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G H O T I

The inverse life-history problem, size-dependent mortality and 
two extensions of results of Holt and Beverton

Marc Mangel1,2

In celebration of Sidney Holt receiving the Beverton Medal from the Fisheries Society of the British Isles, on the 50th 
Anniversary of the Society

Ghoti papers

Ghoti aims to serve as a forum for stimulating and pertinent ideas. Ghoti publishes succinct commentary and opinion that 
addresses important areas in fish and fisheries science. Ghoti contributions will be innovative and have a perspective that 
may lead to fresh and productive insight of concepts, issues and research agendas. All Ghoti contributions will be selected 
by the editors and peer reviewed.

Etymology of Ghoti

George Bernard Shaw (1856–1950), polymath, playwright, Nobel prize winner, and the most prolific letter writer in history, 
was an advocate of English spelling reform. He was reportedly fond of pointing out its absurdities by proving that ‘fish’ 
could be spelt ‘ghoti’. That is: ‘gh’ as in ‘rough’, ‘o’ as in ‘women’ and ‘ti’ as in palatial.
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Abstract
In 1958, Sidney Holt developed a model to determine the optimal mass at which to 
harvest a cohort of fish having von Bertalanffy growth and experiencing constant nat-
ural mortality. Holt and Ray Beverton then gave a life-history interpretation to the 
analysis, from which Beverton developed a theory of Growth, Maturity, and Longevity 
(GML) that allows one to predict quantities such as age at maturity or relative size at 
maturity using life-history parameters. I extend their results in two ways. First, keeping 
the original formulation, in which the rate of natural mortality is constant, I show how 
one can invert Beverton’s result to determine the rate of natural mortality from life-
history data. I illustrate this inverse method with data on three species of tuna and 
compare the estimates with those based on tagging. Second, I extend Beverton’s GML 
theory to include size-dependent mortality. I explore previously published mortality 
models and introduce a new mortality function that has size-independent and size-
dependent components. I show that the new size-dependent mortality function leads 
to the prediction that age at maturity depends upon asymptotic size (as well as the 
other life-history parameters), something that Beverton’s original theory lacked. I il-
lustrate this extension with a simple example, discuss directions for future work and 
conclude that nearly 60 years on these contributions of Holt and Beverton continue to 
lead us in new and exciting directions.
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age at maturity, asymptotic size, Growth-Maturity-Longevity, rate of mortality, tuna,  
von Bertalanffy growth
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1  | INTRODUCTION

Inferring life-history parameters and examining their impact on the dy-
namics of individuals, populations and communities are always going 
to be important goals in biology. Here, I extend an idea concerning 
computation of the optimal age for Yield Per Recruit (YPR) that Sidney 
Holt first published (Holt, 1958) and that Ray Beverton extended into 
a theory of Growth, Maturity, and Longevity (GML) (Beverton, 1987, 
1992, 2002; Beverton & Holt, 1959) in two ways.

First, I show how Beverton’s original theory, in which one as-
sumes that the rate of natural mortality is constant, can be applied 
to the inverse life-history problem. That is, rather than asking “given 
the rate of natural mortality, von Bertalanffy growth rate and size 
fecundity exponent, what is the optimal age at maturity?” we ask 
“given the von Bertalanffy growth rate, size fecundity exponent and 
age at maturity, what is the rate of natural mortality?” Because in a 
sample of fish, each mature individual provides data for these life-
history parameters, we are able to develop both point estimates and 
distributions for the rate of natural mortality, a parameter that is 
exceptionally hard to measure. I illustrate this inverse method by 
developing distributions for the rate of natural mortality for three 
species of tuna and compare these with estimates obtained by 
Hampton (1991, 2000) using tagging data.

Second, I show how to extend Beverton’s GML theory when the 
rate of natural mortality depends upon size. Asymptotic size does not 
appear in Beverton’s original theory (why this happens will be seen 
below). However, it is now generally agreed that mortality of fish is 
an explicit function of size (and thus an implicit function of age; e.g., 
Brodziak, Ianelli, Lorenzen, & Methot, 2011; Charnov, Gislason, & 
Pope, 2013; Gislason, Daan, Rice, & Pope, 2010; Gislason, Pope, Rice, 
& Daan, 2008; Lorenzen, 2000).

For example, Gislason et al. (2010) used an extensive statistical 
study conclude that the rate of mortality depends not only on size but 
on asymptotic size L∞ and von Bertlanaffy growth rate k according to 
(their Equation (2) exponentiated)

Charnov et al. (2013) found that an equally good fit to the data is 
given by

and then argue that 1.46 and 0.05 in these equations are not statisti-
cally different from 1.5 and 0, respectively, to write

To reach Equation (2), Charnov et al. (2013) essentially refit three 
of the parameters in Gislason et al. (2010) (the numerical coefficient, 
which goes from e0.55 = 1.73 in Equation (1) to 1 in Equation (2), and 
the exponents which go from 1.44 and 1.61 in Equation (1) to 1.5 in 
Equation (2)).

I will offer an alternative model for the size dependence of mortal-
ity, with intuitive biological appeal and analytical advantages for pre-
dicting age at maturity. I show that with this model of size-dependent 
mortality, the optimal age of maturity depends upon asymptotic size, 
which does not occur in Beverton’s original theory. I illustrate this de-
pendence with a numerical example.

Both extensions require no more than elementary calculus, al-
though further development of them (Appendix) becomes a bit more 
complicated.

To ensure that this note is self-contained, I first summarize what 
Holt and Beverton did and then derive the extensions and their impli-
cations. In the discussion, I first consider the inverse life-history prob-
lem, resolve some questions left open by the analyses of Gislason et al. 
(2010) and Charnov et al. (2013) and finally raise some new questions. 
I conclude that the original analysis of Holt—almost 60 years old—and 
the fuller GML theory of Beverton—now 25 years old—are still fertile 
areas for new directions in research.

2  | WHAT HOLT AND BEVERTON DID

Holt (1958) envisioned individuals in a cohort following a common 
von Bertalanffy growth curve; mass at age a is W(a) = W∞(1 − e

−ka)3 
where W∞ is the asymptotic mass and k is the von Bertalanffy growth 
constant (see Mangel, 2006 for a derivation). The full von Bertlanffy 
description of growth is W(a)=W∞(1−e−k(a−a0))3 where a0 < 0 is the 
theoretical age at 0 size. When W(0) is small, a0 is often set equal to 0. 
In the von Bertalanffy formulation, the allometry between mass and 
length is strictly cubic, that is W ∝ L3. Furthermore, asymptotic size is 
not a fundamental parameter, but rather a combination of an anabolic 
parameter and the growth rate; see Charnov et al. (2013), Mangel 
(2006) and Section 5 for more details.

If the rate of natural mortality is a constant M, then the ex-
pected mass at age a of a cohort of initial size N0 individuals is 
N0e−MaW∞(1 − e

−ka)3. Thus, for a specific cohort, survival is a declining 
function of age and mass is a saturating function of age, so that there 
is an age at which harvesting this cohort maximizes expected biomass, 
obtained by taking the derivative of the expected mass with respect 
to age and setting it equal to 0. Holt showed that at the optimal age 
for harvest, mass is:

One can think of this as the ultimate YPR analysis in which there is no 
fishing mortality until the age giving Wopt and then the fishing mortal-
ity is infinite.

Beverton and Holt (1959) gave a life-history interpretation to Holt’s 
analysis and Beverton (1992, 2002) more fully developed it into a life-
history theory of GML. I begin with a slight elaboration of Beverton’s 
theory, in which we do not necessarily assume that reproduction is 
proportional to mass. Dick, Beyer, Mangel, and Ralston (2017) give 
an example of a genus—Sebastes—in which the length-fecundity expo-
nent ranges from about 3.5 to more than 5.0.

(1)Mg(L)=e0.55 ⋅k ⋅L1.44
∞

∕L1.61

Mc(L)=e−0.05 ⋅k ⋅

(
L∞

L

)1.46

(2)Mc(L)=k ⋅

(
L∞

L

)1.5

Wopt=W∞

(
3

3+M∕k

)3
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We describe growth by the von Bertalanffy formula for length L(a) 
at age a with a0 = 0

where L∞ is asymptotic length and k is as before. We assume that nat-
ural mortality M, is independent of size and that lifetime reproduction 
for an individual who matures at size l is ϕlb.

With these assumptions, the fitness F(a|L∞, k, M, b, ϕ) of an individ-
ual who matures at age a given the life-history parameters is

We find the optimal age at maturity by elementary calculus 
(Mangel, 2006, p. 23 ff)

Since ϕ and L∞ are constants with respect to age in Equation (4), 
they divide out when the derivative is taken and set equal to 0. 
Typically, one uses this theory by specifying the life-history parame-
ters and predicting age at maturity. This extremely simple theory often 
does remarkably well (e.g. Mangel & Abrahams, 2001).

An alternative approach to age at maturity is to make the “most 
plausible assumption” (Charnov et al., 2013, p. 217) that the age of 
maturity is the age at which the rate of change of mass is a maximum. 
Then simple calculus shows that am = log(3)/k, but this approach can-
not not consider the trade-offs in growth and mortality explicitly in 
determination of the age at maturity (see the Appendices in Charnov 
et al. (2013) for further discussion).

Finally, although it appears that these results apply only to a se-
melparous organism, if there is no growth after maturity and we in-
terpret F(a|L∞, k, M, b, ϕ) as annual reproductive output, then since 
expected lifetime is 1/M, expected lifetime reproduction is F(a|L∞ , k,M, b,ϕ)

M
 

and the optimization problem does not change at all. If there is sub-
stantial growth after maturity, then a different approach is needed (see 
Section 5).

3  | THE INVERSE LIFE-HISTORY PROBLEM

We can invert Equation (5) to solve for M to obtain a point estimate 
for the rate of natural mortality conditioned on the length-fecundity 
exponent, the von Bertalanffy growth rate and the age at maturity

If we have distributions for the other parameters, then we are 
able to construct an informative prior for M. For example, Dick et al. 
(2017) conducted a meta-analysis of the fecundity of the rockfish. 
Their result is a posterior-predictive distribution of the length-
fecundity exponent b, so that drawing from this posterior-predictive 
distribution provides individual values of b, which can be comple-
mented by individual values of k and am if those distributions are 
known. When they are not known, we can proceed by making as-
sumptions about the distributions.

For example, to account for variation in k, where k̂ is the point es-
timate, one could assume that for the ith draw from the posterior-
predictive value of b the associated value of growth rate, ki is

where Zi is a Normal(0,1) and σk is the standard deviation in growth 
rate.

To account for variation in age at maturity, one can use the 
maturity ogive

where a50 is the age at which half of the individuals in a cohort are 
mature and σa = 0.5 characterizes the dispersion of maturity around 
that age. For an individual draw of the length-fecundity exponent and 
growth rate, we then draw a uniform [0,1] random variable and com-
pare that with the maturity ogive to determine the age at maturity on 
this draw.

To illustrate application of the inverse life-history method, I ex-
tracted data on skipjack tuna (Katsuwonus pelamis, Scombridae), yel-
lowfin tuna (Thunnus albacares, Scombridae) and southern blue fin 
(Thunnus maccoyii, Scombridae) tuna from the global scombrid life-
history data set (Juan-Jordá, Mosqueira, Friere, Ferrer-Jordá, & Dulvy, 
2016). For these species:

1.	 There are data on average and variance in the von Bertlanaffy 
growth rate k.

2.	 There are data for average age at maturity a50. I assumed that 
σa = 0.05a50.

3.	 There are data on average length-fecundity exponent for all three 
species and data on variance in the length fecundity exponent for 
skipjack and yellowfin tuna. For bluefin tuna, I followed the result 
of Dick et al. (2017) and assumed a normal distribution for b with 
Coefficient of Variation 12.5%.

Thus, we are able to generate an entire prior distribution for the 
rate of natural mortality, conditioned on the fecundity parameter, ob-
served growth rate and age at maturity (Figure 1). The point estimate 
for skipjack tuna is ̂M=1.25. For comparison, Hampton (2000)—using 
tagging data—estimated that M for the midsizes of skipjack tuna (41–
51, 51–60 and 61–70 cm), which comprise the bulk of the exploited 
range, are 1.6, 1.2 and 2.0 year−1, respectively. The distribution in 
Figure 1 includes all of those values. The point estimate for yellow fin 
tuna ̂M = 0.93 is a bit larger than that reported by Hampton (2000), 
who noted that M = 0.8 is most commonly used in assessment and 
for the size-classes 51–60, 61–70 and 71–80 cm the estimates for 
M are 0.68, 0.44 and 0.69. However, Hampton estimated M ≈ 1 for 
the 41–45 cm size-class (see his figure 10) and values of M between 
0.5 and 1.0 are highly probable using the inverse life-history method 
(Figure 1). The point estimate for southern bluefin tuna is ̂M=0.25; for 
comparison Hampton (1991) suggested values of M between 0.24 and 
0.28 year−1 and the probability distribution in Figure 1 captures the 
entire range of values reported by Hampton.

(3)L(a)=L∞(1−e−ka)

(4)F(a|L∞ , k,M, b,ϕ)=e
−MaϕL(a)b=e

−Maϕ
[
L∞(1−e

−ka)
]b

(5)am=
1

k
ln

(
M+bk

M

)

(6)̂M=
bk

ekam −1

(7)log(ki)= log(k̂)−0.5σ2
k
+σkZi

(8)pm(a)=Pr{mature by agea}=
1

1+exp(a50−a∕σa)
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These results should be taken as illustrative, as some of the species 
are far from asymptotic size when at the age of maturity (see Section 5).

4  | INCORPORATING SIZE-DEPENDENT  
MORTALITY

4.1 | The form of size-dependent mortality

Rather than using either Mg(L) or Mc(L), I offer an alternative approach 
to size-dependent mortality. In particular, write

where m0 and m1 are parameters. If both parameters are both positive, 
we can interpret m0 as the rate of size-independent mortality and m1 
as the rate of size-dependent mortality. If one of them is negative, then 
we lose such interpretation, but still have the interpretation that survival 
from age a to age a + 1 is exp(−m0 − m1/L(a)), so that the requirement for 
biologically meaningful parameters is that m0+

m1

L
>0 for all values of L.

Snover, Watters, and Mangel (2006) used Equation (9) in the study 
of top-down and bottom-up control of life histories in coho salmon 
(Oncorhynchus kisutch, Salmonidae) and Carlson, Kottas, and Mangel 
(2010) developed a Bayesian method for estimating the m0 and m1 
from only size distributions, with application to three-spined stickle-
back (Gasterosteus aculeatus, Gasterosteidae).

To compare Equation (1, 2 and 9), I took Equation (1) (the regression 
result of Gislason et al. (2010)) as the true state of nature and in Figure 2 
show the predictions of Equation (1) (solid line), Equation (2) (red circles) 
and Equation (9) (blue crosses) for Pacific Ocean Perch (Sebastes alutus, 
Sebastidae) and Squarespot Rockfish ((Sebastes hopkinsi, Sebastidae) 
where I determined the parameters m0 and m1 by matching in the rate 
of mortality at age 1 and at the age of maturity and used growth curves 
from Love, Yoklavich, Thorsteinson, and Butler (2002).

Survival to age a, S(a), always satisfies the differential equation 
(Mangel, 2006; Hilborn and Mangel 1997)

when M(L(a)) = M, a constant, the solution of this differential equation 
with S(0) = 1 is S(a) = e−Ma.

For the mortality model in Equation (9)

One consequence of Equation (11) is that there is an infinite num-
ber of ways of getting the same survival to a specific age. For example, 

(9)M(L)=m0+
m1

L

(10)
dS

da
=−M(L(a))S

(11)S(a)=exp

[
−m0a−m1 ∫

a

0

ds

L(s)

]

F IGURE  1 Probability distributions 
for the rate of mortality for skipjack tuna 
(a), yellowfin tuna (b) and southern blue 
fin tuna (c) using the inverse life-history 
method with Beverton’s original Growth, 
Maturity, and Longevity theory. Point 
estimates for M are, respectively, 1.25, 
0.93 and 0.25. See text for details and 
comparison with other published estimates

F IGURE  2 Comparison of the length-dependent mortality 
predicted by the regression of Gislason et al. (2010) (black line) with 
the approximation proposed by Charnov et al. (2013) (red circles) and 
the length-dependent form in Equation (9) (blue crosses) for Pacific 
Ocean Perch (a) and Squarespot Rockfish (b). [Colour figure can be 
viewed at wileyonlinelibrary.com]
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if survival to age amax is S(amax), then with m1 = 0 we obtain the max-
imum value for m0 from S(amax) = exp(−m0,maxamax) and whenever 
m1 > 0, the value of m0 giving the same survival to age will be less than 
this maximum value. Indeed, there is a linear relationship between m0 
and m1, conditioned on the same survival to amax, determined by the 
value of the integral in Equation (11) (Snover et al., 2006; Figure 3).

4.2 | The implication of size-dependent mortality on 
predicting age at maturity

Suppressing the dependence on the life-history parameters, the gen-
eralization of Equation (4) is

In the main text, I will focus on the analysis of Equation (12) with mor-
tality given by Equation (9); in the Appendix, I discuss the situation 
when mortality is given by Mg(L) or Mc(L).

To find the optimal age of maturity, we differentiate Equation (12) 
with respect to a, using the product and chain rules of elementary 
calculus, and obtain

substituting Equation (9) for M(L(a)) we obtain

We set this derivative equal to 0 and simplify to obtain

Since L(a) = L∞(1 − e
−ka), one can directly verify that dL

da
=kL∞e

−ka 
(yet another way of characterizing von Bertalanffy growth) and 
Equation (16) becomes

which we solve for am

This is the second extension of the results of Holt and Beverton.
Equation (18), a prediction for the optimal age at maturity, now in-
volves all five of the life-history parameters: asymptotic size, von 
Bertalanffy growth rate, length-fecundity exponent and the size-
independent and size-dependent rates of mortality.

If we set m1 = 0 then Equation (18) reduces to Equation (5) 
(with M = m0), as it must. However, notice that if m0L∞ >>m1, then 
Equation (18) also reduces to Equation (5). Thus, we conclude that the 
simpler expression holds not only when the rate of mortality is con-
stant, but also when the condition L∞ >> m1/m0 holds.

(12)F(a)=S(a)ϕL(a)b

(13)F�(a)=
dS

da
ϕL(a)b+S(a)ϕbL(a)b−1

dL

da

(14)=−M(L(a))S(a)ϕL(a)b+S(a)ϕbL(a)b−1
dL

da

(15)F
�
(a)=(a)

(
−m0−

m1

L(a)

)
ϕL(a)b+(a)ϕbL(a)b−1 dL

da

(16)m0L(a)+m1=b
dL

da

(17)m0L∞(1−e−ka)+m1=bL∞ke
−ka

(18)am=
1

k
ln

[
(bk+m0)L∞

m0L∞+m1

]

F IGURE  3  Illustration of the effects 
of the size-dependent mortality model 
in Equation (9). I consider a fish growing 
according to a von Bertalanffy curve with 
initial size 0.01 cm, asymptotic size 25 cm 
and growth rate k = 0.125 per year (upper 
left-hand panel). When survival to age 20 
is 0.01, there is a line of possible values 
of m0 and m1 giving the same survival to 
age (see Snover et al., 2006 for details); 
upper right-hand panel. Three examples 
of size-dependent mortality are shown in 
the lower panel. When m1 = 0, the rate 
of mortality is independent of size; when 
m0 = 0, the rate of mortality only depends 
upon size; for intermediate values of m0 
there is an initially strong dependence 
on size, but essentially size-independent 
mortality for larger sizes (ages). [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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But otherwise, asymptotic size will enter into prediction of age at 
maturity. To illustrate the result, in Figure 4, I plot the predicted age 
at maturity for k = 0.125, b = 3.5 and m0 = 0.164 as a function of as-
ymptotic size for five values of m1. When m1=0, asymptotic size does 
not affect predicted age at maturity (as in the standard Beverton GML) 

but otherwise it does and clearly interacts with the size-dependent 
mortality. In Figure 5, I plot age at maturity as a function of m1 for five 
values of asymptotic size; this is another way of representing the re-
sults—and shows that even when L∞ is very large there is still an effect 
on the predicted age at maturity. These curves all intersect at m1 = 0 
because in that case the predicted age at maturity does not depend 
on asymptotic size.

An important practical implication (and testable prediction) of 
these results is that we predict age of maturity to be higher in popula-
tions of the same species having larger asymptotic sizes.

5  | DISCUSSION

5.1 | The inverse life-history problem

Solving Equation (5) for an estimate of the rate of natural mortality, 
as in Equation (6)—the inverse life-history problem—opens an avenue 
for computing the distribution of the rate of natural mortality as every 
mature fish provides information to us on growth rate, age at ma-
turity (from scales or otoliths) and the size fecundity exponent. By 
employing this approach, and modern statistical methods as in Dick 
et al. (2017), we will now have plenty of data for estimating a constant 
value of M, rather than the usual shortage of data for estimating natu-
ral mortality. In the examples that I showed here, I did not have full 
distributions for growth rate or age at maturity, but there is no reason 
that the approach Dick et al.(2017) used could not be applied to data 
on growth rate and age at maturity.

To be sure, Equation (6) has its limitations, which is why the results 
presented here should be considered illustrative rather than formal 
results of research. First, as mentioned above, the distributions that 
I used for k and a50 were ad hoc. Second, Equation (6) applies only to 
a semelparous fish or an iteroparous fish with no growth after matu-
rity and with size-independent M. However, when applying it, one can 
easily check how close the ratio Lm∕L∞ =1−e−kaM is to 1; the greater 
this ratio, the better the assumption of no growth after maturity. For 
example, for the tunas in Figure 1, the fraction L(amat)/L∞ is 0.65, 0.63 
and 0.82 for skipjack tuna, yellowfin tuna and southern bluefin tuna, 
respectively. Whether the much closer fit of southern bluefin tuna to 
Hampton’s (1991) result is due to the assumption of no growth after 
maturity being more closely met or to chance remains an open and 
interesting question.

If we were to apply the same simulation approach to Equation (18), 
the result would be a distribution for the combination of m0 and m1 
shown on the right-hand side of the equation. Thus, we would not be 
able to uniquely identify these parameters, but only the combination, 
similar to the results shown in Figure 3.

I have not been able to find relatively simple analogues of 
Equation (18) for the iteroparous fish with no growth after maturity. If 
one a priori chooses age at maturity (Charnov et al., 2013) then prog-
ress can be made, but otherwise numerical solutions are needed to 
determine optimal age at maturity.

The case of the iteroparous fish with substantial growth after matu-
rity—which encompasses many species across many genera—requires 

F IGURE  4 Predicted age at maturity as a function of asymptotic 
size for five values of m1. The second curve from the top has m1 = 3, 
and the fourth curve from the top has m1 = 1. When m1 = 0 we 
are back to Beverton’s basic result so that asymptotic size does 
not influence age at maturity. [Colour figure can be viewed at 
wileyonlinelibrary.com]

F IGURE  5 Predicted age at maturity as a function of the rate 
size-dependent natural mortality for five values of L∞. The second 
curve from the top has L∞ = 150, and the fourth curve from the top 
has L∞ = 400. When L∞ is very large (more specifically in the limit of 
unbounded asymptotic size) age at maturity does not depend upon 
on the rate of size-dependent mortality. [Colour figure can be viewed 
at wileyonlinelibrary.com]
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a completely different approach as we now need a life-history model 
in which resources are allocated between growth and maturity. The 
natural framework for this is state-dependent life-history theory im-
plemented by stochastic dynamic programming (e.g. Mangel, 2015 
and references there-in). The life-history model will produce predic-
tions of behaviour, allocation and reproduction conditioned on the en-
vironment and the inverse problem is to take those observations and 
make inferences about the environment (e.g. abundance of food, rate 
of mortality) that generated them.

Most importantly, the inverse method provides an intraspecific 
approach to estimating distributions of mortality that will complement 
existing interspecific approaches based on statistical methods.

5.2 | Size-dependent mortality

This work resolves some questions and raises others.
First, Gislason et al. (2010, pp. 5–6) wrote regarding Equation (2) 

in their paper (Equation (1)) “The significant positive relationship 
between M and L∞ is somewhat surprising, but may be caused by 
a trade-off between growth and mortality”. Their result is indeed 
surprising as we expect that in the limnological and marine environ-
ments gape is a major determinant of the rate of mortality and thus 
large individuals are more likely to survive than smaller individuals. 
Gislason et al. (2010) offer a variety of scaling arguments to show 
that natural mortality varies inversely with a power of asymptotic 
size.

The answer may be much simpler, however, when we recognize 
that L in Equation (1) is L∞(1−e−k(a−a0)). Thus, Equation (1) can also be 
written with mortality as a function of age a as

which is exactly the same scaling with respect to asymptotic size that 
Gislason et al. (2010) reach (their Equation (3)) with a much longer ar-
gument requiring assumptions about the size-independent measure-
ments of natural mortality.

Second, writing Mc(L(a)) as a function of age

shows that the rate of natural mortality is proportional to k with an 
age-dependent proportionality constant that also depends upon k but 
is independent of asymptotic size. Charnov et al. (2013) noted that 
Equation (2) is as good a statistical fit to the data as Equation (1); that 
is Equations (19 and 20) appear to be statistically the same; why this is 
so remains an open question.

These equations remind us not to forget that asymptotic size is not 
a fundamental quantity in von Bertalanffy growth, but a derived one 
involving growth rate k and anabolic factors such as the density and 
quality of food in the environment (Mangel, 2006 pp. 25–26, appen-
dix in Charnov et al., 2013). If the latter are summarized by anabolic 
parameter q, then L∞ = q/k. Snover, Watters, and Mangel (2005) use 

this recognition in their study of the growth of coho salmon as it tran-
sitions from fresh to seawater.

Third, an open question is why Beverton’s original analysis works 
as well as it does when applied to fish (or other organisms—see 
Beverton, 1992) with substantial growth after maturity and size-
dependent mortality.

Fourth, the form of size-dependent natural mortality that I pro-
pose (Equation (9)), requires two parameters. As I have shown above, 
by treating the regression analysis of Gislason et al. (2010) as the true 
state of nature, we can fit the mortality function in Equation (9) quite 
accurately. Clearly, if one had tagging data, then each fish would pro-
vide information for obtaining the parameters m0 and m1. In addition, 
Carlson et al. (2010) showed that one can develop Bayesian methods 
for determining m0 and m1 in which one only has size distributions at 
one time and a subsequent time.

Fifth, notion of dimensionless ratios (Mangel 2005) becomes 
more complicated when we recognize that mortality is size depen-
dent. Both k and M are rates, so that their ratio (either k/M or M/k) 
is dimensionless and this played an important role in Beverton’s 
original GML theory and in Charnov’s development of life-history 
invariants (e.g. Charnov, 1993). Even the simplest form of size/age-
dependent mortality (Equation (20)) does not give a ratio that is con-
stant, but one that depends upon age.

Hence, it may be appropriate to focus not on mortality but on 
survival to maximum age. Regardless of the form of size-dependent 
mortality, survival to maximum age is

and it may be valuable in future studies to define an effective rate of 
mortality ̂M by setting S(amax)=exp(− ̂Mamax). Such an effective rate 
of natural mortality was used by Andrews and Mangel (2012) in a 
study of long-lived fish and data poor-stock assessments. If there is 
no obvious choice for amax, one might choose either the age of the 
oldest individual of a species that has been observed plus some ad-
ditional number of years or the age at which survival reaches a fixed 
small number (e.g. the 1 in 10 million fish, Mangel (2003)). With this 
effective rate of mortality, we can once again explore dimensionless 
ratios.

This logic is implicit in estimates for a constant rate of mortality 
that rely on maximum age (e.g. reviews in Hoenig 1983; Hoenig et al., 
2016; Kenchington, 2014; Then, Hoenig, Hall, & Hewitt, 2015). That 
is, if âmax is the maximum observed age

so that the effective rate of mortality

which gives us an interpretation for the proportionality coefficient 
in maximum age-based methods for estimating the rate of (constant) 
mortality.

(19)

Mg(a)=Mg(L(a))=e0.55 ⋅k ⋅L
1.44
∞ ∕[L∞(1−e−k(a−a0))]1.61

=e0.55 ⋅
k

[1−e−k(a−a0)]1.61
⋅L

−0.17
∞

(20)Mc(a)=Mc(L(a))=k ⋅

(
L∞

L∞(1−e−k(a−a0))

)1.5

=
k

(1−e−k(a−a0))1.5

(21)S(amax)=exp

[
− ∫

amax

0

M(L(a))da

]

(22)e
− ̂Mamax =exp

[
− ∫

âmax

0

M(L(a))da

]

(23)̂M=

∫ âmax

0
M(L(a))da

âmax
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Sixth, it is clear that rules of thumb for setting fishing mortality 
as a proportion of natural mortality also becomes much more com-
plicated when the rate of natural mortality is not constant. If length 
is a deterministic function of age, then length-dependent mortal-
ity and age-dependent mortality are interchangeable and rules of 
thumb can be developed (e.g. Kindsvater, Mangel, Reynolds, & Dulvy, 
2016; Kindsvater, Reynolds, Sadovy de Mitcheson, & Mangel, 2017). 
Andrews and Mangel (2012) and Mangel et al. (2013) show how we 
can decide when putatively size-dependent length-dependent mortal-
ity can be treated as nearly constant in a stock assessment.

6  | CONCLUSION

Nearly 60 years on, the ideas developed by Sidney Holt and expanded 
by Ray Beverton into a theory of GML continue to provide stimulus 
for exploration. The inverse life-history problem is a direct descend-
ant of Beverton’s theory of GML and extending the theory of GML 
for size-dependent mortality will provide opportunities for both new 
analysis and new empirical studies.
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APPENDIX:  The Semelparous Fish with Mg(L) and Mc(L)
From Equations (14–16) it is clear that the general condition for opti-
mal age at maturity will be

Using Mg(L) from Equation (1) we have

which can be simplified to give

This is a transcendental equation for e−ka, requiring a numerical 
method for finding its solution. Even when a solution can be found, it will 
be difficult to interpret.
Using Mc(L) we begin with

which can be simplified to

leading to a cubic equation for x = e−ka

which is does not have a tractable analytical solution but clearly shows 
that asymptotic size will in fact not affect age at maturity.

M(L(a))L(a)=bL∞ke
−ka

(
e0.55 ⋅k ⋅L1.44

∞
∕L1.61

)
L(a)=bL∞ke

−ka

e0.55

bL
0.27
∞

=e−ka(1−e−ka)0.61

k

[
L∞

L(a)

]1.5
L(a)=bL∞ke

−ka

L∞ =b2e−2kaL∞(1−e−ka)

x2(1−x)b2=1


