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The diffusion theory of reaction rates, originally described by H. A. Kramers, is extended and new
results are derived. It is shown that valuable information can be gained by using backward diffusion
equations (equations in which the initial values are independent variables), in addition to the
Fokker—Planck equation. Three theoretical formulations of the rate constant are described. The first
formulation uses transition state theory. The second formulation uses a modification of Kramers’s theory.
In the third formulation, the rate constant is defined to be the reciprocal of the mean time to cross a
given energy barrier. The three formulations of the rate constant are compared with each other and with
Monte Carlo experiments. By using the backward equation, it is possible to calculate the transmission
_coefficient. The theoretical results are compared with Monte Carlo experiments.

I. INTRODUCTION

H. A. Kramers formulated a Brownian notion model
for the calculation of reaction rates! in which molecules
undergo a diffusion process in reaction space while mov-
ing in physical space. Kramers worked exclusively with
the Fokker —Planck (or forward) equation and compared
his results with the then new transition state theory. He
tried to estimate the inaccuracies in transition state
theory. The literature spawned by the original paper of
Kramers is now quite large, and some representative
examples are Refs. 2-11, Although the literature is
large, the development of this field has been unbalanced.
For example, almost all workers have used the Fokker—
Planck equation, in which the independent variables are
final time and position. However, the backward equa-
tion, in which the independent variables are initial time
and position, can also be used to provide information
about the reaction process. Kramers’ original concept
of the reaction rate as the eigenvalue of a diffusion equa-
tion has been used extensively. There are, however,
other ways to define the rate constant, e.g., as the re-
ciprocal of a mean time to cross an energy barrier,
which may be more natural definitions,

In this paper, three theoretical formulations of the
rate constant are compared with each other and with
Monte Carlo experiments. The formulations use transi-
tion state theory, the Kramers theory, and the mean
time theory. The relationship between these three for-
mulations is clarified. It will be seen that transition
state theory is off by about an order of magnitude from
either the Kramers or mean time theories. The Kra-
mers theory is the asymptotic form, for large barrier
heights, of the mean time théory. Also, in this paper,
the backward equation is used to calculate the transmis-
sion coefficient.

In Sec. II, the diffusion model is described. The work
of I’in and Khasminskii! is followed, since they give a
rigorous derivation of the diffusion equations. The two
types of diffusion equations —forward (or Fokker —
Planck) and backward—are discussed. When these
equations are written in nondimensional form, a small
parameter (¢) arises. This parameter is the ratio of
kT to the energy barrier @ that must be crossed.
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Thus, when e <<1 the energy barrier is large.

In Sec. III, the three formulations of the rate con-
stant are presented. Transition state theory uses the
equilibrium solution of the Fokker —-Planck equation to
calculate the rate constant. The Kramers theory uses
the lowest eigenvalue of the Fokker —Planck equation.
The last theoretical formulation uses the mean time to
cross the energy barrier. This time satisfies a back-
ward equation, and the rate constant is the reciprocal
of the mean time to cross the barrier. In Sec. IV, the
transmission coefficient is calculated. The transmis-
sion coefficient is the probability that a molecule near
the peak of the barrier becomes a product, rather than
a reactant. The theoretical results are compared with
Monte Carlo experiments.

The calculations in Secs. III and IV assume that the
viscosity is high, so that the Fokker -Planck and back-
ward equations simplify. The assumption of high vis-
cosity is relaxed in Sec. V, where the rate constant and
transmission coefficient are calculated for arbitrary
viscosity but large barrier heights (i.e., small ¢).

Il. THE DIFFUSION MODEL OF REACTION RATES

Consider the following reaction model, which is simi-
lar to that used by Kramers. Let ¥ denote the reaction
coordinate in a large molecule of mass M. This mole-
cule is immersed in bath of lighter molecules (mass
m < M) which are distributed according to a2 Maxwell -
Boltzmann distribution. It is assumed that, when there
are no collisions with bath molecules, x{(¢) obeys classi-
cal mechanics in a potential V(x). The potential is as-
sumed to have a local minimum at x;, and a maximum.at
%, where x,<x. The energy barrier @ is defined as the
difference V(%) - V(x,). When x>X, there are two pos-
sibilities to consider. In the first case, roughly corre-
sponding to an irreversible reaction, V{(x) goes to 0 as
In the second case, roughly corresponding to a
reversible reaction, there is a second minimum at some
point x> x.

X =,

The collisions of the large molecule with the bath
molecules are assumed to follow a Poisson process with
mean rate of collisions equal to a. Then a friction
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coefficient  can be defined as
n=2am . (2.1)

Let 7 be the velocity defined by d%/d¢ and let f(x, v)
be an integrable function on the (x, ») phase space. Set

ulx, v, ) = (AE(H), 5(8) | %(0) = x, 5(0) = v) . (2.2)

In Eq. (2.2), the angle brackets denote the ensemble
average, conditioned on the initial values of %{0) and
2(0). In order to study the behavior of the phase space
function u(x, v, ), the theory of II’in and Khasiminskii is
used.® They consider the case in which m ~ 0 (very light
molecules), a—= (very rapid collisions), such that 5 is
constant, They prove that u(x, v, ) satisfies the follow-
ing equation:

du du F(x)ou
3 Vox T M o0

M? 807 "M bu (2.3)
The initial value for u(x, v, t) is obtained from Eq. (2.2).
Setting =0,

ulx, v, 0y =f(x, v) .

Equation (2. 3) is an exact diffusion equation (cf, Refs.
1, 8, and 12) and is a backward diffusion equation, since
it depends upon x(#) and 7(¢) at t=0,

(2.4)

Equation (2. 3) can be simplified further by using the
high viscosity or Einstein-Smoluchowski approximation.!
In this approximation, one assumes that M/n =0 while
F/n is nonzero. Equation (2.3) is transformed to an
equation for a new phase function u(x, t) which is inde-
pendent of velocity.? The equation for u(x, #) is

8u _ kpT 8%u F(x) du

at  n ex? q ax° 2.5)

The transition from Egs. (2.3) to (2.5) reduces the number
of independent variables and simplifies the problem. This
type of transformation was used by Kramers and is also
discussed in Refs. 4, 5, and 8. Although a rigorous
demonstration of the validity of the high viscosity limit
is difficult, I* the underlying physical idea is easy to
demonstrate. To explain this physical idea, the stochas-
tic differential equations corresponding to Eqs. (2.3) and
(2.5) are used.?! The stochastic differential equation
corresponding to Eq. (2.3) is

dv (2.6)
M= =F(x) —nv+V2nk,T £(8) .

In Eq. (2.6), £(¢) is Gaussian white noise?!; it is the for-
mal derivative of Brownian notion. In order to obtain
the high viscosity approximation, one divides the second
equation in Eq. (2. 6) by 7, yielding

M_QZF(x)_v+ 2k,T
n dt n n
As mentioned above, in the high viscosity limit one as-

sumes that M/n approaches zero much faster than any
of the terms on the right hand side of Eq. (2.7). Setting

(1) . 2.7
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the left hand side of Eq. (2.7) equal to zero gives an
equation for v; this equation is

sz(x) + Zk:T

When Eq. (2.8) is substituted into the first equation in
Eq. (2.6), one obtains

dx _ F{x) + 2ksT

a n
which is the stochastic differential equation correspond-
ing to the diffusion equation (2.5). In order to obtain
Eq. (2.9), one needs to assume that M/n is so small
that the product (M/n)dv/dt is approximately zero. The
physical meaning is that the velocity relaxes to the
“steady state” given by Eq. (2.8) on a time scale that is
much faster than the time scale characterizing changes
in reaction coordinate, Since the initial value of the
velocity is arbitrary, there will be a small time inter-
val, an initial layer, !* in which the approximation lead-
ing to Eq. (2.9) is not valid. In that time interval, Eq.
(2. 6) must be used. The length of the initial layer de-
pends upon M and 7 but generally it is about 10°!? sec, 14
and Eq. (2.5) will be good approximation for times much
longer than 1072 sec.

HO (2.8)

£y, 2.9)

The next step in the formulation of the diffusion model
is the introduction of dimensionless variables, so that
the diffusion equations become nondimensional. Let x,,
t,, and @, be characteristic length, time, and energy
scales, respectively, '*!¢ and define dimensionless vari-
ables by x,=xx, v=(x,/t,)v, V(x)=Q,V(x), and ¢
=kyT/Q.

The nondimensional form of Eq. (2.3), with the under-

standing that ¢, x, V(x), and v are now dimensionless,
<14
is

du 8u du du du

a_t_€W+F(x)a_+U§_vE (2.10)
and the nondimensional form of Eq. (2.5) is

du 8%y du

§—€W+F(x)-a—;. (2.11)

In general, @ > kyT so that ¢ <«<1, and Eqs. (2.10) and
(2.11) are singular perturbation problems, since a small
term multiplies the highest order derivative. The singu-
lar nature of Eqs. (2.10) and (2. 11) will be exploited in
later sections.

The equations discussed so far are the backward equa-
tions. The Fokker —Planck equation can be obtained di-
rectly from the backward equation.'® Let p(x, v, #) be the
probability density for (%(#), 7(¢)), namely,
plx, v, dx dv

=Prob{x =x(t) =x +dx, v=9(f) < v+ dv} . (2.12)

This density satisfies the Fokker-Planck equation,
which is the formal adjoint of Eq. (2.10):

9 a2 8 3
a—?:grz}%_%[p(lf(x)—v)]—v;ﬁ. (2.13)

In a similar fashion, one can consider the density p(x, )
in the high viscosity limit; p(x, ) will satisfy the equa-
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tion that is the adjoint of Eq. (2.11):
ap a3
3t “ox?

Finally, note that initial conditions are needed for

Egs. (2.13) and (2. 14) and boundary conditions are

needed for all the partial differential equations discussed

in this section. It will be seen that a good deal of infor-
mation about the reaction process can be gained by
choosing the initial and boundary conditions appropri-
ately.

9
- e Fp] . (2.14)

(Il. THREE FORMULATIONS OF THE RATE
CONSTANT

In this section, formulations of the rate constant us-
ing transition state theory, the Kramers theory, and
mean time theory are given. The theoretical results
are compared with each other and with Monte Carlo ex-
periments. By rate constant, we mean the rate at which
particles reach ¥ from x;.

A. Rate constant in transition state theory

According to transition state theory, the equilibrium
solution of the Fokker —Planck equation (2.13) is used to
calculate the rate constant. %!* The equilibrium density,
obtained by setting the left hand side of Eq. (2.13) equal
to zero, is

2
plx, v)=cexp {-— el [% + V(x)]} )

where ¢ is a normalization constant. The rate constant
is then calculated according to the following algorithm:

(3.1)

(1) Find the flux of particles J(X) across ¥ with
dx/dt> 0,

(2) Find the number of particles Ny in the potential
well around x,. This number is obtained by integrating
plx, v) over the well,

(3) The rate constant is k=J(x)/N,.

When ¢ is small, Laplace’s method!’ can be used to
simplify the integral which gives N,. When Laplace’s
method is used, V(x) is replaced by its second order
Taylor expansion around the point x,. The result of this
calculation is® 1418
" /2

o= el v - vieg /4t 3.2)
In Eq. (3.2), V''(x;)=(8?V/3x%)I,.,, can be interpreted
as a frequency factor and V(%) - V(x,) is the activation
energy of the reaction, since it is the energy barrier
that must be crossed.

B. Rate constant in the Kramers theory

In the high viscosity limit, the Fokker -Planck equa-
tion of interest is Eq. (2.14). Kramers proposed that
the rate constant can be found according to the following
algorithm:

(1) Assume that p(x, f) has the eigenfunction expansion

plx, =2, 0,(x) ent (3.3)
ma(
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(2) Find the smallest eigenvalue A, where the eigen-
function o,(x) is subject to the following boundary condi-
tions:

0(%)=0, 2

90, ~0
20

3x
(3) The rate constant is k= A,

3.4

The second boundary condition in Eq. (3.4) is chosen to
correspond with Kramers’ approach to the problem
(Ref. 1, p. 292), There may be other choices of bound-
ary conditions which are more appealing (e.g., a con-
stant flux at x;), but Eq. (3.4) is used to keep accord
with Ref. 1. The physical idea is that so few particles
leave that the density around x;, remains approximately
constant.

The eigenvalue problem of interest is

2
57— 5 loF ).

Py (3.5)

- N0 =€
Kramers gave a solution of this problem, valid for
small €, but his derivation is difficult to follow. Other
derivations of the solution, which are easier to under-
stand, are in Refs. 19 and 20, The result of the eigen-
value calculation is

A~ %[V”(xo) | v (&) | ]2 exp{~ [V(X) - V(x))/e} . (3.6)

Equation (3. 6) is valid for small ¢; note that the curva-
ture of the potential near the peak x appears in this
theory.

C. Rate constant in the expected time formulation

The last formulation of the rate constant is based on
the average time to cross the barrier at x. For the
model described above, consider an ensemble of par-
ticles that start at x;,. As time progresses, the Brown-
ian forces drive the particles across the barrier at X;
each particle crosses ¥ at a different time. If T is the
average time that it takes a particle to reach x, then a
reasonable definition of the rate constant is that % is the
reciprocal of 7, namely, define T(x) by

T(x) = (min ¢: %(t) > % | %(0) = x) (3.7
and the rate constant by
b= [lgl0)/ 100 ) . (3.8)

In Eq. (3.8), g(x) is the initial distribution of phase
points in the well around x,.

Since T(x) depends upon the initial value of x(¢), it
will satisfy a backward equation. 15 In the high viscosity
limit, the equation for T(x} is an ordinary differential
equation (rather than partial differential equation) and
the equation that T(x) satisfies is

aT
—1l=¢=5 +
1=¢ i F(x)
Equation (3.9) is derived by differentiating Eq. (2.11)
with respect to ¢, multiplying by ¢, integrating from ¢
=0 to t=, and observing that the probability of even-

ar

o (3.9)
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LOG k

LOG k

F3

Q/ kgT

FIG. 1. A comparison of the numerical results using TST (line
a), the Kramers formulation (line b), and the expected time
formulation (linec). (A): 2= Q/kpT=20. (B): 16 =Q/kyT = 30.
As the energy barrier increases, the lines come together.

tually reaching ¥ is 1 (in Refs. 10, 11, 14, and 21 the
derivation is discussed in detail).

Since the mean time to reach ¥ starting at % is zero,
set T(¥)=0. As the second boundary condition,
ar

lim — =0

lim —~ (3.10)

is used. The solution of Eqs. (3.9) and (3.10) is

6609

1 4 s
T(x)=€_f eV(s)/Ef e‘V(Y)/e dy ds .

x o0

(3.11)

Suppose that g(x) =8(x - x,), where &(v) is the Dirac
delta function. The rate constant given by Eq. (3. 8) be-
comes

% s -1
k:e(f ev.‘s’/"'f e“"””‘dyds) . (3.12)

xo -c0

Equation (3.12) is exact, and can be simplified by using
Laplace’s method on each of the integrals. When this is
done!* one gets

b~ %[V”(xo) |V (&) |12 exp{~ [V(X) = V(xg) /e } +0le) ,
(3.13)

which is the same as Eq. (3.6). Thus, Kramers’ re-
sult is the leading term in the asymptotic expansion of
the solution (3.12), The asymptotic expansion used in
Kramers’ theory is valid for small ¢e. When ¢ is not
small,  the result given by Kramers is not valid, but the
solution using the mean time formulation will still be
valid.

When the high viscosity limit is not valid, the calcu-
lations used in the mean time formulation are more dif-
ficult. The calculations in the case of general viscosity
are given in Sec. V.

D. Comparison with Monte Carlo experiments

In Fig. 1, the three theoretical rate constants are
compared with each other as Q,/k,T varies between 2
and 30. The formulations based on the Kramers theory
and the mean time theory converge as ¢ decreases.

Transition state theory gives about the right order of mag-
nitude for the rate constant, but is off by a factor of 2
to 5. The theoretical results are compared with Monte
Carlo experiments in Fig. 2. In order to do the Monte
Carlo experiments, the stochastic differential corre-
sponding to Eq. (2.11) is solved. This stochastic dif-
ferential equation is

dx =F(x) dt + V% dW,} (3.14)

x#(0)=x, .

In Eq. (3.14), dW is the increment in Brownian mo-
tion, and is normally distributed with mean zero and
variance df. For the results presented in Fig. 2, the
potential used is V(x) = — 5% + ax; the force F(x) is then
F(x)=x*—a. For this potential, x,= -vo and % =va
and the barrier @ = V(%) - V(x,) is (5’2

For the points shown in Fig. 2, an ensemble average
of 500 experiments is used. The rate constant.shown in
Fig. 2 is the reciprocal of the average time to reach x.
This experimental definition of the rate constant favors
the theory based on the mean time. The rate constant
computed with the mean time theory agrees most closely
with the experiments. The Kramers theory is good for
small ¢; but breaks down for large ¢. Considering the
assumptions that go into the derivation, transition state
theory gives a remarkably good value for the rate con-
stant.
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-24

LOG k

~-54

Q/ kBT

FIG. 2. Comparison of TST (line a), Kramers (line »), and
expected time (line ¢) formulations with Monte Carlo experi-
ments (circles).

1V. TRANSMISSION COEFFICIENT

A particle near x does not necessarily become a
product. Instead, it could return to the reactant, state,
namely, it could approach x,. The transmission coef-
ficient can be defined as the probability that a particle
starting at ¥ reaches some point x; > X before it reaches
xy. The transmission coefficient can be calculated by
using quantum mechanics, **'2% but the diffusion theory
can also be used to calculate the transmission coeffi-
cient. In order to do the calculation, define

u(x) = Prob{x(#) crosses x=1x;
before x =x,|%(0) = x} (4.1)
so that the transmission coefficient is k= u(%).

In the high viscosity limit, u(x) satisfies the backward
equation'®?!
d*u du
=€ —s + -—.
0=¢ dx? Fx) dx
From the definition (4. 1), it is clear that the boundary
conditions must be u(x;) =1 and #(x))=0. Using these
boundary conditions when solving Eq. (4.2) gives

(4.2)

u(x)= fxe vis)e ds/fxie Y(s)e ds (4-3)
xp L]
and the transmission coefficient is
3 %
K=f e""’/‘ds/f e VeVegs (4.4)
*p *p

If | v'/(2)! is bounded away from zero, then it’s easy to
show that k=3 + 0(¢). If the potential is not symmetrical
about %, « could differ significantly from 3. In Table I,
the theoretical result (4. 4) is compared with the result

of Monte Carlo experiments, using the potential de-
scribed in the previous section.

V. THE CASE OF ARBITRARY VISCOSITY

The results presented so far have exploited simplifi-
cations that arise when the viscosity is large. There
are two reasons for studying the case in which the vis-
cosity is not large. First, there are some problems,
as Kramers noted, in which the viscosity is not large.
Second, the behavior of a reacting system for short
times can not be described by the high viscosity case.
For arbitrary viscosity, Eqs. (2.10) and (2.13) have to
be used instead of Eqs. {2.11) and (2.14) and the analy-
sis becomes much harder. In this section, a simple
model problem is studied, to show how some of the ideas
discussed in the previous sections generalize. The
analysis used in this section is developed in Ref. 24.

In the general case, the entire (x, v) phase space must
be used. A simple model system, corresponding to the
potential used in the previous sections, but not corre-
sponding to any physical system, is

dx
dt
dv 4

aw
Et—:x —a—yv+\/2?ﬁ.

:1)’

(5.1)

In Eq. (5.1), v is a damping coefficient. A sample phase
portrait is shown in Fig. 3. In the general case, an en-
tire deterministic trajectory, the separatrix S, plays the
role that ¥ plays in the high viscosity case, namely, the
separatrix separates phase points that are attracted to
(x, 0) from phase points that approach .

A. Transmission coefficient

In the high viscosity case, the transmission coeffi-
cient was calculated by considering points starting near
x and calculating the probability of approaching x, or xy.
In the general case, points near the separatrix S must
be considered. To describe the behavior of the phase
points, introduce two curves parallel to S. One of these
curves is located between (x,, 0) and the separatrix, and
will be called S;. The other curve is located between the
separatrix and «, and will be called S,. In Fig. 4, the
separatrix and the new curves are shown. Proceeding
as in the previous section, define

u(x, v) = Prob{[%(#), #(t}] crosses S,
before S, |%(0) =x, #(0) = v} . (5.2)

TABLE I. A comparison of the theoretical
transmission coefficient with Monte Carlo

experiments.
Q (in units
of kpT) % k (Theory) « (MC)?
3 1.31 0.58 0.59
13 2.14 0.53 0.54
23 2.58 0.52 0.52

22500 Monte Carlo simulations were per-
formed.
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FIG. 3. Phase plane for the
dynamical system dx =v dt,

The definition of the transmission coefficient is no longer
clearcut, but a reasonable definition is k= u(%, 0). The

function u(x, v) satisfies the backward equation'4'?¢
8tu du d3u
_e ¥, 0 ]2 5.
0=¢ Py +vax +[F(x) v]ev (5.3)

and associated boundary conditions

ulx,v)=0, (x,v)eS,,
| oo

ulx,v)=1, (x,v)eS,.
Equation (5. 3) is harder to solve than Eq. (4.2) because
Eq. (5.3) is a partial differential equation. In Ref. 24,

it is shown that the solution of Eq. (5.3) can be written
as

B(xyv)/ € 2
ulx, v)~ glx, v)f e 2 ds
Zy/Ve

+Ve h(x, v)exp[ - ¥(x, v)?/2¢] +0(e) , (5.5)

where g(x, v), ¥(x,v), h(x,v), and Z, are chosen so that
u(x, v) defined by Eq. (5.5) asymptotically (for small ¢)
satisfies Eqs. (5.3) and (5.4). It can be shown that
¥(x, v) satisfies the first order equation?®*

v Py -0 - (%):0 ,

ox v s

(5.6)

with initial data $=0 on S. Equation (5. 6) can be solved
by the method of characteristics.!® The functions glx,v)
and Z, are shown to be constants, which are determined
as follows: Suppose that S; and S, are chosen so that they
are level curves of ¥(x, v); say =y, on S; and =4, on
S,. It can be shown that? Z,=y, and

wi'e -1
g= [ es /2 dS)
6/7e

(5.7)

X dv=(x—a~-vyv)dt. a=4,56,
vy=0.1.

F e &

The function h(x, v) satisfies the equation

ok 8k 8y Y dh B (a:p)_
va—x-+[F(x)—v]£+ng-4)avav -—hav a—v- —0,
(5.8)

FIG. 4. Boundaries for the calculation of the transmission
coefficient. The transmission coefficient is the probability
that a particle starting in (S;, S,) exits through S,,
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FIG. 5. Contours of the trans-
mission coefficient, for € =0, 01,
(a) 0,89 contour; (b) 0,99 con~

which is a first order equation and can be solved by the
method of characteristics, %24

In Fig. 5, two contours of u(x, v) are shown for the
system (5.1) with @ =4.56, y=0.1, and ¢ =0.01. There
is a dip in the level curve as the saddle point is ap-
proached.

B. Rate constant

In the case of arbitrary viscosity, the rate constant
calculated according to the prescription of transition
state theory is similar to the one in Sec. III A, since
transition state theory uses the equilibrium solution of
the Fokker -Planck equation. When the Kramers theory
is used to calculate the smallest eigenvalue of the

Fokker —-Planck equation, a result very similar to A,
given by Eq. (3.6) is obtained. !4

In order to use the mean time theory of the rate con-
stant, define
T(x, v) ={(mint : [x(¢), 2(¢)] has crossed S
going towards S,|#0)=x, 5(0)=v}. (5.9)

Then a reasonable definition of the rate constant is

k= ffpo(x, v)/T(x,v)dx dv, (5.10)

where py{x, v) is the density for the initial position and
velocity of phase points,

It can be shown?! that T(x, v) satisfies the backward
equation

(5.11)

With associated boundary conditions

4 tour.

T(x,v)=0, for (x,v)€S,

lim T{(x,v)<e , lim T(x,v)<ew . (5.12)

lv] +o Xmoo

An asymptotic solution of Eqs. (5.11) and (5.12) valid
for small ¢ can be obtained by modifying the technique
used to calculate the transmission coefficient. The de-
tails of the calculation are more complicated, and are
presented in Ref. 24.
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