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Summary

1. Anthropogenic disturbance is of increasing concern for wildlife populations, necessitating the development of

models that link behavioural changes at the individual level with biologically meaningful changes at the popula-

tion level.

2. Wedeveloped a general framework for estimating the fitness consequences of disturbance that affects foraging

behaviour using state-dependent behavioural theory implemented by Stochastic Dynamic Programming (SDP).

We illustrate this framework using generalized examples of pinnipeds, a group of marine carnivores that include

both capital- and income-breeding species. We examined how disturbance affected pup recruitment separately

for each reproductive strategy, and the impact of foraging decisions and parameter values onmodel results.

3. The effect of disturbance on pup recruitment was greater for income than capital breeders for all disturbance

scenarios. Disturbance had negligible effects on pup recruitment when it occurred within less frequented foraging

patches, but moderate to large effects when it occurred within an important foraging patch. Model results were

sensitive to values of patch productivity (the energy gained from successful foraging), the probability of distur-

bance and individual behavioural choices in the face of disturbance.

4. State-dependent behavioural theory implemented by SDP is a powerful tool for investigating when beha-

vioural changes in response to disturbance may be meaningful at the population level. This approach allows us

to incorporate many factors that are known to influence the behavioural and physiological responses of animals

to anthropogenic disturbance, and places disturbance within the context of a temporally and spatially variable

environment. The general framework we have developed can be used to estimate the consequences of anthro-

pogenic disturbance across a broad range of species.

Key-words: mammal, pinniped, Population Consequences of Disturbance, Stochastic Dynamic
Programming

Introduction

A major challenge in conservation and resource management

is in understanding when measurable short-term responses to

anthropogenic disturbance result in biologically meaningful

changes in populations (Gill, Norris & Sutherland 2001).

Quantifying these impacts is critical given increasing overlap

between human activities and wildlife in both terrestrial and

marine environments. Behaviour is often the first response to

disturbance (Hoffman&Parsons 1991), although there may be

deleterious physiological changes in response to stressors that

do not elicit behavioural changes (Weimerskirch et al. 2002).

Avoidance or a switch in behavioural states are common

responses to disturbance (Carney & Sydeman 1999; Fortin &

Andruskiw 2003; Williams, Trites & Bain 2006b), leading to

changes in time-activity and energy budgets (Williams, Lus-

seau & Hammond 2006a). In these situations, disturbance

clearly has an effect on the individual’s behaviour, but the

question remains as to the broader implications of these beha-

vioural shifts. Assessing the Population Consequences of Dis-

turbance (PCoD) therefore requires models that link changes

in an individual’s behaviour or physiology as a result of distur-

bance with health, vital rates and ultimately population

dynamics (Fig. 1; New et al. 2014;King et al. 2015; Fleishman

et al. 2016b).

There are a variety of approaches that have been used to

quantify the transfer functions that estimate the population

consequences of anthropogenic disturbance. Matrix models

provide a natural framework (Caswell 2001; Williams et al.

2016) because the leading eigenvalue of the matrix, with and

without disturbance, allows for the assessment of the impact of

disturbance on the population; however, the question remains

how one fills in the elements of the matrix. Another approach*Correspondence author. E-mail: emchuron@ucsc.edu
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is to use Expert Elicitation, where scientists or other informed

individuals provide values based on their own expertise in a

structured manner (Martin et al. 2012; Fleishman et al.

2016a). For example, King et al. (2015) used Expert Elicitation

to quantify the transfer function between disturbance (expo-

sure to wind farm construction) and vital rates (calf and juve-

nile survival, and fertility) of harbour porpoises (Phocoena

phocoena), which was then incorporated into a stochastic pop-

ulation model to estimate the population consequence of dis-

turbance. This approach is problematic when experts

themselves disagree (King et al. 2015), although the use of

models may resolve these differences (Wolf & Mangel 2007;

Stier et al. 2016). State-dependent behavioural theory, as

implemented by Stochastic Dynamic Programming (SDP;

Mangel & Clark 1988; Houston & McNamara 1999; Clark &

Mangel 2000), is a third tool for scientists who provide advice

tomanagers. In particular, SDP originates from the basic tenet

that behaviour is an evolutionary trait and allows for different

behavioural responses to disturbance conditioned on the envi-

ronment, and an animal’s physiological state and reproductive

fitness.

SDP models have been used to study the effects of natural

environmental disturbance across a wide range of taxonomic

groups from insects to mammals (Bull, Metcalfe & Mangel

1996; Tenhumberg, Tyre & Roitberg 2000; Denis et al. 2012;

Satterthwaite & Mangel 2012). The development and use of

SDP models involves four main steps: (i) characterization of

physiological state variables and how those change in response

to environment and behaviour; (ii) linking state variables to a

measure of Darwinian fitness; (iii) derivation of backward iter-

ation equations to predict the behaviour of individuals based

on state and time; and (iv) Monte Carlo forward simulation to

predict the distribution of behaviours. These models are built

on the assumption that potential environments are in the evo-

lutionary history of the organism; clearly anthropogenic dis-

turbance is not. The ability to incorporate an individual’s state

is critical because the response of an individual to disturbance

is affected by its physiological and behavioural state (Williams,

Trites & Bain 2006b; Stankowich 2008; Goldbogen et al. 2013;

Naguib et al. 2013). Furthermore, changes in behaviour are

difficult to translate to population-level changes without the

incorporation of a state variable (Houston, Prosser & Sans

2012).

We used SDP to develop a general framework for linking

behavioural changes as a result of disturbance with repro-

ductive fitness. Specifically, we assessed the consequences of

disturbance on offspring recruitment of pinnipeds, a diverse

group of semi-aquatic marine carnivores encompassing true

seals, sea lions, fur seals and walrus. Pinnipeds are impor-

tant predators in marine ecosystems in which anthropogenic

disturbance is a concern, and they provide good model sys-

tems because species within this group encompass the two

main reproductive strategies (capital and income breeding)

exhibited by a variety of taxonomic groups (Costa 1991;

Boyd, Lockyer & Marsh 1999). Reproductive strategies are

particularly relevant to disturbance because they involve the

transfer of resources from adult females to dependent off-

spring. Capital breeders solely rely on energy from body

stores accumulated before the birth of offspring, and

income breeders use energy acquired on foraging trips

throughout lactation to support offspring. In this paper, we

keep the dichotomy of pure income and capital breeders,

recognizing that in nature there is a gradient between these

two strategies (Costa 1991; Boness & Bowen 1996). We

developed separate SDP models for each reproductive strat-

egy, and discuss how the effects of disturbance are affected

by reproductive strategy, animal behaviour and sensitivity

to parameter values. We also provide examples and discus-

sion for how this general framework could be adapted for

species-specific models.

Materials andmethods

All pinnipeds share an annual reproductive cycle that includes: (i) the

birth of the offspring at time tB; (ii) weaning of offspring at time tW; (iii)

fertilization at time tF; and (iv) delayed implantation at time tI. The tim-

ing and order of these features varies with reproductive strategy and

species (Boyd, Lockyer &Marsh 1999), making it difficult to develop a

model that is generally illustrative of the ideas, yet applies to a specific

species in detail. For illustrative purposes, we considered a single

annual reproductive cycle. The relevant time interval for the capital

breeder was from the time of weaning in 1 year to the time of birth in

the next year; for the income breeder it was from the birth of offspring

in 1 year to the time of weaning in the next. To limit notation, we used

the same symbols to characterize these intervals and parameters for

both reproductive strategies (Table 1). Parameter values were based on

general characteristics of pinnipeds (physiology) or arbitrarily chosen

(environment, disturbance), since they were not meant to represent any

species in particular.

PHYSIOLOGICAL DYNAMICS

We characterized females by a single physiological state, mass in kg

X(t) at time t within the feeding period of total time T.We bounded a

female’s state by a maximum value xmax and a critical value xc in the

sense that a female died if she fell below the critical mass. Regardless of

whether females ever reach xmax, an upper bound on mass was neces-

sary to operationalize the model. The income breeder also had a target

Fig. 1. Aconceptual model of the linkages (transfer functions) for how
disturbance that affects foraging behaviour translates to a population-
level response. Linkages modelled in this paper are shown in red. Our
general framework using StochasticDynamic Programming also incor-
porates the influence of environmental conditions (e.g. prey availability
and distribution), physiological state (e.g. body condition or mass),
and fitness (e.g. decisions based onmaximizing reproductive fitness) on
foraging behaviour. Figuremodified fromNew et al. (2014).

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution

2 E. A. McHuron et al.



mass xtar that set her feeding behaviour as described below, and an

additional state,M(t), which is the cumulativemilk delivered up to time

t (ranging from 0 to a maximum valuemmax). Pup recruitment was cal-

culated based on the female mass at birth (capital) or total milk deliv-

ered at weaning (income; Fig. 2).

The energy requirements of a female were calculated at each time

step using the equation fromWilliams &Maresh (2015) for field meta-

bolic rate (FMR) in kJ day!1 as a function of bodymass

FMRkJðxÞ ¼ 3511x0%45 eqn 1

For the capital breeder, we assumed that FMR also included the

cost of gestation. We converted FMRkJ (x) and foraging gains to

mass (kg day!1) assuming that mass gain or loss occurred solely

through changes in blubber, an energy storage tissue used by pin-

nipeds during fasting (Markussen, Ryg & Oritsland 1992). The

energy content of blubber was assumed to be 33 kJ g!1 based on

measurements from two Arctic pinnipeds (Kuhnleini & Soueida

1992). A female at xtar would need to catabolize 0%75 kg of blubber

per day (1% of body mass) to meet her daily energy requirements,

which is similar to estimates of daily mass loss (0%64–3%6 kg day!1,

1%2–3%2% body mass day!1) for pinnipeds during fasting (Fedak &

Anderson 1982; Costa & Trillmich 1988; Markussen, Ryg & Orits-

land 1992; Rea, Rosen & Trites 2007).

Capital and income breeders used only one patch per day in the

absence of disturbance. When the capital breeder did not find prey on

any given day the state dynamics were

Table 1. Description of parameter or variable, interpretation and baseline value used in the Stochastic Dynamic Programming equations.

Parameter/variable Interpretation Nominal value

Temporal
T Length of foraging interval (days) 300
t Timewithin foraging interval t = 1,. . .T = 300

Physiological
X(t) Female’smass at time t Eqns 2–5
x Specific value of themass
xmax Maximumvalue ofmass 100 kg
xc Critical (starvation) value ofmass 40 kg
xtar Target value ofmass 75 kg
M(t) Milk deliveries through time t Eqns 4 and 5
m Specific value ofmilk delivery
mmax Maximumvalue ofmilk delivery 35 kg
FMR(x) FieldMetabolic Rate atmass x Eqn 1
FMRtar FieldMetabolic Rate at targetmass

Environmental
ki Probability of finding prey in patch i 0%2, 0%4, 0%5
pi Profitability of prey patch i 1%1
Yi Value (kg) of prey in patch i piFMRtar

ki
bi Rate ofmortality in patch i 0%0003 day!1

pd(i) Probability of disturbance in patch i 0%5
q Reduction in kiwhen a female forages in a disturbed patch 0%2
cs Increase in biwhenmoving to an undisturbed patch 0%2
ce Increase in cost whenmoving to an undisturbed patch 0%3

Fitness function
Capital breeder

φcap (x) Probability of pup recruitment givenX(T) = x Eqn 6
x50 Female’smass that gives a 50%chance of pup recruitment 60 kg
Fcap(x,t) Maximum expected value of φcap (X(T)) givenX(T) = x Eqn 7
Vi(x,t) Fitness value of visiting patch iwhenX(T) = x Eqn 11

Income breeder
φinc(m) Probability of pup recruitment givenM(T) = m Eqn 7
m50 Milk delivery that gives a 50%chance of pup recruitment 14 kg
Finc(x,m,t) Maximum expected value of φinc(M,T) givenX(T) = x,M(T) = m Eqn 8
Vi(x,m,t) Fitness value of visiting patch iwhenX(T) = x,M(T) = m Eqn 14

Forward simulation
Xk(t) Mass of the kth female at time t k = 1,. . .K = 300
Mk(t) Milk delivery to the kth pup up to time t (income breeder) Simulation output
Ek Exploratory index: random variable from beta distribution l = 0%75,r = 0%025
~U Random variable uniformly distributed on [0,1]
eZ Normally distributed random variable l = 0,r = 1
pr(k) Probability that kth pup recruits without disturbance Simulation output
pdr (k) Probability that kth pup recruits with disturbance Simulation output
!pr Population average of pr(k) Standard computation
!pdr Population average of pdr (k) Standard computation
Vr Population variance of !pr Standard computation
Vd

r Population variance of !pdr Standard computation
Vp Pooled variance Average of variances
d Cohen’s dmetric for assessing effect of disturbance Eqn 15
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Xðtþ 1Þ ¼ x! FMRðxÞ eqn 2

and when she did find prey in patch iwith energy contentYi (in kg) the

state dynamics were

Xðtþ 1Þ ¼ x! FMRðxÞ þ Yi eqn 3

When the income breeder did not find prey, Eqn 2 applied to her as

well and nomilk was delivered, so thatM(t + 1) = M(t). If she did find

prey but the energy was not enough to account for her energetic needs

and raise her current mass to xtar, she kept all of the energy for herself.

In this case

Xðtþ 1Þ ¼ x! FMRðxÞ þ Yi

Mðtþ 1Þ ¼ MðtÞ
eqn 4

Alternatively, if there was excess energy it was supplied to the off-

spring as milk. That is, given the current mass and energetic needs, the

amount of prey needed to reach xtar was xtar!x + FMR(x) since she

had to cover current metabolic costs and then raise her mass to the tar-

get level. Since the excess prey that can be converted to milk was

Yi! [xtar! x + FMR(x)], the dynamics in this case were

Xðtþ 1Þ ¼ xtar

Mðtþ 1Þ ¼ MðtÞ þ Yi ! xtar ! xþ FMRðxÞ½ (
eqn 5

THE ENVIRONMENT

The foraging environment consisted of three patches that were equidis-

tant from the rookery. Patch iwas characterized by the long-term prob-

ability of finding prey on any given day ki, the long-term average value

of prey Yi, and the risk of mortality bi in the sense that the probability

of surviving a foraging day was e!bi . All patches had the same risk of

mortality, but we retained this variable as a general feature in themodel

because the assumption of equal predation riskmay not hold in nature.

To focus on how disturbance affected the ability to forage, we assumed

that the quality of prey in a patch was constant over the feeding inter-

val. For a patch to be profitable, it must contain sufficient energy for

both femalemaintenance and pup growth (Costa 2012). To capture this

idea we set Yi ¼ piFMRtar

ki
where pi is the productivity of the patch.

Because we chose one value for pi, the expected mean daily return from

foraging was identical among patches, but the predictability of

successful foraging varied greatly among patches (e.g. for the values in

Table 1, only 1 in 5 visits to Patch 1 likely resulted in success in compar-

isonwith 3 out of 5 visits to Patch 3).

SDP EQUATIONS AND FORWARD SIMULATIONS

Step 1. Fitness Function and End Conditions for the Dynamic

Programming Equations

The capital breeder

The probability of recruitment to the population by a pup whose

mother has terminal reserves X(T) = x was denoted by /cap(x). We

chose a fitness function that depended upon a single parameter and had

a sigmoidal shape

/capðxÞ ¼
x3

x3 þ x350
eqn 6

where x50 is the value of female mass that gives a 50% chance of the

pup recruiting the next year (Fig. 2). We defined fitness Fcap(x,t) as the

maximum (taken over behavioural decisions by the female) expected

(taken over stochastic events of survival and finding prey) value of pup

recruitment given thatX(t) = x

Fcapðx; tÞ ¼ maxE /capðXðTÞjXðtÞÞ ¼ x
! "

eqn 7

The income breeder

The probability of recruitment to the population by a pup with term-

inal milk deliveryM(T) = m was denoted by /inc(m). We again used a

sigmoidal relationship to describe the relationship between milk deliv-

ery and pup recruitment

/incðmÞ ¼ m2

m2 þm2
50

eqn 8

where m50 is the value at which /inc(m) = 0%5 (Fig. 2). We defined fit-

ness Finc(x,m,t) as the maximum (taken over behavioural decisions by

the female) expected (taken over stochastic events of survival and find-

ing prey) value of pup recruitment given thatX(t) = x,M(t) = m

Fig. 2. Schematic illustrations of the physiological dynamics for capital and income breeders. The capital breeder accumulates mass (X) from the
time of weaning (t) to the time of birth (T), whereas the income breeder transfers milk to a pup from birth to weaning after raising her own mass to
the target level (xtar). If a female is below xtar and encounters prey that is insufficient to raise hermass above xtar, she keeps all of the energy for herself
and delivers no milk. If the prey brings her above xtar, than any excess after accounting for metabolism is delivered as milk. We determined pup
recruitment based onX(T) for the capital breeder andM(T) for the income breeder.
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Fincðx;m; tÞ ¼ maxE /incðMðTÞjXðtÞ ¼ x;MðtÞ ¼ mÞf g eqn 9

Step 2.Dynamic ProgrammingEquations

The capital breeder

If Vi (x,t) denotes the fitness value of visiting patch i when X(t) = x,

then in light of the definition in Eqn 7

Fcapðx; tÞ ¼ max
i

Viðx; tÞf g eqn 10

We constructedVi(x,t) for the capital breeder as follows:

1. If the female did not die while foraging and did not find prey,

which happened with probability e!bi (1! ki), then her state at the

start of the next time periodwas x!FMR(x) and her future fitness

Fcap(x!FMR(x), t + 1).

2. If the female did not die while foraging and found prey, which

happened with probability e!biki, then her state at the start of the

next time period was x!FMR(x) + Yi and her future fitness

Fcap(x!FMR(x) + Yi, t + 1).

Thus

Viðx; tÞ ¼ e!bi
#
kiFcapðx! FMRðxÞ þ Yi; tþ 1Þ

þ ð1! kiÞFcapðx! FMRðxÞ; tþ 1Þ
$ eqn 11

We solved Eqns 6, 10 and 11 backwards in time starting at t = T.

Doing so generated the optimal patch to visit i*(x,t) for every value of

female mass at time t and the optimal alternative patch j*(x,t) if she

arrived at the best patch andwas disturbed.

The income breeder

The logic of the derivation of the dynamic programming equation for

the income breeder is similar to that for the capital breeder. In principle,

even if the female died, the pup could recruit to the population if it had

sufficient resources, so we set

Fincðxc;m; tÞ ¼ /incðmÞ eqn 12

If Vi (x,m,t) denotes the fitness value of visiting patch i when

X(t) = x,M(t) = m, then in light of the definition in Eqn 9

Fincðx;m; tÞ ¼ max
i

Viðx;m; tÞf g eqn 13

We constructedVi(x,m,t) for the income breeder as follows:

1. If the female died while foraging, which happened with proba-

bility 1! e!bi , pup recruitment was calculated based on the milk

already delivered.

2. If the female did not die while foraging and did not find prey,

which happened with probability e!bi (1!ki), then her state at the

start of the next time period was x!FMR(x), her milk delivery

remained unchanged, and her future fitness was Finc(x!FMR(x),

m,t + 1).

3. If the female did not die while foraging and found prey, which

happenedwith probability e!biki, thenwemust consider two cases.

IfYi < xtar!x + FMR(x) then the preywas insufficient to bring

her to xtar and no milk was delivered. Her state at the start of the

next time period was x!FMR(x) + Yi and milk delivery

remained unchanged. In this situation, future fitness was

Finc(x!FMR(x) + Yi,m,t + 1). Alternatively, if Yi > xtar! x

+ FMR(x) then her state at the next time period was xtar, milk

was m + (Yi! [xtar!x + FMR(x)]), and future fitness was

Finc(xtar,m + (Yi! [xtar!x + FMR(x)],t + 1). If we let H(z)

denote the indicator function that is 1 if z ≥ 0 and 0 otherwise,

we have

Viðx;m; tÞ ¼ 1! e!bi
% &

/ðmÞ þ e!bi ð1! kiÞ
Fincðx! FMRðxÞ;m; tþ 1Þþ
e!bikiHðYi ! ½xtar ! xþ FMRðxÞ(Þ
Fincðxtar;mþ Yi!½xtar ! xþ FMRðxÞ(; tþ 1Þ
e!bikið1!HðYi ! ½xtar ! xþ FMRðxÞ(ÞÞ
Fincðx! FMRðxÞ þ Yi;m; tþ 1Þ eqn 14

As above, we solved Eqns 8 and 12–14 backwards in time starting at

t = T to generate the optimal i*(x,m,t) and optimal alternative patch

j*(x,m,t) if she arrived at the optimal patch andwas disturbed.

Step 3. Forward Simulations

We used forward Monte Carlo simulations (Mangel & Clark 1988;

Clark & Mangel 2000) to predict the fitness consequences of distur-

bance for a simulated population ofK = 300 individuals. For both cap-

ital and income breeders, Xk(t) denoted the mass of the kth female at

time t and for the income breeder, Mk(t) denoted the milk delivery to

the pup through time t, with Mk(1) = 0. All individuals started at the

target mass Xk(1) = xtar, which eliminated one source of variation

when assessing the consequences of disturbance. At the beginning of

each time step, a female visited the optimal foraging patch derived

using the SDP equations.

We incorporated an aspect of individual behaviour in the form of a

personality trait into our model to allow females to respond to distur-

bance in different ways.We chose this as an example because personal-

ity traits influence foraging behaviour (Patrick & Weimerskirch 2014;

Mella et al. 2015), thus may influence the behavioural reactions of an

individual to disturbance (Martin & R"eale 2008). When a female

arrived at the optimal patch and discovered it was disturbed she could:

(i) continue foraging in the disturbed patch at a reduced probability of

finding prey (q); or (ii) move to the optimal alternative patch at an

increased energy cost (ce) and mortality risk (cs). If she moved to the

optimal alternative patch and discovered it was disturbed, she could

choose to stay or move to the final patch that had no disturbance (by

assumption). This decision was determined by a female’s exploratory

behaviour (0 ≤ E ≤ 1; Table 1); we assumed that individuals with high

exploratory behaviourweremore likely to leave a patchwhen disturbed

based on the findings of van Overveld & Matthysen (2010) that fast-

exploring birds were more likely to switch foraging areas when faced

with an abrupt change in prey availability. See Appendix S1, Support-

ing Information for pseudocode for implementing the forward Monte

Carlo simulation.

ASSESSING THE CONSEQUENCES OF DISTURBANCE

We chose seven disturbance scenarios that encompassed all potential

disturbance combinations, ranging from no disturbance to disturbance

in a maximum of two patches. We explored three values for the proba-

bility of disturbance (pd = 0%1, 0%3 and 0%5); based on this preliminary

analysis we chose pd = 0%5 for the base case since it resulted in the

widest range of disturbance effects for both reproductive strategies.

Because significance tests are not appropriate for simulation models

(White et al. 2014), we used Cohen’s d (Cohen 1992) to assess the mag-

nitude of differences in pup recruitment between the simulations rela-

tive to their standard deviation. Cohen’s d is the difference between the

means scaled by the pooled standard deviation

d ¼ pr ! pdrffiffiffiffiffiffi
Vp

p eqn 15

where !pr and !pdr are the mean pup recruitment without and with distur-

bance, respectively, and Vp is the pooled variance, which in this case

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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was simply the average of the two variances because we simulated the

same number of individuals in the absence and presence of disturbance.

The resulting value is a measure of the reduction in pup recruitment

due to the presence of disturbance inmultiples of the common standard

deviation. Values of d = 0%2, 0%5 and 0%8 correspond with small, inter-

mediate and large effect sizes respectively (Cohen 1977, 1992). For each

simulation of 300 individuals, we obtained the average probability of

recruitment of offspring and Cohen’s d, and then averaged them across

the 100 simulations.

SENSIT IV ITY ANALYSIS

We used a sensitivity analysis to examine how changes in parameter

values influenced the effect of disturbance on pup recruitment and the

resulting values of Cohen’s d. We allowed the following variables to

vary from the baseline values: pi, x50 or m50, ce, cs, q, pd and the mean

distribution of exploratory behaviour (E). Each of these parameters

was varied by)10,)20 or)40% from the baseline value, while hold-

ing all other variables constant. For each percentage change in parame-

ter, we calculated the pup recruitment under no disturbance and

disturbance from one of the seven scenarios (see Results), and the

resulting value of Cohen’s d. We assessed the sensitivity of the model to

each parameter by comparing Cohen’s d between the baseline and

altered values.

Results

In the absence of disturbance, females primarily foraged in

Patch 3 at intermediate and high states, but Patch 1was impor-

tant at lower states. Mean pup recruitment was similar for the

two reproductive strategies, with a value of 0%75 for the capital
and 0%76 for the income breeder. For all disturbance scenarios,

the effect of disturbance on pup recruitment was greater on the

income compared with the capital breeder (Fig. 3). Under dis-

turbed conditions, pup recruitment values ranged from 0%52 to
0%75 for the capital breeder and 0%50 to 0%76 for the income

breeder. This resulted in values of Cohen’s d from <0%01 to 0%79
for the capital breeder and 0%03–1%09 for the income breeder.

The effect of disturbance on pup recruitment was not the same

across all scenarios, but exhibited a similar pattern for both

reproductive strategies (Fig. 3). The magnitude of the effect

was insignificant-to-small when it occurred in Patch 1, Patch 2,

or Patches 1 and 2. It increased to an intermediate or large

effect when it occurred in Patch 3, either alone or in combina-

tion with disturbance in either of the other two patches.

We used the scenario with disturbance in Patches 1 and 3 for

our sensitivity analysis because it had the greatest effect on pup

recruitment and largest values for Cohen’s d. Changes from

the baseline values of the productivity of a food patch (pi) and

the probability of disturbance (pd) resulted in the greatest per-

centage change in Cohen’s d, regardless of reproductive strat-

egy (Fig. 4; Appendix S2). As the overall productivity of a

food patch increased or decreased, the effect of disturbance

decreased, particularly with changes greater than 10% from

the baseline values. Changes in the values of the remaining

variables generally had a relatively small influence on Cohen’s

d (<25% change for most scenarios), particularly q, cs and ce
(income breeder only). Unexpectedly, a 20–40% reduction in

the mean value for exploratory behaviour resulted in a 63–
138% change in Cohen’s d, but only for the income breeder.

Discussion

We have shown that state-dependent behavioural theory

implemented by SDP is a powerful tool for investigating the

potential impacts of anthropogenic disturbances on wildlife

populations. Because our goal was to develop and illustrate a

framework, the current models are very general and for this

reason our results do not apply to any particular species of pin-

niped. To focus on the development of the fundamental

methodology, we simplified the model by linking behaviour

with pup recruitment across a single reproductive season, and

excludedmany biologically relevant extensions of themethods.

Our goal in doing so was to provide a relatively user-friendly

introduction to this approach in the context of anthropogenic

disturbance that does not apply to any species but has much in

common with many species, thereby facilitating the applica-

tion of this method to a broad range of species.

To fully operationalize the PCoD framework as described in

New et al. (2014), one would need to model the effects of dis-

turbance on additional metrics of population dynamics, such

as fecundity and adult and juvenile survival (Fig. 1). This and

other biologically relevant extensions can be readily included

but may require considerable work as the physiology, life his-

tory and available data of specific species are considered. In

Appendix S3, we discuss potential additions and suggestions

for implementation because of the importance of these exten-

sions in using SDP models to estimate the effects of distur-

bance for a particular species.

Despite their generality, our results do provide insight into

the factors that influence themagnitude of the impact of distur-

bancewhen using SDPmodels. Reproductive strategies appear

to be important, since we found the effect of disturbance on

pup recruitment was higher for the income compared with the

capital breeder. This corresponds with the intuition that capital

Fig. 3. The effect of disturbance on pup recruitment (assessed using
Cohen’s d) of a capital (black) and income breeder (grey) when proba-
bility of disturbance in patch/s (pd) = 0%5. Results are shown for seven
scenarios where disturbance occurs in a maximum of two patches. The
dashed lines indicate the value of Cohen’s d corresponding to small
(0%2), intermediate (0%5), and large effects (>0%8) on pup recruitment.
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breeders have a long period of time to accumulate energy for

lactation, thus are predicted to be more resilient to negative

effects from short-term foraging losses than income breeders

that transfer energy to a dependent pup after each foraging

trip. These results are consistent with the finding of Costa et al.

(2016), as well as studies that have found that reproductive suc-

cess and population dynamics of many income-breeding pin-

nipeds are strongly influenced by natural variations in prey

availability (Trillmich &Limberger 1985; Soto, Trites &Arias-

Schreiber 2004). Within a reproductive strategy, patch utiliza-

tion was an important component of disturbance effects. Thus,

the effective use of SDP models in estimating the effects of dis-

turbance requires some prior knowledge of animal movements

and foraging areas. These data are useful in the backwards iter-

ation for characterizing the environment (e.g. the number of

foraging patches), as well as in the forward iteration for param-

eterizing the probability that an individual will be disturbed in

any given foraging patch.

A potential challenge in implementing SDP models is that

they require a variety of parameters related to the environ-

ment, physiology, behaviour and disturbance. For many spe-

cies, some of these parameters may be unknown or have high

uncertainty due to the challenge of collecting these types of

data onwild populations. For illustrative purposes, we selected

values that were not necessarily representative of a single spe-

cies, but many of the physiological parameters were selected

from the pinniped literature. Indeed, our goal here was to

develop the modelling framework, rather than focus on

parameter selection; however, the selection of appropriate val-

ues is paramount when the SDP model is implemented to

assess the consequences of disturbance for a particular popula-

tion. We found that the parameter values that had the most

influence on the SDPmodel results were the profitability of the

patch and the probability of disturbance. In contrast,

parameters that were related to the cost associated with being

disturbed appeared to have little-to-no effect on model results.

This indicates the importance of research efforts focused on

quantifying energy requirements, prey fields (abundance, dis-

tribution and energy content) and short-term behavioural

responses to understand at what level individuals respond to a

disturbance (e.g. the sound level that elicits a physiological or

behavioural reaction). The incorporation of individual choice

into the model affected the results for the income breeder, sug-

gesting that allowing individuals to vary in their response to

disturbance is an important part of predicting the effects of dis-

turbance on reproductive success of income-breeding species,

at least when that decision affects energy acquisition or expen-

diture. Although we used a personality trait in this general

framework, there are many alternative intrinsic and extrinsic

factors that could be used for incorporating individual choice

into species-specific applications, such as characteristics of the

disturbance itself, or the animal’s behavioural, reproductive,

informational or physiological state.

The SDP framework we described provides the ability to

incorporate many of the factors that are known or are likely to

influence the behavioural response of animals and fitness

implications of anthropogenic disturbance. These factors

include the physiological and behavioural state of an individ-

ual (Appendix S3; Williams, Trites & Bain 2006b; Stankowich

2008; Goldbogen et al. 2013; Naguib et al. 2013), as well as

environmental factors that affect foraging decisions and energy

balance (Costa 2008, 2012). Existing methods for quantifying

transfer functions do not explicitly account for the dynamics of

the foraging environment, which is a key feature of our model

and one that is likely to be important when predicting the

PCoD. This allows us to place anthropogenic disturbance

within the context of a temporally and spatially variable envi-

ronment, which mimics natural systems and is particularly

Fig. 4. The effect of changes in parameter val-
ues on the percentage change in Cohen’s d for
a capital (top) and income breeder (bottom)
with simultaneous disturbance in Patches 1
and 3. The direction of change is indicated by
the sign above each bar. Parameters were
altered by)10, 20, and 40%of baseline values
and are as follows: exploratory index (E), the
additional cost ofmoving to a newpatchwhen
disturbed (ce), the additional risk of predation
when moving to a new patch when disturbed
(cs), maternal mass (capital) or milk delivery
(income) at which pup recruitment is 50% (x50
or m50), the probability of disturbance (pd),
the profitability of the patch (pi), and the
reduced probability of finding food when for-
aging in a disturbed patch (q). Results are not
shown for a 40% increase in E as this value
was outside the range of the distribution.
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valuable given the rapid climate change faced by both marine

and terrestrial species. The use of SDPmodels requires existing

physiological and ecological data, and although all of the

model parameters are clearly measurable, this likely limits the

use of this approach for data poor species. In situations where

these empirical data are lacking, it may bemore appropriate to

use alternative methods for quantifying parameters and trans-

fer functions, such as Expert Elicitation (King et al. 2015).

Alternatively, as these two methods can be complementary, it

may be beneficial to use the approaches described in King

et al. (2015) for estimating unknown parameters, and the SDP

model for quantifying the transfer functions that link individ-

ual behavioural or physiological responses to disturbance with

health and vital rates.
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Supplementary Material 1:  Pseudocode for Implementing Forward Monte Carlo 1	

Simulations 2	

 3	

We used linear interpolation to numerically solve the equation when entries in the dynamic 4	

programming equations were not integers (Mangel & Clark 1988; Clark & Mangel 2000). When 5	

two fitness values were identical, we chose the patch with the smaller index. 6	

	7	

The Capital Breeder 8	

1. Initialize by cycling over k = 1…, K and setting Xk(1) = xtar .  Introduce variables (only 9	

possible in the forward simulation) Nt and Nk that count the number of females alive at 10	

time t and the number of times a female is disturbed up to time t, respectively. 11	

2. Cycle from t = 1 to T - 1. Set N(t) = 0. 12	

3. Cycle from k = 1 to K.  If Xk(t) ≤ xc then set Xk(t + 1) = Xk(t) and go to the next 13	

individual. If Xk(t) > xc set N(t) = N(t) + 1 and go to Step 4. 14	

4. Set xl = floor(Xk(t)) [if floor(Xk(t)) = xc then we set xl = xc + 1] so that the patch visited is 15	

i*(xl,t), determined in the solution of the backward equation. 16	

5. Determine if the female survives when visiting patch i*(xl,t). To do this, draw a random 17	

variable Ũ uniformly distributed on [0,1]. If ( , )i x tlU e β ∗−>% , then she dies due to predation in 18	

this period. Set Xk(t + 1) = -1 (an indicator of death by predation) and return to Step 3 to 19	

address the next individual. If ( , )i x tlU e β ∗−≤% then she survives predation in this period. 20	

Move to Step 6 to determine whether or not she finds prey.  21	



2 
	

6. Draw a random variable Ũ uniformly distributed on [0,1]. If ( , )li x tU λ∗≤%  she finds prey; 22	

set Xk(t + 1) = Xk(t) - FMR(Xk(t))  + 
( ( ), )ki X t t

Y ∗ (replacing this by the maximum value of the 23	

state if it exceeds that maximum) and go to Step 7.  If ( , )li x tU λ ∗>%  then she does not find 24	

prey. Set Xk(t + 1) = Xk(t) - FMR(Xk(t)). If Xk(t + 1) ≤ xc then set Xk(t + 1) = xc.    25	

7. Return to Step 3 if k < K or to Step 2 if k = K and t < T -1.  Otherwise, the forward 26	

iteration is complete. 27	

 28	

In the case of possible disturbance, Step 4 is replaced by   29	

4a. Set xl = floor(Xk(t)) so that the patch visited is i*( xl,t), determined in the solution of the 30	

backward equation. If floor(Xk(t)) = xc, set xl = xc + 1. Once again draw a random variable 31	

Ũ that is uniformly distributed on [0,1]. If Ũ > pd(i*( xl,t) then the female is not disturbed 32	

during foraging in this period, so Steps 5-7 above apply. Otherwise go to Step 4b. 33	

4b. Increase Nk by 1.  Draw a random variable Ũ. If Ũ > Ek she does not switch to another 34	

patch. Return to Step 6, with λi*(x,t) replaced by (1 - ρ)λi*(x,t). Otherwise go to Step 4c.     35	

4c. If Ũ ≤ Ek, she moves to the alternate patch j*( xl,t). Repeat Step 4a to determine if that 36	

patch is also disturbed. If it is, then she will forage in the third patch which by 37	

assumption does not involve disturbance. When computing FMR in Steps 6 and 7 above, 38	

replace FMR(Xk(t)) by (1 + ce) FMR(Xk(t)) and increase the rate of mortality by the factor 39	

(1 + cs) ( , )lj x t
β ∗  when computing the probability of survival in the patches. If she is 40	

disturbed in two of the three patches, the resulting FMR and rate of mortality should be 41	

assessed twice.  42	

 43	
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 44	

The Income Breeder 45	

1. Initialize by cycling over k = 1…, K and setting Xk(1) = xtar and Mk(1) = 0. Introduce 46	

variables (only possible in the forward simulation) Nt and Nk that count the number of 47	

females alive at time t and the number of times a female is disturbed up to time t, 48	

respectively. 49	

2. Cycle from t = 1 to T - 1.  Set N(t) = 0. 50	

3. Cycle from k = 1 to K. If Xk(t) ≤ xc then set Xk(t + 1) = Xk(t) and Mk(t +1) = Mk(t) and go 51	

to the next individual. If Xk(t) > xc set N(t) = N(t) + 1 and go to Step 4. 52	

4. Set xl = floor(Xk(t)) and ml = floor(Mk(t)), so that the patch visited is i*(xl,ml,t), determined 53	

in the solution of the backward equation.   54	

5. Determine if the female survives when visiting patch i*(xl,ml,t). To do this, draw a 55	

random variable Ũ uniformly distributed on [0,1]. If ( , )i x tU e β ∗−>% , then she dies due to 56	

predation in this period. Set Xk(t + 1) = -1 (an indicator of death by predation) and return 57	

to Step 3, to address the next individual. If ( , )i x tU e β ∗−≤% , then she survives predation in this 58	

period; move to Step 6 to determine if she finds prey or not. 59	

6. Once, draw a random variable Ũ uniformly distributed on [0,1]. If ( , , )l li x m tU λ∗≤%  she finds 60	

prey; go to Step 7. If ( , , )l li x m tU λ∗>% then she does not find prey. Set Xk(t + 1) = Xk(t) - 61	

FMR(Xk(t)) and Mk(t + 1) = Mk(t). If Xk(t + 1) ≤ xc then set Xk(t + 1) = xc. 62	

7. Set Mettar = xtar - Xk(t) + FMR(Xk(t)); this is the level of income that will set her at the 63	

target mass at the next time period. If ( ( ), )ki X t t tarY Met∗ < , set Xk(t + 1) = Xk(t) - FMR(Xk(t)) 64	



4 
	

+ 
( ( ), )ki X t t

Y ∗ and Mk(t + 1) = Mk(t). Otherwise, set Xk(t + 1) = xtar and Mk(t + 1) = Mk(t) + 65	

( ( ), )ki X t t
Y ∗ - Mettar. If Mk(t + 1) > mmax set Mk(t + 1) = mmax. 66	

8. Return to Step 3 if k < K or to step 2 if k = K and t < T - 1. Otherwise, the forward 67	

iteration is complete. 68	

 69	

In the case of disturbance, Step 4 is replaced by  70	

4a. Set xl = floor(Xk(t)) and ml = floor(Mk(t)), so that the patch visited is i*(xl,ml,t), determined 71	

in the solution of the backward equation. If floor(Xk(t) = xc, set xl = xc + 1. Once again 72	

draw a random variable Ũ uniformly distributed on [0,1]. If Ũ > pd(i*( xl,ml,t) then the 73	

female is not disturbed during foraging in this period, so Steps 5 - 8 above apply. 74	

Otherwise go to Step 4b. 75	

4b. Increase Nk by 1. Draw a random variable Ũ. If Ũ > Ek she does not switch to another 76	

patch. Return to Step 6, with 
,( , )l l ti x m

λ ∗ replaced by (1 - ρ)
,( , )l l ti x m

λ ∗ . Otherwise go to Step 77	

4c.   78	

4c. If Ũ ≤ Ek, she moves to the alternate patch j*(xl,ml,t). Repeat Step 4a to determine if that 79	

patch is also disturbed. If it is, then she will forage in the third patch which by 80	

assumption does not involve disturbance. When computing FMR in Steps 6 and 7 above, 81	

replace FMR(Xk(t)) by (1 + ce) FMR(Xk(t)) and increase the rate of mortality by the factor 82	

(1 + cs) ( , , )l lj x m t
β ∗ when computing the probability of survival in the patches. If she is 83	

disturbed in two of the three patches, the resulting FMR and rate of mortality should be 84	

assessed twice.  85	

 86	
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Supplementary Material 2. Results of the Sensitivity Analysis 
 
We varied parameters one at a time from the base case levels, changing them by ±10, 20, or 40%. For each change we show pup 
production in the absence of disturbance, pup production with disturbance in Patches 1 and 3 with probability of disturbance = 0.5, 
and Cohen’s d for that case. Parameters are as follows: maternal mass (x50) or milk deliveries (m50) that result in 50% probability of 
pup recruitment, the profitability of a patch in multiples of field metabolic rate (pi), the increased energy costs associated with moving 
to a new patch when disturbed (ce), the increased predation risk associated with moving to a new patch when disturbed (cs), the 
reduced probability of finding food when foraging in a disturbed patch (ρ), the mean distribution of exploratory behavior (E), and the 
probability of disturbance (pd).  
 
Parameter Percentage change from model parameters 
 -40% -20% -10% Baseline 10% 20% 40% 
x50/ m50        

Capital 0.93 0.83 0.51 0.85 0.68 0.68 0.80 0.60 0.75 0.75 0.52 0.79 0.69 0.45 0.82 0.63 0.39 0.82 0.52 0.29 0.81 

Income 0.88 0.65 1.23 0.98 0.57 1.05 0.79 0.53 1.07 0.76 0.50 1.09 0.73 0.47 1.11 0.70 0.44 1.11 0.73 0.39 1.13 

                      
pi                      

Capital 0.35 0.31 0.14 0.51 0.51 0.02 0.63 0.43 0.61 0.75 0.52 0.79 0.79 0.64 0.49 0.81 0.80 0.02 0.81 0.76 0.23 

Income 0.05 0.02 0.42 0.46 0.15 0.72 0.56 0.34 0.80 0.76 0.50 1.09 0.84 0.72 0.72 0.86 0.81 0.38 0.86 0.86 0.06 

                      
ce                      

Capital 0.75 0.58 0.59 0.75 0.55 0.69 0.75 0.54 0.75 0.75 0.52 0.79 0.75 0.51 0.85 0.75 0.50 0.90 0.75 0.48 0.98 

Income 0.76 0.50 1.10 0.76 0.50 1.09 0.76 0.50 1.10 0.76 0.50 1.09 0.76 0.50 1.11 0.76 0.49 1.11 0.76 0.48 1.11 

                      
cs                      

Capital 0.75 0.52 0.80 0.75 0.52 0.80 0.75 0.52 0.80 0.75 0.52 0.79 0.75 0.52 0.80 0.75 0.52 0.79 0.75 0.52 0.79 

Income 0.76 0.50 1.09 0.76 0.50 1.08 0.76 0.50 1.09 0.76 0.50 1.09 0.76 0.50 1.08 0.76 0.50 1.08 0.76 0.50 1.09 

                      



Parameter Percentage change from model parameters 
 -40% -20% -10% Baseline 10% 20% 40% 
ρ                      

Capital 0.75 0.53 0.75 0.75 0.53 0.78 0.75 0.53 0.78 0.75 0.53 0.73 0.75 0.52 0.80 0.75 0.52 0.81 0.75 0.51 0.82 

Income 0.76 0.48 1.19 0.76 0.49 1.14 0.76 0.49 1.13 0.76 0.50 1.09 0.76 0.51 1.08 0.76 0.51 1.05 0.76 0.52 1.02 

                      
E                      

Capital 0.75 0.54 0.74 0.75 0.53 0.78 0.75 0.53 0.79 0.75 0.53 0.75 0.75 0.53 0.78 0.75 0.53 0.76 NA NA NA 

Income 0.76 0.23 2.6 0.76 0.35 1.78 0.76 0.42 1.43 0.76 0.50 1.09 0.76 0.59 0.75 0.68 0.40 1.11 NA NA NA 

                      
pd                      

Capital 0.75 0.63 0.42 0.75 0.58 0.59 0.75 0.55 0.70 0.75 0.53 0.75 0.75 0.50 0.90 0.75 0.47 0.99 0.75 0.43 1.16 

Income 0.76 0.61 0.69 0.76 0.56 0.91 0.76 0.53 1.0 0.76 0.50 1.09 0.76 0.48 1.18 0.76 0.46 1.24 0.76 0.41 1.40 

 
 



Supplementary Material 3: Discussion of potential extensions of the general framework 

and suggestions for implementation 

 

Choice of state variables 

In the development of the model, we used the mass of the mother as a state variable for 

both capital and income breeders and milk delivery to the pup as a second state variable for the 

income breeder. In a specific application, these could easily change. For example, converting 

from milk delivery to pup growth rate to pup mass adds more fidelity to the model, but also more 

complexity. For reproductive individuals that have not yet reached asymptotic size, length and 

blubber reserves may be more appropriate state variables, leading to an additional complexity of 

how resources are allocated between additional growth and blubber reserves. 

 In addition, there are a variety of non-physiological state variables that may arise in 

different situations and we briefly discuss them here. 

 

Location as a state variable 

We have treated the animals as central place foragers, starting each day at the rookery. 

For simplicity we envisioned that the foraging patches were equidistant from the rookery, which 

allowed us to assume that movement from one patch to another was simply a multiplier of FMR. 

In nature, patches will likely not be equidistant, so that the cost of movement from one patch to 

another involves the distance between them. This requires including location as a state variable, 

which is readily done, although the formulation and solution of the dynamic programming 

equation become more complicated because two state variables are needed and we need to 



explicitly characterize the cost of travel between different locations. (e.g., Chapter 7 in Mangel 

and Clark (1988) or Chapter 6 in (Clark & Mangel 2000)).  

 

Information as a state variable 

We assumed that the patch parameters λi  and Yi  were known to the foraging female but 

in many cases they will have probability distributions that characterize the uncertainty of the 

environment. In such cases, foraging behavior results in energy (prey) as well as information 

about the environment. Changes in the use of a foraging patch based on experience can be 

accounted for by introducing an informational state variable into the backward equation (Mangel 

& Clark 1988; Clark & Mangel 2000) and updating it according to experience, for example by 

Bayesian methods (e.g., Mangel 1990). Similarly, we could allow the animal to learn that the 

patch is disturbed and the values of the patch parameters when disturbed, thus accounting for 

habituation to disturbance. 

 

Use of terrestrial haul-outs 

 We have assumed that each increment in time includes use of the terrestrial haul-out and 

have absorbed this time and its energetic costs in the daily FMR. In nature, most pinnipeds spend 

multiple days foraging at sea, with some species spending months at a time without using 

terrestrial haul-outs. In this case, a foraging cycle consists of a period of time at sea (likely a 

random variable) and time at the terrestrial haul-out, which considerably complicates the 

foraging model because in such a case instead of time increasing from t to t + 1, it increases to t 

+ 1+ the length of the trip (e.g., Mangel et al. 2015). 

    



Facultative implantation and the cost of gestation 

We assumed that all females were fertilized and the fetus subsequently implanted. In 

nature implantation is likely to be a facultative event in that it depends upon the female’s state 

and the resources acquired between the time of fertilization and the time of implantation 

(McKenzie et al. 2005; Hadley et al. 2007). Clearly with our model, a female whose embryo 

fails to implant has no future fitness; however, with multiple reproductive seasons, failure to 

reproduce under some conditions could be an optimal behavior. This requires modification of the 

dynamic programming equation in a substantial manner, since we need to track females whose 

embryo has implanted and those who have not. This modification should be a priority for future 

development of our model as we move beyond the proof of concept. 

The costs of gestation can either be included in FMR (as was assumed in our model) or 

modelled as a separate cost. Because implantation is likely facultative, it may be easier to model 

it as a cost separate from FMR. The ability to do this will determine on how estimates of FMR 

for a given species were calculated, as some methods involve summing the costs of all the 

components of FMR (Maresh et al. 2015), whereas others result in a single measurement 

integrating all costs that cannot be separated (Costa & Gales 2003). This additional cost of 

gestation is easily added similar to how metabolic costs are subtracted from energy gains.    

 

Variability in metabolic costs and initial states 

For illustrative purposes, we assumed a generic relationship between mass and FMR, 

such that these values were the same for both lactation strategies and all individuals. As this 

model is applied to specific species, we can use existing knowledge about metabolic costs, from 

either measurements of FMR from free-ranging animals (Costa & Gales 2003; Maresh et al. 



2015) or from theoretical relationships (Maresh 2014) to more accurately characterize the state 

dynamics. For free-ranging animals, measures of FMR are more common than BMR and we 

modeled energy costs as FMR, but this equation could be easily broken up such that FMR is a 

multiple of BMR. In addition, variability among individuals in either BMR or FMR could also be 

incorporated. 

 Similarly, we assumed that all individuals in the forward simulation started at the same 

state, which allowed us to eliminate one source of variation. When considering alternatives, 

many choices arise such as (1) that initial states are uniformly distributed between the critical 

level and the target mass, (2) that initial states are normally distributed around a fraction of the 

target mass, or (3) that they are log-normally distributed around a fraction of the target mass. 

 

Multiple behavioural states 

 In the main text, we assumed that individuals foraged each day. There are many 

situations, however, that require multiple behavioral states. One common case is that in which 

individuals both forage and transit between foraging patches. In such a case, we require two 

different fitness functions that characterize expected reproductive success while transiting and 

expected reproductive success while foraging; the SDP equations link the two. For an example 

see Mangel & Clark (1988, Chapter 7) concerning spiders and raptors, Clark & Mangel (2000, 

Chapter 6) concerning migrating birds, or Wiedenmann et al. (2011) concerning blue whales. 

 

Literature Cited for Supplementary Material 3 

Clark, C.W. & Mangel, M. (2000). Dynamic state variable models in ecology: methods and 

applications. Oxford University Press, New York and Oxford. 

Costa, D.P. & Gales, N.J. (2003). Energetics of a benthic diver: seasonal foraging ecology of the 



Australian sea lion, Neophoca cinerea. Ecological Monographs, 73, 27–43. 

Hadley, G.L., Rotella, J.J. & Garrott, R.A. (2007). Evaluation of reproductive costs for Weddell 

seals in Erebus Bay, Antarctica. Journal of Animal Ecology, 76, 448–458. 

Mangel, M. (1990). Dynamic information in uncertain and changing worlds. Journal of 

Theoretical Biology, 146, 317–332. 

Mangel, M. & Clark. (1988). Dynamic Modeling in Behavioral Ecology. Princeton University 

Press, Princeton, NJ. 

Mangel, M., Dowling, N. & Arriaza, J.L. (2015). The behavioral ecology of fishing vessels: 

achieving conservation objectives through understanding the behavior of fishing vessels. 

Environmental and Resource Economics, 61, 71–85. 

Maresh, J.L. (2014). Bioenergetics of marine mammals: the influence of body size, reproductive 

status, locomotion, and phylogeny on metabolism. PhD Dissertation, University of 

California Santa Cruz, Santa Cruz, CA. 

Maresh, J., Adachi, T., Takahashi, A., Naito, Y., Crocker, D., Horning, M., Williams, T. & 

Costa, D. (2015). Summing the strokes: energy economy in northern elephant seals during 

large-scale foraging migrations. Movement Ecology, 3, 22. 

McKenzie, J., Parry, L.J., Page, B. & Goldsworthy, S.D. (2005). Estimation of pregnancy rates 

and reproductive failure in New Zealand fur seals. Journal of Mammalogy, 86, 1237–1246. 

Wiedenmann, J., Cresswell, K.A., Goldbogen, J., Potvin, J. & Mangel, M. (2011). Exploring the 

effects of reductions in krill biomass in the Southern Ocean on blue whales using a state-

dependent foraging model. Ecological Modelling, 222, 3366–3379. 

	


