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Ho w c a n  we  tra c k  p o p u la tio n  tre n d s  wh e n  mo n ito rin g  d a ta  a re  s p a rs e ?  Po p u la -
tio n  d e c lin e s  c a n  g o  u n d e te c te d , d e s p ite  o n g o in g  th re a ts . F o r  e x a mp le , o n ly  o n e
o f  e v e ry  2 0 0  h a rv e s te d  s p e c ie s  a re  mo n ito re d . T h is  g a p le a d s  to  u n c e rta in ty a b o u t
th e  s e rio u s n e s s  o f  d e c lin e s  a n d  h a mp e rs  e ffe c tiv e  c o n s e rv a tio n . Co lle c tin g  mo re
d a ta  is  imp o rta n t, b u t  we  c a n  a ls o  ma k e  b e tte r  u s e  o f  e x is tin g  in fo rma tio n . Prio r
k n o wle d g e  o f  p h y s io lo g y , life  h is to ry , a n d  c o mmu n ity  e c o lo g y  c a n  b e  u s e d  to
in fo rm p o p u la tio n  mo d e ls . Ad d itio n a lly , in  mu ltis p e c ie s  mo d e ls , in fo rma tio n  c a n
b e  s h a re d  a mo n g  ta x a  b a s e d  o n  p h y lo g e n e tic , s p a tia l, o r  te mp o ra l p ro x imity . By
e x p lo itin g  g e n e ra litie s  a c ro s s  s p e c ie s  th a t  s h a re  e v o lu tio n a ry  o r  e c o lo g ic a l c h a r-
a c te ris tic s  with in  Ba y e s ia n  h ie ra rc h ic a l mo d e ls , we  c a n  fill c ru c ia l g a p s  in  th e
a s s e s s me n t  o f  s p e c ie s ’ s ta tu s  with  u n p a ra lle le d  q u a n tita tiv e  rig o r.

T h e  Da ta  Cris is  in  Bio d iv e rs ity  Co n s e rv a tio n
Biodiversity is disappearing at an unprecedented rate [1,2], much faster than the rate with
which we can afford to study and monitor threatened populations. Approximately one-quarter
of the 87 967 animals, plants and fungi assessed by the International Union for Conservation of
Nature (IUCN) are classified as threatened with extinction and another 10% are Data Deficient
[3]. Data deficiency is prevalent for fishes, invertebrates, plants, and fungi [1,4,5]. Conserving
these data-limited species is a challenge for scientists and policy makers, because they lack the
information needed to apply standardized criteria for declines [6]. Precautionary measures of
protection could be used if declines are suspected, but precaution is difficult to justify when
species exploitation for food, medicine, or other goods sustains many livelihoods.

For many species, we lack evidence of declines that we suspect are happening. The status of
terrestrial species hunted for bushmeat or for the luxury health-product market is often
unknown [7,8], although demand is undiminished. Large terrestrial mammals are commonly
hunted, especially in Southeast Asia, Africa, and the neotropics [9], but population data are
scarce and enforcement of management is weak [10]. Likewise, only 10% of the 2000 fish
species that are commercially exploited have been assessed for scientific management [11,12].
For fishes that are caught incidentally (as bycatch), the extent of human exploitation is difficult to
quantify. For example, of more than 1250 species of sharks, rays, and chimaeras, 17% have
been categorized as threatened by the IUCN but another 46% are Data Deficient [13]. We know
of only 39 shark or ray populations (spanning 33 species) that are currently managed sustain-
ably [14], a small fraction of the exploited chondrichthyans. The situation is worse in many other
terrestrial and marine groups [1,15–17]. Given the scale of this problem, how can environmental
scientists reliably advise stewards tasked with sustainable management? The cost of moni-
toring can be prohibitive: the USA spent US$215 million to assess 121 fish stocks in 2015 alone
[18]. Therefore, while more data collection is a key component of the solution, we highlight new
statistical approaches that can extend the utility of existing data by making the best use of
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ecological principles and shared characteristics of species. With these approaches, information
can be shared from data-rich to data-limited species, bolstering our assessments of species’
status with unprecedented quantitative rigor.

F u n d a me n ta l Ec o lo g ic a l Prin c ip le s  Offe r  Clu e s  to  th e  Dy n a mic s  o f  Da ta -
L imite d  Po p u la tio n s
In a classic paper, John Lawton asked ‘There may be ten million species of plants and animals
on earth; are there really ten million kinds of population dynamics?’ [19], making the point that
there are common principles that underlie the dynamics of populations of different species.
Meta-analyses have confirmed that there is a surprisingly narrow range of biologically plausible
population growth and recovery rates [20–23]. Profuse evidence for convergent evolution
across ecosystems illustrates that there are a limited number of solutions to ecological
problems [24,25]. Therefore, we need tools that make the best use of these fundamental
characteristics that are shared among species.

The main strategy is to draw parallels between related species. For example, borrowing
information on life-history traits and population connectivity from related species and pop-
ulations was sufficient to protect specific populations of rockfishes under the US Endangered
Species Act in 2010 [26]. Phylogenetic relatedness and geographic proximity have also been
used to infer the status of Data Deficient mammals [27]. Recently, nonlinear autoregressive
models have also been used to produce more accurate forecasts of single-species popula-
tion dynamics by pooling simulated time-series data from multiple species in the same
ecosystem [28].

Despite this recent progress, we are not yet taking full advantage of the opportunity to combine
multiple sources of information and leverage ecological principles when modeling the popula-
tion dynamics and trajectories of data-limited taxa. Technological advances in modeling
population dynamics, using modern computational and statistical methods, provide a powerful
convergence between data and mechanistic understanding. These new approaches allow us
to separate the main signal in a model from environmental noise and measurement error,
inexorably leading to greater predictive power [29–31]. Ecologists seeking to assess data-
limited populations now have the opportunity to exploit generalities across species that share
evolutionary and ecological characteristics using a seamless combination of theoretical and
statistical reasoning.

Integrated Models Use Biological Information to Improve Statistical Model Fits
Here we suggest that modern models of population dynamics, such as integrated models

(see Glossary) or state-space models [32,33], could be used in hierarchical multispecies
analyses of population trends. They are a valuable complement to exhaustive data collection
and analysis of species in isolation. To show their potential, we focus on the dynamics of
marine fish populations, because they have historically led the development of population
ecology and life-history theory [34–36]. Globally, exploited fish have the most extensive time-
series datasets in existence [12], and models of fish populations routinely incorporate
uncertainty [21,37]. Notwithstanding our marine focus, the principles outlined here apply
to a wide range of taxa.

The fundamental ecological principle that the dynamics of populations depend on physiology,
behavior, life history, and community ecology is central to our premise (Figure 1). Populations
and species are phylogenetically related and have spatial structure. Hierarchical statistical
models [38,39] that group populations or species by phylogenetic, spatial, and temporal
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Glossary
Bayesian model: a model in which
data and prior information
concerning unknown parameters or
model states are combined using
Bayes’ theorem to produce a
posterior distribution for the
parameters and states.
Demographic model: a model of
population dynamics that includes
birth rates (fertility) and death rates
(mortality) and can also include stage
or age structure.
Hierarchical model: a model
whose structure contains hierarchies
of model units (e.g., metapopulation/
population/individual) allowing the
variability in the raw data to be
apportioned according to the levels
of the hierarchy. In a frequentist
setting, hierarchical models are often
referred to as mixed-effects models.
Initial conditions for model fitting:

starting parameter values for a
Markov chain Monte Carlo

(MCMC) fitting algorithm. These
candidate values allow the MCMC
search to begin from a particular
location in parameter space and
should become increasingly irrelevant
as the MCMC goes through its burn-
in phase.
Initial conditions of a state-space

model: the initial values of the time
series of a state variable (e.g., the
size of a given population in the year
when observations began). These
values could be unknown and would
therefore need to be assigned prior
distributions.
Integrated model: a model in which
multiple streams of data are used
either to construct informative prior
distributions or to update those into
posterior distributions as part of
formal model fitting.
Latent (or hidden) variable: a
variable that cannot be directly
observed but can be inferred through
its effect on the behavior of a
system. Internal process such as
density-dependent survival or
reproduction are often latent
variables.
Markov Chain Monte Carlo

(MCMC): a class of computer-
intensive algorithms used for fitting
Bayesian models. MCMC attempts
to balance the computational
efficiency of optimization methods
(Markov chain searches of parameter
space) with the wealth of information

proximity can integrate these biological principles, resulting in a more comprehensive, realistic
model. These statistical tools can revolutionize the way fragmented, error-prone, or incomplete
data are used to assess the status of data-limited populations and species.

Da ta  a n d  In fo rma tio n  in  Mo d e ls  o f  Po p u la tio n  Dy n a mic s
Traditionally, statistical regression methods were reserved for empirical analyses (e.g., linear
models) that rely on model selection to make inferences, while more mechanistic models

(e.g., logistic population growth) were predominantly explored using equilibrium and stability
analyses. Consequently, it was unclear how mechanistic models should draw information from
data, particularly multiple data types (e.g., population time series and demographic rates).
Therefore, mechanistic population modeling approaches tended to use data either for param-
eterization or for validation. Parameterization involved independent analyses of single types of
data (e.g., mark–recapture analyses on the probabilities of survival and detection) to estimate
demographic model parameters and develop corrections for observation errors [33].
Meanwhile, validation compared the predictions of the parameterized models with observed
count data.

First
principles

• Life history

•Physiology

•Community ecology
• Size spectra

•Behaviour

Informa!ve
priors

•Growth
• Survival
• Fecundity
•Age of recruitment
• Environmental effects

Hierarchical
connec!ons

•Spa!al separa!on
•Temporal distance
•Taxonomic dissimilarity

Popula!on
dynamics

•Pooled popula!on
surveys

Spo#ed skate

Angelshark

Figure 1. The Ultimate Objective of
Assessing the Status of Single
Populations Can Be Achieved by
Interlocking Different Types of Infor-
mation. Starting from first principles, we
can ask the following questions. How do
individual decisions on foraging and
reproduction affect survival and births
(behavior)? How do tradeoffs and syner-
gies between demographic parameters
affect the ability of a population to grow
(life-history theory)? What is the multispe-
cies context in which a population is oper-
ating (community ecology)? What
strategies can be energetically sustained
in an ecosystem (size-spectrum theory)?
At a second stage, these fundamental
results can be combined with data on
vital rates and the environment to inform
not just the marginal priors but also the
correlations between population model
parameters. Although these results can
bolster the precision and accuracy of indi-
vidual species assessments, such
strengths can be better achieved by pool-
ing information among species. To do this
formally it is necessary to acknowledge
and represent the hierarchical connec-
tions between species and populations,
as determined by their degrees of phylo-
genetic, spatial, and temporal separation.
In this way, demographic and environ-
mental parameters can be expressed in
terms of baseline values and additional
effects whose hierarchy is determined
by interpopulation similarity. Creating
such parametric connections between
populations allows the pooled survey
data to disperse their information across
all assessments.
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This divide between statistical and mechanistic models has narrowed over the past three
decades. Biologists have gained a new statistical lexicon with which they can model the
population dynamics of organisms in their environment, including integrated models and state-
space models. These models can be constructed in the frequentist or in a Bayesian modeling

framework [33,40]. Bayesian frameworks offer the opportunity to incorporate different data
types to address nontrivial biological hypotheses [39,41].

Modern Models of Population Dynamics Can Incorporate Multiple Data Types
Modern Bayesian modeling [42,43] blends both parameter estimation and validation in a
single analysis. Initial parameterization is replaced by Bayesian priors and validation becomes
the recursive process of model fitting, to confront the model with the data [41]. When
multiple types of data are used when constructing priors (e.g., mark–recapture estimates of
natural mortality, estimates of age and growth) and fitting the model (e.g., diverse and
intermittent data on population size, structure, and environmental covariates), we call it an
integrated population model [32] (although we note that integrated models do not have to be
Bayesian).

In all integrated population models, initial conditions, state variables, and parameters are not
inherently different in a statistical sense. We no longer discriminate between demographic data
for estimating birth and death rates and population models for estimating trends over time.
Rather, we must consider the relationship between data and models in the common currency
of information. All available types of data can be used simultaneously to inform qualitatively
different model parameters in one coherent framework. Hence, having n observations for a
particular parameter no longer implies a sample size of n once the parameter becomes part of a
population model fitted simultaneously to multiple types of data [44–46].

Modern Statistical Models Can Overcome Problems in Sparse Datasets in Three Ways
The first way to overcome problems of missing data or variables that are unobserved (latent)
is to differentiate between two sources of variability: process variation and observation error.
We call this type of dynamical model a state-space model (Supplement 1 in the supplemental
information online). In such formulations, unobserved (latent) quantities can be worth inferring
(such as density-dependent survival of juveniles). Others could be nuisance parameters or
state variables that are modeled by necessity, such as historical population size. State
variables are used to model the intrinsic processes controlling the dynamics of the population
[31,33,40,47]. These can be more resolved than the data. For instance, in fisheries aggre-
gated data on total biomass or numbers are routinely modeled with an age- or size-structured
model that includes parameters describing these processes (e.g., maturation rates of
females).

The second way that modern models can overcome the limitations of sparse data is with
formalized biological or geographic connections between different species. The existence of
hierarchical data structures (e.g., populations nested within species, species nested within
genera) prompts the use of hierarchical model structures that – by analogy with mixed-effect
models in regression [48] – apportion variation in the data to different levels of a hierarchy
[38,49]. The hierarchical model structure allows the data-limited parts of the model to borrow
information from data-rich parts.

The third way that modern models can overcome the limits of sparse datasets is to use Bayes’
theorem [41,43]. In a Bayesian model, the outputs of analysis are posterior distributions. In a
Bayesian population model, posteriors can be obtained for four distinct parts: (i) the

returned by Bayesian approaches by
yielding an approximation of
representative random (Monte Carlo)
sampling from the posterior
distribution. The stochastic
components in the implementation of
the Markov chain search guarantee
that, in the limit, the chain visits
different parameter combinations at
frequencies proportional to their
posterior density.
Mechanistic biological model: a
mathematical model containing
explicit descriptions of biological
subprocesses such as births,
predation, or foraging. This is in
contrasted to a phenomenological
model, where the parameters of the
mathematical expressions do not
necessarily have a biological
interpretation (e.g., a regression line
in a scatter plot).
Model fitting: a process by which
parameters are estimated (in a
frequentist setting) or parameter
posterior distributions are
summarized (in a Bayesian setting)
from data using statistical methods
such as least-squares regression or
computer intensive computation (e.
g., MCMC methods).
Model selection: evaluation and
ranking of competing models, via
information criteria, likelihood ratio
tests, or cross-validation. The
process aims to achieve a balance
between the quality of model fit and
the number of effective degrees of
freedom used to achieve it.
Nuisance parameters: parameters
that are not scientifically interesting
for the problem at hand but
nevertheless are required in the
analysis. For example, the mean of a
sample distribution could be
important for inference while the
sample variance might be a
necessary parameter for some
analyses, but less interesting.
Parameters: coefficients or other
characteristics specifying the
behavior of a mathematical model.
Posterior distribution: the
probability distribution that assigns
degrees of belief to different
candidate values for the parameter
obtained by updating the prior
distribution with data using Bayes’
theorem.
Prior distribution: a distribution of
candidate values for a parameter
based on expert opinion, biological
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first principles, historical data, or
previous analyses.
Size-spectrum theory: a theory
relating individual body size to
abundance, biomass, and production
across trophic levels in a community.
State: a scalar or vector uniquely
describing a population at a
particular point in time (e.g., the
absolute or relative numbers of
individuals belonging to different
classes of age, size, or sex).
State-space model: a dynamical (i.
e., time series) model that comprises
two coupled models, one for a
biological process (e.g., population
dynamics) and one for the method of
data collection (e.g., population
surveys). A state-space model
acknowledges that the biological
state variables are partially and
imperfectly observed, and the task of
model fitting is to reconstruct the
underlying state time series, as well
as the parameters of the model.

parameters; (ii) the unobserved states; (iii) the initial states; and (iv) the observed states. The
posterior distribution for a parameter can be interpreted meaningfully. For example, in a linear
function the posterior distribution of slope coefficients can be used to answer the question ‘is
the effect of increasing temperature on fecundity positive, negative, or negligible?’ In a Bayesian
state-space model, posteriors of unobserved states can be used to reconstruct population
trajectories or demographic rates [50]. However, Bayesian models are most powerful when
additional knowledge is integrated through informative priors.

In c o rp o ra tin g  Ec o lo g ic a l a n d  Ev o lu tio n a ry  In fo rma tio n  in to  Ba y e s ia n  Mo d e ls
The use of informative priors is a natural entry point for multiple types of information in a
Bayesian model. Correlations between life-history traits can be used to constrain priors on
demographic rates. Life-history theory provides a link between individual-level processes and
macroevolutionary patterns. Using information from life-history theory when fitting a Bayesian
model of population dynamics can improve the model fit. This is because demographic rates
emerge from life-history traits such as maturation and fecundity [35], which evolve predictably
according to mortality risk and food availability [51]. For example, high adult mortality selects for
earlier maturation [52,53] and high juvenile mortality that depends on size (e.g., competition)
can select for larger offspring [54]. Barring constraints, species evolve to allocate their resour-
ces to maximize expected reproductive output over a lifetime. There are a limited number of
ways to solve this allocation problem, resulting in widespread convergence among life histories.
Trait data therefore can provide a basis for prior distributions and parameters in an integrated
population model.

As one example, we compare fish life-history traits to show the fundamental constraint on
viable combinations of juvenile and adult survival (Figure 2). We plot the age of maturation
and lifetime fecundity (both transformed) of 204 fish species from 24 clades. These trans-
formed traits serve as proxies for adult and juvenile mortality. The trait space is not entirely
filled: there are no species with high juvenile and high adult survival (the upper right corner of
Figure 2). We then simulated the population dynamics – with fishing – of four characteristic
species at the edges of the extant species’ trait space (Supplement 2 in the supplemental
information online) to confirm that life-history traits and vulnerability to overfishing are
interrelated. Species with late maturation are more vulnerable to overfishing [55,56].
Furthermore, since fishing is size selective in this example (Supplement 2), offspring size
and somatic growth rate also contribute to the differences in the relative effects of fishing on
population dynamics, such that the angelshark is more vulnerable to fishing mortality than
the brown-marbled grouper.

Traditionally, information about demographic parameters is provided to a Bayesian population
model as a set of univariate prior distributions. Biologically, this implies no correlations between
these parameters. However, as Figure 2 shows, this is not the case; the connection between
life-history tradeoffs and demographic parameters motivates the use of multivariate joint priors
in population models. Multivariate joint priors, combining information from several demographic
parameters, explicitly incorporate covariance among these traits (Box 1).

Fitting a State-Space Model to a Simulated Multispecies Dataset with Informative Priors
To illustrate the power of using multivariate joint priors when fitting population models, we
constructed an example. We used a simple stage-structured model to simulate the population
dynamics of a group of eight chondrichthyans based on their life-history traits (Supplement 3 in
the supplemental information online). We sampled our simulated time series, with observation
error, to replicate the nature of the data that come from research trawl surveys. As in an actual
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survey, the abundant species were relatively data rich and the less common species were data
limited in our simulated dataset.

We generated joint priors for demographic parameters using multivariate regression [57].
We regressed adult survival, fecundity, and age of maturity against adult body size
simultaneously to estimate the size-scaling and empirical covariances among the traits
(Box 1). This analysis captured relationships between survival, fecundity, and age at
maturity for a given body mass (see Figure I in Box 1), showing that in this group of
species, if reproductive investment (fecundity) is high, it is simply not possible to mature
early without also trading off survival.

TFishing

T0

Anoplopoma!dae
Carangidae
Carcharhiniformes
Clupeidae
Engraulidae
Epinephelinae
Esocidae
Gadidae
Heterodon!dae
Hexagrammidae
Hexanchiformes
Lamniformes
Lophiidae
Perchicthyidae
Percidae
Pleuronec!formes
Rajiformes
Salmonidae
Scombridae
Sebas!dae
Sparidae
Squaliformes
Squa!niformes
Syngnathidae
Xiphidae

Juvenile mortality

Ad
ul
tm

or
ta
lit
y

TFishing

T0

TFishing
T0

TFishing

Unfished
steady state

Fished
steady state
(F = 0.2)

T0

Figure 2. Life Histories Underlie Population Dynamics and Resilience. A species’ position in trait space can be used to infer its vulnerability to overfishing. To
show the range of trait space occupied by fished species, we plot covariance in adult mortality (with age at maturity as a proxy; y-axis) and juvenile mortality (with inverse
lifetime fecundity as a proxy; x-axis). Gray points represent fish species in trait space (the figure is based on a similar analysis in [70]). We then address the relative effect
of fishing on a characteristic species in each corner of the graph. Colored lines in each quadrant show the connection between a species’ position in trait space and its
response to equivalent levels of size-selective fishing. Each line represents the deterministic population dynamics of a species with one of four characteristic life histories
[55]: precocial (blue) – tiger tail seahorse, Hippocampus comes; opportunistic (green) – wahoo, Acanthocybium solandri; episodic (red) – brown-marbled grouper,
Epinephelus fuscoguttatus; and survivor (light blue) – angelshark, Squatina squatina. The model is described in Supplement 2 in the supplemental information online and
in [55]. The population simulation begins at T0 at a small population size, then grows until it reaches a steady state. The unfished population size is determined by our
assumptions regarding density dependence, which is assumed to be proportional to maximum body length and offspring size, respectively (details in Supplement 2). At
TFishing we add fishing mortality and allow the population to reach a fished steady state. Each population is vulnerable to fishing mortality (F = 0.2) once individuals reach
three-quarters of their maximum length.
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To demonstrate the utility of these multivariate joint priors, we fit population models to simulated
survey data for all eight species (Box 2). Following size-spectrum theory [58], we assumed
that larger species occur at lower densities (and environmental fluctuations act on all the
species in the same way). We conducted four fitting experiments, combining naïve versus
informed modeling and data-rich versus data-limited species. We fitted naïve models for each
species with broad, independent priors. Informed modeling was implemented by fitting hierar-
chical models to all of the species simultaneously, allowing information to flow from data-rich to
data-limited species during model fitting (Box 2; see Supplement 1 for a simple overview of
model structure and code). We also provided our informed model with the multivariate joint
priors for the demographic traits (Box 1).

For the spotted skate (Figure 3A,C), virtually the same prediction was obtained with either
naïve or informed priors. This is because the spotted skate is data rich; that is, given
enough data, information from priors will only marginally improve model fits [41]. For the
data-limited angelshark (Figure 3B,D) using hierarchical models with informative joint
priors improved our estimation of population trends dramatically. Here, the information
borrowed from data-rich species, combined with those available for the data-limited
species, allows an improved estimate of the true demographic rates (which underlie the
observed data).

Box 1. Generating Demographic Priors from Empirical Data

To estimate joint tradeoffs from life-history data (in Table S2 in the supplemental information online), we used pairwise
regressions between demographic rates within or between populations, species, or taxa. If we let x; y denote
appropriate transformations of the variables [e.g., x ¼ logðfecundityÞ or y ¼ logitðsurvivalÞ, we model survival
and fecundity as

y $ Nðmy; sÞ
my ¼ a0 þ a1x

: [I]

The coefficients capture the tradeoff (or synergy) between x and y. We note that Equation 1 does not imply causality so
the roles of x and y could have been reversed.

Rather than fitting pairwise models as linear regressions, we envision the relationship between life-history traits as the
covariance between them in a bivariate normal distribution (as in Figure I):

ðy; xÞ$N2ðm; SÞ

m ¼ ðmy; mxÞ;

S ¼ s2
y covðx; yÞ

covðx; yÞ s2
x

! "
:

[II]

With n fundamental life-history traits, we can envisage 1
2nðn & 1Þ possible pairwise relationships. Such a model would

be a generalization of Equation 2:

ðx1; :::; xnÞ$Nnðm; SÞ

m ¼ ðm1; :::; mnÞ;

S ¼
s2

1 covðx1; xnÞ
}

covðx1; xnÞ s2
n

2

4

3

5:

[III]

The life-history relationships are now captured in the covariances of the matrix S.

Such models can therefore be used to quantify which life-history profiles are biologically possible and, by incorporating
information from different species, allow us to more precisely specify the likely life-history strategy of a data-limited
species.
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Box 2. Hierarchical Bayesian Models Allow Parameter Estimation for Data-Limited Species

The advantage of Bayesian modeling is that it forces one to be explicit about the model and the data. Incorporating
informative priors constrains the model fit to areas that are realistic according to theory. State-space models quantify
demographic parameters and hidden states from partial population data [29,50,72]. Hierarchical state-space models
allow the estimation of several different parameters from similar taxa, where similarity arises from shared characteristics
such as ancestry (e.g. [72]) or geography. Thus, information from data-rich taxa can be shared with data-limited taxa in a
hierarchical Bayesian state-space model.

Imagine that the annual rate of survival st of a certain age class of a population at time t depends on covariates.
Covariates can be: (i) data extrinsic to the model (e.g., temperature data); (ii) autocorrelation (e.g., density
dependence can be modeled using previous population densities); or (iii) proxies for unknown covariates (e.g.,
time can be used as a proxy to capture trends in other variables). These covariates represent scientific hypotheses
about what controls population trends.

For example, if Tt denotes temperature in year t, Nt&1 population size in year t & 1, and f a flexible function
capturing potentially nonlinear survival trends through time, we can write

logitðstÞ ¼ g0 þ g1Ttþ g2Nt&1 þ fðt ; g3Þ: [I]

Fe
cu
nd

ity

0.6 0.7 0.8 0.9 1.0

Survival

A
ge

of
m
at
ur
ity

2

6

4

8

12

10

0

40

20

80

60

Spo!ed skate

Angelshark

2

22

4 6 12108

Age of maturity

Figure I. Random Life-History Covariances of Angelshark and Spotted Skate. Points are drawn from the
multivariate joint probability distributions of fecundity, maturity, and survival for each species. Survival is assumed to be
proportional to the inverse of lifespan. The variance and covariance structures connecting the three parameters were
estimated via multivariate regression of traits from eight species of chondrichthyan (Table S2.1 in the supplemental
information online). Predictions of these models are size specific [this plot depicts plausible life histories for angelshark
(Squatina squatina) and spotted skate (Raja montagui)].
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The coefficient g0 determines baseline survival and is influenced by the priors. The remaining coefficients must be
informed indirectly by fitting the model to the population data. If these data contain insufficient information, either
the hypotheses (covariates) must be discarded (i.e., returning to an intercept-only model) or additional information is
needed.

We can expand this model to represent two species that are likely to respond in similar ways to temperature (e.g.,
because they are phylogenetically close but in different ecosystems). Assuming evolutionary distance can be quantified
(here represented by u), we write the coefficient of temperature using the following form:

gi1 ¼ g1;0 þ g1;1uiþ ei ei$Nð0; sTÞ; [II]

where the coefficients are now fixed effects in the response to temperature and the normally distributed stochastic term
quantifies an interspecies random effect relating survival and temperature [73].

Alternatively, we imagine two populations of different species that live in the same ecosystem, experiencing the same
environmental drivers at the same time. Spatiotemporal proximity can determine the degree of synchrony in the flexible
temporal term of the model f(t;g3) [74]. Shared ancestry and habitats provide inferential linkages between time series
from different populations and allow them to act in a statistically complementary way, so that information flows to data-
limited parts of the model from data-rich parts.
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Figure 3. Data-Richness and Life-History Covariances Can Inform Predicted Dynamics of Multiple Species at Once. To show the potential of informative
priors in model fitting, we fit a Bayesian hierarchical state-space model to multiple species in our simulated dataset. The lines with points are the simulated population
trajectory; dots represent time of sample observation (e.g., presence in a trawl survey). The gray line is the model reconstruction; shaded areas are 95% credible
intervals. The upper panels (broad, uniform prior) correspond to the situation in which the prior distributions are independent and relatively uninformative; the lower
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F u rth e r  So u rc e s  o f  In fo rma tiv e  De mo g ra p h ic  Prio rs
Construction of informative demographic priors requires considerable intellectual work. The
example above used the statistical patterns emerging from observed trait covariation to create
informative priors (Box 1). Informative priors can also be constructed by drawing from the
burgeoning fields of energetics-based life-history theory [59,60] and community size spectra
[61,62]. These fields provide avenues for moving from the qualitative insights in Figure 2 to
quantitative demographic priors. We now discuss the exciting possibilities of using first
principles from life-history models and community size spectra to generate priors that are
sufficiently informative to outperform the empirical multivariate priors in Box 1.

Allocation models that explicitly take into account energetic budgets [63,64] can be used to
predict emergent individual life histories including maturation, birth rates, and mortality rates. By
incorporating natural variation in available energy, these models predict trait distributions that
could be readily transformed into informative priors on demographic traits such as mortality.
Individuals with greater energetic demands generally forage more and have larger home
ranges; as a result, they frequently have lower survival [65,66]. For example, an energetic
model of daily foraging and survival could be used to generate a prior on mortality rate (a
process that can be difficult to measure directly) based on the suite of trait combinations
observed for a given species [35].

Another source of prior information comes from the predator–prey mass ratio (PPMR).
This ratio is a measure of the energetic base available to a predator and can be used to
predict reaction norms for traits such as maturation [51]. PPMR is linked to a species’
position in its community size spectrum and is thus related to species’ abundance and
biomass [62,67–69]. Size-spectrum theory can be used to estimate energetic intake
(consumption) and natural mortality rate [61]. In Figure 4 we illustrate the relationship

Consump!on or
mortality

rate

Abundance

Consump"on rate
f(Lfocal,Lprey)

f(Lfocal,Lpredator)
Mortality rate

Predator

Prey

Figure 4. The Linear Relationship between Per Capita Rates of Consumption (of Prey) or Mortality (Due to
Predation) and Abundance. From size-spectrum theory, we can assume that there is an inverse relationship between
abundance and body mass. Given that, in fish, body mass is a cubic function of length, L, we can assume that
f Lfocal; Lprey
# $

or f(Lfocal, Lpredator) is a ratio or difference function (reviewed in [71]). For simplicity, we have labeled
the mortality rate and consumption rate of a focal individual of intermediate size (middle fish), although these rates
hold for individuals at the higher and lower trophic levels as well.
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between predator and prey abundance and the rates of consumption and mortality that
follow from size-spectrum theory and PPMR. Notice that body size is implicit in but
fundamental to these connections. We suggest that these relationships between body
size, physiology, and mortality offer rich information for use in models of population
trends.

Co n c lu d in g  Re ma rk s
Scientists and policymakers facing the ongoing challenge of conserving biodiversity with
scant data can find utility in modern Bayesian methods, life-history theory, and commu-
nity ecology (see Outstanding Questions). In addition to continued efforts to survey and
assess species, there are underexploited opportunities to apply the methods described
here to inform assessments of species’ status. Insights from these disparate fields can be
incorporated via informative priors when modeling populations (Figure 1 and Boxes 1 and
2). Shared evolutionary and ecological characteristics of populations and species can
also be used to formally relate the dynamics of well-studied taxa to data-limited counter-
parts. While many of these tactics are possible without formal statistical models, the ad
hoc alternatives would lead to imprecise predictions and lack of standardization between
populations and species. By laying out these connections, we hope to fertilize oppor-
tunities to study the dynamics of populations or species for which data are limited but
threats are ongoing.
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