t1

S 5 exp 2 m[x(t)] dt (2)E[ ]
t0

where m(x) is the instantaneous rate of mortality for
individuals of size x, t0 and t1 are the start and end of
winter, and x0 and x1 are the individuals’ sizes at those
times. Because our observations are on sizes, we make
the change of variables from time to size (dt 5 dx/
G(x)) and Eq. 2 becomes

x1 m(x)
S 5 exp 2 dx . (2a)E[ ]G(x)x0

We consider two models for the size dependence of
mortality through the winter. Specifically,
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exponential mortality:

m(x) 5 exp(m 2 m x) (3a)1 2

2m2allometric mortality: m(x) 5 m x . (3b)1

Although both models appear in the size-dependent
mortality literature, the allometric mortality model (Eq.
3b) seems to be the most generally accepted (Petersen
and Wroblewski 1984, McGurk 1986, Pepin 1993). Pa-
rameter estimation for both models is somewhat sim-
plified by the fact that evaluation of the integral in Eq.
2a can be carried out explicitly for each (see Appendix).

Statistical approach

Although several prior methods treat the initial size
distribution as given (e.g., Wiegand et al. 2000), the
number of individuals in each size class is only an
estimate of the actual number, both before and after
winter. The first step is to choose appropriate size clas-
ses for the autumn distribution. The choice of bin width
(size intervals on which the histogram is constructed,
Dx) represents a trade-off between sampling error in
the numbers of individuals (decreases as Dx increases)
and uncertainty in the size of individuals within the
class (increases as Dx increases). We used Dx 5
2(IQR)n21/3 as suggested by Friedman and Diaconis
(1981), where IQR is the interquartile range of the au-
tumn sample and n is the sample size. This bin width
is nearly optimal for normal size distributions and is
robust to modest departures from normality.

Our algorithm for finding the growth and mortality
parameters, which we describe in detail, can be sum-
marized as follows:

1) Contruct a histogram for the observed autumn siz-
es based on near optimal bin widths, including several
(;10) extra classes at the extreme sizes.

2) Choose an initial set of growth and mortality pa-
rameters.

3) Based on the current choice of growth parameters
and autumn size classes, predict corresponding size
classes for the spring sample and tabulate numbers of
individuals in each.

4) Calculate the likelihood.
5) Choose new growth and mortality parameters to

improve the likelihood.
Repeat steps 3–5 until the maximum likelihood is ob-
tained.

If the expected number of individuals in size class
i is li in autumn, then the expected number of indi-
viduals in the corresponding spring size class is S̄ili,
where Si is the fraction of individuals in the size class
that survive the winter. The observed number in each
size class is assumed to be Poisson distributed; the
probabilities of observing ai individuals in autumn and
bi individuals in spring are each given by

a 21iP(a z u) 5 exp(2l )l (a !)i i i i

b 21¯ ¯ iP(b z u) 5 exp[2l S (u)][l S (u)] (b !) .i i i i i i

Assuming that the observations in each size class in
autumn and spring are independent, the probability of
observing the pair of samples before and after winter
is

a 1b b 21¯ ¯i i iP(a , b z u) 5 exp{2l [1 1 S (u)]}l S (u) (b !a !)i i i i i i i i

(4)

where u 5 {g1, g2, m1, m2} is a vector of growth and
mortality parameters. Because the location and width
of the corresponding size interval in spring depends on
the growth parameters, bi is a function of u. Conse-
quently, the apparent average survival of individuals
in the size interval depends on both the growth and
mortality parameters and is now written as S̄i(u). Di-
viding the autumn size distribution into N size classes,
the likelihood (L) of observing the entire distribution
is the product of Eq. 4 taken over each pair of corre-
sponding size classes, i.e.,

N

¯L(u, l, c) 5 exp{2l [1 1 cS (u)]}P i i
i51

a 1b b 21¯i i i3 l [cS (u)] (a !b !) (5)i i i i

where l 5 {l1 . . . lN} and a constant c has been in-
cluded to account for the possibility that the fraction
of the population sampled in the autumn is different
than that in the spring. Because we cannot distinguish
between sampling and overall mortality, this method
can only provide estimates of relative survival. Given
a set of growth and mortality models, we find the best
model by maximizing ln(L) over choices of l, c, and
u. For each of the li’s, an explicit solution exists. Spe-
cifically,

a 1 bi il 5 (6)i ¯1 1 cS (u)i

which can be interpreted as a weighted mean of the
numbers of individuals observed in size class i before
and after winter. Note that if there is no mortality and
the same fraction of the population is sampled both
times (i.e., c 5 S 5 1), li is simply the average number
in the size class before and after winter. Further, c can
be rapidly obtained from the following recursion equa-
tion:

21N NS̄ (u)(b 1 a )i i ic 5 b (7)O Onew i¯[ ]1 1 c S (u)i51 i51old i

which is derived by setting ]lnL/]c 5 0 and solving
for c. The remaining parameters (u) were obtained us-
ing a Nelder-Mead simplex algorithm implemented in
MATLAB (version 5.2; MathWorks 1998). The like-
lihood surface for the model is fairly rugose, with many
local maxima. To circumvent problems associated with
this, we started the fitting algorithm from 500 random
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TABLE 1. Sampling locations for Menidia menidia, sampling dates, and input parameters.

Site

Sample dates

Autumn Spring

Winter
duration

(d)

Bin
widths†

(mm)

Annapolis River, Nova Scotia (NS)

Great South Bay, New York (NY)

Edisto River, South Carolina (SC)

29 Sep 1987
26 Sep 1988

27 Oct 1987
25 Oct 1988

1 Dec 1987
28 Nov 1988

30 May 1988
3 Jun 1989

27 Apr 1988
18 Apr 1989

30 Mar 1988
20 Mar 1989

244
250

183
175

120
112

3.72
4.05

4.49
4.31

2.76
3.30

† Size intervals used to construct histograms of Menidia body size.

points within the plausible parameter space and chose
the highest likelihood from among the results.

Monte Carlo simulation

To test the ability of our method to estimate accurate
parameter values, we conducted a Monte Carlo simu-
lation. The simulation consisted of generating 1000
replicate data sets for each mortality model assuming
allometric growth. For each replicate, the autumn sam-
ple consisted of observations drawn from a normal dis-
tribution with mean 60 and standard deviation 8, cho-
sen to mimic the observed sizes of Menidia before
winter. The inverse transformation method (Ross 1997)
was used to generate each spring sample, which con-
sisted of observations from the distribution obtained
by modifying the autumn normal frequencies by size-
specific survival and growth as previously outlined. For
each replicate, L(u) was maximized to find the growth
and mortality parameters for both mortality models.
The mean, CV, and bias of the parameter estimates were
calculated for comparison with previous methods. To
address how the performance of the model is affected
by sample size, the simulation was repeated for samples
of 75, 150, 300, and 600 observations drawn from the
autumn and spring size frequency distributions.

In addition to the precision of the parameter esti-
mates, the ability of the model to discriminate between
changes in size distributions associated with growth
vs. mortality is also of interest. That is, how often will
rapid growth and low mortality be mistaken for slow
growth and high mortality? To address this, we repeated
the simulations for three cases: (1) rapid growth, low
mortality; (2) moderate growth, intermediate mortality;
and (3) slow growth, high mortality. In each case, the
parameters were chosen such that the mode of the
spring size distribution was fixed at 90 mm.

From these samples, we determined the probability
of correctly identifying the case from which the size
distribution was sampled based on the predicted sur-
vival and growth of an individual of average initial
size. Classification was based on dividing the space of
possible survival and growth values into logarithmi-
cally equal bins and tabulating frequencies in each bin.
The bin frequencies were used to estimate two prob-
abilities: (1) the probability that a distribution sampled

from a particular class was correctly classified, and (2)
the probability that distributions classified as cases 1,
2, or 3 were, in fact, sampled from the corresponding
cases.

Winter mortality in Menidia menidia

Menidia menidia is one of the most abundant fishes
along the east coast of North America (Bayliff 1950).
It has a simple annual life cycle, the timing of which
is strongly tied to temperature and photoperiod. Con-
sequently, growth and reproduction occur at tempera-
tures of 12–308C regardless of latitude (Conover and
Present 1990). M. menidia were sampled just before
and just after winter at three latitudes in 1987 and again
in 1988 (Table 1). The sites were Annapolis River,
Nova Scotia (NS; 448409 N), Great South Bay, New
York (NY; 428459 N), and Edisto River, South Carolina
(SC; 338209 N). These locations span most of the cur-
rent range of latitudes over which M. menidia is found
(Johnson 1975). Between 300 and 500 fish were cap-
tured by beach seining at each site. For further details
on the collection methods, refer to Billerbeck et al.
(1997). Size distributions of Menidia were broader at
high latitudes before winter; bin widths for each site
and year are shown in Table 1. For each pair of autumn
and spring size distributions, we estimated the maxi-
mum likelihood parameters for each mortality model.

Because the correct model for the size dependence
of mortality in Menidia is unknown, we wanted to de-
termine whether one model fit the data significantly
better than the other. The two mortality models can be
thought of as specific cases of a more general model
for the size dependence of mortality, i.e., dm(x)/dx 5
2m2xqm(x) where q is set to 0 for exponential mortality
and to 21 for allometric mortality, they may be com-
pared by a likelihood ratio test with one degree of
freedom. In order to test the hypothesis that changes
in the size distributions were due to growth in the south
and mortality in the north, we conducted a series of
likelihood ratio tests (Hilborn and Mangel 1997) com-
paring the effects of growth and mortality for each
latitude. The significance of the size dependence of
mortality was tested by comparing the full model (i.e.,
both mortality and growth) to the best model obtained
by setting m1 and m2 equal to zero. Similarly, the sig-
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TABLE 2. Results of Monte Carlo study for N 5 300 Menidia
menidia.

Parameter
CV of

predicted value Bias (%)

Exponential mortality
g1

g2

m1

m2

0.24
0.23
0.37
0.20

5.50
3.93
4.45
1.96

Allometric mortality
g1

g2

m1

m2

0.21
0.20
0.23
0.38

3.82
0.82
4.20
2.27

Notes: In both models, g1 and g2 are the slope and exponent
for the allometric model. For exponential mortality, m1 is a
scaling factor, and m2 determines the size dependence of mor-
tality. For allometric mortality, m1 and m2 are the slope and
exponent, respectively.

TABLE 3. Coefficients of variation as a function of sample size for the exponential mortality
and allometric mortality models for Menidia menidia.

Sample
size

(no. fish)

Exponential mortality

g1 g2 m1 m2

Allometric mortality

g1 g2 m1 m2

75
150
300
600

0.25
0.22
0.24
0.18

0.24
0.21
0.23
0.18

0.60
0.46
0.37
0.25

0.34
0.25
0.20
0.13

0.26
0.23
0.21
0.19

0.25
0.21
0.20
0.18

0.34
0.28
0.23
0.17

0.52
0.42
0.38
0.26

nificance of growth over the sampling period was as-
sessed by setting g1 5 g2 5 0.

RESULTS

Monte Carlo simulation

The fitting method adequately recovered the param-
eters from which each sample was drawn with very
small bias for samples of 300 individuals. Typical re-
sults for samples of 300 individuals are given in Table
2. Although the bias increased as sample size de-
creased, the estimated bias was always ,15%. The CVs
for the growth parameters are within 26% and improved
only modestly with increased sample size (Table 3).
The CVs of the mortality parameters were much more
strongly influenced by sample size, with substantial
gains in precision up to sample sizes of ;300 individ-
uals. The two parameters for the growth model were
strongly negatively correlated (r 5 20.66) and the two
mortality parameters were strongly positively corre-
lated (r 5 0.75), implying a fairly flat likelihood sur-
face in each of these directions. This is to be expected
because there are only two samples from which to es-
timate growth and mortality.

Once the maximum likelihood parameter estimates
were obtained for each sample, the predicted survival
and growth of an individual of average initial size was
used to evaluate the probability of mistaking growth
and mortality. We focus here on classification as one

of three cases: (1) rapid growth, low mortality; (2)
moderate growth, intermediate mortality; and (3) slow
growth, high mortality. Given the case from which the
sample was drawn, the probability of correctly reclas-
sifying a size distribution was 0.97. 0.88, and 0.99 for
cases 1, 2, and 3 respectively. On the other hand, given
that a sample was observed in a given case, the prob-
ability that this post hoc classification was correct was
0.99, 0.99, and 0.90 for cases 1, 2, and 3, respectively.

Winter mortality in Menidia menidia

The method reproduces the pre- and postwinter size
distributions of Menidia quite well (Fig. 2). The re-
sulting likelihoods for each model at each location and
year are reported in Tables 4 and 5. Overall, the allo-
metric mortality model fit the observed size distribu-
tions best. The total log-likelihood (summed over all
locations and years) for allometric mortality (6118.75)
is significantly greater (P , 0.0001) than that for the
exponential model (6106.85). Within years, the allo-
metric mortality model was significantly better than the
exponential model in 1987–1988, while in 1988–1989
there was no significant difference. Although param-
eters and P values for the exponential mortality model
were different from those of the allometric model, all
qualitative results were identical and the remainder of
the discussion is limited to the allometric mortality
model.

Growth was significant for all populations in 1987–
1988 whereas in 1988–1989, growth was only signif-
icant in South Carolina, SC (Table 4). In all instances,
growth rate was very slow and nearly proportional to
length (i.e., g2 , 0.1; Table 5). Over winter 1987–1988,
the greatest change in size due to growth occurred in
New York, NY, whereas in 1988–1989, it was maximal
in SC. Survival was significantly size dependent for
NS (Nova Scotia) and NY in each year, but independent
of size in SC (Table 4). The estimated relative survi-
vorship (Fig. 3) was steep for Nova Scotia M. menidia
in both years and a substantial portion of the observed
autumn size distribution was predicted to have near-
zero survival. There was also substantial interannual
variation in the survivorship curves for each popula-
tion, although the survivorship curves for NS were
more similar across years than were the curves for NY.
These differences among years could not be accounted
for by differences in overwinter growth alone: holding
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FIG. 2. Observed and predicted size distributions for the allometric mortality model. Each panel shows the relative
frequency, i.e., observed/maximum(observed) of fish in autumn (dark, upward bars) and spring (light, downward bars). The
lines indicate the distributions predicted by the best-fit model (parameters are shown in Table 4). The fit to the left-hand tail
of each autumn distribution should be ignored in evaluating model performance because predicted abundance in size classes
with near-zero survival are determined solely by the number before winter (see Eq. 6). Location abbreviations are: NS,
Annapolis River, Nova Scotia; NY, Great South Bay, New York; SC, Edisto River, South Carolina.

TABLE 4. Negative log likelihoods and probabilities for the allometric mortality model.

Site and
year Full model

No-growth
model P

No size
selection P

NS 1987–1988
NS 1988–1989
NY 1987–1988
NY 1988–1989
SC 1987–1988
SC 1988–1989

966.48
336.09

1847.38
1164.51
1266.36

537.93

962.87
336.09

1838.24
1164.51
1256.75

532.86

0.027
1.000
0.000
1.000
0.000
0.006

917.37
284.27

1830.31
1138.00
1265.99

535.24

0.000
0.000
0.000
0.000
0.690
0.068

Note: P values are based on x2 with df 5 2 and indicate the probability that the improvement
in the full model, by the addition of the missing term (growth or mortality), is due to chance.

growth parameters constant across years did not elim-
inate differences in relative survival.

DISCUSSION

The method described in this paper deals with the
problem of estimating the size dependence of mortality
when growth may also be a function of body size. This
problem, however, is not restricted to growth and mor-
tality, but applies to any trait that changes naturally
over time and is simultaneously subject to selection.
The progression of individuals among age classes or
ontogenetic stages is the most obvious example. Al-
though this has previously been dealt with in the lit-
erature (e.g., Caswell 2001) other factors such as sea-
sonal changes in energy content or the timing and mag-

nitude of reproductive effort have not. Methods such
as the one presented in this paper should be of great
use in the analysis of natural selection on dynamically
changing traits.

Analyses of size distributions may be separated into
two categories: those based on mixture models (Mac-
Donald and Pitcher 1979, Schnute and Fournier 1980)
and those based on the McKendrick-VonFoerster
(MVF) partial differential equation model (Banks et al.
1991, Wood 1994, Smith et al. 1998). The mixture
model methods typically decompose a set of multi-
modal frequency distributions collected at an annual
time increment into component distributions, allowing
single cohorts to be tracked through time. Methods
based on the MVF model (also referred to as the Sinko-
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TABLE 5. Significant parameters for the allometric mortality model.

Site and
year g1 (3 104) g2 (3 102) m1 (3 102) m2 c

NS 1987–1988 0.36
(0.31, 0.53)

5.68
(1.2, 10.27)

2.17
(2.13, 2.22)

8.77
(8.41, 9.2)

6.54

NS 1988–1989 NS NS 3.08
(2.97, 3.19)

4.93
(4.69, 5.18)

36.53

NY 1987–1988 5.89
(5.87, 6.34)

1.94
(1.75, 4.27)

2.25
(2.2, 2.32)

12.53
(11.69, 13.61)

1.23

NY 1988–1989 NS NS 5.17
(4.91, 5.45)

2.68
(2.55, 2.81)

33.35

SC 1987–1988 4.44
(4.04, 5.03)

1.09
(20.32, 5.13)

NS NS 1.41

SC 1988–1989 7.00
(6.97, 7.03)

9.16
(9.02, 9.36)

NS NS 1.83

Notes: Only significant parameters are shown. Confidence intervals (in parentheses) are
determined from the likelihood profile. Parameter values have been multiplied by factors of
10 where noted in column heads. See Fig. 2 for the site abbreviations.

FIG. 3. Predicted survivorship curves for (a) Nova Scotia
and (b) New York Menidia populations. Curves indicate sur-
vivorship over the winter of 1987–1988 (solid lines) and
1988–1989 (dashed lines). Overwinter survival for South
Carolina study populations was independent of size.

Streifer [1967] model) track changes in frequency dis-
tributions directly and may be subdivided further into
nonparametric and parametric methods.

Several authors have developed nonparametric meth-
ods for the general problem of determining growth and
mortality rates as functions of both size and time
(Banks et al. 1991, Wood 1994). These studies con-
struct approximate solutions to the MVF model using
nonparametric (e.g., spline) surfaces chosen to mini-
mize squared deviations from a set of 10 or more size
frequencies. Because our data were limited to pairs of
size frequencies, there is insufficient information to

generate meaningful nonparametric surfaces. Our ap-
proach, however, is analogous to a parametric MVF
model such as those used by Smith et al. (1998) and
Wiegand et al. (2000). In a thorough analysis, Smith
et al. (1998) specified models for growth and mortality
as functions of size, and fit a steady-state (i.e., constant
recruitment, constant size frequency) MVF model to a
series of 30 or more size frequencies. Using samples
of 400 size frequencies, their method produced esti-
mates with variability and bias comparable to ours
(Smith et al. 1998). Smith et al. (1998) incorporated
growth increment data gathered under laboratory con-
ditions to improve parameter estimates. Our use of
paired size distributions separated by a known time
interval allows the assumption of steady state to be
relaxed and estimates to be obtained in the absence of
laboratory data on growth.

Our Monte Carlo simulations demonstrate that rea-
sonably precise parameter estimates may be obtained
from the sort of data typically collected in studies of
winter mortality. In all methods, however, mortality is
far more difficult to estimate than is growth. Our meth-
od could readily be extended to the analysis of multiple
frequency distributions, but will be of particular value
when only two distributions are available. However,
the approach developed here requires that there be a
set of reasonable candidate functions from which to
choose in describing changes in the size distribution
over time; in situations where the data are sufficient,
the nonparametric methods may be preferred.

In previous studies of winter survival, it has been
difficult to distinguish between size-dependent growth
and mortality based on size frequency distributions col-
lected before and after winter. These studies have typ-
ically been limited to observations about changes in
the mean and variance of size distributions before and
after winter (e.g., Toneys and Coble 1979, Hurst and
Conover 1998). In situations where the possibility of
growth can be rigorously ruled out, changes in the size
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distribution may confidently be attributed to mortality.
However, because growth may be size dependent such
that growth trajectories converge over time and the
variance in size consequently decreases, changes in
mean and variance are often insufficient to establish
the size dependence of mortality. Post and Evans
(1989) advocated the use of Q-Q plots to help distin-
guish growth from mortality, but noted that the results
were equivocal. Application of our method allows the
effects of growth and mortality to be accounted for
simultaneously. For the purpose of studying winter sur-
vival in M. menidia, we limited our analysis to one
growth model and two plausible mortality functions
commonly applied in the literature. The allometric
growth assumption allows growth curves to be nearly
linear to nearly exponential, and allows size trajectories
to converge or diverge. Because growth over winter is
likely to be quite limited, this should be a reasonable
approximation. Analyses of the size dependence of
mortality during other life history stages have shown
that mortality is either exponential (Wang and Hay-
wood 1999) or allometric with body size (Petersen and
Wroblewski 1984, Pepin 1993). The assumption that
mortality over the first winter also decreases with body
size is supported by the observation that most previous
studies (Conover and Present 1990, Hurst and Conover
1998, Loison et al. 1999, Nagle et al. 2000), have re-
ported shifts in size distributions that imply selection
against smaller individuals. In the present study, winter
mortality in M. menidia in NS and NY was best de-
scribed by the allometric mortality model. However,
previously reported allometric exponents range from
0.75 to 1.2 (assuming that body mass is proportional
to cubed length; Petersen and Wroblwski [1984], Pepin
[1993], Lorenzen [1996]) for mortality during the
growing season or across species. The allometries that
we have found are much steeper (2.68–12.53), imply-
ing that the size dependence of winter mortality is fun-
damentally different from mortality observed through-
out the growing season.

It is commonly thought that because winter is a pe-
riod of low productivity, starvation is the primary
source of winter mortality in fishes (Cunjack 1988).
Johnson and Evans (1996) suggest that because mass-
specific lipid reserves scale as W0.57 and mass-specific
metabolism scales as W20.25, the time to starvation
should scale as W0.82, implying that the allometric ex-
ponent (in terms of length) for first winter mortality
should be ;2.4. For M. menidia, the allometry of en-
ergy reserves varies with latitude, with estimates of
4.05, 5.18, and 5.73 for SC, NY, and NS, respectively
(Shultz and Conover 1997, 1999). There is also some
interpopulation variability in standard metabolic rate;
;1.96 for SC and 2.24 for NS after conversion to length
(Billerbeck et al. 2000, Munch and Conover 2002). The
expected starvation allometry for M. menidia of dif-
ferent latitudes would be ;2.09 in SC and 3.49 in NS,
with NY being intermediate. These starvation expo-

nents are substantially lower than the mortality expo-
nents observed in this study, except for those from NY
1988–1989. Massemin and Handrich (1997) and Hurst
et al. (2000) have argued that lipid reserves alone can-
not explain the observed size dependence, and our re-
sults support this.

Several alternative mechanisms have been demon-
strated to play an important role in winter mortality.
Lethal exposure to low temperatures, increased sus-
ceptibility to predation and disease, loss of osmoreg-
ulatory function, and size-dependent migration success
are potential mortality sources, either alone or in com-
bination. The extreme steepness of the mortality al-
lometries that we observed suggests a threshold effect.
One possibility is that migration success is strongly
tied to body size. Both NS and NY Menidia migrate
offshore prior to winter (Conover and Murawski 1982),
whereas SC Menidia remain inshore throughout the
winter. The fact that in both years winter survival was
independent of body size in SC, whereas it was strongly
size-dependent for NS and NY, suggests that size-de-
pendent migration success may play an important role
in winter survival.

Size dependence of winter survival has important
implications for the evolution of body size and growth
for local populations. Several authors have noted that
Bergmann size clines commonly observed in ecto-
therms may be explained by size-dependent winter sur-
vival (Conover and Present 1990, Bodie and Semlitsch
2000). Accordingly, M. menidia from Nova Scotia are
somewhat larger at maturity than are their southern
conspecifics (Conover and Present 1990). In Nova Sco-
tia, winter mortality was consistently strongly size se-
lective; fish smaller than 70 mm were unlikely to sur-
vive the winter. In New York, the survivorship curve
was steeper than in NS in 1987–1988, but less steep
in 1988–1989. Because no evidence has been found for
latitudinal differences in the size dependence of mor-
tality during other seasons (Lorenzen 1996), first-win-
ter mortality is likely to be the chief agent of size
selection with a latitudinal gradient.

In temperate species, the duration of the growing
season is strongly tied to latitude such that increased
size at high latitudes must be achieved by faster growth.
In fact, Menidia from Nova Scotia grow 2–3 times
faster than South Carolina Menidia in a common en-
vironment (Present and Conover 1992, Billerbeck et
al. 2000). Conover (1992) argued that northern Menidia
have evolved rapid growth rates in order to survive the
winter. Our results support the hypothesis that both
Bergmann size clines and countergradient variation in
juvenile growth may be the result of a latitudinal gra-
dient in the size dependence of first-winter mortality
in Menidia.
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APPENDIX

An analytical integration of size-dependent mortality (Eq. 2a) is available is ESA’s Electronic Data Archive: Ecological
Archives E084-051-A1.


