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i » ' BROWNIAN MOTION IN A FIELD OF FORCE
, AND THE DIFFUSION MODEL
8 OF CHEMICAL REACTIONS

' by H. A. KRAMERS
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;- Summary
i . )

g A particle which is caught in a potential hole and which, through the
g - shuttling action of Brownian motion, can escape over a potential
iy barrier yields a suitable model for elucidating the applicability of the
o transition state method for calculating the rate of chemical reactions.
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1. Introduction. In order to elucidate some points in the theory
of the velocity of chemical reactions, the following problem is studicd.
A particle moves in an external field of force, but — in addition to
this — is subjcct to the irregular forces of a surrounding medium in
temperature equilibrium (Brownian motion). The conditions are such,
7 ' that the particle is originally caught in a potential hole but may

escape in the course of time by passing over a potential barrier. We
want to calculate the probability of escape in its dependency on
: temperature and viscosity of the medium and to compare the values

] - - found with the results of the so-called , transition-state- method” for

determining reaction-velocitics. The calculation rests on the con-

struction and discussion of the equation of diffusion obeyed by «

: density-distribution of particles in phasec space.

: For the sake of simplicity only a one-dimensional model is studicd.
Definite results could be obtained in the limiting cases of small an-
large viscosity; in both cases there exists a close analogy with
Christiansen’s treatment of chemical reactions as a diffusios.
problem. In the fairly general case where the potential barrier corr: :
sponds to a smooth maximum a reliable solution for any valuc of t!« :
viscosity is obtained. In that case the probability for escape is, fora !
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large range of the value of the viscosity, practiéally equal to that
computed by the transition method.

Our problem has also a direct bearing on the fission of an electric-
ally charged hot drop of liquid, a question which was recently con-
sidered by Bohr and Wheel e I 1n their discussion of the fission
of uranium nuclei,

In § 2 the principles of Brownian motion are briefly discussed,
and applied in order tot set up an equation of diffusion in phase
space.

In § 3 and § 4 the limiting cases of large and small viscosity are
studied; they reduce both to a one-dimensional diffusion process.

In § 5 the formulae found are applied to calculate the escape over a
potential barrier. The results are compared with the transition
method.

§ 6 discusses the relation of our model to actual problems of reac-
tion velocity.

§ 2. Principles of Brownian motion in phase-space. The cquations
of motion of a particle of mass I in a one-dimensional cxtension,
where it is acted upon by the external field of force K{(g) and the
irregular force X(#) due to the medium, can be written as follows-

P =K + X(), g=72. (1)

A theory of Brownian motion on the Einstein pattern can be
et up if there exists a range of time intervals v which has the follow-
ing properties: On the one hand = must be so short, that the change
of velocity suffered in the course of T may be considered as very
small; on the other hand must be so large, that the chance for X to
take a given value at the time ; + 7 is independent of the valye

which X possessed at the time £. We then consider the probability
distribution of the quantity

B, ='1'X(¢) ar 2

which is assumed to be independent of ¢, Calling the distribution
function ¢, (B; #,9) — besides on t and on temperature it may
depend on the velocity 4 and the position ¢ of the particle — it is
further assumed that the momenty s

_ 400 —_—
B =/ B"9dB, (B—) (3)
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depend on 7 in such a way that, practically, they can be represented
by the first non-vanishing term of a development ar + 0% + .. ..

The possibility of a term proportional to = in the expression for
BEn> 1)is clearly due to the fact that the values which X takes at
moments £, £ ... ¢, which lic sufficiently close together are no
longer independent; in fact B2 is represented by a volume integral
[0 [X@) X)) ... X(t) dby ... dt, over an n-dimensional
cube; the contribution to this integral duc to a narrow cylinder
extending along the diagonal {; =f,=.... ={, may givc a terim

proportional to 7.
Einstein’s original theory can be expressed by the assertions

Bi=—upr
B=vt+ .... (4)
Bi=0.7+ .... (n> 2

where the ,viscosity”’ 7 and the constant v may still depend on
temperature and position. Between 7 and v the relation

v= 29T (5)
must hold, where T is the absolute temperature (defined in such a
way that Boltzmann's constant equals 1); this is most casily
seen by remarking that the Brownian motion docs not disturh the
equipartition of kinetic energy (Langwevin). Expressing this
fact, by

plt+ 7)* = () ,
we get immediately from
Pt + %) = () + B,
2p()B + B? =0 —>— 2% +v =0 —>— 2Ty +v=0.

From this proof we sec too, that B, never can vanish, We will sor
presently, however, that (4) represents by no means the only possibls
dependence of B,/t and B/t on $, and also that there is no a privn
reason why the higher moments of B, should contain no term lincar
in T '

Writing generally

R __ 3
B‘r - p'uT; ("~

we will now derive the equation of diffusion for an ensemble ¢
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particles with density o(p, ¢) in #, g-space. The density at a point
A(pr, q1) at time £ + 7 may be thought of as being derived from the
densities at a previous moment ¢ along the straight line for which
§= 92 = ¢1 — p17. Denoting by p, = 4, — K«v the value which P
would have taken at the time ¢ if no Brownian forces had acte

d, we
may write

s gt 7)) = p(p2 + Kx, ¢, + pov, b+ 7)) =

=/t — B, ) o(B; p— B, g an.

Developing with respect to the first power of ~ and to the first and
higher powers of B (as far as it appears in p, — B) we get

0 P 3
Abo 42) + v + 25 K7+ St =
+oo 5 -
:_‘/ (e — B 55 (eo) + 7% (p9)— ....) dB.

Using (6) we obtain the following equation of the Fokke r-
Planck type:

do .. Op op 0 R

% — K(g) 515—?35—5@1 e) + Ew (M2p) — ... (7)
This is the well known Gibb s equation completed with terms,
ieto the Brownian motion. The current density has a g-com-
sonent equal to pp and a p-component equal to

0

1
KP‘*‘MP‘@‘@“(MP)

The fundamental condition to be imposed on the p’s states that
e Boltzm an n-distribution

. oU
= ¢~ +UlonT g oY
pp=c¢ , K % (8)
#ould be stationary. This gives
R N e o —p2T }:
Sl T aap W) — g g b e =0
? I Oy

— — £ — s — [ p%2T
M1 21"“‘2—'_2 ap e r(q:T)e .
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nuclear matter. The transition method in this case is therefore:justi-
fied if the friction is not very small, nor so large that the drop vibra-
tions are overaperiodically damped to a high degree. Of course, at
the present state of our knowledge, a marked error in Bohr and
Wheecler's estimate would only be due to the friction being
abnormally small or abnormally large. Still it is not uninteresting
to consider the question of the cocfficient of viscosity of nuclear
matter somewhat more closely. Even if a nucleus in its normal state
behaved as a perfectly hard, non plastic crystal, there is no re&son
to exclude the possibility that the excited nucleus possesses a finite
coefficient of internal friction. In view of the surprising propertics
of He IT it is even dangerous to assert that this coefficient cannot
be extremely small; this assumption would not necessarily contradict
Bohr's asssumption that a single neutron impinging on a nucleus
is in first instance captured. This assumption is, however, not
well reconcilable with the idea that nuclear matter should behave
as a perfectly hard crystal, i.e. a certain amount of plasticity is
anyhow to be expected.
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