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ABSTRACT 

Mangel, M. and Plant, R.E., 1983. Multiseasonal management of an agricultural pest. I: 
Development of the theory. Ecol. Modelling, 20: 1-19. 

A framework for analyzing the trade-off between economic yield from a crop and buildup 
of resistance to pesticide caused by repeated applications of pesticide is developed. The 
analysis begins with the case of age-independent pest dynamics, in which pests infest a field 
by arriving from an external pool. Initially, it is assumed that the pest genetics of interest are 
single locus, two allele, with resistance to pesticide dominant and susceptible pests more fit in 
the absence of spraying. The pesticide is applied only once during the season, with timing and 
intensity of the application as control variables. Interseasonal pest and crop dynamics are 
studied by solving appropriate ordinary differential equations. Intraseasonal pest dynamics 
are assumed to follow the Hardy-Weinberg formula. It is shown that the three class diploid 
model can be replaced by a two class haploid model with essentially no change in the results. 
A model based on partial differential equations is developed, for the case in which pest 
dynamics depend upon age, and it is shown that the partial differential equation model can 
be replaced by a pair of coupled ordinary differential equations. The main operational 
conclusion in this paper is that the timing of the application of pesticide can be used to 
control buildup of resistance and that the intensity of the application can be used to control 
the crop yield. 

INTRODUCTION: THE AGRICULTURAL DECISION PROBLEM 

It is common in many agricultural enterprises to use pesticides to control 
pests. It is also commonly observed that as pesticides are applied, resistance 
to the pesticide builds up as susceptible pests are removed from the popula- 
tion. Thus, an agricultural manager is faced with a decision problem of the 
following kind: By spraying his field this year, to increase the present year's 
economic yield, he increases resistance to the pesticide, which, in principle, 
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reduces future yields. It is this decision problem that is studied here and in 
an accompanying paper by Plant et al. (1983). The problem is of sufficient 
complexity that the two papers use only deterministic approaches. A third 
paper will include stochastic effects in our models. 

The goals in these papers are to develop a framework in which questions 
about the trade-off between resistance and yield can be posed and then to 
answer some of the more important questions. The models are formulated in 
a way that is sufficiently realistic to provide useful results, but, at the same 
time, is sufficiently simple to understand the behavior of the model. Many of 
the ideas used here have previously appeared in the literature in some 
modified form, see for example the papers by Hall and Norgaard (1973); 
Hueth and Regev (1974); Gutierrez et al. (1975); Regev, Gutierrez and Feder 
(1976); Georghiou and Taylor (1976; 1977a, b); Georghiou (1980); Headley 
(1981); and Shoemaker (1982). The approach in Shoemaker's paper is 
conceptually similar to this one, but the operational formulation and analyti- 
cal tools are quite different. 

One agricultural system that examplifies the kind of problem of interest is 
the cotton-spider mite (Aracina: Tetranychidae) system in the San Joaquin 
valley in California. Some of the pest dynamics were examined by Carey and 
Bradley (1981). This system has the following features. The cotton is an 
annual crop grown every other year, frequently in rotation with wheat, a 
crop that does not support the mites. Although some mites over-winter in the 
field, mites also immigrate to the field at some rate throughout the entire 
season, coming from external sources such as fruit orchards and weed 
patches. These external sources of the mites appear to be much more 
important than the over-wintering mites already in the field. It is also known 
that in greenhouses, where there is no alternation of crops and no external 
source of non-resistant mites, resistance to the commonly used pesticides 
builds up quickly. 

The modelling approach is based on a submodel for the pest dynamics 
and a submodel for the crop dynamics. The pest submodel has the following 
goal: given the fractions of resistant and susceptible pests in the population 
at year n and the spraying strategy in year n, how does one find the 
respective fractions in year n + 1? In order to answer this question, one must 
include population dynamics and relatively simple genetics in the pest 
submodel. 

The submodel for the crop dynamics has the following goal: given the pest 
populations at the start of year n, and a spraying strategy in year n, what is 
the yield of crop in year n? Using this submodel one can also determine the 
optimal spraying strategy within a single season. 

The models do not include the effect of biological controls such as 
predators. In the case of the spider mite-cotton system in the San Joaquin 



valley, there is some question as to whether natural predators play an 
important  role in controlling outbreaks, but in any case the inclusion of the 
effects of predators in the model at this time would not provide useful 
information. 

The three primary parameters in the application of a pesticide in a given 
season are the number of applications, the timing of the applications, and 
the intensity of the applications. In the next paper (Plant et al. 1983) the first 
parameter is considered; for the present it is assumed that a single pesticide 
application occurs each year. This allows one to study the effects of timing 
and intensity. In Sections 2 and 3, a simple age-independent model of the 
pest-crop interaction is given and the effects of varying the timing and 
intensity of pesticide application are examined. Since the accumulation of 
pesticide resistance in the population is important, the effect of assumptions 
about the genetics on the behavior of the model is studied. 

Previous simulation studies (e.g. Regev et al., 1976), have shown that the 
age structure of the pest population plays an important role in determining 
pest control strategies. Dependence on age structure occurs in two aspects 
of the model: susceptibility to the pesticide, and consumption of the crop. 
The introduction of age structure greatly complicates any model. This 
complication is minimized by assuming that pests inhabit colonies founded 
by a pregnant female. Spider mites behave this way (Carey and Bradley, 
1981). The colonies have an age structure that depends on the age of the 
colony; for example, younger colonies have more eggs and larvae, and older 
colonies have more adults. Carey and Bradley (1981) have studied the 
demography of these mite colonies. 

The model is formulated in terms of age structure of colonies; it is 
assumed that from this the age structure of the population may be inferred. 
This greatly simplifies the formulation. It does, however, have one serious 
consequence. If the pest population has an age-specific susceptibility to the 
pesticide, then each application of the pesticide will change the age structure 
of the already established pest colonies. This is of no consequence if crop 
consumption is not age specific and if only one application of the pesticide is 
made. For the present, the change in age structure due to pesticide 
application is neglected. In the study of the age structured model, a sim- 
plified formulation that adequately represents the age-dependent effects is 
presented. This model does not require the assumption of a single pesticide 
application per season. 

The unit of time in the model is the physiological time, degree-days. It is 
assumed that the crop and pests are affected by physical temperature in the 
same way. This assumption could be dropped in a simulation. The utility of 
the models, when compared to simulations, is that because of the simplifying 
assumptions it is much easier to understand the crop, pest, and resistance 
dynamics than it is in simulations. 



THE AGE-INDEPENDENT MODEL 

To start, consider a model for the case in which pesticide susceptibility 
and crop consumption are independent of age. Let X(t) be the total number  
of pests in the field at time t, and let C(t) be a measure of the value of the 
crop. The most commonly used such measure is the leaf mass (Gutierrez et 
al., 1975). Assume that the crop is harvested before density dependent  effects 
become important.  The equation for the crop dynamics is therefore 

dC IrcC-vX : C ( t ) > 0  

a t -  ~0 " C ( t ) = 0  (1) 

C(O)= Co, O < t < T 

where C O is a positive constant. The parameter ro is the intrinsic growth rate 
of the crop, v is a measure of the pest's unit rate of consumption of the crop, 
and T is the length of the season. 

According to eq. 1, the crop decreases as soon as rcC < vX. This is the 
simplest possible assumption about  the crop pest interactions. Other as- 
sumptions, such as replacing vX by vXC give similar qualitative results. T is 
fixed and finite; for the parameters used here, C (T)  is always bounded  away 
from zero. 

Consider now the model for the pest dynamics, starting with the simplest 
model  and then increasing in complexity. All models are based on the 
following operational picture. At the start of season n the agricultural field 
has negligibly few pests in it. There is an external source of pests, which we 
call a pool, and pests leave the pool and arrive at the field at a rate I ( t ) ,  
where t denotes time within a season. The length of the agricultural season is 
T; at the end of the season the remaining pests in the external pool and pests 
in the agricultural field are mixed together for the overwintering process. 

To simplify the derivation of the pest dynamics, begin by considering a 
model  with only one class; thus, effectively, assume that all pests are 
susceptible to the pesticide. When it is important  to distinguish the pest 
populat ion in year n, it will be denoted by X(t; n). When there is no 
possibility for confusion, X(t) will be used. 

Within a season, the intensity of spraying in year n is denoted by  s(t; n). 
In most cases, assume that the pesticide is applied only once and that s(t;  n) 
takes the form 

If! s( t ;n)= n):  t s (n)<t<ts(n)+8(n ) (2) 

Q ( n ) + 8 ( n ) < t < T  

Here ~/(n) is the intensity of the spraying in year n and 8(n)  is the length of 



time that the pesticide is active in year n. As before, the argument n is 
dropped when no confusion results. As with the crop component,  it is 
assumed that the pest population does not reach its carrying capacity before 
the end of the season. The model is therefore linear. A consequence of this 
assumption is that the growth rate of the pest population is independent  of 
the value of C, the crop. Therefore, the differential equation for the pest 
component  is 

d X  
dt - r( t; n ) X + I(  t; n) (3) 

X ( 0 ; n ) = 0 , 0 < t < T  

Here, I(t; n) is the rate of immigration from the pool at time t in year n 
and r(t; n) is the intrinsic rate of increase of the population at time t in year 
n. It depends upon n and t through the spraying function; i.e., when 
pesticide is applied, X(t)  does not instantaneously decrease, but decreases 
over some finite period of time. This decrease can be modeled by making 
r(t; n) negative. In particular, the following form is chosen 

r ( t ; n ) = r  o 1 (4) e+s(t;n) 
In the formula, r 0 is the intrinsic growth rate in the absence of spraying, 

and w and e measure the effects of the spraying. The parameter  o~ measures 
the maximal pesticide effect in the sense that as s( t )  approaches infinity, r( t ;  
n) approaches r0(1 - w). The parameter  e is related to LDs0 (the intensity 
required to kill 50% of the pests) *. If e is small (as would be the case with 
susceptible pests) then the LDs0 is reached at low levels of s( t) ;  if e is large 
(as would be the case with resistant pests) then the required value of s(t) is 
large. 

The next step is to incorporate genetics into the models. The philosophy 
here is that in dealing with the genetics of the system, one should use the 
simplest assumptions possible, even at the cost of sacrificing some accuracy 
in the model. Hence, no effect is made to take into account the particular 
genetic characteristics of a pest species (such as the haplo-diploidy of mites, 
or the ratio of inbreeding to outcrossing). Rather, it is assumed that whatever 
these characteristics are, their effects may be accounted for by simple, 
empirical parameters. 

The simplest point of departure is a single locus, two allele, genetic model, 

* I f  ~/5o is the in tens i ty  c o r r e s p o n d i n g  to LDs0,  and  the pest icide is active for 8 uni ts  of  time, 

then  e = ~ / [ 1  - l / S r  o In(0.5)] -1 - ~/. 



with resistance to pesticide dominant.  Let 

)(1 (t; n) = number  of homozygous resistant (RR) 

pests in the field at time t in 
season n 

X2(t; n) = number  of heterozygous resistant (RS) 

pests in the field at time t in 
season n 

X 3 (t; n ) = number  of homozygous susceptible (SS) 

pests in the field at time t in 
season n 

(5) 

I n  

d X~ 

d t  

dt 
dX3= 
dt  

x,(o; 

analogy to eq. 3, assume that these variables satisfy the equations 

- r,(t; n)X l + ~,(n)I+ ½aX 2 ) 

t - r2(t ; n)X2 +/~2(n)/- c~X 2 
/ 

t; ,, ) + ,, ) 1+  ½, X: I 
) ) = 0 ,  i =  1 , 2 , 3 ; 0 < t < T  

(6) 

In these equations the ri(t; n) are the growth rates of pests of class i; assume 
that they take the form 

rl(t ;n)=rm{ I el+sc°S } t  
r2(t;n)=r2o( 1 cos ) e~+s 

r3(t; n ) =  r3o(1 { a s  } e2+s 

(7) 

where s = s ( t; n). 
In eqs. 7, assume that r30 = rzo > rLo, so that susceptible pests and hetero- 

zygotes are more fit, in the absence of spraying. It it also assumed that 
0 < e 2 << el, so that a given intensity of spraying affects the susceptible pests 
much more than the resistant ones. Note that heterozygotes have the best of 
both worlds in that they have resistance and a high growth rate. This appears 
to be the case with the spider mite (J. Carey, personal communication).  As 
before, I(t; n) is the rate at which pests arrive from the pool at the field in 
year n. In eqs. 6, ~ti(n ) is the fraction of pest class i in the pool during year 
t7. 



In eqs. 6, (~ characterizes the rate at which heterozygosity is lost. For a 
particular genetic model, a can be found according to an algorithm relating 
genetic to physiological time (Georghiou and Taylor (1977a, b), Haldane 
(1937)). The parameter  a depends on the rate of outcrossing between 
colonies, the number  of generations per season, and the genetics of the pest. 

The model relates/x~(n + 1) to/ Is(n)  as follows. Set 

p,(n)- X~(T; n) 
yx (r; .) (8) 

so that p~(n) is the fraction of the population in the ith class at the end of 
the season. Assume that the fractions of the i th class at the start of year 
n + 1 are given by the Hardy-Weinberg  relationship 

#,(n+ 1)=(p,(n)+½P:(n)) z } 
/~2(n + l ) =  2 ( p , ( n ) +  ½P2(n))(p3(n)+ ½p:(n)) (9) 

/~3(n + 1)=(p3(n)+½p:(n)) z 
In order to write eqs. 9, it is assumed that there are no pests in the pool at 
the end of the season, that there is no change in the ratios of the classes 
during the wintering period, and that the Hardy-Weinberg  formula is 
applicable. Since the ultimate goal is to use these models for control of 
resistance, this assumption will imply that the strategy is conservative (since 
there would be a higher fraction of susceptible pests in the pool and, in 
general, in the absence of spraying, the susceptibles would grow at a faster 
rate). In the light of the many uncertainties in a real agricultural system, and 
of the stochastic effects, such a conservative approach seems reasonable. 

To complete the specification of the model, one must specify the immigra- 
tion rate I(t; n). A very simple form is chosen; namely 

I(t; , )  = I0(1 - I¢/T) (10) 

In the next section, the solutions of the model given by eqs. 1-10 are 
studied. 

S O L U T I O N S  O F  T H E  A G E - I N D E P E N D E N T  M O D E L  

This section contains some results obtained using the model. The eco- 
nomic quantity of interest is the total discounted yield of crop over the 
economic horizon. Suppose that the horizon is M years. Then the total yield 
is 

M 

J= Y~ p'-lC(T,n) (11) 
n = l  
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T A B L E  I 

Pa rame te r  Value Pa ramete r  Value Paramete r  Value 

I o 1 e I 35 

I c 1 e 2 5 

r~ 0.1 rio 0.2 

V 0.005 r2o, r3o 0.21 
T 20 6 2 

a 1 T/ 2 

t s 6 w 20 

p 0.9 

/1](0) 10 -~ 

M 10 

Co 1 

where p is a discount factor and C(T, n) is the yield of crop at the end of the 
season in year n. Another  useful quanti ty for comparisons is 

f ( n )  = C ( T ,  n ) / C  o e rJ  (12) 

which is the fraction of potential crop yield in year n. 
Since the models consist of linear differential equations, the solutions may 

be determined analytically. However,  the complexity of these solutions 
eliminates their usefulness, so the solutions are obtained numerically. Param- 
eter values chosen for the standard case are given in Table I. 

These values were chosen so that an application of the pesticide causes an 
85% reduction in the susceptible population and a 5% reduction in the 
resistant population. 

The two control parameters are 7, the intensity of spraying, and t s, the 
initiation time of spraying. Table II shows the effect of 7/and t s on the total 
yield J of eq. 11. 

For  these parameter  values, an increase in ~7 leads to an increase in 
discounted total yield, while an increase in t~ leads to an initial increase 
followed by  a decrease in total yield. These results may be explained by 
examining Figs. 1 and 2. Figure 1 shows the effects of varying t s. Figure 1 a 
gives the relative y i e l d f ( n )  of eq. 3.2, and Fig. lb gives the fraction ~3(n) of 
susceptibles. Both f ( n )  and /~3(n) are functions of a discrete variable; 
however, to aid the eye they are plotted as continuous curves. When t s is 

T A B L E  II  

7/ t s J 

2 6 32.1 
1.5 6 30.4 

2.5 6 33.2 

2 4 31.2 

2 8 29.0 



increased, initial yield increases up to an optimal point at t s = 6. Yield in 
later years declines dramatically; the effect of the discount rate, however, 
makes these crop yields less valuable than those in the present and near 
future. The portion /x3(n ) of susceptibles declines more rapidly as t s is 
increased, because the susceptible population has less remaining time to 
recover from the effects of the pesticide. When t s is very early (e.g. t s = 2), 
the slightly higher growth rate of the susceptible population allows it to 
recover almost completely. 

Figure 2 shows the dependence o f f ( n )  (Fig. 2a) and/.t3(n ) (Fig. 2b) on 
the spray intensity ~/. The values ~ = 1.5, 2, and 2.5, are regarded as 
represensative of a "modera te"  intensity of spraying. As shown in Fig. 2a, 
the yield ratio f ( n )  increases over most of the ten seasons with increasing ~/. 
Figure 2b shows that the susceptible ratio/~3(n) does not strongly depend on 
7/. The curves for the high intensity 7/= 5 deserve special comment.  Note in 

(a) o8 

0.6 

f(n) 0.4 

0.2 

0 

~ ts:4 
ts=2 

n I0 

(b) 1.0 

0.8 ~ 4  ts = 2 

0.6 
~3(n) 

0.4 \ \t~:6 

0.2 t s = 8 ~ ~  

n I0 
Fig. I. (a) Crop yield in year n plotted against year for varying timings of pesticide 
application. (b) Fraction of susceptibles in the population. 
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0.6 
2 

• "9  
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10 
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Fig. 2. (a) Crop yield in year n plotted against year for varying intensities of pesticides. (b) 
Fraction of susceptibles in the population. 

Fig. 2b that the fraction of susceptibles actually increases as a result of this 
very high intensity spraying. This seemingly paradoxical result is amplified 
in Fig. 3. This figure shows A/x3(1), which is defined as ~3(2)-/z3(1 ), as a 
function of ~. Note that A/~3(1 ) declines steadily, as expected, through the 
moderate  region, but then begins to rise at ~ = 3.25. 

To help clarify this phenomenon,  define the quantity gi(~) by 

gi = er'a (12) 

where the r, are as defined in eq. 7 with s = ~. The quantity g~ is the ratio 
xi(t  + 8) /xs ( t )  if there were no immigration during the period of length 8. 
Figure 4 shows plots of gi(~) for the resistant (R, i = 1) and susceptible (S, 
i = 3) cases. The plot of g2(~) is virtually identical with that of gl- Note from 
this figure that the effect of pesticide on the susceptible population has 
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Fig. 3. Single year change in the fraction of susceptibles as a function of the intensity of" 
pesticide application. 

1.6 

1.2 
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Fig. 4. The function g,(,/) for resistant (R) and susceptible (S) pests. 

virtually saturated at ~/--2.5, while increasing ~ continues to have an 
increasing effect on the resistants. Thus, very high spray intensities, if they 
kill a significant port ion of the resistant populat ion as well as the suscepti- 
bles, may actually decrease the resistance for the population. This phenome- 
non was also noted by  Georghiou and Taylor (1977a, b) and Taylor and 
Georghiou (1982). 

Figure 5 shows the effect of changes in assumptions on the genetics of the 
model. The standard case is that in which the parameter  a is 1. The size of a 
reflects the degree of outcrossing between colonies and the number  of pest 
generations during the season. When ct = 0 there is either random mating or 
only one generation per season. As shown in Fig. 5, the value of a makes 
virtually no difference in the model. The third curve in Fig. 5 corresponds to 
the case in which there are only two classes, resistants and susceptibles. 
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0 1 
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Fig. 5. Comparison of yields predicted by the three pest class (c~ = 0 and a = 1) and two pest 
class models. 

0.8 t- 

0.6 

f ( n )  0.4 

0.2 

L 

Ic--I 

0 I 
I0 

n 

Fig. 6. Comparison of yields for decreasing (I c = 1) and constant (I  c = 0) influxes of pests 
from the pool. 

Equa t ions  9, which def ine  the ~ i (n  + 1), are rep laced  by  

X,(T; n) 
/xi(n + 1 ) =  Xl(T; n) + Xz(T ;  n ) '  i =  1, 2 (13) 

As shown in Fig. 5, the results with this mode l  are a lmost  ident ical  with 
those  of  the three-class model .  

F igure  6 shows the effect  of  changing  the p a r a m e t e r  I c in eq. 10 f rom 
I c = 1 to I c = 0. The  lower  value of  Ic results in increased immigra t ion  late in 
the season, which reduces  the yield when  n is small. Th e  increased immigra-  
t ion,  however ,  br ings in more  susceptibles,  which help main ta in  the suscepti-  
bi l i ty  of  the popula t ion ,  raising the yield in la ter  years.  



0.8 

0.6 

0.2 

f ( n )  0.4 

1.0 

13 

n I0 

0 

/~2(n) o.5 

I0 n 

Fig. 7. Comparison of yields for models with differential fitness in the absence of spraying (a) 
and identical fitness in the absence of spraying (b, with rio = 0.2). 

Figure 7 shows the effect of dropping the assumption that susceptible and 
intermediate pests have a competitive advantage. As expected, if the intrinsic 
growth rate of the resistants is equal to that of the other classes, then the 
resistants dominate the populat ion more quickly. The difference in the two 
cases, however, is surprisingly small. The reason for this is that during the 
early seasons the populat ion of resistants and intermediates is very small. 
Therefore, even though the populat ion of susceptibles is reduced by 80-90% 
after the pesticide application, it is still several orders of magnitude larger 
than the resistant and intermediate populations. 

T H E  E F F E C T  OF A G E  S T R U C T U R E  ON THE M O D E L  

In this section the effect of the age structure of the pest component  in the 
dynamics of the model is studied. The formulation of the model incorpo- 
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rated age dependence in both susceptibility to the pesticide and consumption 
of the crop. Numerical results are presented only for age dependent  suscepti- 
bility, however, since crop consumption plays no role in accumulation of 
resistance by the pest component  of the model. 

As mentioned in the introduction, age dependence is initially built into 
the model in the form of a v o n  Foerster-like equation in which the age of the 
pest colonies, rather than that of individual pests, is measured. This is useful 
since it greatly simplifies the model, but it has the disadvantage of only 
allowing one application of the pesticide per season. Therefore, an ap- 
proximate model which divides the pest population into the categories young 
and old is developed. This has the advantages of replacing the partial 
differential equations of the model with ordinary differential equations, and 
eliminating the need to assume only one pesticide application per year. 

To begin, let x(t ,  a)da be the number  of pests in the field at time t in 
colonies of age a to a + da.  Assume that the pests in the field grow at a rate 
r(t, a); we will specify r(t, a) below. With these assumptions, compare 
x( t  + h, a + h) and x(t,  a): 

x ( t  + h, a + h) - x( t ,  a) = r(t,  a )x ( t ,  a)h + o(h) (14) 

Adding and subtracting x(t,  a + h) to the left hand side, dividing by h and 
letting h ---, 0 gives the equation 

~x Ox 
O-T + Oa = r(t,  a )x ( t ,  a) (15) 

Next, consider boundary conditions for this equation. By assumption, there 
are no pests present at time 0. Thus x(0, a) = 0 for all a. In fact, it must be 
that x(t ,  a) = 0 if a > t. Now consider x(t ,  0). Assume that pests arrive at a 
rate I(t). Thus 

x( t ,  0)At = number  of pests in colonies of age (0, At) at time t 

= ft t-atI(slds + °( At) (161 

Using a Taylor expansion in eq. 16, dividing by At, and letting At ~ 0 gives 
the condition 

x ( t , O ) = I ( t )  (17) 

The intrinsic growth rate r(t, a) (or, more correctly, r(t, a; n)) is specified 
by an equation similar to eq. 4 except with an age dependent  ~0. If, as is the 
case of Kelthane acting on mites, the eggs and larvae are primarily affected, 
then one would expect o~(a) to decline with a. This is because older colonies 
in general may be expected to contain a lower number  of eggs and larvae. 
Conversely, if a given pesticide were more effective against adults, one would 
expect w(a)  to increase with a. 
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If o~ is independent  of a, one may convert eq. 15 to an ordinary 
differential equation by direct integration. Let 

X( t ) = fo'X( t, a )da (18) 

Integrating eq. 15 yields 

fo' OX da r' Ox 0, +J0 7ada=ri')f0 xt 'a)da (19) 
Exchanging the order of integration and differentiation, applying the 
boundary  condition (17) and noting that x(t, t) = 0, yields 

d X - r ( t ) X +  I (20) 
dt  

which is the same as eq. 3. 
To incorporate genetics, the result of Section 3 - - t h a t  the behavior of the 

two-class model is essentially the same as that of the three-class one (cf. Fig. 
5 ) - - i s  used. Therefore, one can use the two-class model and let Xl(t, a)da 
denote number  of resistant pests in colonies of ages a to a + d a, and 
similarly define x2(t, a) for susceptibles. The equations of the pest submodel 
then become 

0--7 + ffa-a = rl° 1 - - -  x l e, + s(t; n) 

Ox2 Ox2 { ~°(a)s(t; n) } (21) 
O~- + ~ - a  = r2° 1 - x:  e 2 + s(t; n) 

together with the boundary  conditions 

xi(O, a) = O, xi(t, O) = t~,(n)Z(t). (22) 

For  the crop submodel,  replace eq. 1 with 

dCd, = r ,C-  i=~ fo'e(a)x'( t 'a)da (23) 

c ( o )  = Co 

All other equations remain unchanged. In eq. 13, the value of Xl(t; n) is 
obtained from 

fo r (T, a; n)da (24) x (r; ,7)= x, 

To complete the specification of the model one must give the form of w(a) .  
For  the case in which ~o(a) declines with a, a useful model is 

00(a) = Wo e-ma (25) 
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and  for  the case in which (~(a) increases with a, a useful model  is 

¢0 ( a ) =  ~o0 ( 1 - e  -ma) (26) 

As with the age - independen t  model ,  the equa t ions  of the age -dependen t  
mode l  m a y  be solved analyt ical ly,  but  here  they are solved numerical ly .  Th e  
d i f fe rence  scheme for eqs. 4.2 is taken  f rom John  (1978) and is 

xi(t+h,a+h)=ri(t,a)xi(t,a)+xi(t,a),i= 1 ,2  (27) 

T h e  pa r a me te r  values used in the numer ica l  solut ion were those given in 
T ab l e  I. The  p a r a m e t e r  m in eqs. 25 and 26 was fixed at 0.1. 

F igure  8 shows the results. Curves  " a "  co r r e spond  to the age - independen t  
case (m = 0). These  are not  quite  ident ical  to the " s t a n d a r d "  case curves of  
Sect ion 3 because  the curves of  Fig. 8 were genera ted  using the par t ia l  

(o) o.e I 
0.6 

f ( n )  0.4 

0.2 

0 

% 

IO 
n 

(b) I.O 

~z(n) 

0.8 

0.6  

0.4 

0 . 2  

x x x \  b 

\ ',,,\ 

\\,~ o % 
% 

0 I 
I0 

n 
Fig. 8. Comparison of two-pest class model with age dependence and approximating ordinary 
differential equations. Panel (a) shows crop yields, panel (b) shows fraction of susceptible 
pests. Curves (a) correspond to the age independent case ( ) and fitted ODE Model 
( . . . . . .  ). Curves (b) correspond to ~o(a) = ~0 e - ' a  ( - -  ) and fitted ODE model ( . . . . . .  ). 
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differential equation solver. Curves " b "  correspond to the case of ~0(a) 
decreasing with a (eq. 25); the curves for the case of ~0(a) increasing with a 
(eq. 26) are qualitatively similar to curves " b "  and are not shown. 

As may be expected, the initial yield in the age-dependent case is lower 
than that of the age-independent case. This is because if a portion of the 
genetically susceptible population is effectively resistant, then the effective 
intensity of the pesticide is reduced. Corresponding to this effective reduc- 
tion in intensity is an increase in crop yield in later years. A more interesting 
observation may be made by comparing curve b in Fig. 8 with the curve for 

= 1.5 in Fig. 2. The reduction in the initial season's crop yield in both cases 
is roughly the same. The increase in resistance is much slower, however, in 
the age-dependent case with ~ = 2 (Fig. 8). The reason is that in the latter 
case a portion of the genetically susceptible population is effectively re- 
sistant, so that the selection pressure on the genetically susceptible popula- 
tion is reduced. 

In the preceding paragraph it was seen that each class may be effectively 
subdivided into two groups, young and old, corresponding to the age of the 
colony. This motivates a simple approximation for the case of age-dependent 
susceptibility. The total population of each class is divided into two cate- 
gories: young and adult. The differential equations for the dynamics of the 
pest population are assumed to be 

dYi 
d t  - Piai - cgyi - ° i (  t ) Yi + P i I  

d a ,  
d t  = ~ Y i - u i ( t ) a i  (28) 

y , ( O ) = a i ( O ) = O , i = l , 2  

The essence of this approximation is that young are generated at a rate 
proportional to the population of adults, and become adults at a rate 
proportional to the population of young. Young and adults die at rates o,(t) 
and u, ( t ) ,  respectively. Equations 28 may be derived rigorously from eqs. 21 
by assuming that young are converted to adults at an age that follows a 
Poisson distribution (MacDonald,  1978). Another  view is to regard eqs. 28 as 
an ad hoc approximation to eq. 21 and choose the parameters of (28) to 
make the solutions of this system behave similarly to those of (21). 

The death rate functions in eqs. 28 were chosen to resemble the functions 
of eqs. 21. Specifically, 

o,(t) = ] 
e i + s ( t )  + °i 

, as( t ) ] 
ui = + ~i (29) eiq-s(t ) 
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where the e i and s(t) are as in eq. 4.8, and ffi, F, are the death rates due to 
natural mortality. The dashed lines in Fig. 8 show the solutions of the 
approximate equations. The parameter  values are 0~ = 0.22, P2 = 0.231 (i.e., 
1.05 × O~), cp = 3, ~v = 4.2, ~0 = 4.2 for curve a. ~0 a = 2.6 for curve b, ~, = 0, 
and ~ = 0. The agreement between solutions of eqs. 28 and 21 is clearly 
satisfactory. 

In addition to its obvious simplicity, the model of eq. 28 has an important  
conceptual advantage over that of eq. 21. This is that the variables y~(t) and 
/~i(t) measure the total numbers of young and adult pests of class i in the 
field, rather than the pests in young and old colonies. Therefore one may 
drop the restriction of a single pesticide application per season. 

CONCLUSIONS AND DISCUSSION 

The main conclusions of the paper are these. First consider the model 
itself. There are a number  of simplifying assumptions, such as spatial 
independence, linear dynamics, simplified temperature effects, genetics, and 
age structure, that we do not consider crucial for our purpose. While such 
assumptions would be important for a simulation model, the goal here is to 
develop models that will provide qualitative predictions and interpretations. 

The first conclusion is that while increasing the intensity of pesticide 
application can increase the short term crop yields, proper timing of pesti- 
cide application is necessary to ensure maintenance of a susceptible popula- 
tion. As shown in Fig. 2a, increased intensity of application leads to 
uniformly higher yields over most of the time span. The declining yields near 
the time horizon are rendered less important  by the effect of the discount 
rate. Even at very higher spray intensities, in which virtually all of the 
susceptibles in the field are killed, the combination of immigration of 
susceptibles after the spraying period and their slightly higher growth rate 
are sufficient to ensure that their population recovers. The importance of 
proper timing is apparent from the result shown in Fig. 4. Spraying too early 
allows the susceptibles sufficient time to recover, but sacrifices crop yield. 
Spraying too late is even worse since it, too, sacrifices yield, but also prevents 
susceptibles from recovering. Therefore, the manager should employ a timing 
strategy which uses proper timing to maximize crop yield, while minimizing 
buildup of susceptibility. In summary, one would introduce an ad hoc rule 
that "proper  timing controls resistance buildup and proper intensity controls 
yield". 

In Plant et al. (1983) dynamic programming is used to achieve an optimal 
timing strategy. The result displayed in Fig. 5, that the genetic model does 
not  significantly affect the results, is useful in reducing the dimensionality of 
the dynamic programming problem. It is also noteworthy because it allows 
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an extreme simplification (from diploid to haploid genetics) without a 
serious modificat ion of results. The main cause is the explosive growth of the 
resistant populat ion during the later seasons. This growth is so rapid that the 
other two classes are swamped as the susceptibles decline to a level that 
cannot  maintain a significant heterozygous population. 

Figure 6 shows that changing the functional form of the immigration 
function I(t) affects the behavior of the model quantitatively but not 
qualitatively. Because of the importance of proper  timing of pesticide 
application however, the form of I(t) becomes a factor in management  
decisions. All the parameters of the model have a stochastic component ,  but 
the form of I ( t )  is in practice known with the least certainty. 

The main operational  conclusion of Section 4 is that the use of a pesticide 
which primarily affects a single age class of the pest populat ion can signifi- 
cantly reduce the buildup of resistance in the pest population. From the 
perspective of development  of the model, the principal conclusion is that a 
simple two-age class model can effectively represent the more complex 
model  that uses a continuous age dependence. This representation will be 
used in subsequent papers. 
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