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Description of Negative Binomial model used to predict the effects of reduced prey availability 
on pup growth rates 

To examine the effects of changes in prey availability on pup growth rates, we developed a relatively 
simple model that accounted for the two behavioral strategies female otariids use to cope with 
environmental change (Costa 2008). To do so, we assumed that pup growth rates could be predicted 
based on the length of the maternal cycle, which consists of a foraging trip to sea and energy delivery 
to the pup onshore. Because California sea lions do not appear to alter the amount of time spent 
ashore in response to trip duration (McHuron et al. 2016), changes in the length of the maternal cycle 
are primarily driven by trip duration. Thus, we used the Negative Binomial Distribution (NB) to 
predict the average duration of a foraging trip under varying prey availability by altering the 
probability of finding food (Mangel 2006). Parameter values used in the model described below can 
be found in Table S1. 

A foraging trip can be decomposed into its two main components, travel time (τ) and time spent 
finding and acquiring prey. We assumed that a female did not terminate a foraging trip until she 
acquired enough energy to meet a predetermined energetic target that was based on her own energy 
needs and those of her pup. This assumption was based on the finding by Costa et al. (1989) that 
female Antarctic fur seals (Arctocephalus gazella) stayed at sea until they achieved a substantial 
proportional change in body mass, even though extending the duration of the trip resulted in reduced 
growth rate of their pup. The average energetic target for a female of mass M whose pup needs are 
Npup (kJ day-1) and who spends the average number of days at sea and on land are  

 

( )0.75 0.75 ( )sea land sea landsea land pup

metabolized

d FMR M d FMR M d d N
N

P

+ + +
=

  (1) 

The average trip duration at sea can be further decomposed into 

 2sead s k τ= + +   (2) 

where s is the average number of days of successful foraging, k  is the average number of days of 
unsuccessful foraging, and τ  is the average travel time to a foraging ground. The average number of 
successful days of foraging ( s ) is a function of the average daily energy value of food (Y ) and the 
average energetic target, such that   

 

Ns
Y

=
  (3) 

We parameterizedN  (based on an 80 kg female with a 15 kg pup), s , τ , and Y  using the behavior 

and energetics data described for the bioenergetic model. Specifically, we estimated (1) s  based on 
the proportion of time at sea spent diving combined with estimates of the maximum consumption rate 
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based on the kg of prey needed to meet N , (2) τ based on existing tracking data, and (3) Y by 
rearranging Eqn 8. The values of female and pup mass were arbitrarily chosen for illustrative 
purposes.   

The appropriate probability distribution for the number of unsuccessful days of foraging (k) is the NB 
distribution (Mangel 2006), which describes the probability of waiting for a fixed number of 
successes. In particular, we set 

 

( | , ) Pr{  days of unsuccessful foraging before the  day of successful 
foraging given that the probability of success on a day is }

thp k s k sλ
λ

=

  (4) 

The NB distribution for k  is 

 

1 ( 1)!( | , ) (1 ) (1 )
!( 1)!

s k s ks k s kp k s
k k s

λ λ λ λ λ
+ −⎛ ⎞ + −= − = −⎜ ⎟ −⎝ ⎠   (5) 

The terms in Eqn 10 can be evaluated iteratively without having to compute the factorials by noting 

that (0 | , )  and for 0sp s kλ λ= ≥   

 
( 1| , ) (1 ) ( | , )

1
k s

p k s p k s
k

λ λ λ
+⎛ ⎞

+ = −⎜ ⎟+⎝ ⎠   (6) 

In principle, k can be unbounded, but both in nature and computationally it cannot. Thus, we chose a 

maximum value for max, ,k K  so that 

max

0

( | , )
K

k
p k s λ

=
∑ was close to 1 (i.e., 0.999) and then renormalized 

so that it was equal to 1. When k follows the NB distribution given in Eqn 11, its average value is 
(1 )sk λ
λ
−=

. Consequently, Eqn 7 can be rewritten as 

 

(1 ) 2 2sea
s sd s λ τ τ

λ λ
−= + + = +

  (7) 

and inverted to obtain the average daily probability of foraging success given the average trip length 
and average number of successful foraging days needed to match energy demands 

 2sea

s
d

λ
τ

=
−   (8) 

We introduced environmental variability by multiplying λ  by a value between 0 and 1, representing 
the proportion reduction in food relative to “average” conditions. To account for the ability of females 
to increase effort to offset this reduction, we assumed that if the current probability of finding food 
was λ, a female increased her effort by ε so that 

 (1 )ε λ λ+ =   (9) 

We assumed that females were only able to increase their effort by 50% ( max 0.5ε = ) so that there are 

situations in which environmental conditions are so poor that she will not be able to reach λ  through 
increases in effort alone. We denoted the probability of finding food given λ and ε as λadj. 

 The daily pup growth rate (G ) for each value of k was calculated by converting the milk delivery 
rate in MJ day-1 to growth rate in kg day-1 using the equations in Oftedal et al. (1987) where 
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Milk delivery rate

2
pup

land

N
s k dτ

=
+ + +   (10)  

The expected pup growth rate is then 

 
{ }

max

0

( | , ) ( ) 
k

adj
k

E G p k s G kλ
=

=∑
  (11)  

with variance 

 
{ } { }

max 22

0

( ) ( | , )
K

Adj
k

V G G k p k s E Gλ
=

= −∑
  (12) 

We set a maximum limit on growth rate assuming that females would not allocate all surplus energy 
to the pup if they were unusually successful. We calculated expected pup growth rates assuming that 
(1) females increased effort before trip duration, or (2) that females only increased trip duration to 
account for changes in prey availability. Under this framework, expected growth rates of pups is 
predicted to increase during better than average foraging conditions because females reach N faster 
than expected; thus the same amount of milk energy is being delivered over a shorter time interval. 
The opposite occurs under poor environmental conditions when trip durations increase because the 
same amount of energy (or potentially less) is being delivered over a longer time interval than 
expected.   

 

Table S1. Description and values of parameters used to model the effects of prey availability on pup 
growth. 

Variable Description Value In-text 
equation Data Source 

N  Energy needs per foraging trip 305 MJ Equation 6 See Table 1 
M   Female mass 80 kg   

seaFMR   
Mass-specific at-sea field metabolic 
rate 

1.35 MJ 
day-1   See Table 1 

sead   Duration of foraging trip 4.5 days Equation 7 McHuron et al. 
2016 

τ   
s   
   k  

Travel time to foraging patch 
# successful foraging days 
# unsuccessful foraging days 

0.5 days 
2.5 days 
1 day 

 
 

Estimated 
from  
empirical data 

landFMR   
Mass specific onshore field metabolic 
rate 

0.60 MJ 
day-1  See Table 1 

landd   Time on land 1.5 days  McHuron et al. 
2016 

pupN  
pupM   

Milk intake 

Energy needs of pup 
Pup mass 
Mass-specific milk intake rate 

114 MJ 
15 kg 
1.38 MJ 
day-1 

 See Table 1 

metabolizedP   Metabolizable energy 0.87  See Table 1 

Y   
Daily energy gain from successful 
foraging 122 MJ Equation 8 Calculated 

Gmax Maximum allowed pup growth rate 0.11 kg 
day-1  Leising et al. 

2015 
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