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According to the diffusion theory of reaction rates
(proposed by H. Kramers in 1940') as molecules move
in physical space, they execute a random walk in a field
of force in reaction coordinate space. The original pa-
per of Kramers spawned many others (see, e.g., Refs.
2-14). In these papers, the diffusion process occurs in
a field of force in which the potential barrier has a sin-
gle peak separating reactant and product states. There
are applications of present interest, however, in which
the reactant proceeds to the product by means of many
intermediate states, so that there are many potential
barriers to overcome. Some examples are weak ionic
conductivity in periodic lattices, '*-!¢ the migration of
ligands in biomolecules, !™"% the photocycle of bacterio-
rhodopsin;*-?% and membrane transport. - In these
cases, the method proposed by Kramers for the calcu-
lation of the rate constant is difficult to apply, and
breaks down if the barrier heights are not large enough.
Instead of using the method of Kramers, we shall use the
method developed in Ref. 2 (for one-dimensional re-
action coordinate potentials) in which the rate constant
is calculated exactly and the results of Kramers are ob-
tained as a certain limit (that of high barriers).

When reaction rates in solution are studied experi-
mentally, two parameters that can be adjusted are
the temperature and viscosity of the solution, Conse-
quently, the dependence of reaction rate ontemperature
and viscosity will be studied in this paper so that the
theory can be used when analyzing rate data. In the
classic setting for analyzing rate data, the rate constant
is given by k=A ¢"9/*s”, where k is the rate constant, @
the barrier height, %, is Boltzmann’s constant, and 7 is
temperature. Thus, a plot of log # against 1/k5 T has
slope - @ and intercept iogA. In this paper, we show
that the simple interpretation changes for potentials
with many barriers,

In the Einstein—Smoluchowski limit of the diffusion
theory, ? the reaction coordinate X (¢) is assumed to sat-
isfy the stochastic differential equation
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dX::%Q(—)dt+ 2y T aw .

2.1)
In this equation, 7 is proportional to the viscosity, %k, is
Boltzmann’s constant, 7 is absolute temperature, and
W(t) is Brownian motion.?" The force F(x) is derived
from the potential V(x), so that F(x})=~ V' (x). The po-
tential is assumed to have a local minimum at x; =0,
corresponding to the reactant state, and at xp corre-
sponding to the product state, and x interior barriers.
Thus, there are 2n -1 interior stationary points x,,
labeled so that local maxima have odd indices and local
minima have even indices. The potential is assumed to
increase monotonically for x <xp and x >xp.

It f‘(x) is the mean time to reach the xp state, starting
at the value X(0)=x, then according to the diffusion the-
ory of reactions T(x) is exactly given by?

f’(x).—.— g_fp exp[V(s)/B][: exp| - V{y)/Bl dy ds, 2.2)

~here B=kyT.

Equation (2.2) is exact. The rate constant is defined
as the reciprocal of the average of T(x) against the initial
density for X(0). Regardless of the form of this distri-
bution or the number of barriers, from Eq. (2, 2) we
see that the rate constant is proportional to 7!.

Thus we conclude that a simple extension of the
Kramers model to the case of n barriers does not ex-
plain recent experiments**? in which the rate constant
was found to have a " dependence, with 0<k <1,
Equation (2. 2) holds for barriers of arbitrary height.
The formula that Kramers derived! is valid for barriers
that are large so that we now study the large barrier
limit of T(xg).

To do this, let @, be the height of the jth barrier and
et @ be the minimum value of @, j=1, ... ,n

In the large barrier approximation, we assume that
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Q> B. Define V= V/Q and € =8/Q, so that Eq. (2.2)
becomes

T (g) = g{x: exp[f/(s)/e] f: exp[- V(y)/€ldyds. (2.3)

Let z, be the solutions of V(z)=Q/2; if there are » bar-
riers then there are 2z + 2 solutions of this equation.
We order the solutions so that z,<xy and z,,,,> xp.
Rewrite equation (2.3) as

f‘(xg)=g{f‘3 exp[ 7 (s)/€] fs exp[- V(y)/€]dy ds

xP -
2n~3 £, N s “
+ Z f Zexp[V(s)/E]f exp[- V(y)/eldy ds
j=3,0dd " %j -
xp N S -~
o f ewliteel [ eml- ioy/elayas) a0
22n-1 et

When the barriers are high, so that ¢ is small, each
integral in Eq. (2. 4) can be analyzed by Laplace’s
method. *® When this is done, one obtains (returning to
physical variables)

T(xg)~ 2 exp{[V(x,,1) - Vix,)l/8} - (2. 5a)
T (xg) wnj.zm [V"(x,)jII}"(xM)jl]"’

In this equation, we interpret xy=x;. The time given
by Eq. (2.5a) is a sum of times to cross the separate
barriers on the way to xp from xz. From now on, all
summations are taken over j even.

If X(0) is initially concentrated at x, , the observed

rate constant is
-1

- L (yexpllVi) - Vi,)]/8)
k 21717 (Z [V”(x,-)jl%(x,d)j””z ) . (2. 5b)

Let us now consider how the formula (2. 5b) could be

- used in the analysis of rate data. First consider the
case of n barriers of equal height, but differing curva-
tures. Then Eq. (2.5b) becomes

-1
b~ L e-Q/B{ Z [V"(x,)I V,,(xM)I]-uz } . (2. 6)

21

From Eq. (2.6) we see that a plot of log(k) against 1/8
has slope ~ @ and intercept determined by the viscosity
and the frequency factors, but one can not determine
the number of barriers from such a plot.

To consider unequal barriers, let @,=V(x,,) - V(x,),
y=1/B, and let f,=[V"'(x,)| V"' (x,,) |]'/? so that

1 , -1
kN 2—1"’(260ij> ) (2-7)
then
log k~ - log(2mn) - log('ze"’!f,) 2.8)
so that
-1
o o8k~ e DA% 2.9)

Equation (2. 9)indicates thata plot of log # against 1/kpT
does not provide a simple interpretation of the barrier
heights.

In the special case of constant curvature, but differing
barriers, Eq. (2.9) becomes

0 Q€%
a log k&~ —W . (2.10)

Equation (2. 10)couldindicate the presence of » barriers,
but the slopes of the plot of log & versus l/k'B T will not
give accurate values for the barriers.

We conclude by considering the temperature dependence
of the rate formula (2. 3) near a critical point of the po-
tential. A critical point, or phase transition point, now
refers to a point in parameter space where the first,
second, and third derivatives of the potential vanish.

In many physical cases, the parameter is the tempera-
ture. Near the critical temperature, the asymptotic
result (2.5) is no longer valid. Instead, a different ex-
pansion is needed.

In order to obtain this expansion, proceed as follows.
For notational convenience, index V(y) by V(y;a), where
it is understood that when a =, a critical value,

Vi, a)=V",;, a)=V""(x;, a.)=0. When ¢ is near
a,, when finding the asymptotic expansion of Eq. (3. 4),
one needs the expansion

V)= Vi,) + V) ~x))
+ "}n (Z _xl)Z + f}/n (2 —xi)a + f}iu (Z —-X i)z
2 31! 4! ’
instead of a three-term Taylor expansion. At the crit-

ical value a,, the expansion (2.5) is replaced by (also
see Ref. 29)

. _n exp[f/(x,)+ ‘A’(xj.t)]/ﬁ
T(xg) ‘]E c42[“}iu(x1)|f/io(xj.l)”l“ (2. 11)

In this equation
c4=f exp{- s*/4)ds . (2.12)

Equation (2. 1) indicates that near a critical point

___exp@,/p)
V)V () 114

} +constant ,

(2.13)
so that there will be a term in log k directly proportional
to the log of inverse temperature.

log k~3 logB —log{Z [
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The multiplet structure of lighter atoms within the
local density functional scheme! has been calculated
earlier?® as the difference between the total electronic
energy corresponding to the initial and final state, re-
spectively (ASCF method®). In a recent paper Schwartz®
has shown that the potential due to Hedin and Lundquist®
(HL) coupled with the Slater transition state (TS) method’
provides reliable values of the first ionization potential
in free atoms. In this communication we report the re-
sults of the TS calculation of the valence electron binding
energy corresponding to the np,,, and nps,, electrons in

TABLE 1. Comparison of the transition state calculations
based on the relativistic Hedin—Lundquist local density poten-
tial with the experimental values obtained in the gas phase.?
All values are given in eV,

Atom Tr. state Calc. Exp.
Ar Ipih 16.18 15,94
3pie 15,97 15.76
Kr 4plh 14.84 14. 65
4p37% 14.10 14.00
Xe 5p17% 13.59 13.43
5p3% 12,27 12,13
Ba 5p1s% 24,86 24,30
5p35% 22,59 22,14
Hg 5d3%% 16.83 16.70
5d37% 14.86 14. 90
Pb 5d34%, 27.176 28,25
5d37% 25,03 25,28

2Experimental values are taken from the compilation by K. D.
Sevier, At. Data Nucl. Data Tables 24, 323 (1979).
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Ar(n=3), Kr(n=4), Xe(n=5), Ba(n="5), and the nd;,,
and nds, electrons in Hg(n=5) and Pb{n=5), respec-
tively. In the TS method the ionization potential of a

. shell (n,) is equated to the eigenvalue of the shell with

half an electron removed. We have used the relativistic
Hartree-Fock—Slater computer program®-!° modified to
include the HL potential according to the definition Vg, (7)
= B(r,) Vys(r), where

Blr,) =(2/3)[1 +0.0316%, In(1 +24.3/7,)] ,

with #, =[4mp(r)/3]"1/% and Vy4(r,) represents the original
Slater exchange potential.

In Table I we have listed the calculated binding ener-
gies in eV along with the corresponding experimental
results obtained in the gas phase. The theoretical re-
sults are found to be in excellent agreement with experi-
ments. For Bi the 6p,,, level is predicted as lying
above the 6py,, level by 2.3 eV. In conclusion, the pres-
ent calculations establish the TS method as a reliable
alternative to the conventional ASCF method for theo-
retically estimating the valence electron spin—orbit
splittings. It would be worthwhile to carry out a similar
analysis corresponding to the core electrons.
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