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We consider the effects of fluctuations on chemical systems that have multiple steady states. The systems
of interest have two stable steady states and one unstable steady state (a kinetic saddle point). As
parameters vary, two or three of the steady states coalesce. We consider experiments beginning near the
deterministic separatrix and formulate a stochastic first exit problem. The deterministic separatrix is
surrounded by a band. We calculate the first exit probability u(x) and mean exit time 7°(x) from this
band, conditioned on initial position. Fluctuation formalisms connecting the Langevin equation and
deterministic kinetic equations are discussed. We use the diffusion approximation so that u(x) and T(x)
satisfy (backward) diffusion equations. Approximate solutions of the diffusion equations are constructed by
an asymptotic method that involves various incomplete special functions. Two applications are discussed:
(1) the spontaneous asymmetric synthesis model of F.C. Frank; (2) fluctuation effects on substrate

inhibited reactions in open vessels.

I. FLUCTUATIONS AND SYSTEMS WITH MULTIPLE
STEADY STATES

The classical method of describing the evolution of
chemical reactions is by the use of a deterministic dif-
ferential equation

1=b(x), xeR" . (1.1

In Eq. {1.1), x is a macroscopic variable that represents
concentrations of reactants or products. The macrovari-
able describes the average state of a large system and is
obtained by averaging over many independent subunits.
The form of b(x) is determined by the reaction mecha-
nism.

Steady states are characterized by b(x)=0. I b(x) is
nonlinear, then the system may have multiple steady

states. The eigenvalues of B = (b, ) can be used to char- -

acterize the type of steady state. I all eigenvalues have
nonzero real parts, the steady state is of normal type.
Following Kubo et al . ,' we distinguish two kinds of non-
normal steady states: (1) the marginal type, in which
the local dynamics are x~x%; (2) the critical type, in
which the local dynamics are x~x°. A steady state is
stable if all eigenvalues have negative real parts. A
steady state is of marginal stability if some eigenvalues
have zero real parts. The deterministic approach can
be improved if statistical fluctuations are included. The
concentrations, represented by a random variable (),
will fluctuate for two reasons.? First, dueto experimen-
tal limitations, it is impossible to specify concentrations
exactly. Second, even if the concentrations were known
at some time #, the exact concentrations at a later time
t+ At would not be known unless all of the microscopic
variables were known at time {. The specification of all
the microscopic variables is clearly impossible. With
this viewpoint, Eq. (1.1) describes the average behavior
of a large number of statistical variables. A more exact
description of the system would specify the volume V of
the reaction vessel and an integer valued random variable
X(f) that represents the number of molecules in V at time

“ Portions of this work were finished at the Institute of Applied
Mathematics and Statistics, University of British Columbia,
Vancouver, Canada.
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{. The mean of %(f) = X(f)/V will correspond to the deter-
ministic concentration. The variance of x(¢) provides a
measure of statistical fluctuations. 3

In chemical systems, the intensity of fluctuations is
proportional to 1/V.2* In macroscopic systems, V is
large so that the fluctuations are of small intensity.
When the fluctuations are of small intensity, Eq. (1.1)
usually provides an adequate description of the evolution
of the system. There are, however, exceptions, some
of which have been studied. When reactions occur in
relatively small volumes (e.g., biological cells) or in-
volve small numbers of molecules, fluctuations can have
a profound effect on the evolution of the system. " Ini-
tial fluctuations will be amplified in autocatalytic or
chain reactions.®

Many authors have studied the effects of fluctuations
on systems in the vicinity of the stable steady state, '8

In this work, we investigate the effects of fluctuations
on systems initially in a vicinity of a kinetic saddle point.
A saddle point is kinetically unstable: Phase points
close to the saddle move away as time increases. Hence,
the saddle is a type of instability; it is an unstable steady
state. There are a number of reasons for studying chem-
ical systems in the vicinity of an unstable steady state.
In the first place, one would like to verify that the unsta-
ble steady state exists.® Due to fluctuations, it is not
possible to observe the unstable steady state. We will
show that the unstable steady state has a certain prob-
abilistic description. Second, in many reactions, the
stable steady states represent ~ 0 or 100% completion of
the reaction. The most significant kinetic information is
obtained from rate data in a vicinity of the unstable steady
state. Chang and Schmitz!® point out that often it is de-
sirable to start a chemical reactor near the unstable
steady state, but that one stable steady state is preferred.
In this case, one wishes to estimate the probability that
the less desirable stable state is reached. The gating
mechanisms of nerve membranes involve reactions with
multiple steady states.!! The study of fluctuations at the
unstable steady state (threshold) may lead to information
about conductivity mechanisms, 1213

In practice, it is very difficult to prepare a system in
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x!
FIG. 1. Formulation of the first exit problem in the (x!, x%)
phase plane. The curve § is the deterministic separatrix and

I and II are the first exit boundaries.

an unstable steady state. However, many systems ex-
hibit behavior in which a stable steady state becomes un-
stable as a parameter is varied. *™® When a parameter
o is less than a critical value ¢, the system has only
one steady state Py, which is stable., When aisincreased
so that o> o, P, becomes unstable and two stable steady
states Py and P, are created. We call this the critical
bifurcation. The mean-field ferromagnet exhibits such
behavior. Many chemical systems also exhibit the criti-
cal bifurcation (Sec. V). A second type of bifurcation is
possible as « increases. ' The steady state P, remains
stable when a > a, and two new steady states @,, which
is unstable, and Q,, which is stable, appear. We call
this the marginal bifurcation. The marginal bifurcation
has not received adequate attention in the chemical liter-
ature. In Sec. V, we shall demonstrate that substrate
inhibited reactions may exhibit the marginal bifurcation.

If P, is unstable when o> a,, the system will always
leave a neighborhood of P, and approach P, or P,. Even
if the system were initially at P,, any minute fluctuation
will cause it to leave the neighborhood of P;. In the vicin-
ity of an unstable steady state, fluctuations can never be
ignored. According to the deterministic theory, the sep-
aratrix (Fig. 1) S divides the phase plane into two do-
mains of attraction. All phase points initially onone side
of S approach P,; phase points on the other side approach
P,. Points initially on S approach the saddle point P,.

When a more exact, stochastic description is used, the
deterministic picture must be modified. No phase points
will reach P, and remain there. Due to fluctuations, all
phase points reach a vicinity of P, or P,. More impor-
tantly, phase points which deterministically would ap-
proach P, might approach P, (and vice versa), namely,
fluctuations may drive the system against the determinis-
tic flow. Ideally, one would like to calculate the prob-
ability that a specified steady state is reached first. This
problem is generally too difficult to solve. Instead, we
surround the separatrix by a tube with boundaries I, II
(Fig. 1). We will calculate the probability z(x) that the
process x(f) first exits from this tube through boundary
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II, given that x(0)=x. In the diffusion approximation,
this probability satisfies a diffusion equation. We have
constructed formal asymptotic solutions of the diffusion
equation. ' Qur technique is a generalization of the ray
or Hamilton-Jacobi method for diffusion equations. +°
We convert the second order boundary value problem for
u(x) to a first order problem for a function (x). The lat-
ter problem can be treated by the method of characteristics
(of which Hamilton-Jacobi theory is a special case).

In Sec. I, we discuss a generalization of F,C. Frank’s
model of spontaneous asymmetric synthesis. 2 This mod-
el indicates the important role that fluctuations play for
experiments starting near an unstable steady state. In
Sec. III, we derive the stochastic kinetic equation (Lange-
vin equation) and backward diffusion equation. There is
presently controversy about the use of diffusion equations,
Some of the aspects of the controversy are discussed
when fluctuation formalisms connecting the Langevin
equation withthe deterministic kinetic equation are given.
In Sec. IV, we summarize the asymptotic theory devel-
oped in Ref, 17, In Sec. V, we develop deterministic
and stochastic models of substrate inhibited reactions.
Our model is motivated by Degn’s experiments on NADH
oxidation. * Finally, in Sec. VI, we compare the theoret-
ical predictions with Monte Carlo experiments.

Il. SPONTANEOUS ASYMMETRIC SYNTHESIS

In this section, we present a generalization of the mod-
el of Frank.?® This model exhibits multiple steady states
and the critical bifurcation. It provides asimple illustra-
tion of the effects of fluctuations at chemical instabilities.

Let x* and »? denote the concentration of two enantio-
mers. Following Frank,? we assume that each enantio-
mer is the catalyst for its own production and anticatalyst
for the other. The reaction scheme that we consider is

1+o

1 Do 1

X+R—2X } autocatalytic step ,

X2+ R 12 2x?

X'+X%22B} anticatalytic step , (2.1
1 11

X+X C} bounding step .

X%+ X2+ C

The last two reactions are added to insure that all con-
centrations remain bounded. We set R=1. The kinetic
equations are

=1+ a)xt = axlx®- (2, (2.2
={1+ a)x? -~ axlx®- (x9? . (2.3

When a <1, the only steady state is the racemic state (1,
1), which is stable [Fig. 2(a)]. When a>1, the racemic
state (1, 1) is unstable. Two stable steady states appear
on the x! and x* axes. When o> 1, if a sample is ini-
tially in the racemic state, any small fluctuation will
cause the sample to “spontaneously” evolve towards one
of the two resolved states [Fig. 2(b)].

The effects of fluctuations will be most noticeable near
the deterministic separatrix §: x'=x%, Far from the
separatrix, if the intensity of the fluctuations is small,
it is unlikely that fluctuations will greatly influence the
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FIG. 2. Phase portrait of the model considered in Sec, II: (a)
the case o < 1—the racemic steady state (1,1) is a stable node;
(b) the case a >1-—the racemic steady state (1, 1) is unstable
(a saddle point) and the two resolved states are stable.

outcome of an experiment. For example, an experiment
starting at point A in Fig. 2(b) is more likely to approach
O, than an experiment starting at 0. The result of an ex-
periment starting at point B will probably not be affected
by fluctuations of small intensity.

The fluctuations can be modeled by treating the reac-
tions (2. 1) as a birth and death process or by other for-
malisms (Sec. IIT). The theory given in Sec. IV can be
used to treat the above model when fluctuations are in-
cluded.

1. STOCHASTIC KINETIC EQUATIONS,
FLUCTUATION FORMALISMS, BACKWARD
EQUATION, AND FIRST EXIT PROBLEM

A. Stochastic kinetic equations

The macrovariable x({) represents the average concen-
trations of reactants at time ¢ and evolves according to
the kinetic equation

=0 (x), 2 (0) =xE, i=1,2 . (3.1

According to the statistical theory of chemical kinetics,
x(f) is the mean value of a random variable x(f) which
will satisfy a stochastic kinetic equation. It is not yet
possible to derive the stochastic kinetic equation from
basic principles. Ideally, one would start with the Liou-
ville equation and reduce it to a stochastic kinetic equa-
tion. This reduction has been performed only on the sim-
plest system.?' Instead, we shall use a Langevin meth-
od® and add a stochastic term to the right hand side of
Eq. (3.1). The source of the stochastic term is the ran-
dom motion of the solvent and solute molecules which oc-
curs on a time scale 7 small compared tothe macroscopic
time scale ¢ on which measurements are made,

The increments in 7 and ¢ are related by a parameter
a:
AT= AL oF (3.2

where of will characterize the fast time scale. The ran-
dom process generated by the microscopic motions is as-
sumed to be a mixing process ¥(7). In most of the phys-
ical literature, 22'2 it is assumed that

E[P*s)Y*(0)]= &'(s) , (3.9
where 5% (s) =0 unless £=7 and s=0. We shall not make
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this assumption and define

el =f E[*(s)7*(0))ds . (3.4)

0
In the case that Eq. (3.3) holds, ¥(7) is the “white noise”
process. We assume that the stochastic variable X(¢; o)
satisfies

dx(t; a) =bi(§)+f€—§gz Pit/h, iz, ne (3.5)

dt

Langevin was the first to use a kinetic equation of the
form (3.5).% Such equations often have been used in the
last 50 years by most physical scientists working in this
field. The use of Eq. (3.5) represents an approximate,
somewhat ad hoc, way of treating stochastic effects in
macroscopic systems. Equation (3.5) is the stochastic
kinetic equation that will be used in the rest of this work.

The functions b’(x) appearing in Eq. (3.5) are the same
functions appearing in the macroscopic eguation (3. 1).
They determine the average or macroscopic evolution of
x(t). For example, for the model of spontaneous asym-
metric synthesis,

bYx) = (1+ a)xt — axla? - (k)2 (3.6a)
b2(x) = (1+ a)x® - axlx® - (x3)2 | (3.6b)

The functions ¢%(%) characterize the second moments
of the stochastic variable X(¢; @). It is assumed that
¥(¢/0? is a zero mean process. Then, from Eq. (3.5),
one obtains

E{ {fl%t—“) - bi(&)} [ii’-‘;%"i) - b’(a'c)] [%(¢; @) =x}

_eoklx) oa,’(x) E{PHt/aA T/ A)} .

= 3.7

If the oj(x) were known, then the second moments of
d%/dt could be calculated from Eq. (3.7). In reality, the
oj(x) are not known and a fluctuation formalism is needed
in order to calculate the second moment of dx/df. The
fluctuation formalism will also provide a connection be-
tween the Langevin eguation (3. 5) and the deterministic
kinetic equation (3.1).

B. Fluctuation formalisms

There is controversy presently about the connection
between Egs. (3.5) and (3. 1) when b(x) is nonlinear. If
Eq. (3.5) is averaged unconditionally, one obtains

dx? dzt

ax! EE{E—} BB @)} .

It is usually claimed that since, in general, E[b'(%)]
#b'(x), Eq. (3.5) is not an appropriate extension of Eq.
(3.1.

(3.8)

However, there is an implicit conditioning in Eq. (3.1)
which was ignored when Eq. (3.8) was derived. To see
this, reconsider Eq. (3.1) written as

x}(t 1 df) - () = bP(x)dt (3.9)

by which we mean that, conditioned on x{f) =x, the incre-
ment in x* is given by Eq. (3.9). The confusion about
Eq. (3.5) arises by ignoring the conditioning in Eq. (3. 1).
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In this section, two probabilistic formalisms for the
connection between Egs. (3.5) and (3.1) are given. They
both have the property that the deterministic kinetic equa-
tion is obtained as an appropriate conditional average of
the stochastic equations.

In order to help illustrate the idea, the following mod-
el set of reactions is considered:

@Y'-B,

(b) 2Y'+A=3Y! |
(€) Y'+Y®=~2B ,

(@ Y- B,

(e) 2Y2+A~3Y% .

(3.10

All rate constants are set equal to 1. In the general
case, of course, one has a set of m reactions of the form

n n
iZV;X‘-Zn,§X‘, £=1,2,..., m.
=1 i=1

In Eq. (3.11), X=(X',...,X") is a vector representing
the reacting species, and v, =(vi,..., V) and 5, = (%}, ...,
73) are vectors representing generalized stochimetric co-
efficients in the kth elementary reaction.

(3.11)

The mass action kinetic e‘quations corresponding to
Eqgs. (3.10) are

dy'/dt=a(y)? - 31+ 99 , (3.12a)
dy?/dt =a(yd? - (% +y'9 . (3. 12b)

In Egs. (3.12), v and y? are taken as number concentra-
tions of y* and y?, respectively, and a=[A] is assumed
to be a constant.

In the general case, the kinetic equation will take the
form

dxt/dt=b"*(x) - ¥ (%) , (3.13)

where b¥(x), b*°(x) >0 and are determined by the stochi-
ometry (3. 11),

The fluctuation formalisms can now be discussed.

1. Reinterpretation of the kinetic equation

The fluctuation formalism given in this section is based
solely on the kinetic equation (3. 12) or (3.13). The in-
formation provided by the reaction mechanism is not
used.

Let 5(f) [corresponding to Egs. (3.12)] and X(#) [corre-
sponding to Eq. (3.13)] be random variables representing
the number of ¥ or X at time ¢. First consider the mod-
el problem. Let dy=7%(¢+dt) - 5(f). In order to obtain a
stochastic kinetic equation that will yield the determinis-
tic equation as a conditional average, we postulate that

Pri{dy'=115(2) = y}=aly?) 2t + old?) , (3. 14a)
Pridjl=- 1158 =y}=(y'+y'y9) dt +oldf) ,  (3.14b)
Prigs? =115 = y}=als??dt + oldt) , (3. 14c)
Prigit=-1[50=y}= (»*+y'yD)dt+o(d?) , (3.14d)
Pr{all other transitions}=o0(dt) . (3. 14¢)

Marc Mangel: Fluctuations at chemical instabilities

From the transition probabilities (3. 14), one obtains
Edy |50 =y} =[aly)?~ (' + 'y At + o(dt) (3. 15a)
E{d3?|5(8) =9} =a(y?? - (y*+ y'9?)1dt + o(dt) . (3.15b)

Dividing by dt and taking the limit d¢ =0 in Eq. (3.15)
gives Eq. (3.12). If molar concentrations rather

than number concentrations were used, then the transi-
tion of one molecule is replaced by 1/NV moles/liter,
where N is Avogadro’s number and V is the volume of
the system. In this case, E(dj)=0(1/NV) and E[(d%)?]
=0[(1/NV)?], and a rescaling of the time variable is
needed to obtain the mass action kinetic equation.

In the general case, the kinetic equation is given by

Eq. {3.13). One postulates that
pPrid&i=1|%(t) = x}= b (Ndt + o(dt) , (3. 16a)
Pridat = - 1]&(t) = x}= b*(x)dt + oldt) (3. 16b)
Priall other transitions}=o0{d#) . (3. 16¢)

The postulates (3. 16) are based on the assumption that
the reaction mechanism is not known, but that the kinetic
equation (3. 13) is known.

From these transition probabilities, one obtains that
Eld® | %) = 7} = [b" (x) - b* (1) Jdt +o(dt). (3.17)

Dividing by d¢ and taking'the limit d¢—0 in Eq. (3.17)
yields the kinetic equation (3.13).

Now, consider covariance terms. I only the kinetic
equation is given, we postulate that fluctuations in each
species are independent. For the model system (3. 14),
one finds
E{(d5"215(t) =y} = 1% aly") %t

+oldt) + (= V¥y'+ y'y?) dt + o(d?)

={y' +a(y')2+y'y?]dt+ old) (3.18)

and similarly for E{(d7®)? 5(f) =y}. Assuming that fluc-
tuations in each species are independent events, one ob-
tains, for example,

Pridyi=1, di?=1[5( =y} (3.19)

Pr{dy'=115(t) = y}Prid?=1|5() =y} =olat) .

Hence, E{d9'd5?!5(t)=y}=0(dt). Thus, the covariance
matrix

. 1 e e
(a¥) =1lim 5 E{dyay |5 =y} (3.20)
dt=9
is diagonal:
1 n2 1,,2
s 1 +a(y)+yly 0 (3.21)
s 0 y2+a(yD)?+ y'y?

In the general case, corresponding to Eq. (3.16), one
finds that

a¥=1lim Zi};f E{d¥dz’ | #(t) = x} =diag[d*(x) + b (x)] .
dt -0

(3.22)
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2. Use of the reaction mechanism

In a chemical system, in addition to the kinetic equa-
tion, the reaction mechanism provides information. Con-
sider the model system (3. 10). Taking the reactions in
the order shown in Eq. (3.10), we assume that the joint
transition probabilities for changes in 5! and 3° are

(@) Pr{dyt=-1, d52=0|5() =y}=y'dt+ oldt) ,

(b) Pr{dy'=1, d5%=0|5(t) =y}=aly)%at+o(ds) ,

(¢) Pridy'=-1, dj®=- 1|5(t) =y}=yY2dt+ oldt) ,

(d) Prigy' =0, dj®=-1|5(t) =y} =y%at + 0(dt),

(e) Pr{d3' =0, d5*=1]|5(t) =y}=a(y®%dt + o(dt). (3.23)

We assume that the probability of all other transitions is
o(dt). Upon summing, the transition probabilities in Eq.
(3.23) yield those in Eq. (3.14). However, the probabili-
ties in Eq. (3.23) provide information about joint transi-
tions. This information is obtained because the reaction
mechanism was used to construct Eq. (3.23). In particu-
lar, when (¢*) is calculated using Eq. (3.23), we find
that

1 .
a¥=lim — E{ay'ay’ | p(t) =y}
dt-0 dt
1)2 ylyz
a(y?)?+y%+y'y?

a(yh)?+y'y? eyt (3. 24)

y'y?
Hence, the covariance matrix has nonzero off-diagonal

terms. This result would be obtained if Keizer’s fluctua-
tion-dissipation postulates were used. ?

In the general case, the reaction mechanism is used to
construct joint transition probabilities for each of the m
reactions:

Pridx' =7}, d¥®=7%, ..., a¥ =r|x(t) =x}

=N¥(x)dt+old), k=1,2..., m.

(3.25)

The coefficients T; correspond to the net change in the ith
species in the kth reaction. From Eq. (3. 11), we find
that

ri=mi-vi . (3.26)
Then,
E{ax* |#(t) = x}=vi ¥(x)dt + oldt) . (3.27)

In Eq. (3.27), the repeated index % is summed from 1 to
m. Equation (3. 27) will correspond to the deterministic
kinetic equation.

Finally, the covariance term is

E{d#'dx? |#(t) = x}= Y(x) rividts oldf) . (3.28)

Whenever joint transitions are possible (e.g., when spe-
cies are coupled in a reaction), the covariance (a¥) will
contain off-diagonal terms. The procedure given here
yields results equivalent to Keizer’s fluctuation-dissipa-
tion postulates (see Ref. 2).

3. Treatment of systematic terms

‘The procedures outlined in Secs. II. B. 1 and II. B. 2
are based on statistical pictures of the chemical reaction.

370

When systematic terms are present, an ambiguity may
arise. In order to illustrate the source of the ambiguity,
an additional reaction is added to Reactions (3. 10):

(f) C~Y? .

The Y! kinetic equation remains the same, but the kinetic

equation for Y2 becomes (where c=[C)).
dy?/dt =a(y?)% - yyi-y¥ ¢ . (3.29)

The ambiguity arises in the treatment of the constant
term in a fluctuation formalism, Two options are possible,

Option 1: fluctuating systematic term. The systematic
term has molecular origins itself and thus will also fluc-
tuate. Hence, Eq. (3. 14c) is modified to

Prid5?=115() = y}=[a(y®?+ cldt + oldt) , (3. 30)
or an additional transition is added to Egs. (3.23):

() Pridy?=1,d5'=0|5() =y}

=[a(y?)?+ c]dt+ oldt) . (3.31)

Regardless of the choice of formalism, when the covari-
ance term is calculated, we find that

E{@y2 (50 =v}=[a(v®?%+ ¢+ y%+ y'y2ldt + o(dD). (3.32)

All other terms remain the same. Thus, the systematic

term appears in the covariance.

Option 2: fluctuations about the systematic part. In
this case, Eq. (3. 29) is rewritten as a kinetic equation
for deviations from the systematic part

dy?*/dt - c=a(yHZ - yl9? - ¢ |

The transition probabilities (3. 14c) and (3. 14d) are re-
placed by

Pr{d5? - cdt=1]5() =y} =aly?)dt +oldt),
Pridi? - cdt=~1|5(t) =y}= (y'+ y9)dt + oldt).

The kinetic equation (3.29) is obtained as an appropriate
conditional average using Egs. (3.34a) and (3. 34b).
Since E{dy}=o(dt), we find that

E{(d5 - cdt)?|5(t) = y}= E{(d5)?|5(6) = p}+ oldt).

Thus, the systematic term will not appear in the covari-
ance calculation.

(3.33)

(3. 34a)
(3. 34b)

(3.35)

It is not clear which option in the treatment of the sys-
tematic term should be used.
C. Backward equations and the first exit problems

The above approach is a backward conditioning, rather
than the usual forward or Fokker- Planck approach.
Hence, we are led to the use of backward diffusion equa-
tions rather than the Fokker-Planck equation.

We assume that %(0; o) = x, remains a deterministic
initial condition.

As a—0, %(t; @) converges to a diffusion process %(?).
Let

u(t, x) = Efu%(9) ]| x(0) = x} .

Then, u(t,x) satisfies the backward equation

(3.36)
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uy = seat uy; + biu; v eclu, (3.37)
where
a¥(x) =0 ()0 (x) (Y + ¥, (3. 38a)
g i
cix) =1" o} =7 (o) . (3. 38b)

If ¥(7) were white noise, the resulting diffusion equa-
tion would be

uy = seat uy;+ by, . (3.39)

If a* is independent of x, then Eqs. (3.37) and (3. 39) are
identical. Elsewhere, ! we present a numerical compar-
ison of solutions of Eqs. (3.37) and (3. 39). Our results
indicate that Eq. (3. 39) is an excellent approximation to
Eq. (3.37 if the boundaries are nonsingular.

Presently, much controversy surrounds the use of an-
other diffusion equation, the Fokker- Planck equation. *
The controversy involves the derivation of the Fokker-
Planck equation. We point out that Eq. (3. 37) is obtained
rigorously from Eq. (3. 5), but that the Fokker- Planck
equation cannot be obtained rigorously by any method.
Rather, the Fokker-Planck equation should be viewed as
the formal adjoint of Eq. (3. 37). *'® Our use of the back-
ward equation is justified, in so far as the kinetic equa-
tion (3. 5) is valid.

Equation (3. 5) is not the usual “white noise” stochastic
kinetic equation, since the process ¥(s) has a correlation
function that is not a delta function. The usual white
noise equation is of the form

d% = b'(R)dt + Veai dw, . (3.40)

It is possible to interpret Eq. (3. 5) along the lines of Eq.
(3. 40), %% using Stratonovich’s approach to stochastic
differential equations.® We consider a sequence of pro-
cesses Y"(7) which converge to W(7) as n~. If the sto-
chastic variable in the resulting Eq. (3.5) is #"(¢), then
as n—, Xx"=%, where ¥ satisfies?

da"c‘=[b‘(5c)+% 65% a“] dt+Vea’ aw, . (3.41)
In particular, for the mean macroscopic motion, we ob-
tain

i

%:i =b‘(x)+%eaixj- at (3.42)
and not Eq. (3.1). A special case of Eq. (3.42) was first
discovered by Polder.® For large systems, ¢ is small
and Eqgs. (3.42) and (3. 1) have the same qualitative be-
havior. Some details may change, but the overall pic-
ture remains unchanged. Since macroscopic equations
are only meant to be approximate, this approach seems
valid. It is interesting to note that the use of a white
noise equation forces a “renormalization” of the mean
motion.

The fundamental equation derived above is Eq. (3.37).
A time independent version can be derived as follows:
We surround the separatrix by a band with boundaries,
II. Let T(x) be minf: %(H)el or HHeIX(0)=x}. Let
u(x) = Pr{#[T(x)]e I}. Then, u(x) satisfies®®
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0=3ea® u;; + b'u; + ectyy . (3.43)

The boundary conditions for Eq. (3. 43) are u(x) =0 if
xel, and u(x) =1 if x<Il. 'The function u(x) is the probabil -
ity that the process %(f) first exits from the band around
the separatrix through boundary II.

We distinguish three cases of increasing complexity:

(1) The first is the normal case, in which the separa-
trix tube contains only the unstable steady state.

(2) The second is the marginal case, in which the sep-
aratrix tube contains the unstable steady state and one
stable steady state. As one parameter varies, the two
steady states coalesce and annihilate each other(the mar-
ginal bifurcation). After the bifurcation, only one stable
steady state remains. This steady state is not in the
separatrix tube, so that the deterministic flow is always
across the tube in the same direction.

The first exit problem as formulated is of little inter-
est. A more interesting question involves the expected
time to reach boundary II, given that #(0)=x, T(x). Let
d(x) denote the distance from the point x to II. Let

)= [ttt (3.44)
(]

where u(t, x) satisfies Eq. (3. 37)with boundary conditions

u(t,x)=1on I, u; ~0 as d =, and u(0, x) = 0 unless xeIl.

Then, u(t,x) is the probability that %(#) has reached II by

time £, given that %(0) = x.

T{x) satisfies®®
(3.45)

where u(x) is the probability of eventually reaching II,
given that %(0) =x. 7T(x) satisfies the boundary condition
T(x) =0 if x is on II, and a growth condition.

3ea¥ Ty + T+ ec'Ty= = ulx) ,

(3) The third is the critical case, in which the sep-
aratrix tube contains the unstable steady state and both
stable steady states. As two parameters vary, the three
steady states move together and coalesce (the critical
bifurcation). The remaining steady state is assumed to
be stable.

The above classification scheme generalizes the work
of Kubo ef al. ! to systems with more than one space di-
mension.

IV. AN ASYMPTOTIC TECHNIQUE

Equations (3. 43) and (3. 45) are singularly perturbed
elliptic equations. They are further complicated by the
vanishing of 5(x) at one or more points in the domain of
interest. In Ref. 17, a general theory for such problems
is developed. Here, we highlight the theory. Only the
leading terms in the expansions are studied, since they
are the most crucial. Further details can be found in
Ref. 17.

A. Canonical integrals

We consider the canonical one-dimensional version of
Eq. (3.43):
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(4.1
(4.2)

0= 3ealx) uy, + b(x)u,
ulry) =0, ulrj=1.

In Eq. (4.1), we assume that a(x) is always positive. The
solution of Eq. (4.1) satisfying the boundary conditions

(4.2) is
* ¥ 2b(S)
u(x)=kj;0 exp[-— )

where k is a normalizing constant. We shall analyze Eq.
(4. 3) by using Laplace’s method. *' The basic idea behind
Laplace’s method is as follows: For small ¢, the main
contribution to Eq. (4. 3) comes from the values of y
which minimize the argument of the exponential function.
I

ds] dy , (4.3)

v 2b(S)
2(y) =J' iG] as ,

then ®'(y) = 2b(y) /a(y), so that the main contribution to
Eq. (4.3) comes from the vicinity of the deterministic
steady states, i.e., solutions of b(y) =0. One then does
a Taylor expansion of ®(y) about the point - where b(y) =0
and b’(y) >0. Further details and exact estimates are in
Ref. 31.

Inthe marginal case, bdepends on one paramater 7 and
for 1> 0 the equation b(x, n) = 0 has two solutions x¢(n), x; ()
place’s method yields

¥ b’ (xo)
u(x) = kfro [exp " )

A change of variables converts Eq. (4.4) to
u(x) =RE[Y(x) Ve 1+ 0(E) , (4.5)

where () is a regular function and E(z) is the error in-
tegral

(s~ x(,)z] ds+0(ve). (4.4)

E(z):L: ez gs (4.6)

The 0(v'e) term in Eq. (4.5) involves E'[¢(x)], the deriv
ative of the error integral.!’

Inthe marginal case, bdepends on one parameter n and
for n>0the equation b(x, ) = 0 has two solutions x4 (n), x,(n)
€ (¥y,%). When 1~0, the two solutions coalesce and an-
nihilate each other. We assume that (for 5>0) b'(xy,n)
>0, b'(x,,7) <0 so that x, is the unstable steady state.
Since b'(x,,0) = 0 at the marginal type steady state, the
analysis leading to the error function is not appropriate.
Another term in the Taylor expansion of $(y) is needed.
In this case, we find that!

ulx) =kA(Y(x) /'3, /€3] + 0(e?/?) | (4.7)
where A(z, @ is the incomplete Airy integral
AG,=f (-1 s)as . (4.9
20

The parameter a in Eq. (4.7) is determined by a regu-
larity condition, V

In the critical case, b=b(x,n,5) depends upon two pa-
rameters and the critical type steady state is character-
ized by the vanishing of b(x,,0,0), b'(x,,0,0), and b"'(x,,
0,0) with a nonvanishing third derivative. Again, an ad-
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ditional term in the Taylor expansion of ®(y) is needed.
It can be shown!” that u(x) can be expressed in terms of
the incomplete Pearcey integral

z 1 asZ
P(z,a,ﬁ)=f exp(— S“-——-—BS)dS . 4.9
20 4 2
The parameters « and 3 can be expressed in terms of the
deterministic parameters 7 and 8.

A similar analysis holds for a canonical version of Eq.
(3.45).

We return now to the partial differential equation (3.43).
The above analysis indicates that a possible solution of
Eq. (3.43) is given by

ulx) = glx, €)S[v(x), 6, €]+ hlx, €)S'[9lx), 6, €] .

In Eq. (4.10), glx, ¢) and A(x, €) are power series in ¢
and S[¥(x), 8, €] is the error integral in the normal case,
the incomplete Airy integral in the marginal case, and
the incomplete Pearcey integral in the critical case.
The functions P(x), g{x,¢), h(x,€), and parameters d are
to be determined. In Secs. IV.B-IV.D, we summarize
the results of the complete analysis given in Ref. 17.

{4.10)

B. Normal case

In the normal case, we find that

ul(x) =g"E[p(x) /Ve ]+ 0y e) , (4.11)
where E(2) is the error integral satisfying

E'"(2)==2zE'(2), zy=z=z, . (4.12)
The function y(x) must satisfy

by~ 3at =0, (4.13)

with initial data =0 on S. Equation (4. 13) is obtained
by evaluating derivatives of u(x) [using Eq. (4.12) to re-
place E"'(y/Ve) by - (/v € )E'(¥/V€)], subsittuting into
Eq. (3.43), and collecting terms according to powers of
€. Equation (4. 13) arises as the coefficient of the €1/2
term. It is possible to derive an equation for the normal
derilxlrative of 9, ¥, on the deterministic separatrix, We
find

%J%_g B0, (4.14)
where
b(®) =[(6%20}, ~ b'b%(83,+ bL) + (B)262,1/[(bY)2+ (2]
(4.15)
2 0D+ OV - 20((Y 782 b0
+a®[(B)3BR)2+ (BVA/1(BH2 4 (892 . (4.16)

Equation (4. 14) is obtained by differentiating Eq. (4. 13)
with respect to x* and switching to tangential and normal
coordinates. Since dx’/dt=b*,

i b _d

Py falr TR (4.17)

where ¢ measures “time” along S. At the saddle point,
Eq. (4. 14) becomes

Pu() = VB () /a(w0) .

(4.18)
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Thus, we can calculate 3,(f) on the separatrix. In the
vicinity of the separatrix, ¥(x) can be determined by a
Taylor expansion.

The function g° is a constant. For simplicity, we as-
sume that ¢ =3; on boundary I and 3 = ¥;; on boundary II.
Then, we set z,=13; and

gOEl/E(‘/)II/\/—G—) . (4.19)

If ¢ is not constant on the boundaries, then u differs from
0 on I by exponentially small terms and from 1 on II by
exponentially small terms. " Other terms are treated in
an analogous fashion.

C. Marginal case

Here, we find that

ulx) = g°A[p(x) /€', ag/e*'*]+ 0(e?'?) (4. 20)
where A(z, 8) is the incomplete Airy integral

diA(z, B 2 dA

T =-(z —B)E(Z,B) . (4.21)

In this case, the parameter @, and functions P(x) and
g° must be determined. Instead of Eq. (4. 13), we obtain

) ai
b*Y; -5 d‘iwi(d)z - a)=0, (4. 22)

with data ¥=va, on S.

In the marginal case, b(x) vanishes at two points in the
separatrix tube (see Fig. 4) @, and @,. We set

Qo =-Vag, ¥Q)="ey ;

the parameter o, is determined as follows: Associated
with Eq. (4.22) is a set of ordinary differential equations
known as the ray or characteristic equations 8

(4.23)

dx'/ds =b' - a'’ p,(¥* - ap) , (4. 24)
Z—‘sp =p; %—s’i ) (4. 25)
d . ai 5

_d_% == ba; +a—2k P,'Pj(lpz— ag) +a pipibd (4. 26)

where i, = p; is treated as an independent variable. Solv-
ing Eq. (4.22) and integrating Eqs. (4.24)-(4.26) are
equivalent. Thus, # can be calculated by solving Egs.
(4.24)-(4.26).

The parameter ¢, is determined by an iterative proce-
dure. Let af® be the first guess for a,. We start the in-
tegration of Eqs. (4.24)-(4. 26) just away from @, where
ay=— \/—a-g)), and follow rays that hit the separatrix.

When a ray hits the separatrix, if ¥#v a0, then ag”
must be replaced by a better estimate aé”. The proce-
dure can be repeated until ¢, is known {o any desired ac-
curacy.

The function (x) and constant g° are calculated as in
the normal case. At the bifurcation value 7=0, ¢, and
@, coalesce. Thus, a,=0 when n=0. It can be shown
that all constructions remain regular at the bifurcation
value. "

At the bifurcation, we are more interested in 7'(x) than

Marc Mangel: Fluctuations at chemical instabilities

u(x), since u=1 for all x in the tube.
ilar to the above, we can show that

T(x) =g°B (/" ®, ay/e?’%,1/€2, 0) + B%(x) + 0(e¥/%) |

(4.27)
where Bz, a, v,, v, satisfies an inhomogeneous version
of Eq. (4.21):

d°B » dB
EE:—(Z —Q)Eé—71+¥22 , Zp=2z .

By arguments sim-

(4. 28)

The expression (4. 27) for T{x) is substituted into Eq.
(3.45) and terms are collected according to powers of €.
We obtain equations for § and the parameter «, is deter-
mined as described above. The value of g° is determined
from the equation that 2" must satisfy, i.e.,

P

b'k; - 5 P9,8°=-1 . (4. 29)
At the point where b(x) vanishes, we obtain

g°=2/a"yy; . (4.30)

We set £%x) =0 if x< II and can determine £%x) by solving
Eq. (4.29) by the method of characteristics, *

D. Critical case

Here, we find that

ulx) = g"Pl(x) /e /4, ap/e 72, po/e¥ e 0¥, (4.3D)

where P(z, o, f) is the incomplete Pearcey integral

d?P/dz%= (2% - az - P)(dP/dz) . (4. 32)

The arguments of the previous two sections are repeated,
except that now &(x) vanishes at three points in the sep-
aratrix tube and two parameters must be determined.

Details of all these calculations are given in Ref. 17.

V. FLUCTUATION EFFECTS ON SUBSTRATE
INHIBITED REACTIONS

A. Multiple steady states in enzyme reactions

The experiments of Degn'* conclusively demonstrated
that multiple stable steady states actually can be ob-
served. In his experiments, Degn was concerned with
observing the multiple steady states and not with fluctua-
tion effects. It is clear, however, that his techniques
could be used to study fluctuation effects at the unstable
steady state. In this section, we study fluctuation effects
on a substrate inhibited reaction. Our choice of model
was motivated by Degn’s experiments, but is not meant
to correspond to the experiments exactly.

In this section, we develop a model of Degn’s experi-
ments. The model has the following features:

(1) A reaction vessel of volume V can exchange sub-
strate “1” with an external reservoir of volume V',

(2) Substrate 1 is converted into product by a substrate
inhibited enzyme. The concentration of substrate 1 in the
reservoir is %!, or X} molecules. An example of this re-
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action is the oxidation (x' being [O,)) of NADH catalyzed
by horse radish peroxidase.

(3) Substrate “2” is continually fed into the reaction
vessel, at rate o, and reacts with substrate 1. The re-
action is catalyzed by an enzyme that obeys the usual
Michaelis— Menten mechanism.?® An example of this re-
action is the oxidation of glucose catalyzed by glucose
idase.

The elementary steps invoived in these reactions are
(a) X‘+E’§2(X‘E‘) ,
(b) (K'EY+ B! 2 (K'EY
() X'E' 2E!, P!,
(d) X'y xz+E2;—§l (X'X2E?%)
(e) (Xx2E2) B g2, p? |
(f) X'% X}

(5.1)

In order to derive the kinetic equations for the concen-
trations of X! and X?, we use the Michaelis~Menten as-
sumption. % Nondimensional concentration variables are:

() = [concentrationof species i at time ] (5.2)
" [concentration of species i at 0] )

Then, the kinetic equations for x' and x® are!'3

P - x'(k, [k ,x"?)
k2 k., Xl kax10(x1)2
B ® Thato TN TR _

- xle(lz/xloxzoll)
(L1 + 1) 1
X1020] + %%

2. X251, /%% )

= -
(1-1+1,) 1
X10220] + x%x

+ k(x! = 2 , (5.3)

(5.9

In the above equations, x*" is the initial concentration of
species i. We choose the followingvalues of the param-
eters: «=0.09, x°=x"=10"M, %,=1.2%10" liter/"
Msec, k.,=0.12 sec™, k,=1.68 sec™), k,=1.3x10°M™2
sec™, k_3=0.01 sec™, I.,=0 sec™!, and [,/1,x%x%=0. 1.
The values of x*° and &, roughly correspond to Chance’s3®
experimental data. The /; were chosen as “reasonable”
estimates, since no data were available. With these
choices, we obtain

xlx2
T1s10x1x2

21 - 1.4.7(1

- 1_ 1
* —1.5+x‘+13(x1)2+k(x" %)

(5.5)

xlxz

2 oo
#2009 et -

(5.6)

We assume that € =0, 01 and the “volume” V=1/¢. Equa-
tions (5. 5) and (5. 6) are model equations that exhibit the
marginal and critical bifurcations. They are not meant
to simulate a particular set of experiments., Since the
rate constants of enzyme preparations vary widely, this
appears to be a reasonable approach. We will refer to
(x!,4%) as concentration variables. We will treat V as a
nondimensional quantity and treat X' = vx* as a variable
corresponding to the number of “molecules, ”
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B. Stochastic model of the enzyme reaction

In the stochastic model, the natural random variables
are the numbers of molecules of species 1 and 2 in the
reaction vessel at time ¢; denote these by X'(f) and X%(t),
respectively. The fluctuating concentrations are then
given by ¥'(f) =X*()/V. From the reaction mechanism
(5. 1), one could construct transition probabilities in the
five dimensional space [X!, X2, E!, E?, (X'EY)]. In or-
der to derive the equivalent of the kinetic equations (5. 5)
and (5. 6), the Michaelis- Menten assumption must be ap-
plied to the transition probabilities; E!, E2, and (X'E")
will be replaced by their steady state values. Once this
replacement is performed, the transition probabilities
are given in terms of X* and X2 only. By using the Mi-
chaelis~ Menten assumption, we are treating the enzyme
concentrations as parameters rather than variables.
Thus, one assumes that fluctuations in enzyme level can
be ignored in comparison to fluctuations in substrate
level. This assumption is consistent with the work of
Heyde and Heyde, * who found that the steady state fluc-
tuations in enzyme concentration were 10° to 10® times
smaller than fluctuations in substrate concentration,

When the above procedure is used, the following tran-
sition probabilities are obtained for dx*=X(¢+ df) - XH{#):

PridX'=1,d%%=0|X(t) =X}=%¥ dt+old?) , (5.7

Pr{d®'=~1,d%%=0|X(t) =x}

1.4x"! kxx]
_[1' BV X5 I3(XDE T T di +oldt) , (5.8)
ol &2 ~ XIXZ
PrigX'=-1,d%*=~1 lX(t) =X}= 72; TOX1%E dt + oldt)
(5.9)
Pr{d}?l = O,dX~2 =1 [X(t) =X}= 0. 09Vdt + O(dt) . (5‘ 10)

In deriving Eqs. (5.7)—(5.10), we have used the first op-
tion described in Sec. II. B. 3 for the treatment of sys-
tematic terms.

The work of Gillespie®® could, in principle, be used to
replace some of the macroscopic parameters by combina-
tions of microscopic parameters. It is not clear that
much would be gained for a complicated system such as
the one considered here. However, Gillespie points out
that the stochastic approach should be valid if the number
of reactive collisions is a small fraction of the total num-
ber of collisions. This should be the case for the prab-
lems considered here,

Since the stochastic kinetic equation (3. 5) was not de-
rived from first principles, a prescription must be given
for the calculation of €(a®) in Eq. (3.37). In order to
give the prescription, two steps are followed. First,

Eq. (3.5) is reinterpreted as a white noise equation.
Second, the fluctuation formalism discussed in Sec. TI. B
is applied.

Instead of the kinetic equation (3. 5), consider the ki-
netic equation [also see Eq. (3.40)-(3.42)]

dx! = (®)dt + Veati dw, . (5.11)
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In Eq. (5.11), W¢) is the Wiener process or Brownian
motion. The functions & and ea’’ have the simple inter-
pretation®:

bi= lim L E{Z (@t a0 - B (@) |25 =x*,k=1,+..,n},

At=0 st
(5.12)
ea' = lim —lt E{[# ¢+ at) - O 1[F (¢ + at) - %/ (1)]| 7%(t)
At -0

=xF k=1,.00,n} . (5.13)

Equations (5.12) and (5. 13) are the Ito interpretation
of Eq. (5.11). In Sec. III. B, fluctuation formalisms that
can be used to calculate the expectations in Eqs. (5.12)
and (5. 13) were discussed.

Using the fluctuation formalism described in
Sec. III, B. 1 yields the following covariance matrix:

(A + p)xt 0
1
ealx) = —= » (5. 14)
100)2
(100) 0 (2 + 1o)x?
where
Axt=kx) (5.15)
1. 4x! xlx?
1_ . 1
WX = T T TaE Y T 1onE (5.16)
2x%=0.09 , (5.17)
12
2_ X
X = T Toxine (5.18)

If the fluctuation formalism described in Sec. III. B. 2
were used, the covariance (5. 16) would have off-diagonal
terms. There will be little difference in the behavior of
solutions of the diffusion equation when the covariance
matrix with off-diagonal terms is used. When the transi-
tion probabilities are used to calculate the infinitesimal
drift b¥(x), we find

bi(x) (5.19)

1
=100 Ay~ ',

1
b3(x) =m(7t2- [TAL (5. 20
A rescaling of the time yields x’=b(x), so that the mean
stochastic motion and the law of mass action agree.

The covariance (5. 14) and drift (5. 19) and (5. 20) were
used in all of the calculations reported in this paper.

In summary, the diffusion equation corresponding to
Eq. (3.5) is

uft =tea" uy;+ (0 + echuy, (5.21)

where ¢’ = ga}].

Eq. (5.11) is

The backward equation corresponding to

ij

ug+ by, (5.22)

with ea(x) given by Eq. (5.14) and b(x) by Eqs. (5.19) and
(5.20). We shall use Eq. (5.22) to approximate (5.21).

1
u" = zea

Marc Mangel: Fluctuations at chemical instabilities

problems of interest here, the choice of stochastic calcu-
lus is not important, Thus, Egs. (5.11) and (5. 22) are
useful approximations to Egqs. (3.5) and (5. 21), respec-
tively.

VI. COMPARISON OF THE THEORY WITH MONTE
CARLO EXPERIMENTS

No exact solution of the two dimensional backwardequa-
tions (5, 21) or (5.22), with b’ given by Eqgs. (5.19) and
(5.20) and ea'’ given by Eq. (5.14), could be found. Thus,
the asymptotic results will be compared with Monte Carlo
experiments. The Monte Carlo experiments were per-
formed in one of two ways. In the first technique, the
transition probabilities (5.7)—(5.10) were used to con-
struct a birth and death process. In the second technique,
the Ito equation®® ¥

d% = b(%) dt + v e a(X) dW (6.1)
was used directly to calculate increments in X. In Eq.

(6.1), W(!) is Brownian motion, i.e., E(dW) =0, E(dW?
=dt, and increments of dW are normally distributed. The
two techniques lead to equivalent first exit probabilities.

A. The normal case

When 2= 0. 038 and kx} = 0. 2225 in Eq. (5.5), the cor-
responding deterministic system is the normal type. The
first exit probability was calculated using the theory of
Sec, IV. The integration of the equation for i, used a
fourth order Runge~Kutta routine. In Fig. 3, the deter-
ministic phase protrait and the #=0. 3 contour of first exit
probability are plotted. In Table I, the probability cal-
culated using the theory is compared with the probability
observed in Monte Carlo simulations.

The function y(x) was calculated in a vicinity of S by a

5 T

a4 L B

3 ]
x2

o !

s |

0 | _

FIG. 3. First exit boundaries and phase portrait of the sub~

Elsewhere, " one dimensional versions of Eqs. (5.21) and strate inhibited system considered in Sec. V, in the normal

(5. 22) are compared. The results indicate that, for the

case.
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TABLE I. Comparison of the theory with
Monte Carlo experiments in the normal
case.

Experiment
Test point Theory ( #trials)
(0.878, 1,025) 0.50 0.51 (2000)
(0.49, 0.058) 0.50 0.49 (1700)
(0.75, 0.75) 0.40 0.39 (1750)
(0. 54, 0.55) 0.22 0.23 (1500)
(0.40, 1.24) 0.03 0,02 (2000)
(0.65, 1.125) 0.17 0.15 (2000)
(0.475, 1.20) 0.05 0. 04 (2000)
(0.73, 0.72) 0.41 0.39 (1700)

Taylor expansion. The contours were calculated by using
the leading part of the expansion of #(x),

B. The marginal case

When &= 0. 0533 and kx, = 0. 24898 and the boundaries 1
and II are as shown in Fig. 4, the theory of the marginal
case will apply.

The parameter g, in the Airy integral was calculated
by the method of characteristics. A double precision
Runge-Kutta routine was used. When a ray hit the sep-
aratrix, ¢, =b'¢; =0. The intersection of the ray and the
separatrix was noted by calculating ¢, along the ray.
Similar results were obtained when a routine with error
control was used (UBC DDIFSY). The method of false
position was used to calculate iterates of @. The value
of 3 on boundary I was calculated by a Taylor expansion
about the node @,, where y=-Vay.

In Table II, we compare the theory with Monte Carlo
experiments for a number of test points. Also shown are
some theoretical results in which the Error integral was
used. Using the leading part of the asymptotic expansion,
contours of first exit probability could be calculated.

The 0. 30 contour is shown in Fig. 4, The theory using

FIG. 4. First exit boundaries and phase portrait of the sub-
strate inhibited system considered in Sec. V, in the marginal
case,
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FIG. 5. First exit boundaries and phase portrait of the sub-
strate inhibited system considered in Sec. V, in the critical
case.

the error integral did not yield satisfactory results, but
the theory using the Airy integral did.

The Monte Carlo results are very sensitive to the loca-
tion of boundary I. Since the atiractor @, is within the
separatrix tube, it is possible to choose boundary I so
that the process will not hit I before II with probability
close to 1. Thus, the Monte Carlo study of marginal
(and critical) type systems is time consuming. On the
other hand, the asymptotic calculations, although sensi-
tive to the location of the boundary, are not any more dif-
ficult than in the normal case. In this sense, the Monte
Carlo and asymptotic techniques are complementary.

C. Marginal bifurcation

When %= 0. 069979 and kx; = 0. 25901, the deterministic
system exhibits the marginal bifurcation. In this case,
the first exit probability is of little interest. The ex-
pected time that it takes the process to hit a specified
curve R, given that %(0) =x, is of more interest. Conse-
quently, we calculate the time it takes to hit R, condi-
tioned on hitting R and ¥(0) =x. This case is treated
elsewhere. 7

D. The critical case

When & =0. 08125 and kx}=0. 261199, and the boundaries
I and IT are as shown in Fig. 5, the theory of the critical

TABLE II. Comparison of the theory with
Monte Carlo experiments in the marginal case.

utheory uthsory
Test point (Airy) M€ (# trials) (error)
(0.2, 1.2) 0.29 0. 24 (1650) 0.12
0.3, 1.0) 0.63 0.67 (1040) 0.78
(0.5, 2.2) 0.38 0.41 (1710) 0.23
(0.32, 2.8) 0.17 0.14 (1150) 0.001
(0.53, 1.71) 0.57 0.55 (1100) 0.50
0.6, 1.8) 0.62 0.65 (1430) 0.77
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TABLE III. Comparison of theory and
Monte Carlo experiments in the critical
case,

Test point 3 theory «MC (4 trials)
(0.7, 1.28) 0.67 0.71 (2040)
(0.5, 1.2) 0.63 0,68 (980)
(0.9, 2.0) 0.54 0.50 (980)
(0.6, 1.0) 0.76 0,76 (1060)
(0.5, .82) 0,78 0.77 (1060)
(0.9, 1.8) 0,59 0.61 (980)

case will be applicable. The parameters a and g were
calculated using the method of characteristics. A double
precision Runge-Kutta routine was used to calculate the
rays. More sophisticated routines, with error control,
gave similar results. Iterates of ¢, and 8, were calcu-
lated using the method of false position. The values of ¢
on the boundaries I and II were determined by Taylor ex-
panding around the nodes and then following rays that hit
the boundary. A similar technique was used in the mar-
ginal case and at the critical bifurcation. The value of

Y in a vicinity of the separatrix was calculated by a Tay-
lor expansion. The derivative of § on S was calculated
by integrating Eq. (4.14). A fourth order Runge-Kutta
routine was used. In Table III, we compare the Monte
Carlo experiments and the theoretical results.

The Monte Carlo results were very sensitive to the lo-
cation of the boundary. Since both attractors P, and P,
are contained by the separatrix tube, it is possible to
choose I and II so that the probability of hitting either
boundary is very small.
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