Conditioned averages in chemical kinetics

Daniel T. Gillespie

Research Department, Naval Weapons Center, China Lake, California 93555

Marc Mangel

Department of Mathematics, University of California at Davis, Davis, California 95616

(Received 4 February 1981; accepted 19 March 1981)

It is argued that the molecular population functions which satisfy the deterministic reaction-rate equations,
and the first moments of the solution to the stochastic master equation, can be generally regarded as
differently conditioned averages of the same random variables. Although these two kinds of averages usually
differ only on the microscopic scale, it is pointed out they can differ macroscopically for chemical oscillators.
However, this is not a sign of any inconsistency in the theory because it is fully explained by the different
conditionings employed. Both kinds of averages are seen to play legitimate, useful roles in describing the

dynamics of a stochastically evolving chemical system.

I. INTRODUCTION

Our purpose in this paper is to clarify the connection
between two kinds of dynamical variables in the theory
of cliemical kinetics, We begin by giving a brief sum-

mary of the “stochastic formulation” of chemical kinetics,

so that we can expose our basic assumptions and estab-
lish a consistent notation.

Consider a well-stirred chemical system containing
N molecular species S; (=1, ..., N) which interreact
through M chemical reaction channels R, (n=1, ..., M).
The current “state” of the system is specified by the
N-dimensional vector x=(x, x5, ..., xy), where x; is
defined to be the current total number of S; molecules
in the system (a nonnegative integer). Each reaction
channel R, is fully characterized by two quantities: First
there is a point function q,(x), defined by

a,(x)dt =probability that, given the system is in state x
at time £, an R, reaction will occur in the next
infinitesimal time interval (¢, £ +df). (1)

Generally, a,(x) is equal to the product of a “reaction

constant” ¢, times the total number of distinct R, molec-

ular reactant combinations available when the state is
x.! Second, there is an N-dimensional vector
v,= (Vu.ly Viuas ««ey VuN)r where

v,=net change in x; caused by an R, reaction, (2)

Typically, v,, is one of the integers -2, ~1, 0, 1, or 2,
Reaction R, thus induces the “state transition” x—x’
=X +V,.

Assuming that the system starts at time t=0in a
given state x =%, ={xq;, X0z, - - ., Xox), then Egs. (1) and
(2) imply that for ¢ >0 the system executes a continuous-
time Markovian random walk over the discrete integer
lattice space of x. The usual way of mathematically
analyzing this temporal behavior is through the prob-
ability function

P(x; t|xo)= probability that the system will be in state x
at time #, given that it was in state x, at

time 0. (3a)

If the total number of §; molecules in the system at time
t is represented by the random function of time X,(¢),
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and if X() =[x,(), ..., Xy()], then Eq. (3a) can also be
written?

P(x; t|x,) =prob{X(t) =x|X(0) =x,} . (3b)

A time-evolution equation for P is obtained by using
Eq. (1) and the laws of probability theory to write

P(x; t +dt [Xy) as the sum of the probabilities of the
M+1 ways® of arriving in state x at time ¢ +df from
time #*:

M
Plx; ¢+ dt|%) = 2 Plx -v,; t]%0)* ax —v,)dt
u=1

M

+P(x; t]x0) * [l - z au(x)dt] .

p=l

This leads to the “master equation”

M
P t]50) = 2 [a,x =v )Px = v, t]%0) —a,&P(x; ¢]%).
u=1
(4)

The “average” of any function f(x) = f(x, ..., xy) at
time ¢ is customarily defined by

=D, 2+ 2. fEP; t|x)

x1=0 x2=0 xN=0

EZ:f(x)P(x; t]x%o) . (5)

Multiplying Eq. (4) by f(x) and then summing over x
leads to

M

d

ar D=2, (fl+w) - fma,, - ®)
b=

In particular, putting f{x)=x; in Eq. (6) yields a set of

time -evolution equations for the first moments of P:

M
j—tu,>,=21uu,<a“(xl, o D i=1, .., N )

If all the functions a,(x,, ..., xy) Were constant or
linear in their arguments, then we could put
(@,fx1, « vy 2y M= a o)y, ..o, (ox)), and Eq. (7) would
constitute a complete, closed set of equations for the
{x;);. However, this will not be the case if any
aylxy, ..., xy) i nonlinear in any of its arguments, be-
cause the right side of Eq. (7) will then involve higher
order moments, such as {x;x,. Of course, we can al-
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ways use Eq. {6) to generate new equations giving the
time derivatives of these higher order moments, but the
right sides of these new equations will then introduce
still higher order moments, Thus, in the general case,
Eq. (7) must be regarded as merely the first of an in-
finite, open-ended hierarchy of moment equations,

The traditional “macroscopic” or “deterministic” ap-
proach to chemical kinetics avoids the open-endedness
problem by treating the evolution of the system as a con-
tinuous-state deterministic process instead of a dis-
crete-state stochastic process. More precisely, a,(x)dt
in Eq. (1) is regarded as the number of R, reactions
that will occur in (¢, ¢ +df), given the state x at time ¢,
This in turn implies the existence of N continuous, non-
yandom molecular population functions ¥,(#), ..., Zy()
satisfying

M
7t +ad) =57, () + z_;u,,,au(a?l(t), ..., ()t

since the pth term in the sum on the right is (in this
interpretation) the change in the S; molecular population
in (¢, +dt) due to R, reactions. This leads to the deter-
ministic “reaction-rate equations”

N
LE2O=2 v aTl0), .., 7)), i=1,...,N. @
u=1

We are concerned here with the connection between
the N functions (x,), and the N functions ¥,(¢), The
former are defined by the prescription (5), and satisfy
the open set of differential Eq. (7); the latter constitute
the solution of the closed set of differential Eq. (8),
but otherwise seem to be physically undefined in a
strictly stochastic context, If we neglect the correlating
effects of microscopic fluctuations and approximate

<au(X1, -..,x)v»g& au(<x1>,, coay <x,;),) s (ga)

then Eq. (7) would be approximately the same as Eq.
(8), and we could conclude that

(x;)t o J?g (t) .

In fact, it has been argued that Eq. (9b) becomes a
strict equality in the thermodynamic limit for not-too-
dense systems.5

(9b)

All these considerations seem to suggest that ¥, (¢) is
a “somewhat illegitimate but usually adequate stand-in”
for {x;),: More specifically, it would appear that even
though (i) ;(#) lacks the formal stochastic credentials
of {x;,, we need not be overly concerned since (ii) {x;),
always differs only negligibly from X;(f) for macroscopic
chemical systems, However, the purpose of this paper
is to point out that neither (i) nor (ii) is strictly correct:
In Sec. II we shall argue that x;(¢) can in fact be defined
and legitimately invoked in a strictly stochastic context,
And, in Sec. II we shall demonstrate that for some
macroscopic systems (chemical oscillators, for exam-
ple) {x;), can differ quite dramatieally from %, (z).

Il. (x,), ANDx;(t) AS DIFFERENTLY CONDITIONED
AVERAGES OF X;(t)

The interpretation of the quantity

(x)e= D %, Plx; t]x,) {10)
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as ‘the average number of S; molecules in the system

at time ¢’ is not quite complete: It is that average “con-
ditioned on the system being in state x; at time 0.” This
same conditioning clearly applies to all averages of the
kind (5), We could make this more explicit by invoking
the random functions of time X,(t) [see Eq. (3b)] and
writing

Gopde={X; () IX(O) =Xy ,

which we read as “the average value of X;(¢), given that
X(0)=x%,.” [Notice that the right hand side of Eq. (11)

is not a redefinition of {x;},, but merely a more descrip-
tive notation for that quantity.] Henceforth, we shall
refer to (x,), as the initially conditioned average of X;(t).

(11)

We shall now argue that ¥; (t) too may be regarded as
a kind of conditioned average of the random function
X;(1). To this end, we first introduce a new random
function of time dX ,(¢) defined by

ax;(t)=x,(t +dt) - X, (1) . (12)

Evidently, dX;(t) is the change in the number of §; mole-
cules in the infinitesimal time interval [z, ¢ +dt]. Now,
in that time interval, either no reactions will occur or
else some one of the R, reactions will occur,® so dx,(¢)
can assume only one of the integer values 0, vy;, vy,

«esy Vyy. If the system is in state x at time ¢, then
according to Eq. (1) the probability that dX,(f) willas-
sume the value v,;as a result of an R, reaction is just
a,(x)dt. In particular, if we take x=[%,(¢),...,%4(#)]
=x%(#), then

probidx, (¢) =v, (via R,) | X(¢) =Z(t)} =a ,(X(¢)) dt .

It follows that the gqverage of the random variable dXx;(¢),
given that X(t) =x(#), is

M
@O X =% = Y v, a (X)) dt. (13)
u=1

Comparing Eq. (13) with Eq. (8), we have the result®
% (¢ +dt) =5, (8) = {ax, ()| X (@) =x(p)) . (14)

Equation (14) says that the change in the sure function
%, in the infinitesimal time interval [¢, ¢ +dt] is equal to
the average of the random change function dX; (), pro-
vided that X(#) =%(¢). We thus conclude that the function
%;(t) may be regarded as the “average number of S,
molecules at time ¢, conditioned on the premise that in
every infinitesimal interval [t', ¢’ +dt'] between times 0
and ¢ the random change dX(¢') in the system state vec-
tor is equal to its mean {dX(¢')).” We propose to call
x;(t) the continuously conditioned average of X,(¢).

We are thus led to the view that {x;); and %,(¢) avedif~
ferently conditioned averages of the random function
X;(t). The initially conditioned average {x;), is condi-
tioned by the single requirement that the random state
vector coincide with xy at time 0, The continuously con-
ditioned average x,(¢) is conditioned both by that require -
ment and by the further requirement that the random
change in the state vector in each infinitesimal time
interval between 0 and ¢ always be equal to its mean,
The fact that (x,), and %,(¢) are averages of the same
physical quantity is certainly intuitively reasonable;
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however, since these two averages are conditioned
differently, they are not required to be equal to each
other. Indeed, in the next section we shall call atten-
tion to a case in which (x,), and ¥, (¢) behave quite dif-
ferently, yet both are “correct” given their specific
conditionings,

In principle, the initially conditioned average {x;,);
can be calculated from straightforward observations on
real evolving systems: We take a large number A4 of
replicas of the system under consideration, start them
all out at time 0 in state xy, and then note the number of
S; molecules that each replica has at the chosen instant
t. The average of those numbers will be equal to {x;),,
at least to within a relative statistical uncertainty that
goes to zero as A-=, However, the continuously con-
ditioned average x,(¢) cannot be calculated by an analo-
gous experimental recipe, because the continuous con-
ditioning procedure, although well defined mathemati-
cally, cannot be implemented on real systems. The
reason for this is that the condition dX,(¢') ={dX,(t")) re-
quires that dx,(t') be equal to an infinitesimal [see Eq.
(13)], whereas for any real system dX,(¢') will always
be equal to one of the integers 0,vy;, vy, ..., Vy;. Itis
important to emphasize, though, that this does xot imply
any inconsistency in the continuously conditioned aver -
age, because there is no hard rule that conditionings
must be physically implementable. Indeed, the history
of chemical kinetics demonstrates that a great deal of
useful, descriptive information about a chemical sys-
tem can be learned from the continuously conditioned
averages—i.e., from the solution of the deterministic
reaction-rate equations (8), This is true not only in
the “usual” case in which {x;), and &;(¢) are numerically
almost indistinguishable, ® but also, as we shall see
next, even in those exceptional cases in which (x,), and
%,(¢)-differ substantially from each other.

I1l. AN EXAMPLE OF MACROSCOPIC INEQUALITY
BETWEEN (x,), AND X;(t): CHEMICAL OSCILLATORS

The Brusselator’ is the two-component, four-reaction
system

R,;: A i»Xl ,

R;: B+X, & C+X,,

Ry: 2X,+X, = 3X,, (15)
Ry: X, A D, ,

in which the molecular populations ¢ and b of spécies A

and B are assumed to remain essentially constant, The
functions a, and vectors v, for this system are

alx, x)=¢1a, v =(1,0),

aslxy, x3) = ¢ bxy vy=(=1,1),
asley, x2) =cyxp (= 11/2, vy=(1,-1),
ayxy, %) =cyxq, v,=(-1,0) .

It follows from Eq. (8) that the continuously conditioned
averages x,(t) and ¥,(¢) satisfy the closed set of differ-

ential equations® ‘
Cy

cr1a —cy bxy ty #(% -1% —ci%1,

ax, _

= (16a)

Xy it} @)

]

X, (t}

<X”y )

<X3>e0

.

<> ;<“l>t
1 o0

FIG. 1. Schematic plots of (a) the trajectory of the point
x,(t), %, (t)), and (b) the trajectory of the point ({xy),, (x3)¢),
for the Brusselator system (15) in its oscillating regime.

%wzbfl-—ff

o (16b)

(7 ~1x, .
Also, it follows from Eq. (7) that the initially condi-
tioned averages (x,); and {x,), satisfy the open set of dif-
ferential equations

dgﬁ =e1a - b + 2oy - D) —ey (), (172)
962) = abrd =2 (e = D) (170)

It is well known that, for a certain range of values of
the reaction parameters c¢,a, czb, c¢3, and c,, the solu-
tion functions ¥,(#) and ¥,(¢) of the deterministic reaction-
rate equations (16) are oscillatory in time, More spe-
cifically, starting from almost any point in the first
quadrant of the X, %, plane, the point ((x,(¢), ¥»(?)) will
asymptotically approach a closed, stable, limit cycle
trajectory, whose 'location, size, and cycle period T
are determined by the specific values of the reaction
parameters, In particular, if (¥,(0),%,(0)) coincides
with any point P, lying on the limit cycle trajectory, as
shown schematically in Fig. 1(a), then (¥;(t), %,(#)) will
again coincide with P at times ¢t=T, 27, 3T, ... .
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The appearance of the higher order moments {xx,),
and {x?x,), in the time-evolution equations (17) for (x,),
and {x,); renders those equations open, and hence in-
soluble by known techniques. However, it is tempting
to suppose that, at least for macroscopic systems,

(e (xy = 1)x,) will be well approximated by () (x> = 1){x,),
and hence that the functions (v,), and {x,), will behave

in approximately the same way as the functions ¥, (¢)

and ¥,(¢). In particular, we might expect that the point
(1), (x),) will describe a limit cycle trajectory which
differs only microscopically from that described by

%,(t) and %,(¢). However, we shall now argue that the
point ((x),, {x,);) will in fact trace out an inwardly
spirvaling curve, asymptotically approaching some fixed
point ({(x,).., (x»)»), as shown schematically in Fig, 1(b).

The foregoing conclusion is implied, although never
explicitly stated, in recent independent analyses by
van Kampen, ® White, 1 Feistel and Ebeling, *! and
Schranner, Grossmann, and Richter.'® A mathemat-
ically rigorous analysis is quite difficult, but an easy,
heuristic way to understand what is going on here is to
examine a typical numevrical simulation of the Brusselat-
or in its oscillating regime, Such a simulation was
recently carried out by one of the authors® using a
Monte Carlo procedure that is rigorously equivalent
to the stochastic premises of Sec, I.! The results of
that simulation are reproduced in Fig, 2,

The “curves” in Fig, 2 show that a typical Brussel-
ator system, evolving in the stochastic manner pre-
scribed in Sec. I, indeed exhibits the expected limit
cycle behavior, Allowing for the effects of intrinsic
microscopic fluctuations, the limit cycle trajectory, as
estimated from Fig. 2(c), and the cycle period, as esti-
mated from Fig. 2(a) or 2(b), are quite consistent with
the solutions ¥,(¢) and %,(¢t) of the corresponding reac-
tion-rate equations (16). We note in passing that the
fluctuations in the limit cycle path along its outside
diagonal leg in Fig. 2(c), and the concommitant ampli-
tude fluctuations in Figs. 2(a) and 2(b), are unusually
large ~—about an order of magnitude larger than the
“vn fluctuation rule” would predict; we believe this ef-
fect to be genuine, and not an artifact of the simulation,'*

It is apparent from Fig. 2(c) that random fluctuations
cause only temporary excursions away from the limit
cycle path: When the system point strays off of that
path, the position-dependent “forces” a,(X,, X,) tend to
move the system point back onto the path. The system
thus has positive stability with respect to fluctuations
transverse to the limit cycle path. However, the sys-
tem has only neutval stability with respect to fluctuations
along the limit ecycle path.® To see that this is so, ima-
gine that at some instant ¢ the system point (X;, X,) co-
incides with the deterministically orbiting point (¥, ¥,),
but that at some later instant #' the inherent randomness
in the motion of (X;, X,) has resulted in (X;, X,) being
where (x;, ¥,) was at the slightly earlier instant ¢' =7
(r>0)., Owing to the past-forgetting nature of Markov
processes, the system point at time ¢’ has no way of
knowing that it is “behind schedule” by 7, so it will make
no attempt to “catch up.” The fact that it has suffered
a negative phase shift (= - 277/7') relative to the deter-
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THOUSANDS OF X, MOLECULES

THOUSANDS OF X, MOLECULES

0 T —— ~—

THOUSANDS OF X; MOLECULES

FIG. 2. Results of a 2x 10° reaction stochastic simulation of
the Brusselator system (15), with c;a=5%10%, ¢;6 =50, ¢4
=5x10"%, and ¢, =5 (reproduced from Ref. 12). (a) shows

[t, X{(tN plotted every hundredth reaction; (b) shows [£,X,(f)]
plotted every hundredth reaction; (¢} shows [X{(¢), X,(#)] plotted
every fiftieth reaction. The direction of motion in (c) is clock-
wise. The unit of time is determined by the units assigned to
the reaction constants.
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ministically orbiting point (x,, x,) is now in thepast, and
can therefore have no bearing on either the size or the
sign of the next fluctuation-induced phase shift, Evi-
dently, the phase of (X,, X,) executes, relative to the
phase of (¥4, %,), a random walk that is very reminiscent
of Einstein’s classical model of one-dimensional diffu-
sion,

To see what these observations tell us about the time
behavior of the probability function P(x; ¢|%,) for the
Brusselator, we make use of the fact that
P(xy, x5; %01, ¥g2) may be regarded as the normalized
density of representative points in the x,x, plane of an
ensemble of many identical Brusselator systems, all in
the state (xqy, xq) at time 0. Thus, at £=9,

P(xy, %3 tlxay, %g,) is a unit spike at the point (xq,, %g2),
which we shall take to lie on the continuously conditioned
limit cycle trajectory. As fincreases from 0, this unit
spike starts moving along the limit cycle trajectory in
much the same way as the continuously conditioned point
(¥,,%,) would. However, the spike also starts to spread
out as the individual ensemble members experience the
effects of random microscopic fluctuations. The ob-
servations of the preceding paragraph imply that the
spreading fransverse to the limit cycle trajectory will be
reasonably well confined, but that the spreading along-
the limit cycle trajectory will increase with each revolu-
tion as the systems in the ensemble gradually lose phase
coherence with each other, Eventually, some system
points will start “lapping” others, and the function
Plxy, x5; tlxg1, %gz) Telaxes from an orbiting peak to an
orbiting ripple of slowly diminishing amplitude on top of
a slowly growing background, Ultimately, there will be
no phase coherence at all among the ensemble members,
and no orbiting behavior can be observed in the surface
described by Plx, x5; ¢ %0y, %g2): Even though all the
representative points of the ensemble members continue
to oscillate in much the same way as the continuously
conditioned point (%,,%;), the local density of those repre-
sentative points in the x,x, plane will no longer change
with time. Plxq, x2; tixp:, Xoz) thus becomes, in the limit
t =, a time-independent crater-shaped function, which
is clearly also independent of the initial point (xg,, xg2):

ltltrf P(xl,xa; tlx()l,xog) =P,,(x1,xg) . (18)
We may expect that the larger our Brusselator system is
{in the thermodynamic limit sense), the slower will the
limit in Eq. (18) be approached; however, for any finite
Brusselator system, no matter how large, the sensible
time dependence of P will inevitably disappear after
some finite duration,

From Fig. 2, we can infer that the “crater” described
by P.(x,,x,) will be fairly high and narrow along the
hyperbolic portion of the limit cycle, but low and broad
over the diagonal leg (where each system point evi-
dently spends only a very small fraction of its time), 13
However, of more direct interest to us than the specific
shape of P_(x,,x,) is what the existence of this limiting
function implies about {x,); and {x,};; Combining Eq,
(10) with Eq. (18), we have the result that

>k Polxy, ) ={x)a, i=1,2, (19)

lim(x;), =
treo x1=0 xz:()
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where (x,), is evidently independent of both ¢ and (x,;, xg,).
We thus conclude that, although the point ((x),(x,),) in-
deed starts out on the initially conditioned limit cycle
path, it gradually spirals inward to some fixed point
(1), {*2).), as shown schematically in Fig, 1(b). As
with Eq, (18), the rate of approach to the limit point
will probably be a decreasing function of the thermody -
namic largeness of the system; however, for any finite
Brusselator system, no matter how large, the spiraling
will inevitably occur, and the limit point will be effec-
tively reached within some finite length of time, It
should be clear from the generality of our arguments
that such behavior is not peculiar to the Brusselator
alone, but will be exhibited by virtually any stable
chemical oscillator,

As stated previously, we are not the first to note that
Eq. (18) holds for chemical oscillator systems, %13
However, the consequent implication of the difference,
schematized in Fig. 1, between (x;), and x,(¢) does not
seem to have been widely appreciated. Our point here
is not only that this difference does exist, but that it is
quite understandable, and not indicative of any “discrep-
ancy,” if we view (x,), and x;(f) as the initially condi-
tioned and continuously conditioned averages of the ran-
dom function X;(¢). Clearly, both of these averages are
useful in describing the temporal behavior of the Brus-
selator; however, it is obviously important that their
specific conditionings be kept in mind,

We shall conclude by showing how the simulation re-
sults in Fig. 2 can be used to quantitatively estimate
both the coordinates of the limit point in Fig. 1(b) and
also the approximate number of revolutions executed by
((xy);, (xp),) in reaching that limit point,

As we have seen, the overriding long-term effect ina
stochastically evolving Brusselator is the loss of phase
coherence between (X, {t), X,(#)) and (X,(0), X,(0)). Thus,
the problem of predicting the location of the point
(X1(8), X, (1)) for any sufficiently large ¢ is approximately
the same as the problem of predicting the location of the
deterministically evolving point (¥,(t), ¥,(¢)) at some
rvandom instant ¢ =¢.,,. Since the average of a series of
very many measurements of x,(¢) at different random
times will be equal to the integral mean of %,(#) over one
complete cycle T, then

T
(xo,,:T“f (r)dr, i=1,2, (20)
(1]

where (x,(0), %,(0)) is a point on the limit cycle trajectory.

To within the accuracy of Eq. (20) we may approxi-
mate the time curves of x,(#) and x,(¢) with the time
curves shown in Figs. 2(a) and 2(b), respectively.
These latter curves were integrated graphically over
the nine complete cycles shown, and the results were
divided by the time required to execute those cycles.
We found that

(e = 1070, {xp).=3670 . (21)

Notice that the limit point ((x})., {xs).,) does not coincide
with the point (1000, 2000) which nulls the right-hand
sides of Egs. (16) for the parameter values used in
Fig. 2.
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To estimate the number of cycles required for
((x1)y, (x2),) to effectively reach its limit point in Fig,
1(b)—or, equivalently, the number of cycles required
for total loss of phase coherence —we proceed as fol-
lows: Let T; be the time required for the 7th oscilla-
tion of the Brusselator, and let

T = ; T,

denote the time required for » oscillations., Assuming
that the numbers T,, T,, T3, ... can be regarded as inde-
pendent elements of a fixed set of random numbers
{r,}, then T!{" can be regarded as an element of a fixed
set of random numbers {T'{"”} whose mean T® and
variance ¢’ are related to the mean T and variance ¢

of the set {T,} according to

(22a)
(22b)

T =nT |
2=nd .

The last relation shows how the statistical uncertainty

0, in the time required for » cycles increases with », %!
Initially, the individual Brusselators in our ensemble
are all in phase with each other; they will be effectively
out of phase when the uncertainty in the time required
for n cycles has become comparable 'to the time required
for a single cycle, Thus, using Eq. (22b), the critical
number of oscillations n, required for loss of phase co-
herence satisfies (7,0?)/2=T. Solving for n, gives!!

n,=(T/cl . (23)

It follows that the approximate time f, required for loss
of phase coherence is ¢, =n,T =T°/c?,

We measured the eight time intervals between the nine
vertical rise lines in Fig. 2(a). The values obtained
ranged from 1,42 to 1.61 time units and their mean and
standard deviation were calculated to be 7'~ 1,51 and
o=~0,07, respectively. Substituting these values into
Eq. (22), we conclude that

n, =465 (24)

Thus, the point ((x,),, {x,),) for the Brusselator system
simulated in Fig. 2 should effectively arrive at its limit
point (1070, 3670) [see Eq. (21)] after about 465 oscil-
lations, or, equivalently, in about 700 time units,

Open-ended hierarchies of equations such as Eq. (17)
arise in many areas of physics. Because of their in-
tractability, such equations are usually analyzed by
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making some kind of “closure approximation,” the sim-
plest being that which would reduce Eq. (17) to Eq. (16).
It is therefore noteworthy that the rather detailed pic-
ture of the time behavior of (x,); and (x,); developed here
was not obtained by making any artificial closure as-
sumptions,
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