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G H O T I

The inverse life- history problem, size- dependent mortality and 
two extensions of results of Holt and Beverton

Marc Mangel1,2

In	celebration	of	Sidney	Holt	 receiving	the	Beverton	Medal	 from	the	Fisheries	Society	of	 the	British	 Isles,	on	the	50th	
Anniversary	of	the	Society

Ghoti papers

Ghoti	aims	to	serve	as	a	forum	for	stimulating	and	pertinent	ideas.	Ghoti	publishes	succinct	commentary	and	opinion	that	
addresses	important	areas	in	fish	and	fisheries	science.	Ghoti	contributions	will	be	innovative	and	have	a	perspective	that	
may	lead	to	fresh	and	productive	insight	of	concepts,	issues	and	research	agendas.	All	Ghoti	contributions	will	be	selected	
by	the	editors	and	peer	reviewed.

Etymology of Ghoti

George	Bernard	Shaw	(1856–1950),	polymath,	playwright,	Nobel	prize	winner,	and	the	most	prolific	letter	writer	in	history,	
was	an	advocate	of	English	spelling	reform.	He	was	reportedly	fond	of	pointing	out	its	absurdities	by	proving	that	‘fish’	
could	be	spelt	‘ghoti’.	That	is:	‘gh’	as	in	‘rough’,	‘o’	as	in	‘women’	and	‘ti’	as	in	palatial.
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Abstract
In	1958,	Sidney	Holt	developed	a	model	to	determine	the	optimal	mass	at	which	to	
harvest	a	cohort	of	fish	having	von	Bertalanffy	growth	and	experiencing	constant	nat-
ural	mortality.	Holt	and	Ray	Beverton	 then	gave	a	 life-	history	 interpretation	 to	 the	
analysis,	from	which	Beverton	developed	a	theory	of	Growth,	Maturity,	and	Longevity	
(GML)	that	allows	one	to	predict	quantities	such	as	age	at	maturity	or	relative	size	at	
maturity	using	life-	history	parameters.	I	extend	their	results	in	two	ways.	First,	keeping	
the	original	formulation,	in	which	the	rate	of	natural	mortality	is	constant,	I	show	how	
one	can	invert	Beverton’s	result	to	determine	the	rate	of	natural	mortality	from	life-	
history	data.	 I	 illustrate	this	 inverse	method	with	data	on	three	species	of	tuna	and	
compare	the	estimates	with	those	based	on	tagging.	Second,	I	extend	Beverton’s	GML	
theory	to	 include	size-	dependent	mortality.	 I	explore	previously	published	mortality	
models	and	 introduce	a	new	mortality	 function	that	has	size-	independent	and	size-	
dependent	components.	I	show	that	the	new	size-	dependent	mortality	function	leads	
to	the	prediction	that	age	at	maturity	depends	upon	asymptotic	size	(as	well	as	the	
other	life-	history	parameters),	something	that	Beverton’s	original	theory	lacked.	I	 il-
lustrate	this	extension	with	a	simple	example,	discuss	directions	for	future	work	and	
conclude	that	nearly	60	years	on	these	contributions	of	Holt	and	Beverton	continue	to	
lead	us	in	new	and	exciting	directions.
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1  | INTRODUCTION

Inferring	life-	history	parameters	and	examining	their	impact	on	the	dy-
namics	of	individuals,	populations	and	communities	are	always	going	
to	be	 important	goals	 in	biology.	Here,	 I	 extend	an	 idea	concerning	
computation	of	the	optimal	age	for	Yield	Per	Recruit	(YPR)	that	Sidney	
Holt	first	published	(Holt,	1958)	and	that	Ray	Beverton	extended	into	
a	theory	of	Growth,	Maturity,	and	Longevity	(GML)	(Beverton,	1987,	
1992,	2002;	Beverton	&	Holt,	1959)	in	two	ways.

First,	 I	 show	how	Beverton’s	 original	 theory,	 in	which	 one	 as-
sumes	that	the	rate	of	natural	mortality	is	constant,	can	be	applied	
to	the	inverse	life-	history	problem.	That	is,	rather	than	asking	“given	
the	 rate	of	natural	mortality,	von	Bertalanffy	growth	 rate	and	size	
fecundity	 exponent,	what	 is	 the	optimal	 age	 at	maturity?”	we	 ask	
“given	the	von	Bertalanffy	growth	rate,	size	fecundity	exponent	and	
age	at	maturity,	what	is	the	rate	of	natural	mortality?”	Because	in	a	
sample	of	fish,	each	mature	individual	provides	data	for	these	life-	
history	parameters,	we	are	able	to	develop	both	point	estimates	and	
distributions	 for	 the	 rate	 of	 natural	mortality,	 a	 parameter	 that	 is	
exceptionally	 hard	 to	measure.	 I	 illustrate	 this	 inverse	method	 by	
developing	distributions	 for	 the	 rate	of	natural	mortality	 for	 three	
species	 of	 tuna	 and	 compare	 these	 with	 estimates	 obtained	 by	
Hampton	(1991,	2000)	using	tagging	data.

Second,	I	show	how	to	extend	Beverton’s	GML	theory	when	the	
rate	of	natural	mortality	depends	upon	size.	Asymptotic	size	does	not	
appear	 in	Beverton’s	original	 theory	 (why	 this	 happens	will	 be	 seen	
below).	However,	 it	 is	now	generally	agreed	 that	mortality	of	 fish	 is	
an	explicit	function	of	size	(and	thus	an	implicit	function	of	age;	e.g.,	
Brodziak,	 Ianelli,	 Lorenzen,	 &	 Methot,	 2011;	 Charnov,	 Gislason,	 &	
Pope,	2013;	Gislason,	Daan,	Rice,	&	Pope,	2010;	Gislason,	Pope,	Rice,	
&	Daan,	2008;	Lorenzen,	2000).

For	 example,	 Gislason	 et	al.	 (2010)	 used	 an	 extensive	 statistical	
study	conclude	that	the	rate	of	mortality	depends	not	only	on	size	but	
on	asymptotic	size	L∞	and	von	Bertlanaffy	growth	rate	k	according	to	
(their	Equation	(2)	exponentiated)

Charnov	et	al.	(2013)	found	that	an	equally	good	fit	to	the	data	is	
given	by

and	then	argue	that	1.46	and	0.05	in	these	equations	are	not	statisti-
cally	different	from	1.5	and	0,	respectively,	to	write

To	reach	Equation	(2),	Charnov	et	al.	(2013)	essentially	refit	three	
of	the	parameters	in	Gislason	et	al.	(2010)	(the	numerical	coefficient,	
which	goes	from	e0.55	=	1.73	in	Equation	(1)	to	1	in	Equation	(2),	and	
the	exponents	which	go	from	1.44	and	1.61	in	Equation	(1)	to	1.5	in	
Equation	(2)).

I	will	offer	an	alternative	model	for	the	size	dependence	of	mortal-
ity,	with	intuitive	biological	appeal	and	analytical	advantages	for	pre-
dicting	age	at	maturity.	I	show	that	with	this	model	of	size-	dependent	
mortality,	the	optimal	age	of	maturity	depends	upon	asymptotic	size,	
which	does	not	occur	in	Beverton’s	original	theory.	I	illustrate	this	de-
pendence	with	a	numerical	example.

Both	 extensions	 require	 no	 more	 than	 elementary	 calculus,	 al-
though	further	development	of	them	(Appendix)	becomes	a	bit	more	
complicated.

To	ensure	that	this	note	is	self-	contained,	I	first	summarize	what	
Holt	and	Beverton	did	and	then	derive	the	extensions	and	their	impli-
cations.	In	the	discussion,	I	first	consider	the	inverse	life-	history	prob-
lem,	resolve	some	questions	left	open	by	the	analyses	of	Gislason	et	al.	
(2010)	and	Charnov	et	al.	(2013)	and	finally	raise	some	new	questions.	
I	conclude	that	the	original	analysis	of	Holt—almost	60	years	old—and	
the	fuller	GML	theory	of	Beverton—now	25	years	old—are	still	fertile	
areas	for	new	directions	in	research.

2  | WHAT HOLT AND BEVERTON DID

Holt	 (1958)	 envisioned	 individuals	 in	 a	 cohort	 following	 a	 common	
von	Bertalanffy	growth	curve;	mass	at	 age	a	 is	W(a)	=	W∞(1	−	e

−ka)3 
where W∞	is	the	asymptotic	mass	and	k	is	the	von	Bertalanffy	growth	
constant	(see	Mangel,	2006	for	a	derivation).	The	full	von	Bertlanffy	
description	of	growth	 is	W(a)=W∞(1−e−k(a−a0))3 where a0	<	0	 is	 the	
theoretical	age	at	0	size.	When	W(0)	is	small,	a0	is	often	set	equal	to	0.	
In	the	von	Bertalanffy	formulation,	the	allometry	between	mass	and	
length	is	strictly	cubic,	that	is	W ∝ L3.	Furthermore,	asymptotic	size	is	
not	a	fundamental	parameter,	but	rather	a	combination	of	an	anabolic	
parameter	 and	 the	 growth	 rate;	 see	 Charnov	 et	al.	 (2013),	 Mangel	
(2006)	and	Section	5	for	more	details.

If	 the	 rate	 of	 natural	 mortality	 is	 a	 constant	 M,	 then	 the	 ex-
pected	 mass	 at	 age	 a	 of	 a	 cohort	 of	 initial	 size	 N0	 individuals	 is	
N0e−MaW∞(1	−	e

−ka)3.	Thus,	for	a	specific	cohort,	survival	is	a	declining	
function	of	age	and	mass	is	a	saturating	function	of	age,	so	that	there	
is	an	age	at	which	harvesting	this	cohort	maximizes	expected	biomass,	
obtained	by	taking	the	derivative	of	the	expected	mass	with	respect	
to	age	and	setting	it	equal	to	0.	Holt	showed	that	at	the	optimal	age	
for	harvest,	mass	is:

One	can	think	of	this	as	the	ultimate	YPR	analysis	in	which	there	is	no	
fishing	mortality	until	the	age	giving	Wopt	and	then	the	fishing	mortal-
ity	is	infinite.

Beverton	and	Holt	(1959)	gave	a	life-	history	interpretation	to	Holt’s	
analysis	and	Beverton	(1992,	2002)	more	fully	developed	it	into	a	life-	
history	theory	of	GML.	I	begin	with	a	slight	elaboration	of	Beverton’s	
theory,	 in	which	we	do	not	necessarily	 assume	 that	 reproduction	 is	
proportional	 to	mass.	Dick,	 Beyer,	Mangel,	 and	 Ralston	 (2017)	 give	
an	example	of	a	genus—Sebastes—in	which	the	length-	fecundity	expo-
nent	ranges	from	about	3.5	to	more	than	5.0.

(1)Mg(L)=e0.55 ⋅k ⋅L1.44
∞

∕L1.61

Mc(L)=e−0.05 ⋅k ⋅

(
L∞

L

)1.46

(2)Mc(L)=k ⋅

(
L∞

L

)1.5

Wopt=W∞

(
3

3+M∕k

)3
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We	describe	growth	by	the	von	Bertalanffy	formula	for	length	L(a)	
at	age	a	with	a0 = 0

where L∞	is	asymptotic	length	and	k	is	as	before.	We	assume	that	nat-
ural	mortality	M,	is	independent	of	size	and	that	lifetime	reproduction	
for	an	individual	who	matures	at	size	l	is	ϕlb.

With	these	assumptions,	the	fitness	F(a|L∞,	k,	M,	b,	ϕ)	of	an	individ-
ual	who	matures	at	age	a	given	the	life-	history	parameters	is

We	 find	 the	 optimal	 age	 at	 maturity	 by	 elementary	 calculus	
(Mangel,	2006,	p.	23	ff)

Since	ϕ and L∞	are	constants	with	respect	to	age	in	Equation	(4),	
they	 divide	 out	 when	 the	 derivative	 is	 taken	 and	 set	 equal	 to	 0.	
Typically,	one	uses	this	theory	by	specifying	the	life-	history	parame-
ters	and	predicting	age	at	maturity.	This	extremely	simple	theory	often	
does	remarkably	well	(e.g.	Mangel	&	Abrahams,	2001).

An	alternative	approach	to	age	at	maturity	 is	to	make	the	“most	
plausible	 assumption”	 (Charnov	et	al.,	 2013,	 p.	 217)	 that	 the	 age	of	
maturity	is	the	age	at	which	the	rate	of	change	of	mass	is	a	maximum.	
Then	simple	calculus	shows	that	am	=	log(3)/k,	but	this	approach	can-
not	not	 consider	 the	 trade-	offs	 in	growth	and	mortality	explicitly	 in	
determination	of	the	age	at	maturity	(see	the	Appendices	in	Charnov	
et	al.	(2013)	for	further	discussion).

Finally,	although	it	appears	that	these	results	apply	only	to	a	se-
melparous	organism,	 if	 there	 is	no	growth	after	maturity	and	we	 in-
terpret	F(a|L∞,	k,	M,	b,	ϕ)	 as	 annual	 reproductive	output,	 then	 since	
expected	lifetime	is	1/M,	expected	lifetime	reproduction	is	F(a|L∞ , k,M, b,ϕ)

M
 

and	the	optimization	problem	does	not	change	at	all.	If	there	is	sub-
stantial	growth	after	maturity,	then	a	different	approach	is	needed	(see	
Section	5).

3  | THE INVERSE LIFE- HISTORY PROBLEM

We	can	invert	Equation	(5)	to	solve	for	M	to	obtain	a	point	estimate	
for	the	rate	of	natural	mortality	conditioned	on	the	length-	fecundity	
exponent,	the	von	Bertalanffy	growth	rate	and	the	age	at	maturity

If	we	have	distributions	 for	 the	other	parameters,	 then	we	are	
able	to	construct	an	informative	prior	for	M.	For	example,	Dick	et	al.	
(2017)	conducted	a	meta-	analysis	of	the	fecundity	of	the	rockfish.	
Their	 result	 is	 a	 posterior-	predictive	 distribution	 of	 the	 length-	
fecundity	exponent	b,	so	that	drawing	from	this	posterior-	predictive	
distribution	provides	 individual	values	of	b,	which	can	be	comple-
mented	by	 individual	values	 of	k and am	 if	 those	 distributions	 are	
known.	When	they	are	not	known,	we	can	proceed	by	making	as-
sumptions	about	the	distributions.

For	example,	to	account	for	variation	in	k,	where	k̂	is	the	point	es-
timate,	 one	 could	 assume	 that	 for	 the	 ith	 draw	 from	 the	 posterior-	
predictive	value	of	b	the	associated	value	of	growth	rate,	ki	is

where Zi	 is	a	Normal(0,1)	and	σk	 is	the	standard	deviation	 in	growth	
rate.

To	 account	 for	 variation	 in	 age	 at	 maturity,	 one	 can	 use	 the	
	maturity	ogive

where a50	 is	 the	age	at	which	half	of	 the	 individuals	 in	a	cohort	are	
mature	and	σa	=	0.5	characterizes	 the	dispersion	of	maturity	around	
that	age.	For	an	individual	draw	of	the	length-	fecundity	exponent	and	
growth	rate,	we	then	draw	a	uniform	[0,1]	random	variable	and	com-
pare	that	with	the	maturity	ogive	to	determine	the	age	at	maturity	on	
this	draw.

To	 illustrate	 application	 of	 the	 inverse	 life-	history	method,	 I	 ex-
tracted	data	on	skipjack	tuna	 (Katsuwonus pelamis,	Scombridae),	yel-
lowfin	 tuna	 (Thunnus albacares,	 Scombridae)	 and	 southern	 blue	 fin	
(Thunnus maccoyii,	 Scombridae)	 tuna	 from	 the	 global	 scombrid	 life-	
history	data	set	(Juan-	Jordá,	Mosqueira,	Friere,	Ferrer-	Jordá,	&	Dulvy,	
2016).	For	these	species:

1. There	 are	 data	 on	 average	 and	 variance	 in	 the	 von	 Bertlanaffy	
growth	 rate	 k.

2. There	 are	 data	 for	 average	 age	 at	 maturity	 a50.	 I	 assumed	 that	
σa	=	0.05a50.

3. There	are	data	on	average	length-fecundity	exponent	for	all	three	
species	and	data	on	variance	in	the	length	fecundity	exponent	for	
skipjack	and	yellowfin	tuna.	For	bluefin	tuna,	I	followed	the	result	
of	Dick	et	al.	(2017)	and	assumed	a	normal	distribution	for	b	with	
Coefficient	of	Variation	12.5%.

Thus,	we	are	able	to	generate	an	entire	prior	distribution	for	the	
rate	of	natural	mortality,	conditioned	on	the	fecundity	parameter,	ob-
served	growth	rate	and	age	at	maturity	(Figure	1).	The	point	estimate	
for	skipjack	tuna	is	 ̂M=1.25.	For	comparison,	Hampton	(2000)—using	
tagging	data—estimated	that	M	for	the	midsizes	of	skipjack	tuna	(41–
51,	51–60	and	61–70	cm),	which	comprise	the	bulk	of	the	exploited	
range,	 are	 1.6,	 1.2	 and	 2.0	year−1,	 respectively.	 The	 distribution	 in	
Figure	1	includes	all	of	those	values.	The	point	estimate	for	yellow	fin	
tuna	 ̂M	=	0.93	 is	a	bit	 larger	 than	that	 reported	by	Hampton	 (2000),	
who	noted	 that	M = 0.8	 is	most	 commonly	 used	 in	 assessment	 and	
for	 the	 size-	classes	 51–60,	 61–70	 and	 71–80	cm	 the	 estimates	 for	
M	 are	0.68,	0.44	and	0.69.	However,	Hampton	estimated	M	≈	1	 for	
the	41–45	cm	size-	class	(see	his	figure	10)	and	values	of	M	between	
0.5	and	1.0	are	highly	probable	using	the	inverse	life-	history	method	
(Figure	1).	The	point	estimate	for	southern	bluefin	tuna	is	 ̂M=0.25; for 
comparison	Hampton	(1991)	suggested	values	of	M	between	0.24	and	
0.28	year−1	 and	 the	probability	distribution	 in	Figure	1	 captures	 the	
entire	range	of	values	reported	by	Hampton.

(3)L(a)=L∞(1−e−ka)

(4)F(a|L∞ , k,M, b,ϕ)=e
−MaϕL(a)b=e

−Maϕ
[
L∞(1−e

−ka)
]b

(5)am=
1

k
ln

(
M+bk

M

)

(6)̂M=
bk

ekam −1

(7)log(ki)= log(k̂)−0.5σ2
k
+σkZi

(8)pm(a)=Pr{mature by agea}=
1

1+exp(a50−a∕σa)
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These	results	should	be	taken	as	illustrative,	as	some	of	the	species	
are	far	from	asymptotic	size	when	at	the	age	of	maturity	(see	Section	5).

4  | INCORPORATING SIZE- DEPENDENT  
MORTALITY

4.1 | The form of size- dependent mortality

Rather	than	using	either	Mg(L)	or	Mc(L),	I	offer	an	alternative	approach	
to	size-	dependent	mortality.	In	particular,	write

where m0 and m1	are	parameters.	If	both	parameters	are	both	positive,	
we	can	 interpret	m0	as	the	rate	of	size-	independent	mortality	and	m1 
as	the	rate	of	size-	dependent	mortality.	If	one	of	them	is	negative,	then	
we	lose	such	interpretation,	but	still	have	the	interpretation	that	survival	
from	age	a	to	age	a + 1	is	exp(−m0	−	m1/L(a)),	so	that	the	requirement	for	
biologically	meaningful	parameters	is	that	m0+

m1

L
>0	for	all	values	of	L.

Snover,	Watters,	and	Mangel	(2006)	used	Equation	(9)	in	the	study	
of	 top-	down	and	bottom-	up	control	of	 life	histories	 in	coho	salmon	
(Oncorhynchus kisutch,	Salmonidae)	and	Carlson,	Kottas,	and	Mangel	
(2010)	 developed	 a	Bayesian	method	 for	 estimating	 the	m0 and m1 
from	only	size	distributions,	with	application	to	three-	spined	stickle-
back	(Gasterosteus aculeatus,	Gasterosteidae).

To	compare	Equation	(1,	2	and	9),	I	took	Equation	(1)	(the	regression	
result	of	Gislason	et	al.	(2010))	as	the	true	state	of	nature	and	in	Figure	2	
show	the	predictions	of	Equation	(1)	(solid	line),	Equation	(2)	(red	circles)	
and	Equation	(9)	(blue	crosses)	for	Pacific	Ocean	Perch	(Sebastes alutus,	
Sebastidae)	 and	 Squarespot	 Rockfish	 ((Sebastes hopkinsi,	 Sebastidae)	
where	I	determined	the	parameters	m0 and m1	by	matching	in	the	rate	
of	mortality	at	age	1	and	at	the	age	of	maturity	and	used	growth	curves	
from	Love,	Yoklavich,	Thorsteinson,	and	Butler	(2002).

Survival	 to	 age	 a,	 S(a),	 always	 satisfies	 the	 differential	 equation	
(Mangel,	2006;	Hilborn	and	Mangel	1997)

when M(L(a))	=	M,	a	constant,	the	solution	of	this	differential	equation	
with	S(0)	=	1	is	S(a)	=	e−Ma.

For	the	mortality	model	in	Equation	(9)

One	consequence	of	Equation	(11)	is	that	there	is	an	infinite	num-
ber	of	ways	of	getting	the	same	survival	to	a	specific	age.	For	example,	

(9)M(L)=m0+
m1

L

(10)
dS

da
=−M(L(a))S

(11)S(a)=exp

[
−m0a−m1 ∫

a

0

ds

L(s)

]

F IGURE  1 Probability	distributions	
for	the	rate	of	mortality	for	skipjack	tuna	
(a),	yellowfin	tuna	(b)	and	southern	blue	
fin	tuna	(c)	using	the	inverse	life-	history	
method	with	Beverton’s	original	Growth,	
Maturity,	and	Longevity	theory.	Point	
estimates	for	M	are,	respectively,	1.25,	
0.93	and	0.25.	See	text	for	details	and	
comparison	with	other	published	estimates

F IGURE  2 Comparison	of	the	length-	dependent	mortality	
predicted	by	the	regression	of	Gislason	et	al.	(2010)	(black	line)	with	
the	approximation	proposed	by	Charnov	et	al.	(2013)	(red	circles)	and	
the	length-	dependent	form	in	Equation	(9)	(blue	crosses)	for	Pacific	
Ocean	Perch	(a)	and	Squarespot	Rockfish	(b).	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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if	survival	to	age	amax	is	S(amax),	then	with	m1	=	0	we	obtain	the	max-
imum value for m0 from S(amax)	=	exp(−m0,maxamax)	 and	 whenever	
m1	>	0,	the	value	of	m0	giving	the	same	survival	to	age	will	be	less	than	
this	maximum	value.	Indeed,	there	is	a	linear	relationship	between	m0 
and m1,	conditioned	on	the	same	survival	to	amax,	determined	by	the	
value	of	the	integral	in	Equation	(11)	(Snover	et	al.,	2006;	Figure	3).

4.2 | The implication of size- dependent mortality on 
predicting age at maturity

Suppressing	the	dependence	on	the	life-	history	parameters,	the	gen-
eralization	of	Equation	(4)	is

In	the	main	text,	I	will	focus	on	the	analysis	of	Equation	(12)	with	mor-
tality	 given	 by	 Equation	(9);	 in	 the	Appendix,	 I	 discuss	 the	 situation	
when	mortality	is	given	by	Mg(L)	or	Mc(L).

To	find	the	optimal	age	of	maturity,	we	differentiate	Equation	(12)	
with	 respect	 to	a,	 using	 the	 product	 and	 chain	 rules	 of	 elementary	
calculus,	and	obtain

substituting	Equation	(9)	for	M(L(a))	we	obtain

We	set	this	derivative	equal	to	0	and	simplify	to	obtain

Since	 L(a)	=	L∞(1	−	e
−ka),	 one	 can	 directly	 verify	 that	 dL

da
=kL∞e

−ka 
(yet	 another	 way	 of	 characterizing	 von	 Bertalanffy	 growth)	 and	
Equation	(16)	becomes

which	we	solve	for	am

This	is	the	second	extension	of	the	results	of	Holt	and	Beverton.
Equation	(18),	 a	 prediction	 for	 the	 optimal	 age	 at	maturity,	 now	 in-
volves	 all	 five	 of	 the	 life-	history	 parameters:	 asymptotic	 size,	 von	
Bertalanffy	 growth	 rate,	 length-	fecundity	 exponent	 and	 the	 size-	
independent	and	size-	dependent	rates	of	mortality.

If	 we	 set	 m1	=	0	 then	 Equation	(18)	 reduces	 to	 Equation	(5)	
(with	M = m0),	 as	 it	 must.	 However,	 notice	 that	 if	m0L∞ >>m1,	 then	
Equation	(18)	also	reduces	to	Equation	(5).	Thus,	we	conclude	that	the	
simpler	expression	holds	not	only	when	the	rate	of	mortality	 is	con-
stant,	but	also	when	the	condition	L∞ >> m1/m0	holds.

(12)F(a)=S(a)ϕL(a)b

(13)F�(a)=
dS

da
ϕL(a)b+S(a)ϕbL(a)b−1

dL

da

(14)=−M(L(a))S(a)ϕL(a)b+S(a)ϕbL(a)b−1
dL

da

(15)F
�
(a)=(a)

(
−m0−

m1

L(a)

)
ϕL(a)b+(a)ϕbL(a)b−1 dL

da

(16)m0L(a)+m1=b
dL

da

(17)m0L∞(1−e−ka)+m1=bL∞ke
−ka

(18)am=
1

k
ln

[
(bk+m0)L∞

m0L∞+m1

]

F IGURE  3  Illustration	of	the	effects	
of	the	size-	dependent	mortality	model	
in	Equation	(9).	I	consider	a	fish	growing	
according	to	a	von	Bertalanffy	curve	with	
initial	size	0.01	cm,	asymptotic	size	25	cm	
and	growth	rate	k	=	0.125	per	year	(upper	
left-	hand	panel).	When	survival	to	age	20	
is	0.01,	there	is	a	line	of	possible	values	
of m0 and m1	giving	the	same	survival	to	
age	(see	Snover	et	al.,	2006	for	details);	
upper	right-	hand	panel.	Three	examples	
of	size-	dependent	mortality	are	shown	in	
the	lower	panel.	When	m1	=	0,	the	rate	
of	mortality	is	independent	of	size;	when	
m0	=	0,	the	rate	of	mortality	only	depends	
upon	size;	for	intermediate	values	of	m0 
there	is	an	initially	strong	dependence	
on	size,	but	essentially	size-	independent	
mortality	for	larger	sizes	(ages).	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.
com]
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But	otherwise,	asymptotic	size	will	enter	into	prediction	of	age	at	
maturity.	To	illustrate	the	result,	 in	Figure	4,	 I	plot	the	predicted	age	
at	maturity	for	k = 0.125,	b = 3.5	and	m0	=	0.164	as	a	function	of	as-
ymptotic	size	for	five	values	of	m1.	When	m1=0,	asymptotic	size	does	
not	affect	predicted	age	at	maturity	(as	in	the	standard	Beverton	GML)	

but	otherwise	 it	 does	 and	 clearly	 interacts	with	 the	 size-	dependent	
mortality.	In	Figure	5,	I	plot	age	at	maturity	as	a	function	of	m1 for five 
values	of	asymptotic	size;	this	is	another	way	of	representing	the	re-
sults—and	shows	that	even	when	L∞	is	very	large	there	is	still	an	effect	
on	the	predicted	age	at	maturity.	These	curves	all	intersect	at	m1 = 0 
because	in	that	case	the	predicted	age	at	maturity	does	not	depend	
on	asymptotic	size.

An	 important	 practical	 implication	 (and	 testable	 prediction)	 of	
these	results	is	that	we	predict	age	of	maturity	to	be	higher	in	popula-
tions	of	the	same	species	having	larger	asymptotic	sizes.

5  | DISCUSSION

5.1 | The inverse life- history problem

Solving	Equation	(5)	for	an	estimate	of	the	rate	of	natural	mortality,	
as	in	Equation	(6)—the	inverse	life-	history	problem—opens	an	avenue	
for	computing	the	distribution	of	the	rate	of	natural	mortality	as	every	
mature	 fish	 provides	 information	 to	 us	 on	 growth	 rate,	 age	 at	ma-
turity	 (from	 scales	 or	 otoliths)	 and	 the	 size	 fecundity	 exponent.	 By	
employing	this	approach,	and	modern	statistical	methods	as	 in	Dick	
et	al.	(2017),	we	will	now	have	plenty	of	data	for	estimating	a	constant	
value of M,	rather	than	the	usual	shortage	of	data	for	estimating	natu-
ral	mortality.	In	the	examples	that	I	showed	here,	I	did	not	have	full	
distributions	for	growth	rate	or	age	at	maturity,	but	there	is	no	reason	
that	the	approach	Dick	et	al.(2017)	used	could	not	be	applied	to	data	
on	growth	rate	and	age	at	maturity.

To	be	sure,	Equation	(6)	has	its	limitations,	which	is	why	the	results	
presented	 here	 should	 be	 considered	 illustrative	 rather	 than	 formal	
results	of	 research.	First,	as	mentioned	above,	 the	distributions	 that	
I	used	for	k and a50	were	ad	hoc.	Second,	Equation	(6)	applies	only	to	
a	semelparous	fish	or	an	iteroparous	fish	with	no	growth	after	matu-
rity	and	with	size-	independent	M.	However,	when	applying	it,	one	can	
easily	check	how	close	the	ratio	Lm∕L∞ =1−e−kaM	is	to	1;	the	greater	
this	ratio,	the	better	the	assumption	of	no	growth	after	maturity.	For	
example,	for	the	tunas	in	Figure	1,	the	fraction	L(amat)/L∞	is	0.65,	0.63	
and	0.82	for	skipjack	tuna,	yellowfin	tuna	and	southern	bluefin	tuna,	
respectively.	Whether	the	much	closer	fit	of	southern	bluefin	tuna	to	
Hampton’s	(1991)	result	is	due	to	the	assumption	of	no	growth	after	
maturity	being	more	closely	met	or	 to	chance	 remains	an	open	and	
interesting	question.

If	we	were	to	apply	the	same	simulation	approach	to	Equation	(18),	
the	result	would	be	a	distribution	for	the	combination	of	m0 and m1 
shown	on	the	right-	hand	side	of	the	equation.	Thus,	we	would	not	be	
able	to	uniquely	identify	these	parameters,	but	only	the	combination,	
similar	to	the	results	shown	in	Figure	3.

I	 have	 not	 been	 able	 to	 find	 relatively	 simple	 analogues	 of	
Equation	(18)	for	the	iteroparous	fish	with	no	growth	after	maturity.	If	
one	a	priori	chooses	age	at	maturity	(Charnov	et	al.,	2013)	then	prog-
ress	can	be	made,	but	otherwise	numerical	 solutions	are	needed	 to	
determine	optimal	age	at	maturity.

The	case	of	the	iteroparous	fish	with	substantial	growth	after	matu-
rity—which	encompasses	many	species	across	many	genera—requires	

F IGURE  4 Predicted	age	at	maturity	as	a	function	of	asymptotic	
size	for	five	values	of	m1.	The	second	curve	from	the	top	has	m1	=	3,	
and	the	fourth	curve	from	the	top	has	m1	=	1.	When	m1 = 0 we 
are	back	to	Beverton’s	basic	result	so	that	asymptotic	size	does	
not	influence	age	at	maturity.	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

F IGURE  5 Predicted	age	at	maturity	as	a	function	of	the	rate	
size-	dependent	natural	mortality	for	five	values	of	L∞.	The	second	
curve	from	the	top	has	L∞	=	150,	and	the	fourth	curve	from	the	top	
has	L∞	=	400.	When	L∞	is	very	large	(more	specifically	in	the	limit	of	
unbounded	asymptotic	size)	age	at	maturity	does	not	depend	upon	
on	the	rate	of	size-	dependent	mortality.	[Colour	figure	can	be	viewed	
at	wileyonlinelibrary.com]
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a	completely	different	approach	as	we	now	need	a	life-	history	model	
in	which	 resources	are	allocated	between	growth	and	maturity.	The	
natural	framework	for	this	 is	state-	dependent	 life-	history	theory	im-
plemented	 by	 stochastic	 dynamic	 programming	 (e.g.	 Mangel,	 2015	
and	 references	 there-	in).	The	 life-	history	model	will	produce	predic-
tions	of	behaviour,	allocation	and	reproduction	conditioned	on	the	en-
vironment	and	the	inverse	problem	is	to	take	those	observations	and	
make	inferences	about	the	environment	(e.g.	abundance	of	food,	rate	
of	mortality)	that	generated	them.

Most	 importantly,	 the	 inverse	 method	 provides	 an	 intraspecific	
approach	to	estimating	distributions	of	mortality	that	will	complement	
existing	interspecific	approaches	based	on	statistical	methods.

5.2 | Size- dependent mortality

This	work	resolves	some	questions	and	raises	others.
First,	Gislason	et	al.	(2010,	pp.	5–6)	wrote	regarding	Equation	(2)	

in	 their	 paper	 (Equation	(1))	 “The	 significant	 positive	 relationship	
between	M and L∞	 is	 somewhat	 surprising,	 but	may	 be	 caused	 by	
a	 trade-	off	 between	 growth	 and	 mortality”.	 Their	 result	 is	 indeed	
surprising	as	we	expect	that	in	the	limnological	and	marine	environ-
ments	gape	is	a	major	determinant	of	the	rate	of	mortality	and	thus	
large	 individuals	are	more	 likely	to	survive	than	smaller	 individuals.	
Gislason	et	al.	 (2010)	 offer	 a	variety	of	 scaling	 arguments	 to	 show	
that	 natural	 mortality	 varies	 inversely	with	 a	 power	 of	 asymptotic	
size.

The	answer	may	be	much	simpler,	however,	when	we	 recognize	
that	L	in	Equation	(1)	is	L∞(1−e−k(a−a0)).	Thus,	Equation	(1)	can	also	be	
written	with	mortality	as	a	function	of	age	a	as

which	is	exactly	the	same	scaling	with	respect	to	asymptotic	size	that	
Gislason	et	al.	(2010)	reach	(their	Equation	(3))	with	a	much	longer	ar-
gument	requiring	assumptions	about	the	size-	independent	measure-
ments	of	natural	mortality.

Second,	writing	Mc(L(a))	as	a	function	of	age

shows	that	 the	rate	of	natural	mortality	 is	proportional	 to	k	with	an	
age-	dependent	proportionality	constant	that	also	depends	upon	k	but	
is	 independent	 of	 asymptotic	 size.	 Charnov	 et	al.	 (2013)	 noted	 that	
Equation	(2)	is	as	good	a	statistical	fit	to	the	data	as	Equation	(1);	that	
is	Equations	(19	and	20)	appear	to	be	statistically	the	same;	why	this	is	
so	remains	an	open	question.

These	equations	remind	us	not	to	forget	that	asymptotic	size	is	not	
a	fundamental	quantity	in	von	Bertalanffy	growth,	but	a	derived	one	
involving	growth	rate	k	and	anabolic	factors	such	as	the	density	and	
quality	of	food	in	the	environment	(Mangel,	2006	pp.	25–26,	appen-
dix	in	Charnov	et	al.,	2013).	 If	the	latter	are	summarized	by	anabolic	
parameter	q,	 then	L∞ = q/k.	Snover,	Watters,	and	Mangel	 (2005)	use	

this	recognition	in	their	study	of	the	growth	of	coho	salmon	as	it	tran-
sitions	from	fresh	to	seawater.

Third,	an	open	question	is	why	Beverton’s	original	analysis	works	
as	 well	 as	 it	 does	 when	 applied	 to	 fish	 (or	 other	 organisms—see	
Beverton,	 1992)	 with	 substantial	 growth	 after	 maturity	 and	 size-	
dependent	mortality.

Fourth,	 the	 form	of	 size-	dependent	 natural	mortality	 that	 I	 pro-
pose	(Equation	(9)),	requires	two	parameters.	As	I	have	shown	above,	
by	treating	the	regression	analysis	of	Gislason	et	al.	(2010)	as	the	true	
state	of	nature,	we	can	fit	the	mortality	function	in	Equation	(9)	quite	
accurately.	Clearly,	if	one	had	tagging	data,	then	each	fish	would	pro-
vide	information	for	obtaining	the	parameters	m0 and m1.	In	addition,	
Carlson	et	al.	(2010)	showed	that	one	can	develop	Bayesian	methods	
for	determining	m0 and m1	in	which	one	only	has	size	distributions	at	
one	time	and	a	subsequent	time.

Fifth,	 notion	 of	 dimensionless	 ratios	 (Mangel	 2005)	 becomes	
more	complicated	when	we	recognize	that	mortality	is	size	depen-
dent.	Both	k and M	are	rates,	so	that	their	ratio	(either	k/M or M/k)	
is	 dimensionless	 and	 this	 played	 an	 important	 role	 in	 Beverton’s	
original	GML	 theory	 and	 in	Charnov’s	 development	 of	 life-	history	
invariants	(e.g.	Charnov,	1993).	Even	the	simplest	form	of	size/age-	
dependent	mortality	(Equation	(20))	does	not	give	a	ratio	that	is	con-
stant,	but	one	that	depends	upon	age.

Hence,	 it	 may	 be	 appropriate	 to	 focus	 not	 on	mortality	 but	 on	
	survival	 to	maximum	age.	Regardless	of	 the	 form	of	size-	dependent	
mortality,	survival	to	maximum	age	is

and	it	may	be	valuable	in	future	studies	to	define	an	effective	rate	of	
mortality	 ̂M	by	setting	S(amax)=exp(− ̂Mamax).	Such	an	effective	rate	
of	natural	mortality	was	used	by	Andrews	and	Mangel	 (2012)	 in	a	
study	of	long-	lived	fish	and	data	poor-	stock	assessments.	If	there	is	
no	obvious	choice	for	amax,	one	might	choose	either	the	age	of	the	
oldest	individual	of	a	species	that	has	been	observed	plus	some	ad-
ditional	number	of	years	or	the	age	at	which	survival	reaches	a	fixed	
small	number	(e.g.	the	1	in	10	million	fish,	Mangel	(2003)).	With	this	
effective	rate	of	mortality,	we	can	once	again	explore	dimensionless	
ratios.

This	 logic	 is	 implicit	 in	estimates	for	a	constant	rate	of	mortality	
that	rely	on	maximum	age	(e.g.	reviews	in	Hoenig	1983;	Hoenig	et	al.,	
2016;	Kenchington,	2014;	Then,	Hoenig,	Hall,	&	Hewitt,	2015).	That	
is,	if	âmax	is	the	maximum	observed	age

so	that	the	effective	rate	of	mortality

which	 gives	 us	 an	 interpretation	 for	 the	 proportionality	 coefficient	
in	maximum	age-	based	methods	for	estimating	the	rate	of	(constant)	
mortality.

(19)

Mg(a)=Mg(L(a))=e0.55 ⋅k ⋅L
1.44
∞ ∕[L∞(1−e−k(a−a0))]1.61

=e0.55 ⋅
k

[1−e−k(a−a0)]1.61
⋅L

−0.17
∞

(20)Mc(a)=Mc(L(a))=k ⋅

(
L∞

L∞(1−e−k(a−a0))

)1.5

=
k

(1−e−k(a−a0))1.5

(21)S(amax)=exp

[
− ∫

amax

0

M(L(a))da

]

(22)e
− ̂Mamax =exp

[
− ∫

âmax

0

M(L(a))da

]

(23)̂M=

∫ âmax

0
M(L(a))da

âmax
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Sixth,	 it	 is	 clear	 that	 rules	of	 thumb	 for	 setting	 fishing	mortality	
as	 a	proportion	of	natural	mortality	 also	becomes	much	more	com-
plicated	when	the	rate	of	natural	mortality	 is	not	constant.	 If	 length	
is	 a	 deterministic	 function	 of	 age,	 then	 length-	dependent	 mortal-
ity	 and	 age-	dependent	 mortality	 are	 interchangeable	 and	 rules	 of	
thumb	can	be	developed	(e.g.	Kindsvater,	Mangel,	Reynolds,	&	Dulvy,	
2016;	Kindsvater,	Reynolds,	Sadovy	de	Mitcheson,	&	Mangel,	2017).	
Andrews	and	Mangel	 (2012)	and	Mangel	et	al.	 (2013)	show	how	we	
can	decide	when	putatively	size-	dependent	length-	dependent	mortal-
ity	can	be	treated	as	nearly	constant	in	a	stock	assessment.

6  | CONCLUSION

Nearly	60	years	on,	the	ideas	developed	by	Sidney	Holt	and	expanded	
by	Ray	Beverton	into	a	theory	of	GML	continue	to	provide	stimulus	
for	exploration.	The	inverse	life-	history	problem	is	a	direct	descend-
ant	of	Beverton’s	 theory	of	GML	and	extending	the	theory	of	GML	
for	size-	dependent	mortality	will	provide	opportunities	for	both	new	
analysis	and	new	empirical	studies.
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APPENDIX:  The Semelparous Fish with Mg(L) and Mc(L)
From	Equations	(14–16)	it	is	clear	that	the	general	condition	for	opti-
mal	age	at	maturity	will	be

Using	Mg(L)	from	Equation	(1)	we	have

which	can	be	simplified	to	give

This	 is	 a	 transcendental	 equation	 for	 e−ka,	 requiring	 a	 numerical	
method	for	finding	its	solution.	Even	when	a	solution	can	be	found,	it	will	
be	difficult	to	interpret.
Using	Mc(L)	we	begin	with

which	can	be	simplified	to

leading	to	a	cubic	equation	for	x = e−ka

which	is	does	not	have	a	tractable	analytical	solution	but	clearly	shows	
that	asymptotic	size	will	in	fact	not	affect	age	at	maturity.

M(L(a))L(a)=bL∞ke
−ka

(
e0.55 ⋅k ⋅L1.44

∞
∕L1.61

)
L(a)=bL∞ke

−ka

e0.55

bL
0.27
∞

=e−ka(1−e−ka)0.61

k

[
L∞

L(a)

]1.5
L(a)=bL∞ke

−ka

L∞ =b2e−2kaL∞(1−e−ka)

x2(1−x)b2=1


