Solution of Kramers-Moyal equations for problems in chemical physics
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We derive asymptotic solutions of Kramers—Moyal equations (KMEs) that arise from master
equations (MEs) for stochastic processes. We consider both one step processes, in which the
system jumps from x to x + € or x — € with given probabilities, and general transitions, in which
the system moves from x to x + €£, where £ is a random variable with a given probability
distribution. Qur method exploits the smallness of a parameter ¢, typically the ratio of the jump
size to the system size. We employ the full KME to derive asymptotic expansions for the
stationary density of fluctuations, as well as for the mean lifetime of stable equilibria. Thus we
treat fluctuations of arbitrary size, including large fluctuations. In addition we present a criterion
for the validity of diffusion approximations to master equations. We show that diffusion theory
can not always be used to study large deviations. When diffusion theory is valid our results reduce
to those of diffusion theory. Examples from macroscopic chemical kinetics and the calculation of
chemical reaction rates (“Kramers” models) are discussed.

I. INTRODUCTION

In the last decade, considerable effort was dedicated to
the study of chemical systems by the methods of stochastic
processes. Much of this work is summarized in Refs. 1-6. In
general, the problems of interest involve a system with dis-
crete states (e.g., numbers of species or energy levels) or a
mixture of discrete and continuous states, that evolve in
time. Such systems are best described by master equations
(ME) that characterize quantitites of interest in terms of the
probabilities of transitions between states. Master equations
are, unfortunately, very hard to solve. One approach, follow-
ing Kramers® and Moyal,” is to expand the ME and obtain
an infinite order differential equation called the forward
Kramers—Moyal equation (FKME), which is equivalent to
the ME. Since the FKME is also difficult to solve, it is usual-
ly truncated after two terms, yielding a diffusion approxima-
tion. Although this diffusion approximation provides equa-
tions that are often solvable, the validity of such an
approximation has not yet been made clear. In order to study
the validity on the diffusion approximation, one must be able
to solve both the FKME and the diffusion approximation to
it. In this paper, we will show how to construct solutions of
the FKME.

We are concerned with processes that on the average
have one or more stable equilibrium points. For such sys-
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tems we calculate the density of small and large fluctuations
about the stable states and the mean lifetime of such states.
These lifetimes are often related to quantities of physical
interest. For example, the mean lifetime of a molecule at
energy levels below the dissociation energy is essentially the
reciprocal of the dissociation rate.

We use the FKME to calculate the stationary or quasi-
steady-state density of fluctuations. For the calculation of
the mean lifetime we introduce the backward Kramers—
Moyal equation (BKME). We construct asymptotic solu-
tions to the FKME and the BKME in terms of a small pa-
rameter € that measures the distance between neighboring
states. That is, we consider problems characterized by small
jumps in which the process hits the boundary as it exits a
specified region. For example, for one step chemical pro-
cesses in which the reaction mechanism leads to changes of

+ 1 molecule, the concentration changes by € = + 1/V,
where Vis the volume of the system. Thus € may be viewed as
the reciprocal of some measure of the size of the system. It
should be noted that our expansion is fundamentally differ-
ent from Van Kampen’s {2 expansion, in that we retain all
the terms in the Kramers—-Moyal equation, and the leading
term in our expansion of the solution is shown to depend on

all of these terms.
We employ a WKB approach to the FKME. This ap-
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proach was employed by Kubo et al.’ For the analysis of the
BKME we adapt the approach of Matkowsky and Schuss'*
which is based on the methods of boundary layer theory and
matched asymptotic expansions. We thus obtain a more
complete description of the process than that given by Kubo
etal.

In Sec. II we present a number of examples from macro-
scopic chemical kinetics and the microscopic theory of
chemical reaction rates. We also show how the master equa-
tion and the forward and backward Kramers—-Moyal equa-
tions are derived. In Sec. III, we show how to obtain asymp-
totic solutions of the FKME and BKME. In Sec. IV, we
discuss a model for dissociation of a molecule with two de-
grees of freedom. This leads to a two dimensional problem
that we fully analyze. In Sec. V, we provide some concluding
comments, as well as compare our work with other recent
approaches to the master equation-Fokker Planck equation
modeling issue.

1. EXAMPLES AND DERIVATION OF THE ME AND KME

The first example described in this section pertains to
macroscopic chemical kinetics.'®'> The second example is a
generalization® of the model proposed by Kramers® for the
calculation of chemical reaction rates.

A. One step processes in chemical kinetics

In order to help fix ideas and introduce notation, we
begin with a relatively simple problem (harder ones will fol-
low). Imagine a single macroscopic variable X (¢) that mea-
sures the concentration of a chemical species. The reaction
mechanism leads to changes of + | molecule per reactive
collision. Ifx(t ) = X (¢ )/ V'is a concentration variable, so that
Vis the volume of the system, it is often possible to model the
evolution of x(t ) as follows. Let € = 1/V, so that x(¢ ) changes
by + € per reactive collision, and assume that

Prob{Ax = €|x(t) = x] = rix)dt,
Prob{dx = —€|x(t) = x} =1 (x)At,
Prob{dx =0lx(t}) =x} =1 — {r{x) + I (x)} At
The FME and BME are derived the following way. Let
plx.p,t) be the probability of reaching x(¢) = y, given that
x(0) = x. With respect to y, p(x,y,t) satisfies the FME,
plxyt)=plx,y — €t — At){y — €)dt
+ plx,y + et — At)l(y + €)At
+plxyt — At)1 — r{ y)dt — I(y)At). (2.2)
With respect to x, p(x,y,t ) satisfies the BME,
plxy,t) =plx + eyt — At )rix)At
+p(x - E,y,t — At )I (X)At
+ pleyt — At)[1 — rix)dr — I (x)At]. (2.3)
Equations (2.2) and (2.3) are derived by applying the laws of
conditional probability.
The FKME and BKME are obtained by subtracting
plx,y,t — At) from both sides, dividing by A4¢, letting 4:—0

[which gives the time derivative of p(x,p,t }}, and then Taylor
expanding in €. When this is done, Eq. (2.2) gives the FKME,

(2.1)
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dp=L3}p= il‘—infi[(ay)"zr( ypxp.t)}]

®  eh W
Applying the same procedure to Eq. (2.3) gives the BKME,
rx) Z —(3 y'plx.yst)

n=1M1

(2.4)

ap=L,p=

#1001 3 1=L 00, oty

In these equations, d denotes a partial derivative. Observe
that L, and L * are formal adjoints,'® a fact which will find
considerable use later on.

If L} is truncated after two terms, then Eq. (2.4) be-
comes the familiar Fokker—Planck equation. If it exists, the
stationary density of fluctuations v( y) satisfies L ¥v = 0. We
will not truncate Eq. (2.4} or (2.5). Rather, we will show how
to obtain asymptotic solutions of these equations for small ¢,
but keeping all terms in Egs. (2.4) or (2.5).

The operator L, is used to determine the mean first
passage time 7(x) out of a region R starting at a point x in R.
It can be shown that 7(x) is the solution of

L.rix)= —1
7(x) =0 on the boundary of R.

(2.5)

forxin R,
(2.6)

Generalizations of Egs. (2.2)42.6) are obtained in a straight-
forward manner. For example, consider a two dimensional,
one step process x{¢ ) = [x,(t ),x,(t )] evolving according to

Pridx, = €,4x, = O|x(t} = x} = r (x,,x,)A¢,
Pr{dx, = 0,4x, = €|x(t) = x} = ry(x,x,)At,
Pridx, = — ¢,4x, = 0|x{t) = x} = I,(x,,x,)4¢,
Pr{dx, = 0,4x, = — €|x(t) = x} = L(x,,x,)4¢,
Pridx, = 0,4x, = 0|x{t) =x} = 1 — [r(x,x,)

+ rax1xa) + Lixxa) + Lixy,xo)lAe, (2.7)
Pr{any other transition} =
The extension of Eq. (2.2) is the FME,
PX X2 Y 20t ) = PlX X001 — €0t — ALy — €,)At
+ plx X1y, — 6 — At )ry( y,,p, — €)4t
+ plxpxay) + €9yt — At )\, + €,)At
+ Px X200y, + 62 — At)( 1y, + €)At
+ Plx Xy 1yt )1 — [ri( Y1)
+ 7 yuya) + Liyuyd) + Lywy))lat . (2.8)

The FKME is found according to the same procedure
that was used to obtain Eq. {2.4). Itis

dp =L3p
= Zl( il ([( )" A yup2lp(x X2 1028 )
+ [( )"{’(}’1J2)P(x1’x2xl’1s.l’2’t)} ])

VL (y1apx Xyt )}

+ E—([(

n=10N

+ [0, )" {(y1y2lplxr Xzt )] ])- (2.9)
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Observe that the transition assumptions (2.7) model a two
dimensional random walk in which changes in x, and x, are
uncoupled. Such a model would be appropriate for energy
migration on a lattice or uncoupled chemical reactions. For
coupled chemical reactions, one could have, for example, the
event Ax, = €, Ax, = — € with a nonzero probability. Such
modifications are easily taken into account. For purposes of
clarity and expositional ease, until the last section we will
concentrate on the one dimensional problems.

B. Chemical reaction rates

In 1940, Kramers® proposed the following model for
calculating the rates of chemical reactions. Let X (¢) denote
the reaction coordinate and assume that X (¢) satisfies the

equations
X _ve)
dt
(2.10)
dv -
- U'X) —BV +flt).

Here U (X ) is the potential for the reaction coordinate, Bisa
friction coefficient, and (¢ ) is Gaussian white noise, satisfy-
ing
(flt)) =0,
(2.11)

(f()f(s)) = 0?6t — s),
where { ) denotes an average, § (¢) is the Dirac delta func-
tion, and the constants o and 8 are connected via the fluctu-
ation—dissipation theorem.

Kramers’ method for calculating the rate of a reaction
involves finding the mean time that it takes X to reach a
certain level.'*'® This model is generally called “Brownian
motion in a field of force” and has received a great deal of
attention in the past 40 years.

A model in the same spirit of Kramers is that of Il’in
and Khasminskii® who go from a master equation formula-
tion to a diffusion approximation. A simplified version of the
model of II'in and Khasminskii which captures the main
ideas, is the following:

{1) Consider a particle of mass M whose motion between
collisions with small particles of mass m (with m<M ) is gov-
erned by the equations

ax _

dar (2.12)

av _ = F(x),
dt
where F(x} = — U'(x) for some U (x).

(2) The small particles have velocity + (kT )/m with
probability 1/2, where & is Bo!tzmann’s constant and 7 is
temperature. Consequently, if £ is the velocity of the small
particles, then

(&) =0,
(2.13)
(E?) = kT /m.

We show in the next section that the result is independent of
the particular distribution of Z, for all distributions satisfy-
ing Eq. (2.13). We choose Eq. (2.13) to match the first two
moments of the Maxwell Boltzmann distribution.

(3) Upon a collision, the value of ¥ changes according to
the law of an elastic collision. Thus, if 4 7 is the change in
velocity,

P 2m
=E-V

Here 2m/(M + m)=~2m/M is the reduced mass for the colli-
sion. The probability density for the time between collisions
follows an exponential distribution with parameter
a = MPB /m, so that B is a measure of ‘‘viscosity.” In order to
use this model to calculate reactions rates, we imagine that
the potential U (x) has two stable equilibria, x = A4, B, separat-
ed by an unstable equilibrium x = C. In the (x,v = x) phase
plane, there exists a trajectory (the separatrix) that divides
the phase plane into two domains of attraction, D, and Dy,
of the stable equilibria (4,0) and (B,0). The Kramers picture
of reaction rates is based on finding the mean time 7(x,v) for a
particle starting at a point {x,v) near {4,0) to reach the separa-
trix. The reaction rate is then inversely proportional to this
mean time. Using 2m/M as the reduced mass the BME is

(2.14)

dp dp dp , 1 MB
P _ g P ,P L ME
T T e T
Zm( kT )]
slplxw+ 2% [2L _
o+ 3l
+p[x,v+2—m-(— kT —v)] —2p(x,v)}. (2.15)
M m

Setting €2 = 2m/M and expanding Eq. (2.15) in a Taylor
series about € = 0, gives the BKME,

ap B
. Fixd J =
3 (x) ,,p+vxp+42

2(2 y—

2 (\/—kz—ev)(a)p
+ 3 (—2er— (\/—E—f+ev) (a)p]

P i (2.16)

The Kramers-like models for diffusion in a field of force
are valid if the diffusion approximation to Eq. {2.16) (i.e.,
truncating after n = 2)is valid on a time scale comparable to
7(x,v). In Sec. 111 we show that this is the case for the model
under consideration.

We now discuss a model for the calculation of reaction
rates similar to those of Montroll and Shuler!” and Kim.'®
Imagine a particle moving in a bath and experiencing colli-
sions. Let E,, denote the energy of the particle after the nth
collision with a bath molecule.

For the time being, we consider E,, to be a single vari-
able. In Sec. IV, we will discuss an example in which the
energy is represented by a vector (e.g., rotational and vibra-
tional energies). We assume that the dynamics of E, are de-
scribed by

En +1 = En + €§n(En’6)'

(2.17)
Here £, (E, ,€) represents a random process characterizing
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all the possible transitions from energy level E, , and € mea-
sures the average distance between adjacent energy levels.
The distribution of £, (E, ,€) may be determined from quan-
tum statistics, but the mean number of collisions n(x) to
reach a dissociation energy starting at E, = x needs to be
computed. For example, in Refs. 19 kinetic equations for
desorption are considered. Using perturbation theory, the
authors are able to calculate transition probabilities from
bound states to bound or continuum states. These transition
rates then specify the distribution of ¢, (E,, ,€). More specifi-
cally, we denote

wizx) = Pr(é, =2|E, = x).

Extending the reasoning that led to Eq. (2.6) to continuous
jump densities, one can show that n(x) satisfies

A J
L.n=E, [ ]
J

=1,

(2.18)

n(E,) = 0, where E, is the dissociation energy. Here E, de-
notes the expectation, conditioned on the level x, so that

E(f6.)) = [ f))wledz 2.19)

for any function f. Once the mean number n(x) is known, we
can find the mean time to reaction by multiplying n(x) by the
mean time « between collisions. If « is state dependent, then
one must work with physical time directly, rather than
numbers of collisions (see, e.g., Refs. 20 and 22).

llIl. ASYMPTOTIC SOLUTION OF THE KRAMERS~
MOYAL EQUATIONS

In the next three sections, we will describe a new,
asymptotic method for the solution of Kramers-Moyal
equations. The method is completely general; that is, it can
be used for problems with any number of dimensions. In this
section, however, we will concentrate on one dimensional
problems that are familiar. This allows us to concentrate on
the new method and show why the standard diffusion ap-
proximation fails. In Sec. IV, we do a two dimensional exam-
ple, to show the ease with which the new method can be used.

In this section we construct the solution to the station-
ary FKME,

L*vx) = (3.1)

and
Ly =

where L } is given by Eq. (2.4), and L * is the formal adjoint
of L, given by Eq. (2.18). The solution of Eq. (3.1) gives the
exact stationary density of fluctuations in cases where it ex-
ists.

The quantities 7{x) and n(x) are determined from

L.rix)= — (3-2)

L.nx)= — (3.3)

Knessl et a/. : Solution of Kramers—-Moyal equations

respectively, with L, given by Eq. (2.5) and ix given by Eq.
(2.18). The solution of Eq. (3.2), with the boundary condition
given in Egs. (2.6} and (2.18), respectively, allows us to find
rates for one step processes. We also give a criterion for the
validity of diffusion approximations (i.e., truncation of the
KME). Finally, we discuss Eq. (2.16) and show that the ap-
proach of I'in and Khaminskii is correct. Additional exam-
ples and calculations are in Ref. 20.

A. The stationary distribution of fluctuations
For a one step process, Eq. (3.1) takes the form

L= 3 (=26, rirmma))

n=1

FE 0. i) ]) =

where r(x), /(x) are known and v(x) is normalized by
fvdx = 1. We assume that x[/ (x) — r{x)] >0 for x#0, and
1{0) = r0). Thenx = Qis astable equilibrium point. Since the
stationary distribution of x, is concentrated near x = 0, we
employ the WKB method and seek a solution of Eq. (3.4) in
the form

v(x)~e VK, + K, + ). (3.5)

Substituting Eq. (3.5) into Eq. (3.4) and equating the coeffi-
cient of each power of € to zero, to leading order we obtain
the following equation for ¥(x):

rxje?s + I{xje ™ % — [I(x) + rix)] =0. (3.6)
Here ¢, = dy/dx. Equation (3.6} is a nonlinear first order
partial differential equation. It is analogous to the eikonal
equation'*?! that arises in the asymptotic solution of
Fokker-Planck equations. In fact, if ¢, is small, and Eq.
(3.6) is Taylor expanded, one obtains the eikonal equation for
the diffusion approximation. One solution of Eq. (3.6) is
#{x) = constant which is rejected because it is not normaliza-
ble, and the other solution is

(3.4)

Y(x) = Lx log[ir(%)-]ds. (3.7)
We also find that K, satisfies
[rixle® — 1ixle ™ 1Ko, + (3[rix)e™ + 1 (xle ™ * 1y,
+ rx)e” — I (x)e” "}K,=0. (3.8)
The solution of Eq. (3.8) is
Kofx) = —SL (3.9)

T erx)
where ¢, is a normalization constant. Thus the leading term
in the asymptotic solution of Eq. (3.4) is given by

o)~ e w— L[ 1o [l(s)]ds}

Before continuing, we pause to make three observations
about the solution (3.5}-3.10). The first is that one can ob-
tain the eikonal equation and equation for K|, directly from
the FME.

The stationary FME in this case is

(3.10)
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rix — eplx — €) + I (x + €lx + €

— vx)[rix) + 1 (x)] = 0. (3.11)
Using the WKB form (3.5) in Eq. (3.11) gives
rix — ele =¥~ V4 [Ko(x — €) + O (€)]

+1(x + €l ™ W+ [Kolx + €) + O (€)]

— [Mx) + I (x)]e = "¢[Ky(x) + O (€)] = 0. (3.12)

As €—0, a Taylor expansion of ¥(-) and K-} give Eqgs. (3.6)
and (3.8). It will be seen, however, that the method for the
calculation of exit times requires the use of the FKME.

The second observation concerns the extension of Eqgs.
(3.51(3.10) to two dimensional problems. For example, if the
WKB form is used in the stationary version of Eq. (2.9), we
obtain the following equation for (x,.x,):

rixyx)e’™ + xxo)e g ’2(x1»x2)ewx’

+ Lixyxg)e ™ — [ry(x,x,) + Lixyx,) (3.13)

+ rafx1%;) + L(x,x,)] = 0.
This equation can be solved by the method of characteris-
tics.'® The evaluation of Ky(x,X,) is not much more difficult.
The third observation is a comparison of Eq. (3.10) with the
solution derived from the diffusion approximation, obtained
by truncating Eq. (3.4) after two terms. The diffusion equa-
tion is given by

{[r(x)+1(X)]v(x)] - —{[r(x) —1{x)Ju(x)} =

(3.14)

Using Eq. (3.5) with ¥{x) replaced by ﬁ(x), we obtain from
Eq. (3.14),

282

3rx) + 1) 192 + [rix) — 1 (x)19, =0. (3.15)
Hence

o) = 2[ L6 =1) 3.16

gl fr(s)+l() 16

Clearly, Eqs. (3.16} and (3.7) are, in general, not equal. We
observe that ¥(x) > ¥(x) for x#0. Thus the density of fluctu-
ations predicted by the diffusion approximation has higher
tails than the density of the random walk. That is, the pro-
cess obtained from the diffusion approximation is more dif-

fuse than the random walk, so that the probability of large
deviations of the diffusion process from equilibrium is
greater than that of the underlying random walk. However,
near the stable equilibrium point x = 0, ¥(x) and ¢(x) have
the same leading term in their Taylor expansions. Near
x = 0Eq. (3.15) is obtained by truncating Taylor’s expansion
of the exponentials in Eq. (3.6). Thus, the diffusion approxi-
mation can be used only for the description of small fluctu-
ations about x = 0.

If r{x) — I (x) has more than one zero, there may be me-
tastable equilibrium points as well as a stable equilibrium. In
such a case, there is a finite domain of attraction & for the
metastable equilibrium point. The probability density of a
particle in Z relaxes to a quasi-steady-state distribution on a
time scale much faster than the decay to equilibrium. The
decay rate to equilibrium, often exponentially small, de-
pends upon the mean time to escape from &. The quasi-

steady-state distribution is the solution to Eq. (3.1), and thus
has the same structure as Egs. (3.5)—(3.10).

The mean exit time from an interval is computed by
solving the BKME. In particular, let 7{x) be the expected exit
time from (4,B ), with 4 <0 < B, given that x(0) = x. Then
7(x) satisfies

Lo =) $ £0,1rix) + 1) 3 =T o, prix

n=1n

= —1, A<x<B
with

7ix)=0 for x&(4,B).
We again consider the specific case in which r{x) =/ (x) at
exactly one point, x = 0 say, which is stable in the sense
described above.

Since x = 0 is stable, 7(x) is large. We seek a solution of
Eq. (3.17) in the form

x) = Cle) 3 e'rx),

where C (€) is a constant that goes to infinity as e—0, and the
7;(x) are to be determined. Substituting Eq. (3.18) into Eq.
(3.17) yields'**°

(3.17)

(3.18)

() — 1 (x)}-Lrof)~0. (3.19
dx
From Egq. (3.19), we conclude that 74(x) is a constant. With-
out loss of generality, we set 7,(x) = 1. Consequently,
7{x}~C (€). Since this solution can not satisfy the boundary
conditions, boundary layer corrections are needed near
x = A and x = B. We determine these boundary layer cor-
rections and match them to the interior solution C (€) by the
method of matched asymptotic expansions.??> Thus near
x =B, we introduce the stretching transformation
7 = B — x/€, set {x) = U(n), and seek a solution U () with

U(0) =0, U(n)—C (€) as — o . To leading order, Eq. (3.17)
becomes
nB) 3 = U~0. (3.20)

n=1 n=1n

We consider only thecase {B) </ (B)and r(A )>1(A4 ). Other
possibilities are discussed in Ref. 20. We seek a solution of
Eq. (3.20) in the form

Um)~Cle)[1 —e#], (3.21)
where the constant £ is to be determined. Substituting Eq.
(3.21) into Eq. (3.20) we find that S satisfies

HB)? +1(Ble=%=1(B)+nB). (3.22)

This equation has a unique positive solution under the above
assumptions. A similar expansion is constructed near x = 4.
The uniform expansion is given by>®

T(x)~C(€)[1 — e —AVe _ g = BE—x/e] (3.23)
where a is the negative solution of Eq. (3.22) with B replaced

by A4. To find the unknown constant C (€) we follow the meth-
od of Matkowsky and Schuss.'* We multiply the equation

L= —1 (3.24)

by a solution of L *» = 0 and integrate to obtain
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B B
J vL,rdx= — f vdx. {3.25)
A A
Then we use the Lagrange identity'*
B B
f vL 7dx = % (r,v) (3.26)
A A

with % (r,v) given by*°
o= 3 EI'S (¢ [0 Fm] (0.1

an=0/" Lk=0

" 21(;n’e)_[k2;( — D [@ W] @)+ ‘r]].
(3.27)

We note that v(x) is already known [Eq. (3.10)]. We use Eqgs.
(3.10), (3.23), and (3.27) in Eq. (3.25) to obtain an asymptotic
formula for C (¢). It is given by

{2me/nO)[1'(0) — r(0)1}"

e~ WHx)/€e
|-t - r(xn]
vrix)l (x)

Note that Eq. (3.28} is valid for one step processes. Thus we
see that 7(x) = O (¢"*¢|§). In contrast the exit time ac-
cording to the diffusion approximation (3.14) is given by
7 (x) = O (e"¢|% ), so that 7 7. This is a result of the fact
that the density of fluctuations predicted by the diffusion
approximation has higher tails than those of the random
walk. Thus large deviations are more likely in the diffusion
approximation, and the expected time to exit is exponential-
ly shorter.

Now we generalize our analysis to process with a gen-
eral transition density

P(§, =2z|E, =x)=w(zx),

where E, is the energy level of a molecule after the nth colli-
sion. The stationary FKME is given by

Cle)~

(3.28)

= S e epl=d’_, (3.29)

m!

Written in terms of the density w(z,x) this equation is

)3 z( e) 8, (wlzxix))dz. (3.30)

n=1

We assume that x = 0 is a stable equilibrium point of the
averaged equation

x= Ex (gn )Eml(x)'

That is, we asusme that m,(0) = 0 and xm,(x) < 0 if x#0.
We again seek a solution of Eq. {3.27) in the WKB form

v~K (x)e = “Ve, (3.31)
In order to collect terms according to powers of €, the follow-
ing identity is useful®®:

(0. ) [wizx)K (xje = ¥<] = e~ #/<

><[K(x)w(z,x)(—lﬁx)" + Til +o(e—"+2)], (3.32)
" €"

where

7, =2, o) + nikw)(— g
(3.33)

Substituting into Eq. (3.27) and setting the coefficient of each
power of € to zero, to leading order we obtain the equation
for ¥(x),

f(e"% — Nwiz,x)dz = 0. (3.34)
We can rewrite Eq. (3.34) in the form
E {&") =1. (3.35)

This equation was derived by Kubo et al.’ If the moment
generating function for &, is known, then we can write Eq.
(3.35) explicitly. For example, if the distribution of £, given,
E, = x, is normal with mean b (x) and variance o*(x), then
Eq. (3.35) becomes®*

e B e

with the solution

dix) = — f”‘“’d

The O (€} term in the asymptotic solution of Eq. (3.30)
yields the equation

a tvay K 2 St
'(;[KEx(gne )] - 2Ex{§ne ¢xx}'

The solution of Eq. (3.36) is given by

(3.36)

K (x)

¢ expf [ 1eAe: . /B Al Y ax |
|E.{&.¢"}| '

For the normal distribution we have

K= oz(x) p{ J. [:;(Z))],b(")d"]'

If the variance a(x) is a constant, this expression reduces to

P!

A simple extension of our methods can be used to determine
the mean lifetime for an arbitrary process £, ,2° or for a mul-
tidimensional problem (as will be done in Sec. V).

- Next, we reexamine models for reaction rates based on
Brownian motion. To do this, we study the BKME (2.16).
Observe that, physically, two things occur in Eq. (2.16) as €
decreases to zero. The collision rate B /& increases and si-
multaneously the velocity change per collision 4V de-
creases. The backward equation (2.16) can be written in the
form

(3.37)

K(x)= —exp

P F(x),p+vd,p

BT e ([T
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(o)
+ (\/E; + ev)zlaﬁp + O(e")]-

After simplification, this equation becomes

(3.38)

‘;‘j F(x)3,p + v3,p — Bud,p + B—azp +0(e).
(3.39)

In the limit e—0, Eq. (3.39) becomes the backward diffusion
(Kolmogorov) equation associated with Kramers model
(2.12).

The key observation is that by scaling the collision rate
properly and choosing a symmetric (i.e., zero mean) distribu-
tion for the velocity of the small particle, II'in and Khas-
minskii force the coefficients of d,p and &’p to be the same
order in €. This allows one to write a diffusion approxima-
tion to the KME. If this scaling and symmetry did not occur,
then the diffusion equation would not be valid. The example
in the next section shows a case where the boundary condi-
tions play a crucial role as well.

The II'in-Khasminskii models leads to the general
question about the validity of diffusion approximations for
KME. Consider the BKME given by

m k(x e)

2 (3.40)

In this equatlon, my (x,e) is the k th moment of the transition
density for the process under consideration. We assume that
m, (x;€)/m,(x;e}—0 as e—0 for k>3, and want to consider
the validity of the diffusion approximation given by

Pi = my(x;elpd + dmox;elps,. (3.41)
Our results show that Eq. (3.41) is a valid approximation to
Eq. (3.40) if Eq. (3.41) is not a singular perturbation problem
as é—0. In that case, the derivatives of p? with respect to x
are bounded as e—0 and one can seek a solution of Eq. (3.40)
in the form

p~p? +0(l). (3.42)
The higher order terms in Eqs. (3.42) and (3.40) are small and
thus the diffusion approximation is valid. On the other hand,
if Eq. (3.41) is a singular perturbation problem [so that
m,(x;€)/m,|x;€) is unbounded as e—0], then the partial der-
ivatives of p? are unbounded as é—0. This means that the

higher order terms in Eq. (3.40) may not be small and the
expansion (3.41) not valid.

IV. A TWO DIMENSIONAL EXAMPLE

We now consider a more complicated model for disso-
ciation, which is two dimensional. It is similar to Troe’s
model.>2¢ Let x and y denote the energy levels of two de-
grees of freedom of the molecule (e.g., vibrational and rota-
tional energy) and let E (x,p) be the total energy associated
with them. We will assume that x and y are measured relative
to the dissociation energy E,,. We assume that the dynamics
of x and y satisfy the stochastic difference equations

xn +1 =xn + egn(xn’yn)’
4.1)

Vni1 =Yn +€n,(x,0,).
InEq.(4.1),e = kT /E,. Wewillset E /kT = y{x,p)/esothat
¥(x,y)<1. We wish to compute the mean number of transi-
tions before E (x,y) = E, [or ¢x,y) = 1]. Associated with Eq.
(4.1) is a joint transition density w(z,,2,,x,y) defined by

wizyzoxp) = Pr{g, =z,m, = 2,|x, = xp, =y}.(4.2)
The moment generating function, @, , (2,,t,), associated with
Eq. (4.2) is defined by

D, (tut) = f fe + s, 2 e pMzdz, (4.3)

We assume that the process (x,, .y, ) has a steady state energy
distribution v(x,y) «c e ~ #*?V¢, It is easy to see that the steady
state distribution satisfies

P, W) =1 (4.4)
[Eq. (4.4) is the extension of Eq. (3.35) to two dimensions].
Equation (4.4) is equivalent to

m;(xy) .
P, =0, 4.5
By S 1} Vit @3]

where the moments m, ;(x,y) are given by

m, (x.y) = f 24 2 w(z,,2,,x,p) dz,dz,. (4.6)

We assume that x = 0 and y = O are reflecting boundar-
ies. We also assume as in Ref. 25 that the process (x,, ,y, ) hits
the boundary as it exits. In general, this will not be true and
the solutions must be corrected to take into account jumps
over the boundary. Consequently, the dissociation rate is
found by solving for the mean exit time n(x,y) of the process
(x4 ) from the domain & = {¢(x,y,)< 1, x, >0,y, >0}
given that x, = x, y, = y. This exit time is a solution of the
BKME,

[
; 4.7
P ,w>7(,y) (47)
for (xy)e&

with the associated boundary conditions

nix,y) =0 for S:ix,y)=1,
(4.8)
5,01 = 240p) =
dy dx
Following the procedure of Sec. III, we set
n(x,y) = C(€)N (x,y) where N (x,y) is picked so that max,

Nixy)=1.

We begin by constructing a boundary layer solution for
N (x,y), valid near S: ¢{x,y) = 1. To do this, introduce local
coordinates v and s, where v = — [¢{x,y) — 1]/€ is a scaled
distance to S and s is arc length along .. When this is done,
Eq. (4.7) becomes (to leading order in ¢)

'!

i 1151 "W’ i
The boundary condition for Eq. (4.9) is N (0,s) = 0 and the
matching condition is lim,_, _ N (v,s) = 1. The solution of
Eq. (4.9) that satisfies these conditions is

2 Nivs)= (4.9)
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N(X,J’) =l—-e"7"=1-— ew’(xd’}hll/e.

In obtaining Eq. (4.10), we used Eq. (4.5).
Next, multiply Eq. (4.7) by the Boltzmann density
— ¥=)V/¢ and integrate over & . Using Green’s formula gives

- f J;Z exp[ — Y(x,y)/eldx dy

(4.10)

nixy) = 4.11)

Gds

oD

In Eq. (4.11), 3Z denotes the boundary of & and G is given
by

ji—1 ak ‘l/l/ém

G= { — Yy —
‘;})ll,] Z( Yvy ———-="t

ai+j—k—1(1 __e(w~1)/5)]
axiayi—k—l

i—1 ai+ke—w/emu

L)
+ kgo( ax kayi

% —k—l(l eiiﬁ—lb/f)]]

l—k—l

l)k +j"1

(4.12)

where {v,,v,) is the outer unit normal. On S, the outer unit
normal is given by

Knessl et a/. : Solution of Kramers-Moyal equations

vl = ¢x/|v¢"

V2 = 'I’y/ |V¢|
Using Eqgs. (4.8) and (4.13) we find that the contributions to
the boundary integral from the segments x =0, /<1 and
y =0, ¥<1 are lower order in ¢. Thus,

(4.13)

Gds~ee— V¢

=1 v=1
xy>0 xy>0
x¢ ' ¢t x?
X¢ . (Y %t) v—; ?/fy (Yot ds=ee—Vey. (4.14)

For the numerator in Eq. (4.11), the main contribution
comes from a vicinity of the minimum of ¥(x,y), which oc-
curs at (0,0). Near (0,0), #{x,y) = x 4+ y + O (x* + y?), so that

ff e~ WVeax dy = €[1 +0(1)] as eo0. (4.15)

Combining Eqs. (4.14) and (4.15) we find that the disso-
ciation rate is, to leading order in €, given by

k~YEp/kT)e ™" 7, (4.16)
For d>3 dimensions, we find
K~ValEp/KT )~ e ™54, (4.17)

where ¥, is similar to ¢ in Eq. (4.14).
As an example, consider the following exponential
jump distribution (see, e.g., Refs. 25 and 26)

|
r__;___ &~/ be/d [ —Xx/€<z, <0
(@+b)c+d) —y/e<z,<0
_—1__ e—z,/aezz/d {2120
a+blc+d —yple<z, <0
wlzyzxy) ={ @ T 0N+ s (4.18)
_r &/be — 2/ { —x/e<z,<0
{@+b)c+d) 2,50
1 —z,/a, —z,/¢c
e e 2,250
\(@+b)c+d) 142
r
for x,y > 0, with reflection at x = 0 and y = 0. The require-  wherev, = 1/J1+a?, v, = a/J1+a’,and Bis the small-

ment of detailed balance implies that
l—al +b)1—c1+d)=1 (4.19)

Wewill assumethat(l —a)(1 +b)=(1—c¢)(1 +d)=1land
that @ < b, ¢ <d. This insures that the ground state is stable.
For the transition rate (4.18), the Boltzmann distribution is
given

plxy) = (1/6)e == V¢, x,p>0 (4.20)
(so that = x + y) and y is given by
y=ab+cd (4.21)

[assuming that (1 —a)(1 +b)=(1 —¢)(1 +d) = 1]. Thus,
the dissociation rate is completely determined.

Troe,?® in a similar problem, assumed that the dissocia-
tion level is given by x + ay = 1, with 0 <a<1. A similar
analysis leads to

_ abfv,

4.22
T (4.22)

est positive root of the equation
(1+Bv)(1 +dBvy)(1 —apvi(1 —cBv)=1.  (4.23)
Observe that if @ = 1, then Eq. {4.22) reduces to Eq. (4.21).

V. CONCLUSION

We derived asymptotic expansions of solutions of
Kramers—Moyal equations, by exploiting the smallness of
the increments in the stochastic process of interest. We do
not approximate the master equation or KME. Rather we
consider the full forward and backward equations and ap-
proximate their solutions. In this way, our work is funda-
mentally different from approaches that “expand” the mas-
ter equation.> Most expansions of the master equation are
fundamentally small deviation theories, since they require
an expansion about the deterministic path. In contrast, our
theory can be used to study problems where large deviations
are of interest. In addition, our.method extends directly to
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multidimensional stochastic processes. It is important to
note that while other approaches have employed the forward
equation to find both the stationary distribution and the first
passage time, we have employed the backward equation to
derive an expression for the first passage time. Our results,
based on this approach, appear to be more general. We also
note that the first nonzero eigenvalue, A,, of the transition
matrix in the master equation is the reciprocal of the first
passage time. Thus, we have derived results for 4, as well.
We observe that it is exponentially small in 1/€, and that the
usual methods were capable of finding only the eigenvalues
whose magnitude is O (1} in €.

In recent work, Hanggi and his collaborators com-
pare relaxation times computed by master equations and
Fokker Planck equations (FPE). Their methods and ap-
proach differ from ours; but many of the conclusions are in
the same spirit. They recognize that mean first passage times
can not be calculated by the Fokker Planck equation ob-
tained by truncating the ME.?” Rather than treating the en-
tire ME, they construct “effective” Fokker Planck equa-
tions. In Ref. 29 the following procedure is used. Let the
stationary solution of the FME be denoted by

27-30

olx) = ¢ exp — [ﬁ? - ¢,(x)]. (5.1)

where c is a normalization constant. ¢,(x) and ¢,(x) are deter-
mined as in Sec. III of this paper. Hanggi et al.?° propose the
effective FPE,

3,0 = — 8, [Myx)*] + 182 [Mofxpr), (52)

where

Mix) = —L(x){%iu%] +e§—f,

M) =) + $ o, ot 2]’

and (5.3)

Al 1 9, ]"
Lo=12 v '""“(x)[ ax ] T mz(x)]'
Here m;(x) is the jth moment of the transition density func-
tion. They show that Eq. (5.2) leads to first passage times that
agree with those predicted by using the full ME. Thus
Hanggi ez al. provide another solution to the problem that
we discuss in this paper. Their method, however, requires
the solution of the eigenvalue problem associated with Eq.
(5.2). The method described in Secs. III-IV of this paper,
‘which utilizes the BKME, is simpler to use than the eigen-
value methods.
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