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Natural resource management has long recognised that the multi-objective nature of management is important,
but has struggled to operationalise this into quantitative, measurable objectives for functional use in manage-
ment. Operationalising broader ecological and social objectives has been particularly problematic. In fisheries
management, the focus has mainly been on target species sustainability and, in the past few decades, on prof-
itability. However, multi-objective management is now essential as fisheries have become recognised as complex
social-ecological-systems.

Policy and legislation demand a move towards quantitative approaches for reconciling multiple objectives
and operationalising these within harvest strategies. We present a quantitative, non-commensurable-unit ap-
proach, via a multi-indicator value function with explicit objective preference weights. We use a simulation to
set Total Allowable Catches (TACs) for three main species groups in a reef line fishery in Australia's Great Barrier
Reef. Our method enables stakeholders to consider a richer range of tradeoffs than is possible with bio-economic
models. Moreover, it allows the formal evaluation of performance across alternative stakeholder group pre-
ferences, providing an impartial way to obtain an overall optimum TAC. The simulation requires extensive
fishery data and requires the performance indicators associated with each objective to be quantitatively and
defensibly defined. Thus, our approach provides a pathway forward that forces managers and stakeholders to
confront the associated data requirements.

1. Introduction minimising overall costs, is the ideal TBL outcome. In a fisheries con-

text, Stephenson et al. (2017) proposed four “pillars of sustainability”

Maintaining healthy ecosystems and healthy human communities
that depend on them is increasingly recognised as important to natural
resource management, including fisheries (Asche et al., 2018;
Berkes, 2000; Charles, 1995; De Young, 2008; FAO, 2009;
Marshall et al., 2017; Voss et al., 2014). Elkington (1998) conceived the
Triple Bottom Line (TBL) — encompassing economic, ecological and
social objectives — as a tool for influencing a single decision maker to
explicitly value non-financial objectives by optimising over the three
different objectives. Halpern et al. (2013) note that maximising con-
servation goals and achieving equity in social outcomes, while
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that include institutional aspects in addition to economical, ecological
and social “pillars”. Pascoe et al. (2013b) also considered institutional
or managerial objectives of “simplifying and improving management
structures”.

In fisheries, several jurisdictions have legislated the consideration of
multiple objectives. For example, the United States Magnuson-Stevens
Fishery Conservation and Management Act (1996) mandates con-
sideration of economic and social outcomes in addition to environ-
mental outcomes in National Standard 8. In Australia, the Fisheries
Management Act 1991 requires the effective integration of long-term
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and short-term economic, environmental, social and equity considera-
tions into policy development for Commonwealth-managed fisheries
(Department of Agriculture and Water Resources, 2018), while the
Productivity Commission Inquiry into Marine Fisheries and Aqua-
culture also reinforced the need to include social, economic and en-
vironmental considerations into fisheries policy and management
(Productivity Commission, 2016).

Concurrent with the recognition of the need to include multiple
objectives into fisheries management has been the increased develop-
ment and adoption of harvest strategies to assist in management deci-
sion making. Harvest strategies comprise pre-agreed monitoring and
performance indicators (usually obtained from a stock assessment), and
decision or harvest control rules invoked in response to the assessment,
that are collectively used to control fishing mortality on the target
species (Butterworth and Punt, 2003; Punt et al., 2002; Sainsbury et al.,
2000). In fisheries management, harvest strategies are used for tactical
fisheries management to set control variables such as the Total Allow-
able Catch (TAC) or limit recreational catch through daily bag limits
per person (Garcia et al., 2003). Concomitant with the development of
harvest strategies has been the development of quantitative tools to
assess potential harvest strategies. In particular, Management Strategy
Evaluation (MSE) has developed as a formalised approach to pre-test
different harvest strategies via simulation before their implementation
(Punt et al., 2016; Smith, 1994; Smith et al., 1999).

Although the recognition of the importance of consideration of TBL
(and in some cases the extended fourth pillar relating to governance)
outcomes in fisheries management has occurred concurrently with the
recognised benefits of the use of harvest strategies to aid management
decision making, the implementation of TBL has not been oper-
ationalised ~within fishery harvest strategies (Mangel and
Dowling, 2016) nor MSE. Indeed, Elkington (2018) sought to recall and
rethink the TBL concept, stating that it has “failed to bury the single
bottom line [economic] paradigm”.

In this paper, we present a quantitative, non-commensurable-unit
approach, via a multi-indicator objective function to set TACs for three
main species groups in the Queensland reef line fishery on Australia's
Great Barrier Reef. The fishery is complex in that it i) comprises several
sectors with disparate motivations, including commercial, charter and
recreation; ii) targets multiple important reef species; and iii) is un-
dertaken in a World Heritage Area facing significant pressures ranging
in scale from local to global (Great Barrier Reef Marine Park
Authority, 2019). The Queensland Government's Sustainable Fisheries
Strategy 2017-2027 states that TBL objectives should be considered in
the development of harvest strategies for all major fisheries that fall
within their jurisdiction (State of Queensland, 2017). We use simulation
with explicit objective preference weights. We focus the requisite
methodology for explicitly incorporating all objectives as quantifiable
and comparable through the development of a scaled performance in-
dicator for each objective.

Our approach is consistent with the “efficiency frontier”
(Halpern et al., 2013), which is a curve or surface on which optimal
solutions lie, different solutions representing different weights given to
conservation versus equity goals. We consider the objective weighting
profile for different stakeholder groups as part of an integrated value
function that is optimised across a suite of catch levels (cf.
Rindorf et al. (2017) who progressively refine a suite of fishing mor-
talities corresponding to sustainable yield). Moreover, our approach
provides a means to reconcile alternate stakeholder objective pre-
ferences. That is, we present a formal way by which to trade off the
objectives across the various sets of weightings, where these show a
lack of agreement amongst stakeholders. This demonstrates a rational
approach to “mutually disagreeing”.

Ecological Modelling 435 (2020) 109243

2. Background

2.1. Incorporating multiple objectives into fisheries management decision
making

To date, consideration of the TBL and governance objectives has
been largely limited to conceptual treatment (Stephenson et al., 2017)
or intuitive forecasting methods using expert opinion (Bernstein and
Cetron, 1969; Dichmont et al., 2012, 2014; Pascoe et al., 2019). For
example, Pascoe et al. (2009) presented a qualitative framework that
aids in the analysis of alternative spatial management options in coastal
fisheries. The framework combined expert opinion and the Analytic
Hierarchy Process (Saaty, 1980) to determine which options performed
best, taking into account the multiple objectives inherent in fisheries
management. Read and West (2010) used a qualitative Ecological Risk
Assessment to assess the effectiveness of managed-use zones in six
multiple-use marine parks located in New South Wales. Dichmont et al.
(2012, 2016) employed an expert group to qualitatively develop dif-
ferent governance “strawmen” (or management strategies). These were
assessed by a group of industry stakeholders and experts using multi-
criteria decision analysis techniques against the different objectives;
one strawman clearly provided the best overall set of outcomes given
the multiple objectives.

Development of quantitative models, such as those underlying
“standard” MSE, to assess multi-objective outcomes of harvest strate-
gies has been complicated by the abstract nature of some of the ob-
jectives, particularly social objectives. A major problem is that arbitrary
increases or decreases in catch or effort have often become a proxy for
socio-economic considerations (Mangel and Dowling, 2016).
Dichmont et al. (2010) illustrate that this is a fraught assumption. While
maximum economic yield (MEY) has been identified as a primary
management objective for Australian fisheries, first attempts at esti-
mating MEY as an actual management target for an actual fishery (ra-
ther than a conceptual or theoretical exercise) highlighted some sub-
stantial complexities generally unconsidered by theoretical fisheries
economists. Using a bioeconomic model of an Australian fishery for
which MEY is the management target, Dichmont et al. (2010) showed
that unconstrained optimisation may result in effort trajectories that
would not be acceptable to industry or managers. For example, while in
theory it may be economically optimal to reduce fishing effort in the
short term, most bio-economic models did not account for the costs
associated with effort reduction or fishery closure, nor may it be pos-
sible for fishers to survive a short-term period of negative profits, be-
cause vessels still need to cover their fixed costs (see Mangel (2006) pg
218 for a simple example). Additionally, in the case of recreational
fishing, economic value extends to non-catch aspects (such as catch
rates, available fishing days, and season length), as well as the trade-
offs between attributes that are trip-based and those that measure op-
portunity over a season (Young et al., 2019). Clearly, catch and effort
are not socio-economic proxies, so that both short-and long-term social
objectives need to be considered explicitly within any formal evaluation
framework that is used to operationalise the TBL.

Benson and Stephenson (2018) reviewed TBL methods and found
that two of seven proposed tools to support decision making in the
management system could provide tactical advice, but only Manage-
ment Strategy Evaluation (MSE) provided advice that was consistent
with their criteria for generation, transmission, and use of scientific
information in management advisory processes. Even MSE (e.g.,
Plaganyi et al. (2012, 2013)) is conditioned on how TBL objectives are
weighted, and there is no means to formally make recommendations
that reconcile different interest groups.

Stephenson et al. (2017) identified three key impediments to em-
bracing TBL and governance objectives in a full quantitative analysis:
the lack of explicit social, economic and institutional objectives; the
lack of a process for routine integration of all four pillars of sustain-
ability; and a bias towards biological considerations. Incorporating
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social relationships, together with economic and ecological sustain-
ability objectives into models to provide management advice is chal-
lenging, particularly when this advice requires complex trade-offs be-
tween objectives (Pascoe and Dichmont, 2017). The process is further
complicated by differences in quality and quantity of data across fish-
eries and difficulties in quantifying social objectives and outcomes.

Quantitative attempts to address the TBL have been made using
bioeconomic modelling, but social objectives have generally been
downplayed, and the treatment has largely been theoretical as opposed
to operational (Pascoe et al, 2017). Plaganyi et al. (2012) and
Plaganyi et al. (2013) used a suite of integrated models to capture
multiple objectives, aimed at assessing TBL outcomes of different al-
locations between islander and non-islander fishers of the Torres Strait
Rock Lobster Fishery, as well as different management strategy out-
comes. These included a Bayesian Network model to assess how the
islander sector might respond to different management strategies and
allocations (van Putten et al., 2013), and a model of non-islander fleet
adjustment under different quota allocations (Pascoe et al., 2013a). The
economic implications of the fleets’ effort levels were assessed using a
bioeconomic model (Plaganyi et al., 2012).

Where social objectives have been explicitly included in quantita-
tive models, these have often been limited to metrics that can be readily
linked to catch or effort levels, such as employment. For example,
multi-objective goal programming models included economic (profits),
social (employment) and environmental (stocks size, discards etc.) ob-
jectives as specific targets, and estimated the fleet structure and catches
required to optimise the fishery performance across these objectives
given different objective weights (e.g. Charles, 1989; Mardle et al.,
2000; Pascoe and Mardle, 2001). More recently, bioeconomic models
based on co-viability analysis have been developed to assess manage-
ment strategies that achieve at least minimum levels of outcome under
each TBL objective (e.g. Gourguet et al., 2016).

More commonly, bioeconomic models have been applied to address
just the economic and environmental TBL pillars. Zimmermann and
Yamazaki (2017) modelled a multi-stock fishery to study how biolo-
gical and economic management objectives were affected by stock in-
teractions. Punt et al. (2010) modelled the Australian Northern Prawn
Fishery, focusing on MEY and the level of effort in each of two fishing
strategies to maximise the net present value of fishery profits.
Gaichas et al. (2017) used a length-structured, multispecies, multi-fleet
model to illustrate trade-offs between objectives of yield, biomass,
species diversity and revenue, under changing environmental condi-
tions. Guillen et al. (2013) estimated MSY and MEY in multi-species and
multi-fleet fisheries, and analysed the resulting impacts on the optimal
effort allocation between fleets that had different economic structures.
Griffin and Woodward (2011) analysed a wide range of recreational
management strategies and their impacts on red snapper yield, eco-
nomic surplus and fish stock. Dichmont et al. (2013) used an MSE that
included a bio-economic and ecosystem model to evaluated marine
spatial closures with conflicting fisheries and conservation objectives.

Pascoe et al. (2013b) showed the importance of stakeholder pre-
ferences in TBL management by assessing the relative importance of the
different objectives to different stakeholder groups in the Queensland
East Coast Otter Trawl Fishery, Australia. Across stakeholder interest
groups, preference weightings showed a 4-fold difference in economic
outcomes, 2-fold difference in social outcomes, and almost 2-fold dif-
ference in environmental outcomes. This motivates the need to re-
concile weightings, and TBL harvest strategies, across interest groups.

To be sure, operationalising the triple bottom line, beyond a simple
conceptualisation is complex. Embedding the TBL in formal manage-
ment requires each of the TBL objectives to be operational (quantifi-
able) as a performance indicator, and objectives need to be weighted
according to individual preferences, which will naturally vary across
the fishery's stakeholders. Objectives need to be evaluated in the con-
text of a formal harvest strategy, and preference weightings need to be
reconciled amongst and between stakeholder groups. Finally, for
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quantitative evaluations, operational objectives need to be direct or
indirect functions of the management mechanism used within the
harvest strategy.

Despite these challenges, legislative mandates require TACs to be set
based on TBL objectives and their associated performance indicators.
The challenges need to be met in a quantitative manner. The question
remains as to how to optimise a TBL value function, given a set of
weightings, across a range of scenarios and a range of stakeholder in-
terest groups. Richerson et al. (2010) showed that, by using relative
quantities, triple bottom line performance metrics that were otherwise
incompatible could be made commensurate. Mangel and
Dowling (2016) demonstrated a more fundamental way of interpreting
weightings for various stakeholder groups, in the form of a single TBL
value function. Our simulation approach builds on and extends this
previous work.

2.2. Case study fishery: the Queensland Coral Reef Finfish Fishery

The Queensland Coral Reef Finfish Fishery ranges from Cape York
(10°41’S) in the north, to Bundaberg (24°30’S) in the south, operating
mostly within the Great Barrier Reef Marine Park. The commercial
sector mainly targets several species of coral trout (Plectropomus and
Variola spp., CT), of which P. leopardus is predominantly landed as live
fish and exported to Asia; red-throat emperor (Lethrinus miniatus, RTE);
and over 100 other reef-associated fish species (OS) including groupers
(mainly Serranidae), emperors (Lethrinidae) and tropical snappers
(mainly Lutjanidae), landed as dead whole fish (Thébaud et al., 2014).
In addition, there is a large, valuable and iconic recreational fishery, a
regional charter fishery, and a small indigenous fishery.

Commercial operators use hand-held lines with baited hooks, with
vessels ranging from single, small vessels that take short (12-48 hour)
trips, to small fishing dories (tender boats) operating from larger mo-
ther vessels that undertake trips of up to three weeks. Commercial
fishers employ various targeting strategies: some boats are fully dedi-
cated to live CT capture, while others actively target a broader range of
species. The commercial fishery is subject to a range of input and output
controls, including limited entry, a commercial total allowable catch,
allocated via individual transferable quota (ITQ) units, tradability of
input and output entitlements, and seasonal spawning closures. The
recreational and charter fishery is controlled through control of inputs
such as daily limits per species group per fisher, and seasonal spawning
closures. Within the Great Barrier Reef Marine Park there are also no-
take areas that apply to this fishery.

The fishery has a Working Group consisting of stakeholders from the
commercial, recreational and charter sectors, a conservation sector
representative, fisheries and marine park managers, and scientists. The
Working Group provides advice to Fisheries Queensland on the opera-
tional aspects of the management of the fishery, including the devel-
opment of a harvest strategy for the fishery.

3. Methods
3.1. Objectives, performance indicators and preference weightings

Previous studies of fisheries management objectives in Australian
fisheries (Brooks et al., 2015; Farmery et al., 2019; Jennings et al.,
20165 Pascoe et al., 2014, 2013b) identified 75 different potential ob-
jectives, each of which fell in one of the following categories: ecolo-
gical/environmental, economic, social and institutional/management.
With these as a starting point, a series of workshops held with members
of the Working Group (approximately 20 different individuals were
involved in the discussions) allowed us to iteratively identify the 22
objectives of most relevance to the fishery (Table 1). One objective
(4.2.2) was considered to be outside of the mandate of fisheries man-
agers and therefore the control of a harvest strategy. As a result, only
the remaining 21 objectives were considered in the simulation.
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Table 1
Summary of the 22 fishery objectives identified by the Working Group.
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Overarching objective Sub-objectives

Specific objectives

1. Ensure ecological
sustainability

1.1. Ensure resource biomass sustainability

1.2 Ensure ecosystem resilience

1.3. Minimise risk of localised depletion

2. Enhance fishery economic

performance totals for each of the following sectors

2.2. Maximise value of recreational fishers and charter

experience (direct to participant)

2.1 Maximise commercial economic benefits, as combined

1.1.1 As per the Queensland Sustainable Fisheries Strategy, Policy achieve
Buey (biomass at maximum economic yield) (~60% unfished biomass), or
defensible proxy, by 2027 (if below biomass at maximum sustainable yield,
Busy, aim to achieve Bysy (~40-50% By) by 2020), for the main commercial,
charter and recreational species (coral trout, RTE and key other species yet to
be identified)

1.1.2 Minimise risk to Other Species (that are harvested, per the “Other
Species” list) in the fishery which are not included in 1.1.1. above

1.2.1 Minimise risk to bycatch species

1.2.2 Minimise discard mortality (of undersized target species, or from high-
grading of target species)

1.2.3 Minimise broader ecological risks

1.2.4 Minimise risk to threatened, endangered and protected species (TEPS)
1.3.1. Due to fishing

1.3.2. In response to environmental event (e.g. cyclone, climate change)
2.1.1 Commercial fishing industry profits

2.1.2 Charter sector profits
2.1.3 Indigenous commercial benefits

2.3 Maximise flow-on economic benefits to local communities

(from all sectors)

2.4 Minimise short term (inter-annual) economic risk

2.5 Minimise costs of management associated with the harvest
strategy: monitoring, undertaking assessments, adjusting

management controls
3. Enhance management
performance
4. Maximise social outcomes
indigenous and commercial fishing

4.2 Improve social perceptions of the fishery (social licence to

operate) (rec, commercial, charter, indigenous)

4.1 Maximise equity between recreational, charter,

3.1 Maximise willingness to comply with the harvest strategy

4.1.1 Increase equitable access to the resource

4.2.1. Through sound fishing practices, minimise adverse public perception
around discard mortality (compliance with size limits, environmental
sustainability, and waste)

4.2.2. Maximise utilisation of the retained catch of target species

4.3 Enhance the net social value to the local community from

use of the resource

4.2.3 Through achievement of objectives 1.1 and 2.3, maximise the potential
for fishing to be perceived as a positive activity with benefits to the
community (commercial, recreational, and charter)

4.3.1 Increase access to local seafood (all species)

4.3.2 Maximise spatial equity between regions or local communities

We translated each conceptual objective into an operational objec-
tive. To be operational, an objective had to be measurable and simu-
lation-achievable, with quantitative performance indicators against
which it could be assessed (Table 1, Table SI 1).

We used a modified version of the Analytical Hierarchical Process
(Pascoe et al., 2019) through an online survey of 110 fishery stake-
holders to elicit preference weights. The approach used comparisons of
each set of objectives at each level of the hierarchy (i.e. the overarching
objectives, sub-objectives and specific objectives in Table 1) and pro-
duced relative weights by stakeholder group at each level.
Pascoe et al. (2019) fully describe the approach taken to weight the
objectives and details of the resultant weights associated with each of
the objectives.

3.2. Simulation model

To more quantitatively evaluate TBL and governance objectives, we
developed a simulation model, approximating the three main species
groups in the fishery: coral trout (CT), red-throat emperor (RTE), and
other species (OS). The simulation is not fitted to data and is based on
the assumption of perfect information: it contains neither a stock as-
sessment nor a sampling model to estimate underlying biomass.
However, to give the simulation model more fidelity to nature, we
calibrated species’ biomass levels and trends using stock assessment
models (Leigh et al., 2006, 2014; O'Neill et al., 2011) and the historical

catch data for the different sectors (described in detail below).

We simplified the fishery to two latitudinal regions (north and
south), noting that, longitudinally, all commercial fishers concentrate
their effort on the mid-shelf along an essentially north-south coastline.
We chose the boundary between regions at latitude 18.1°S to allow for
both lower fishing intensity and greatly decreased abundance of red-
throat emperor north of this latitude, as presently occurs. We assumed
no fish movement between regions, and region-specific recruitment. In
the projections, we assumed that the charter and recreational fishing
mortality were equally distributed between regions. We distributed the
commercial fishing mortality as per equation (13) in Supplementary
Material 1.5 (Little et al., 2007).

In a 31-year historical period of the simulation, we calculated
fishing mortality based on the species-, sector- and region-specific his-
torical catches for the two regions, after which we used the optimisa-
tion to determine a total allowable catch for each species group, allo-
cated to one or more sectors, for a subsequent 25 years. The TACs also
had the option of being region-specific. In Supplementary Material 1,
we provide a full description of the population dynamics.

We optimised, over a range of possible TAC levels, a value function
for each of a given set of stakeholder group weightings. This approach
allowed us to test any harvest strategy decision rule, but here we lim-
ited our treatment to determining optimal species-specific, and, for
some scenarios, region-specific, TACs across the operational objectives.
We assumed that the optimised TACs were fully realised, with no over-
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or under-catch.

Following Richerson et al. (2010) and Munch et al. (2017), we de-
fined a quantitative performance indicator for each of the 21 opera-
tional objectives, which had to be a function (directly or indirectly) of
the management control; in this case, the TAC. Defining these opera-
tional objectives required strong assumptions about the relationship
between the resource, fishery and control rule, particularly for the so-
cial objectives (Table SI 1, Supplementary Material 1). In general, the
objectives are denominated in different units, so were normalised from
0 to 1 (with O being the “worst” performance, and 1 the “best”), to
make the performance metrics commensurate (Richerson et al., 2010).

In setting functional forms for the performance indicators (i.e. de-
termining the relationship between the performance indicator and the
TACQ), and associated target and limit reference points, we had to ensure
that the logic remained as consistent as possible throughout, to avoid
nonsensical or uninformative zones along the solution surface.
Specifically, we: i) avoided uninformative “plateaus” to the extent
possible. That is, we avoided “hockey stick” style relationships where
the value of the performance indicator remained at 1 above the target
reference point, and rather penalised the performance indicator as a
function of its distance from the target; ii) detected and removed “im-
possible conflicts” that compromised the fitting process (for example, if
the target reference points for the relative biomass of each species are
such that OS relative biomass is greater than its target reference point,
while CT and RTE relative biomasses are less than theirs, it is very
difficult to optimise the TACs when different species are being driven in
different directions); and iii) ran the simulation using single, or subsets
of, performance indicators only, to ensure that each was behaving as
anticipated. The functional forms of each performance indicator are
illustrated in supplemental figure 1.8.

Having defined the 21 quantitative performance indicators, we then
applied a corresponding stakeholder preference weighting to each
performance indicator and summed to obtain an overall value. The
value function in year y for any set of stakeholder group g’s objective
preference weightings is

21

Vegy = Z PL; - Wt; o
j=1 (€]

where PI;, is the value of performance indicator j in year y, and Wt; ¢ is
the weighting of performance indicator j by stakeholder group g. In
each year y of the simulation projection, we optimised to find the
species-specific TACs that maximised Vg o , (Mangel and Dowling
2016).

To ensure that the global minimum was achieved when optimising
across a rugged likelihood profile, we initialised (“peppered”) the
model using 64 different parameter combinations of initial TAC values
(for those scenarios for which TACs were also region-specific, one-third
of the species’ initial TAC value was assigned to the northern region,
and two-thirds to the southern region). That is, initial values for each
species’ TAC were set at 300t, 1000t, 2000t or 3000t (4 sets of values
for each of 3 species = 4 X 4 X 4 = 64 initial parameter value
combinations). These values were initial guesses for the TAC para-
meters based on the historical catch levels, and used for each year of the
projections, that were then changed through estimation by the opti-
misation process.

Given the optimum TACs for each stakeholder group's weightings,
we calculated the value function using the weightings of every other
stakeholder group. For each year, this gives a matrix of values ac-
cording to each set of stakeholder group weightings, calculated using
the performance indicators derived from the optimal strategy (TAC) for
each stakeholder group. We write this as a matrix in which each row
represents one stakeholder group's optimal strategy, which is applied to
each stakeholder group's preference weighting, by column. Thus, for n
stakeholder groups, we have a matrix of the form
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Viny Vizy = Vigy = Viny
Vory - Vany

ng Ly Vg,g 5y

Vary Vazy = Vagy = Vany

Each column of the matrix is standardised relative to the value for
that column's stakeholder group for which the strategy is optimal, so
that the diagonal elements are equal to 1.

We used two alternative criteria to select the overall optimal TAC: i)
the highest average value across all stakeholder weightings (i.e., the
row of the matrix that has the highest average, indicating that the
strategy is overall optimal across all preference groups), and ii) the
highest minimum value across all stakeholder weightings (the “max-
imin” criterion; the row of the matrix that has the highest minimum
value across, indicating that this strategy results in the “minimum
whinge” across all preference groups).

3.3. Input data

The historical harvest and effort data for each of the three species
groups, for each of the commercial, charter and recreational sectors,
span the 31 years from the beginning of the Queensland commercial
logbook database in 1988 to 2018. Specific species targeting informa-
tion was generally not available. The commercial sector focuses
strongly on coral trout, so that we could quantify effort from com-
mercial vessels equipped for live CT, but we could not delineate activity
directed at dead CT, RTE and OS.

Commercial and charter harvest and effort came from the logbook
database that has been compulsory for commercial fishers since 1988
and for charter fishers since 1996. We extrapolated charter data back to
1988 by assuming that they were constant over the period 1988-1996.

Recreational harvest and effort came primarily from the Australia-
wide National Recreational and Indigenous Fishing Survey in 2000, and
Queensland's Statewide Recreational Fishing Surveys in 2011 and 2014
(Henry and Lyle, 2003; Taylor et al., 2012; Webley et al., 2015). In-
formation in some other years (1997, 1999, 2002 and 2005) came from
Queensland surveys that used different methodology. The latter surveys
were used only as a trend and their overall estimates were scaled to
match that from the 2000 survey. We interpolated data loglinearly for
the years between 1997 and 2014 in which surveys were not carried out
and assumed recreational harvest and effort were constant from 1988 to
1997, and from 2014 to 2018. We subtracted charter records from the
recreational surveys in order to avoid double-counting of charter data:
we regarded the charter logbook database as more accurate and it also
included data from guests who did not live in Queensland.

We defined effort for the commercial and charter sectors respec-
tively as the number of commercial-dory days or charter-guest days on
which any fish were caught. Reliable data were not available on any
finer time scale such as hours fished, or on days on which no fish were
caught. For the recreational sector, we defined effort as the number of
person-days on which fishing took place, including zero catches. Such
measures of effort are particularly suited to TBL inputs such as costs of
fishing, quality of fishing experience and impacts on non-target species.
Their associated catch per unit effort (CPUE) ratios were less accurate
indices of abundance of fish than would have been produced by, for
example, standardisation by generalised linear models.

In Appendix Table Al, we summarise the general model and bio-
logical input parameters. They were derived from stock assessments of
CT (Leigh et al., 2014), RTE (Leigh et al., 2006), and parameters for
tropical snappers Lutjanus spp. (O'Neill et al., 2011). Lutjanus spp.
constitute a substantial proportion of the OS catch, and many of them
are long-lived, thereby providing contrast with CT and RTE, and pro-
viding a precautionary slant to the analysis. For the OS group, we used
growth and weight-at-length for crimson snapper L. erythropterus, which
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Fig. 1. Reconstituted or actual historical time series of commercial, charter and recreational catch in the Coral Reef Finfish Fishery, by species group and region.

are typical of the size of species in the OS category. We chose OS values
of 0.15 yr! for the natural mortality rate M and 8 years as the age at
maturity as typical for tropical red snappers. The value of the initial
population-size parameter (see SM for details) for OS is a conservative
educated guess to produce exploitable biomass approximately three
times that for coral trout, bearing in mind that the OS category covers a
multitude of species. The proportional splits of recruit numbers into
regions was based on historical catch sizes, adjusted for the lesser in-
tensity of commercial and charter fishing in the northern region (see SM
for further details).

The number of age classes (20) was sufficient to embrace the life-
spans of CT and RTE. Some of the OS species such as Lutjanus spp. live
to more than 40 years but are still adequately covered by 20 age classes
because they grow relatively quickly. Moreover, the final age class is a
“plus group” containing all fish aged 19 years or more.

3.4. Alternative TAC specifications

3.4.1. Commercial TAC only

We began by applying a dynamic TAC only to the commercial
sector. Currently, the charter and recreational sectors have no TAC, and
the historical data for the charter and recreational sectors show a re-
latively constant catch over recent time (Fig. 1). Thus, we fixed catch
for these sectors, based on the average catch for each species group over

the final three years of the historical time series.
Unless stated otherwise, in this and all other scenarios used the
highest average, to obtain the “winning” stakeholder group preferences.

3.4.1.1. Commercial TAC optimised with "Maximin" criteria. When
determining the overall optimal TAC across stakeholder groups, we
took as the default the highest average value across all stakeholder
weightings. In this scenario, the TAC was assigned to the commercial
sector TAC only, but using the “maximin” criteria, as opposed to using
the highest average, to obtain the “winning” stakeholder group
preferences. That is, the “maximin” approach takes the highest
minimum value across all stakeholder weightings, indicating that this
strategy results in the minimum loss of value across all preference
groups.

3.4.2. Commercial and charter TAC
3.4.2.2. Base 2-TAC and 1 area. One of the alternative harvest strategy
options proposed by the fishery Working Group was for the charter
sector to have its own TAC. For this scenario, we divided the modelled
TAC as a fixed proportion (based on historical precedence) between the
commercial and charter sectors. The recreational projected catch
remained a fixed catch as described above.

This commercial and charter TAC scenario formed the basis for
several additional scenarios including simulating the effect of
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environmental perturbations and climate change.

The reasons for building from this 2-sector alternative scenario ra-
ther than a commercial only TAC is because the former scenario con-
ferred greater flexibility across the fishery through enabling the ma-
jority of the catch to be dynamically modelled, and it was a key scenario
considered in the Pascoe et al. (2019) study of the same fishery.

3.4.2.3. Cyclone (“acute” event) and climate change (chronic regime
shift). To consider the effect of key environmental influences, we
simulated acute and chronic environmental change in a simple way.
Although these simulations are rudimentary, they allow us to
acknowledge the importance of such external forces to the fishery
(Hughes et al., 2018; Kim et al., 2019) and to illustrate how their
impacts might be considered.

Tropical cyclones are semi-regular events that correlate with major
falls in fishery catch rates of the primary target species group coral trout
(CT) in the southern region of the fishery, with simultaneous increases
in red-throat emperor (RTE) catch rates (Bureau of Meteorology, 2019;
Courtney et al., 2015; Queensland Government, 2019). We simulated a
single cyclone event in the 5% year of the projection period, by reducing
the availability of the CT species group by 40% and increasing avail-
ability of the RTE species group by 20% in the southern region for years
5-8. That is, we assume no impact on the underlying biomass, but ra-
ther on the availability of these species groups to the fishery.

We modelled climate change as a 1% per year migration of all
species from the northern to the southern region, as well as an overall
reduction of abundance of all species by 0.7% per year. These figures
were chosen as levels that made a substantial difference but not enough
to cause a complete fishery collapse.

3.4.2.4. Over-exploited resource. To acknowledge that the level of
historical fishing pressure was not high for all species, particularly for
RTE and OS species groups, we considered a scenario where the stock
was heavily fished for an additional 10 years before the projections,
with constant catches by each fleet in each region of 1.6 times, 100
times, and 4 times that of the final historical year for CT, RTE and OS,
respectively. These multipliers were chosen to give catch levels that
would drive each species toward the limit reference point of 20% of the
initial biomass by the end of the additional 10 years. In the case of RTE,
the population biology was so resilient that even 100 times the final
year catch only drove the stock level down to 47% of the initial stock
size. For the CT and OS species groups, any heavier fishing than 1.6 or
4.0 times the final historical year would drive older age classes to
extinction.

3.4.3. Area-specific TAC scenario

We also ran an additional simulation in which TACs were set by
region (thus 6 TACs per annum). We used the fleet dynamics models
developed in previous studies of the fishery (Little et al., 2007, 2016) to
distribute fishing mortality by area.

3.4.4. Commercial, charter and recreational TAC

In an additional scenario, we assigned all sectors fixed proportions
of the modelled TAC. For each of these scenarios, the species-group-
specific TACs were for the whole fishery with all regions combined (3
TACs per annum). We used the previously developed fleet dynamics
models (Little et al., 2007, 2016) to distribute fishing mortality. It
should be noted that an annual (non-charter) recreational TAC is not
practicable for the fishery, as there is no mechanism to record recrea-
tional harvest in close to real time. This case is modelled but only as a
single scenario.

3.5. Model uncertainties and sensitivity analysis

Because the emphasis of this paper is a simulation that oper-
ationalises a multi-objective (TBL and governance objectives) harvest

Ecological Modelling 435 (2020) 109243

strategy, and there are multiple levels of unknowns and assumptions,
the results should be interpreted with caution. The underlying oper-
ating model incorporates assumptions around the groupings of species,
the fleet dynamics, and fish movement and recruitment patterns and
these are assumed known. We also simplified the spatial regions and the
characteristics of the commercial fleet (in combining “live” and “dead”
CT fishers, dedicated RTE and OS fishers), as well as various inferences
to approximate the historical catch and effort for the recreational
sector.

Furthermore, translating each conceptual objective into a quantifi-
able operational objective (performance indicator) that is some func-
tion of the catch or effort requires assumptions concerning the form of
the relationship for each performance indicator, the values of any as-
sociated reference points, and tolerance thresholds (Table SI 1). One
way to have reduced the associated uncertainty would have been to
have used higher-order (hence, fewer) objectives, but we did not do so
because these were too vague in their articulation and contained too
much inherent (hidden) detail to be sufficient for purpose.

Consequently, we undertook simple sensitivity analyses wherein we
fixed the form of the relationship of each performance indicator and
considered only one alternative parameter specification. The form of
each sensitivity test is described in Appendix Table A2. We found that
the performance indicators related to target species sustainability and
commercial profitability resulted in the strongest changes (increases or
reductions) in interannual variability in species-group-specific catch,
and across the suite of performance indicators. The latter is un-
surprising, since most of the performance indicators are functions of
catch and biomass.

In general, the indicator values that were most strongly affected
within sensitivity tests were those to which the change in specification
was being applied. However, other performance indicators were af-
fected by changes in the parameter values of any one performance in-
dicator, typically with an increase in variability about their mean, if not
a change in their mean values. Generally, across all the indicator-spe-
cific scenarios considered, the most sensitive indicators were the eco-
logical indicators pertaining to minimising risk to bycatch species
(objective 1.2.1) and discarding (objective 1.2.2), and the related social
perception of the fishery (objective 4.2.1). The former two are functions
of effort and size structure, respectively, which were more affected by
the sensitivity tests than overall catch and biomass.

4. Results
4.1. Historical catch data

Across both the north and south regions, catches generally increased
to a peak in about 1998, before stabilising or declining from around
2003 when there was a major fishery restructure through the in-
troduction of ITQs and no take areas were increased (Fig. 1). Catches
were much higher in the southern region partly due to higher human
population numbers, and also due to regional differences in species
distribution. Coral trout dominated the commercial catch, while the
“other species” group dominated the charter and recreational catches,
particularly the recreational sector in the south. The charter sector had
the lowest catches of the three sectors.

In terms of modelled relative biomass, by the end of the 31-year
historical time series, CT was recovering from being reduced to ~30%
By at around year 22, to be at ~40% B,. RTE relative biomass was
reduced to ~75% B by year 17, but then increased to be above 90% B,
by the end of the historical time series. OS biomass was at ~80% B, by
year 31, up from ~73% By in year 17.

4.2. Key scenarios

For each scenario, we present time series of total catch (Fig. 2)
(species-specific catch time series are also provided in Fig. Al), total
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final biomass (Fig. 3) (biomass time series are also provided in Fig. A2)
for each species group, as well as the mean of each of the 21 perfor-
mance indicators, taken across the 25 projection years (Fig. 4) (means
with standard deviations are also provided in Fig. A3).

Keeping the charter and recreational catches constant constrained
the commercial TAC setting: total catch for each species showed very
little variation from the final historical year (Fig. 2). CT and OS bio-
masses continued to increase to over 60% and 80% By, respectively,
while RTE biomass stabilised at over 90% Bq (Fig. 3). This optimised
economic benefits of minimising interannual variability in profit (ob-
jective 2.4) and costs of management (objective 2.5), and the social
objective of maximising equity between sectors (Fig. 4). However, this
was at the expense of the maximum economic yield not being reached
(per lower values of profitability performance indicators relating to
objectives 2.1.1-2.1.3), with stocks not being fished to Bygy. To have
achieved this would have required an extreme increase in commercial
TAC that would have compromised other performance indicators, such
as discarding (a function of effort) the equity between sectors (objective
4.2.1), and interannual variability in profit (objective 2.4).

Assigning TAC to the commercial sector only, but using the “max-
imin” criteria, as opposed to using the highest average, to obtain the
“winning” stakeholder group preferences, increased RTE catch (Fig. 2)
such that RTE biomass achieved its target (Fig. 3). This shows the
sensitivity to, and hence the importance of, the criteria used to de-
termine the “winning” set of stakeholder group preference weightings
in each year. Using the “maximin” criterion, the most predominant
winning stakeholder groups were quota owners and commercial fishers
and processors/buyers/wholesaler, while the charter and recreational,
and “other” group categories were the predominant winners using the
“highest average” criterion. The most marked differences between these
sets of groups was that the former strongly favoured commercial (and
the directly related indigenous) profits (objective 2.1) (driving in-
creased catches in RTE), and assigned less weighting to equity across
the fishing sectors (objective 4.1) (such that the increased RTE catch for
the commercial sector relative to the others was less important).

For brevity, the results presented below are based only on the
“highest average” criterion.

The Working Group's proposed scenario of allowing both commer-
cial and charter sectors to have a dynamic TAC gave greater flexibility
to the model. The catches of each species (combined across sectors)
showed strong interannual oscillations, that were highest in magnitude
in the first 5 years of the projection, but that ultimately fluctuated
around an average (Fig. 2). There was an approximately 20x overall
increase in RTE catch to average around 6000t, a slight overall increase
in average OS catch to average around 1000t, and CT catch averaged
around 1000t The increases in RTE and OS catch drove their respective
relative biomasses down, such that all species stabilised around their
targets of (for CT and RTE) between 0.4-0.6 By, and (for OS) 0.4 B,
(Fig. 3). We emphasise that we were careful to align the target reference
points of all performance indicators, and that when these were mis-
aligned, the oscillations lead to chaotic time series with inconsistent
magnitudes with no discernible average.

When including performance indicators sequentially into the si-
mulation (results not shown), it became clear that the commercial and
charter profitability performance indicators were primarily responsible
for the observed oscillations in catch. When the catches of all species
were combined, the total catch across species resulted in a relatively
stable time series. Essentially, CT and RTE catches were inversely cor-
related, suggesting there were multiple optimal states (combinations of
species-specific catch) for which profit is optimal.

In terms of the performance indicators for this scenario, the target
species sustainability indicators (relating to objectives 1.1.1, 1.1.2,
1.3.2), the profitability (objectives 1.1.1-1.1.3), recreational value
(objective 2.2) and flow-on economic benefits (objective 2.3) were all
optimal for this scenario (Fig. 4). The cost of management, specified as
a function of catch, also increased, such that the objective to minimise
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this was compromised (objective 2.5), as was (obviously, given the high
variability in the early years especially) the objective minimising in-
terannual variability in profit (objective 2.4). Willingness to comply
with the harvest strategy (due to increased management complexity
(objective 3) was also slightly compromised.

The performance indicators were at zero, indicating poorest possible
performance, for the objectives of minimising broader ecological risk,
and risk to Threatened, Endangered and Protected (TEP) species. Risk
to bycatch species was also high (i.e. low value of objective 1.2.1)
(Fig. 4). These performance indicators were specified as functions of
effort, with targets and limits set at fractions of the historical value.
With the increase in effort associated with the higher catches of RTE in
particular, the performance of these objectives was compromised.
Performance was also poor for discard mortality risk (objective 1.2.2),
indicating the proportion of small-sized fish in the catch increased. As a
result, performance associated with the public perception risk asso-
ciated with discards and TEP species (objective 4.2.1) was also low.
Finally, equity between sectors (objective 4.1) and regions (objective
4.3.2) was compromised. Since the targets were based on historical
precedent, and RTE catch in particular broke that precedent, the targets
may need to be revised, leading to a paradigm shift in the fishery
management rule.

When all three sectors received TAC, the catch trajectories again
showed strong fluctuations in the first 5 years of the projections (Fig. 2),
but thereafter were stable and smooth at levels that maintained the
relative biomass at target levels (with the exception of a slight decrease
in OS biomass at the end of the projected time series, albeit one still
within the 10% tolerance about the target reference point of 40% BO)
(Fig. 3). Relative to TAC being allocated to only the commercial and
charter sectors, the main trade off in terms of performance indicators
was the charter sector profit, since the TAC allocation that had pre-
viously been assigned to this sector was now being shared with the non-
charter recreational sector (Fig. 4). The performance indicator relating
to objective 2.2 (maximise value of recreational fishers and charter
experience (direct to participant)) was optimal for both scenarios, be-
cause this is determined across both the charter and recreational sec-
tors. Despite the stable total catch trajectory, there was an increased
interannual variability in commercial and charter profit (and so a lower
value for the performance indicator relating to objective 2.4), in-
dicating higher interannual variability in how the catch is shared be-
tween sectors, likely due to multiple uniform states across the like-
lihood profile across various relative TAC proportions. Willingness to
comply with the harvest strategy (due to further increased management
complexity (objective 3)) was also slightly compromised.

When TACs were set for the commercial and charter sectors sepa-
rately for each of the two regions, the increased flexibility had the result
that the total catches for each species did not show the same strong
interannual oscillations, and particularly, the overshooting in the first 5
years of the projection, though, for CT, the longer-term interannual
oscillations in catch were stronger in magnitude than for the non-re-
gion-specific-TAC scenario (Fig. 2). RTE catch again increased by ap-
proximately 20 times, and the average projected catches of all three
species were ultimately similar to the non-region-specific-TAC scenario.
Consequently, the relative biomass trajectories were also similar to the
non-region-specific-TAC scenario, with the biomasses of all three spe-
cies being driven to their target values (Fig. 3). The CT biomass also was
more stable than that for the non-region-specific-TAC scenario, which
continued to increase throughout the projection. The stability is again
likely due to the greater flexibility afforded by assigning TAC by region
and thereby being able to more directly achieve the sustainability ob-
jectives.

In terms of the performance indicators, there was little difference
between the region-specific and non-region-specific TAC scenarios
(Fig. 4). The main gains over non-area-specific TACs were small, and
were mostly in terms of three objectives. The first two were i) the re-
duced discarding of undersize fish (objective 1.2.2), presumably
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Fig. 2. Time series of total catch (kg) summed across each species group, for each scenario considered.

because the TACs were now being directed towards to the regions of
higher relative abundance, and ii) the related improved public per-
ception that is partly related to discarding practices (objective 4.2.1).
The third was slight improvement in the perception of equitable access
by region (objective 4.3.2), possibly because, despite the increase in
RTE catch, the relative regional TAC assignment may be more con-
sistent with past relative catch patterns on which the target was based.

The cost of this improvement in performance indicators was in
terms of the management “willingness to comply” objective (objective
3), which is directly related to the increased number of management

controls (TACs). Despite the reduction in high-magnitude oscillations in
catch at the start of the time series, there was no change to the average
interannual variability in the performance indicator (objective 2.4)
relative to TACs being non-region-specific, likely because the total
catches across all species for both scenarios showed relatively small
interannual changes beyond the first projection year.

The scenarios with environmental change resulted in very little
medium- to long-term changes in catch and biomass (Fig. 2, 3). Recall
that we simulated a cyclone in the 5 year of the projection period by
reducing the availability (but not the actual abundance) of the CT
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Fig. 4. Radar plot of mean value across the projection years, for each of the 21 performance indicators, for each scenario examined.

species group by 40% and increasing availability of the RTE species
group by 20% in the southern region for years 5-8. Relative to the
scenario with no environmental perturbations, this was reflected by a
short-term reduction in CT catch from years 5-7 of the projection
period (years 36-38). However, catch quickly recovered (since the
underlying abundance was assumed to be unaffected) to its long-term
stable state. In the same years, a short-term increase in RTE catch oc-
curred (Fig. 2).

Given that all modelled species biomasses were well above their
target reference points, the effect of the simulated climate change was
due more to the 1% per year migration of all species from the northern
to the southern region, than to the overall reduction of abundance of all
species by 0.7% per year (Fig. 3). There was no effect on overall catch
or biomass, nor most of the performance indicators (Fig. 4). There was a
slight relative increase in discarding (a reduction in performance in-
dicator relating to objective 1.2.2, as well as a worsening of the asso-
ciated social perception indicator relating to objective 4.2.1) as a result
of increased relative proportions of undersized fish in the catch, pos-
sibly as a result of the reduction in abundance. Across all performance
indicators, the main difference was a reduction in the charter sector
profitability. This appears incongruous given that commercial profit-
ability was unaffected, but as opposed to commercial profitability,
charter profitability is simulated as a function of effort. There is rela-
tively higher charter catch in the southern region than the north. Total
catches, and the performance indicators pertaining to equitable access
between sectors and regions indicated no significant sector- or region-
specific differences in catch. Since we simulated effort for each sector in
each year as the catch divided by the product of the catchability and the

10

fishable biomass, an increasing fishable biomass in the south led to a
reduction in effort in the predominantly fished southern region, and
hence, a reduction in charter sector profitability.

Populations recovered to sustainable target levels when the biomass
was historically more heavily fished down towards the limit reference
point. As with the earlier scenarios, changes to the TAC were greatest
within the first 5 years of the projections (Fig. 2) (with large inter-
annual changes in TAC that compromised the performance indicator
pertaining to interannual variability in profit (objective 2.4)). In this
time period, CT and OS TACs were consistently very low, while RTE
continually declined. CT and RTE total catches were stable thereafter,
with the exception of one inversely correlated year. OS catches in-
creased over the final 8 years of the projection, as a result of higher
catches in the north.

For RTE, the projected catch did not increase substantively in the
northern region; thus, most of the biomass increase occurred in the
north. The opposite was the case for OS. There was more overall bio-
mass in the southern region for both species groups, but the total RTE
biomass was within its target ranges after being “fished down”,
meaning the catch in the more abundant southern region did not sig-
nificantly change. Total OS biomass, however, was at its limit of 20% B,
after being “fished down”, with very low relative biomass in the
northern region. As such, much of the recovery of this species group
was driven by low catch the southern region. The northern region OS
catches actually increased, keeping the biomass in this region low,
presumably because the relative contribution of the northern region to
the recovery of the total OS biomass was so low as to be negligible.

The depletion associated with “fished down” stocks affected the
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oldest age classes most strongly, and hence the performance indicators
related to discarding (objectives 1.2.2, 4.2.1) were minimal (Fig. 4) asa
result of the increased relative proportion of undersize fish in the catch.
The OS sustainability performance indicator (relating to objective
1.1.2) was also compromised due to this species group being the most
heavily fished down. The reductions in commercial and charter TAC
while recreational catch levels were kept constant also minimised the
performance indicator pertaining to equity between sectors (objective
4.3.2).

We note that the model does not consider the ratios of TACs be-
tween species. However, it is unlikely that effort could be targeted to
achieve species-group-specific catch limits, particularly if these vary
significantly from the historically achieved ratios. Discarding is there-
fore a risk around implementing unrealistic TAC ratios. Similarly, it is
highly unlikely that 100 times the historical catch of RTE would occur
concomitant with small increases in CT and OS catch, as was simulated
here for the “fished down” scenario.

5. Discussion

Our goal is to provide a tool for managers, fishery management
councils, scientists, and stakeholders to consider a richer range of tra-
deoffs than possible with bio-economic models only. Consistent with
policy and legislative requirements, the model we developed provides a
quantitative means to explicitly evaluate the four pillars (TBL and
governance) and their tradeoffs in terms of clearly defined stakeholder
objectives. In addition, it allows for formal evaluation of performance
of the four pillars across alternative stakeholder group preferences,
providing an impartial means to obtaining an overall optimum harvest
strategy (here, a set of species-group-specific TACs). As opposed to
semi-quantitative/expert judgement approaches that rank or rate al-
ternative harvest strategy specifications, our approach leads to both
quantified alternative harvest strategy options, and the optimal values
for the management controls.

Our model is less complex than many current ecosystem models. It
is relatively easy to implement and by placing all the indicators on the
same scale, disparate indicators can be compared. Importantly, im-
plementing it requires detailed discussions with stakeholders on ob-
jectives and their relative weights. Different stakeholder opinions (in
the form of weights) on importance are overtly considered. This linkage
between a discussion on objectives (without restriction to the model's
needs) was initially seen as a benefit, but in hindsight has delivered
some of the difficulties with the model.

While the model is conceptually not complex, parameterising and
optimising it was fraught with technical challenges. Given the number
of objectives and performance indicators that came out of the stake-
holder process, the model is information hungry. This led to having to
define several indicators' functional forms and their targets, many of
which are unknown to stakeholders and scientists alike, and produced a
likelihood function that was complex and resulted in a sensitive (in an
estimation sense) model. The formulation of separate performance in-
dicators for each of the objectives estimated annually meant the model
had “no sense of consequence” for an optimisation in following years.
Finally, as for many mathematical models, stakeholder engagement is
more restricted given the technical content of the model. Below we
expand on these issues and then discuss possible solutions.

Multi-sector, multi-species fisheries such as the Coral Reef Finfish
Fishery need to address the TBL. However, the quantity and quality of
data are often mixed, many reference points are uninformed, and per-
formance indicators vary in their quality of information: broader en-
vironmental, economic, and, particularly, social information is often
limited. As data collection programs expand over time, this difficulty
will become less important but is unlikely to disappear. Had data been
available - for example, for social performance indicators in the form of
a survey — we could at least have tuned the model to these in addition to
stock status. Additionally, while we were able to move beyond an
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abstract specification of objectives, the information hungry nature of
the model meant that many of the operational objectives (performance
indicators) were still ultimately specified in terms of catch and effort as;
that is, catch and effort were used as proxies for socio-economic con-
siderations. As highlighted by Mangel and Dowling, 2016 and
Dichmont et al. (2010), these can be fraught assumptions.

As with all models, a range of factors determine the nature of the
results. These include specification of the performance indicators, and
the choice of values for (depending on the indicator's specification)
target or limit reference point values, weightings, penalties, or para-
meters. Several of the performance indicators were extremely difficult
to quantify, especially those in the social objective arena, and drove
much of the model's sensitivity and (initial) instability. This has also
been found by others (Brooks et al., 2015; Pascoe et al., 2017;
Symes and Phillipson, 2009; Triantafillos et al., 2014; Vieira et al.,
2009). We addressed this issue head on by developing performance
indicators and associated parameters as a function of a single man-
agement control (TACs). The sensitivity of the model to the scenarios,
as well as to the functional form of the performance indicators and their
reference point values, showed the risk of using many detailed perfor-
mance indicators to obtain meaningful management advice. We had to
carefully construct the performance indicator specifications to ensure
that these were aligned across objectives, and we had to “pepper” the
starting parameter values to avoid local minima in what was still a
rugged solution surface. Separate objectives (e.g. profitability and final
biomass) competed unless their targets were consistent and optimal for
both, e.g., the maximum economic yield and the biomass corresponding
to maximum economic yield. With 21 performance indicators, ensuring
such consistency was a challenge.

The projected time series of most of the model scenarios showed at
least some years of interannual oscillation in the sector- and species-
specific TAC values, particularly in the early years of the projection. For
RTE and OS, historical catch levels had been well below those corre-
sponding to target reference points (most notably, maximum economic
yield). However, TACs oscillated rather than ramping up during pro-
jection years. This occurred because, by undertaking optimisation
within each year, the model has no sense of medium- to long-term
consequences.

Another issue contributing to inter-annual oscillations in the sector-
and species-specific TAC was the inverse correlation of CT and RTE
catch in many of the scenarios. While catches of these species, and any
dependent performance indicators, showed interannual fluctuations,
the projected catch totalled across both species was relatively stable.
When examining performance indicators by incrementally including
each, the projected catch time series only became strongly inter-
annually fluctuating with the inclusion of commercial and charter
profitability performance indicators, themselves direct functions of the
CT and RTE catch. This speaks to alternate states of CT and RTE relative
catch that are equally profitable. Future work should optimise over the
medium- to longer-term, rather than annually.

Because of such complexities, we had less direct stakeholder in-
volvement, other than objective identification and weighting, than
more conceptually-based semi-quantitative approaches. The results are
also more technically challenging to interpret, as both input and output
are demanding of information. This may mean that stakeholder buy-in
to the model will remain low until the method matures and absorbs
some of the solutions discussed below.

One option for reducing the uncertainty and complexity of the si-
mulation is to include fewer operational objectives and performance
indicators. Katsikopoulos et al. (2018) suggest that under such condi-
tions, simple models may be more appropriate than more complex
models for decision making, particularly in the case of repeated op-
erational decisions such as are required when implementing a harvest
strategy. A high number of objectives may be excessive in a practical
sense. However, reducing the number of objectives will require re-
consideration of how to translate broader objectives into quantitative
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performance indicators. One way this may be achieved could be to
subsume many of the correlated performance indicators into single
metrics; for example, profitability and target biomass could be com-
bined as is done in a standard bio-economic model. Reducing or sub-
suming the number of objectives and performance indicators may also
help overcome the problem of roughly similar weightings across the
different stakeholder groups (see also Pascoe et al., 2019). The similar
weightings across stakeholder groups may have been an artefact of the
“dilution” effect of distributing higher level objective weights over
many sub-objectives. An alternative way to define some of the objec-
tives could be to use a Bayesian Belief Network (BBN) to capture non-
quantitative objectives. The outputs of the operating model would then
feed into the BBN model to quantify the social components.

Clearly, a multi-year forward optimisation process would have been
preferable. Longer-term expectations should be captured by the value at
which the target reference points are set, and if these are established
correctly then the projections should eventually achieve them. The
forward optimisation can then also be constrained if needed by, for
example, a smoothing term.

Two alternatives to the model described here are viability and
frontier analyses. Gourguet et al. (2016) developed viability analysis for
Australia's Northern Prawn Fishery. With this approach, one does not
aim to identify an optimal outcome, but instead aims to ensure at least a
minimal acceptable level for each of the objectives. It is thus analogous
to Simon's notion of satisficing, e.g. Simon et al. (1950). In frontier
analysis (Halpern et al., 2013), the frontier consists of TBL solutions,
where one can optimise conservation goals and equity while mini-
mising costs. The frontier does not prescribe a single solution but in-
stead presents the range of options, all optimal, that represent the trade-
off between stated goals. The choice of the optimal solution by a de-
cision maker will be based on their relative importance weights for each
objective. While potentially less transparent than the use of pre-de-
termined weights, decisions are made with an explicit recognition of
what is being given up. The policy frontier thereby complements the
decision-making process without aiming to replace it (Sylvia and
Enriquez, 1994).

On the contrary, our approach keeps harvest strategies in mind and
leads to a recommended TAC, optimised across all multiple (TBL plus
governance) objectives, and acknowledges the alternative preference
weightings of stakeholder groups and is suitable for embedding in an
MSE. Neither viability nor frontier analysis allows for this. Our ap-
proach also showed sensitivity to the criteria used to identify the
“winning” set of stakeholder group preferences, or weightings, in each
year: the “highest average” approach gave markedly different outcomes
to when the “maximum minimum” value criterion was utilised.

Even with the sensitivities, inherent assumptions, and simplifica-
tion, our model illustrates the trade-offs between multiple objectives
and different stakeholder group preferences, and the value of region-
and sector-specific TACs in different environmental contexts. The next
step would be to reduce the number of objectives so as to reduce the
inherent uncertainties and data requirements, and the complexity of the
solution surface, and to optimise across the longer term.

Policy and legislation demand that fishery management moves to-
wards a quantitative approach to TBL objectives and operationalising
these defensibly within harvest strategies. We developed a model whose
likelihood surface was proved highly complex and sensitive to inputs
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and assumptions, which will force managers and stakeholders to con-
front extensive data requirements.

To advance TBL/four pillar fishery management, a high level of
involvement of stakeholders is required in determining fishery objec-
tives and their weightings. An appreciation by management agencies of
the data requirements of multi-objective fishery management, and a
commitment to implement a quantitative approach that sets precise
values for management controls, is also recommended. At the same
time, this should be tempered given data limitations and the need for a
manageable number of objectives across the four pillars.

More broadly, quantitative ways to operationalise multi-objective
harvest strategies are likely to have relevance for other renewable re-
source industries where the TBL matters, provided these have man-
agement controls that can be changed. Our approach has provided a
stepping-stone towards this goal and a basis for further modification
and has highlighted the technical pitfalls of using simulations to opti-
mise across multiple objectives in complex fisheries.
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Appendix Al. Additional Figures and Tables

Figs A1-A3 and Tables A1-A2.
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Table Al
Summary of model and biological input parameters.
Input parameter Abbreviation Value
CT RTE 0s
Number of historical years Nhist 31
Number of years to project Nproj 25
Number of areas Narea 2
Number of fleets Nfleet 3
Number of species (groups) Nspecies 3
Number of age classes (for each species group) Nage 20 20 20
Maximum age (for each species group) MaxAge 19 19 19
Number of sets of preference weightings NsetsWts 8
Weight-at-length (WtL) parameters a,b a 6.8500E-06 1.3778E-05 2.4400E-05
(for each species group) b 3.19640 3.06507 2.87000
von Bertalanffy (vonB) growth parameters Linf 66.33 51.68 58.45
k 0.1005 0.24146 0.3922
t0 —5.256 —1.243 0.1768

Natural mortality at age (for each species group) (assumed age-independent) NatM 0.4656 0.5117 0.15
Selectivity-at-age SelAge Age

0 0 0 0

1 0.5 0 0

2 0.66 0 0.05

3 0.78 0.3 0.1

4 0.86 0.8 0.2

5 0.9 1 0.35

6 0.93 1 0.5

7 0.95 1 0.65

8 1 1 0.8

9 1 1 0.9

10 1 1 0.95

11 1 1 1

12 1 1 1

13 1 1 1

14 1 1 1

15 1 1 1

16 1 1 1

17 1 1 1

18 1 1 1

19 1 1 1
Steepness (by species group) Steep 0.5 0.8 0.7
Age at maturity (by species group) AgeMat 3 3 8
Initial number seed (numbers) (by species group) Rolnit 16,800,575 15,466,824 2,787,694
Fixed allocation proportion of TAC between sectors (commercial, charter, recreational) PropFfleet
commercial 0.85 0.50 0.50
charter 0.05 0.30 0.25
recreational 0.10 0.20 0.25
Fixed relative spatial distribution (for recruits) Frac
region 1 0.3 0.2 0.3
region 2 0.7 0.8 0.7
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Appendix A1. Additional Figures and Tables
Figs A1—A3 and Tables A1—A2.
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Fig. A1. Time series of total catch (kg) for each species group (columns) and scenario (two
scenarios in first row; one scenario per row thereafter) considered. For some scenarios, the
time series are presented in individual panels for each species, due to differences in
magnitude precluding ease of reading if these were overlaid.
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Fig. A2. Time series of biomass, relative to the initial year, for each species group and
scenario considered.
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Fig. A3. Mean, plus and minus one standard deviation, of each of the 21 performance
indicators, for each scenario examined.




Supplementary material

S1. Simulation model and performance indicator specifications
We simulate the 3 main species groups in the Coral Sea Finfish Fishery: coral trout (CT), red-throat
emperor (RTE), and the “other species” collective (OS).

We do not fit the model to data and assume perfect knowledge of stock sizes, environmental
parameters, and fishing mortality. That is, there is no stock assessment or sampling model
estimating underlying biomass. We also assume that the set TACs are fully realised (i.e. no over-or
under-catch).

We assume 2 latitudinal regions (noting that, longitudinally, all commercial fishers concentrate their
effort on the mid-shelf).

S1.1 Historical: Setting up equilibrium structure

We determined the unfished age structure assuming equilibrium dynamics, with natural mortality
acting alone upon constant average unfished levels of recruitment:

1 a=0
Vas = Va-1,s" e Mas a < Amaxg (1)
Va—l,s . B_Ma's/(l — B_Ma's) a = Omaxg
where
Vs is the proportion of the population at age a of species s
Omax IS the maximum age modelled (the plus-group) of species s

M is the age-specific instantaneous rate of natural mortality of species s

The spawner biomass per recruit, SBR, used in the stock-recruitment function, is

SBRS = Zamax's Va,s *Pas Mgs (2)

a=1
where
Mg,s is the average individual mass for fish of age a of species s
Pa,s is the proportion of mature fish of age a of species s
Omax is the maximum age for species s

Mass (in kg) is calculated from length according to the power relationship
Mgs = 0.001 - is - Ly ¢’

where species-specific length-at-age L5, with parameters is and js, is calculated from the von
Bertalanffy growth equation and is assumed to be deterministic:



Los = Lo * (1 _ e—ks(a—tos))
The initial numbers-at-age in each region are:
Ngsa1 =Ts Vo5 Fracgy (3)
where
Nasai  is the number of fish of species s of age a in region A in year 1
Ts is the initial seeding number for fish of species s.

Fracsa isthe proportion of species s expected in region A. We approximate this using the initial,
region-specific biomass estimates for CT and RTE. We assume the OS are equally distributed
spatially.

$1.2 Historical: Population dynamics

We assume that in year y fish undergo half of natural mortality prior to being fished, and then the
remaining natural mortality is applied. Mid-year abundance is thus

= . p—Mgys/2
Na,S,A,y(mid—year) = Na,s,A,y—1 e as/ (4)

Over the historical years of catch data, fishing mortality by fleet f, species s, region A, and year, y, is

Cobs F,s,Ay (5)

F =
S)4A, a s
f Y Za;nlax Sa,F,s'Na,s,A,y'ma,s

where

Cobs s,y is the observed catch (mass) of species s by fleet f from region A for year y
SaEs is the selectivity —at-age vector (where a is age) by fleet and species
Mgs is the mass-at-age of species s.

We assume that selectivity for RTE is age-based, but for CT is length-based, which can be converted
to selectivity-at-age using the length-age relationship.

We update abundance by applying the mortality due to catch, and finally the remainder of the
natural mortality, to the interim (mid-year) numbers to obtain

Na,s,A,y = WNa,s,4,y(mid—year) * (1 - Sa,f,s ' Zf Ff,s,A,y)e_Ma’S/2 (6)

We assume no migration between regions: CT show site-fidelity to the reefs on which they settle as
larvae. Williams et al. (2010) hypothesised that RTE move more than CT, but such movement would
still not be on the scale of our modelled regions. We make the same assumption for OS.

The surviving cohort sizes are updated at the end of the year by incrementing the age classes:
Na+1,s,A,y+1 = Na,s,A,y

Namax,s,A,y+1 = Namax,s,A,y + Namax—l,s,A,y (7)



The total spawner biomass by species, Bs, s, , and total overall biomass by species, Bs,, , at the end of
the yearis

_ V'%max,s i . \'Narea
Bspsy = Xgmt” Pas * Mas  Zi=1 - Nas,iy

a : N
Bs,y = Zazl;“ma,s ' Zi:alrea Na,s,i,y (8)

For each species, we assume annual recruitment, R, follows a Beverton-Holt stock-recruitment
relationship with process uncertainty Ey s

Bsp s,y E
R — __Spsy ., eEys (9)
Vs as+PBs'Bsp s,y

where h; is the steepness for species s and

_(1—hy)-SPR,
@= 4h,

— (Shs_l)
T 4hgRgg

B

(10)
For the historical years of the model, we fitted E, s to annual recruitment deviations.
We then distributed recruits in space according to

NO,S,A,y == FT'aCS‘A : Ry,s (11)
$1.3 Calculation of catchability

We assume a total allowable catch (TAC) for each species group and that the TAC is achieved for
each species group each year, through a combination of targeted and incidental take.

In principle, it is possible to calculate targeted and bycatch catchabilities (Somers and Wang 1997),
at least for the commercial sector, where there are dedicated fishers for each of CT, RTE, and OS
species groups. However, i) targeting behavior is not recorded with frequency or consistency within
the commercial fleet, ii) targeting behavior has changed over time in the commercial fleet, with
formerly “dead boats” re-gearing as live coral trout vessels, without this change being explicitly
reported, and iii) there is no recreational effort time series. Thus, we estimate catchability for each
species and fleet (sector) assuming that any day of effort on which one of the three species groups
was reported in the catch, would contribute to the catchability of that species group.

For the three species groups, we define the overall catchability on species i, gi, following Mapstone
et al. (2008) equation 18a. We use historical data of targeted catch and effort, and historically
modelled biomass

Yyln (Cf,i,y,/Bi,y)>

Zyln (Ef,i,y) (12)

qi,f = €Xp (



$1.4 Projections: The harvest strategy

The harvest strategy is a system of Total Allowable Catches (TACs), adjusted annually.
We assume size limits as an additional management measure but assume these are fixed over time.

For any given TAC, in scenarios when this was allocated across all sectors, we assume a fixed
0.85 0.05 0.1

allocation matrix by sector and species of < 05 03 0.2 ) where the columns are the
0.5 0.25 0.25

commercial, charter and recreational sectors, and the rows represent each species group CT, RTE

and OS, respectively. These proportions were based on historical averages. When allocating TAC
allocated between the commercial and charter sectors only, we assume the charter sector allocation
proportion was (0.15, 0.5, 0.5) for each of the three species groups. If a sector did not receive a
dynamic TAC allocation, we assumed they took a fixed amount for each species group, based on the
averages over the final three historical years.

In each year, the TACs are determined as parameters that optimise the value function, described
below as the sum of the relative performance indicators weighted by alternative stakeholder group
preferences. An overall optimal (or “minimum whinge”) TAC is then obtained across the stakeholder
groups.

$1.5 Projections: Fleet dynamics
When TAC is set by region, we assume perfect knowledge and no implementation error.

Otherwise, we distribute the fishing mortality per equation 23 of Little et al. (2007), for the
commercial and charter sectors (f <=2):

yZ
Z I=1 fsAy >

(yrsflshedf,S,A)

Z 1_1 fsAy
0.5: C A (Y
( fsAy-1t (yrsflshedf,s,A)

species s) in previous year by that fleet, where

0.5 Cf,s,A,y—l

PropFssay = if region A was fished (had non-zero catches of

Ya

PropFs 4 is the proportion of fishing mortality for fleet f on species s in region A and year y

yrsfishedy s 4 is the number of years in which a non-zero catch of species s was reported by fleet f
in region A.

If species s in region A was not fished by fleet f in the previous year

=1"fsAy =1 fSAy
PTOpr,s,A,y [yrsflshedfsA]/ [yrsflshedf sA] (133)

We assume the recreational fishing effort is distributed equally between the two regions

1
Narea

PropFrecsay = (13b)



We apply these each PropFy s 4, proportions to distribute fishing mortality proportionately among
regions when the TAC is not spatially explicit (i.e. is specified globally, TACgloby  ,,), and hence
calculate the region-specific catch by species.

$1.6 Projections: Fishing mortality

As above, we assume perfect knowledge and that the species-specific TACs are achieved each year.
Species, and when appropriate region-specific, TACs will be achieved both via targeted and non-
targeted fishing.

Fishing mortality by species, s, (and region, A) is determined by dividing the fleet-specific TAC by the
biomass, as per equation (5). That is, when the TAC is specified globally, as TACgloby ; ., the fishing
mortality is

TACglobf,s,y-Propr,s,A,y

F, = 14a
s Ay Zs;nlax,s ma,s'Sa,f,s'Na,s,A,y ( )
When the TAC is spatially explicit, the fishing mortality is
TACfsa
Ff.s,A.y = y.amax,s [any (14b)

a=1_ MasSafsNasay

We obtain the effort associated with the given TAC (and the catch by targeting practice) using
catchability

Ef,s,A,y = Ff,s,A,y/CIs,f

$1.7 Projections: Population dynamics

As with the historical period, we assume that in any year, y, fish undergo half of natural mortality
prior to being fished, are fished, and then experience the remaining natural mortality. Mid-year
abundance is calculated using equation (4), as for the historical period.

Catch (numbers) by species, fleet, region and year, C¢sa, is then

= . amax' . .
Cf,s,A,y - Ff,s,A,y Za:alej;al,s Sa,f,s Na,s,A,y (15)
where
Safs is the selectivity—at-age vector by fleet and species. For now, we assume the

selectivity is the same across fleets (sectors), as they are all line fishing. However, the commercial
fishers use larger hooks, so this may be re-evaluated;

Frsay is the fishing mortality from fleet fin region A and year y for species s; and
Qlegal,s is the average age at which the fish reaches legal size.

We assume all undersize catch (below the minimum legal length, MLL), denoted by UCs 5 4,



AMLL,s

UCf,s,A,y = Ff,s,A,y ' Za:l My Sa,f,s ' Na,s,A,y (16)
is discarded.
Catch in mass is obtained by multiplying equation (16) by the species-specific mass-at-age, mq;s.

We update abundance by applying the mortality due to catch, and finally the remainder of the
natural mortality, to the interim (mid-year) numbers: to

Na,s,A,y = Na,s,4,y(mid—year) * (1 - Zf Propr,s,A,y ! Ff,s,y ' Sa,f,s)e_Ma'S/2 (17)

As per the historical period, we update the surviving cohort sizes at the end of the year by
incrementing the age classes, equating to growth:

Namax,s,A,y+1 = Namax,s,A,y + Namax—l,s,A,y
Na+1,s,A,y+1 = Na,s,A,y (18)

The total spawner biomass by species, Bs, s, at the end of the year is then

_ V'%maxs yNarea . .
Bsp s, y+1 — Za:l i=1 pa,s ma,s Na,s,i,y+1(19)

As above, we determine recruitment, R, using a Beverton-Holt stock-recruitment relationship, and
recruits are distributed among the regions, as per the historical period (equations (9)-(11)). Here we
set the process stochasticity in the Beverton- Holt stock recruitment relationship to 0.

$1.8 Projections: Performance indicators

In each projection year, we calculate the performance indicators (Pls). Each Pl corresponds to a
single TBL or governance objective, as elicited from stakeholders (Pascoe et al., 2019).

In principal, we seek the maximum value for each Pl in each year, PI; ;.

1.1.1 Maintain target species (CT and RTE) biomass at optimal sustainable levels.

This Pl applies only to coral trout and red-throat emperor.

We use a truncated dome-shape for this Pl (Figure $1.8.1). We assume that the target reference
point ranges from 40%-60% of the unfished biomass, although this may be higher from a
conservation standpoint. The broad target (plateau for the dome) encompasses the range from
biomass at maximum sustainable yield (traditionally assumed to be 0.4B,) and biomass at maximum
economic yield (traditionally assumed to be 0.48B,), as well as the Queensland specified target of 0.6
Bo. Having this broad target allows for some flexibility when trading off with the economic
objectives.

In the dome specification, if the relative biomass is within 10% of the target range, the score of the
Pl for that species s is 1:

By
Scoreg,, = 1;0.36 < ——< 0.66
s,0



Below the limit of 20% of the unfished biomass, the score of the Pl for that species is 0. Between the
lower end of the 10% tolerance around the lower target value, and the limit of 0.2, the score tracks
linearly with relative biomass:

1 By, ( 0.4

- . _—>-02<Bs‘y<<036
(04 —0.2) By (04-02))" " T Bgy~

Scoreg ., =
Y
Bs o

Above the upper target value + 10%, the score decreases linearly from the Target Reference Point
TRP) to unfished biomass, down to a minimum of (currently) (set as variable) 0.5 (i.e. we're half as
happy as at the target level):

_(05-10) Byy | < 0.5 - 1-0)> Bsy

S - 2T ) Y 5 066
0Ty = (1.0 - 0.6) Bsg (1.0-06)) By,

If the relative biomass of any one species is below its limit reference point, then the overall Pl is
zero. Otherwise, for each of the alternative specifications, we obtain the overall Pl is taken by
averaging across species so that

Y2_, Scoreg,,
Pll,y = —2

PI'1(1.1.1) dome for CT, RTE (Pl value is average value
across both species)
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Figure S1.8.1 Functional form of performance indicator 1.1.1

1.1.2 Risk to Other Species (that are harvested, per the "Other Species" list) in the fishery which are
notincludedin1.1.1

The TRP is 0.4 of the unfished “other species” biomass, as a proxy for MSY, and the limit is 0.2 of the
unfished biomass.

The Pl follows a hockey-stick rule (Figure $1.8.2), where the Pl is 1 above a biomass of 0.4 By, 0
below a biomass of 0.2 By, and tracks linearly with relative biomass between these values:

B B
24 02<-2<04

PI =—-—+<1—+>;
%Y 7 (0.4 —0.2) B, (0.4 —0.2) B,



We chose the hockey stick for this reason. When both performance indicators are dome-shaped,
these may be in contradiction if one group of species is above its target (and being pulled back), and
the other is below its target (and being pulled up).

Pl 2 (1.1.2) hockey stick for OS
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Figure S1.8.2 Functional form of performance indicator 1.1.2

From a conservation standpoint, a target of 0.6 By and a limit of 0.3 Bo may be more aligned with this
objective.

1.2.1 Risk to bycatch species

This refers to generic bycatch, as opposed to specific species. It does not include undersize
discarding, or high grading, since these are covered in separate Pls below. However, almost all catch
is sold in the fishery and the gears are relatively clean, so that bycatch is not a critical issue in this
fishery.

We assume that this Pl is a linear function of effort, normalised to 1.5 the maximum historical effort
(this does efficient fishers a disservice). A weighting by region could be added, if certain regions are
considered to induce more bycatch (Figure S1.8.3).

To determine the score associated with this PI, we calculate, for each target species, fleet and
region, the effort relative to the historical high, setting the score equal to 1 if the effort is greater
than 1.5 times the historical high. We then average to obtain a single value and subtract the mean
value from 1.

Eray Eray

; <1
1'5'maX(Ef,A,y=1:Histyr)' 1.5'max (Ef,a,y=1:Histyr)

ByCatRiskg 54, =

ByCatRisks s, = 1 otherwise

Zf,s,ABycatRiSkf,s,A,y . Ef,A,y
(NfleetxNspecies-Narea)’ 1.5-max (Efay=1:Histyr)

Ply, =1— <1

Pl;,, = 0 otherwise



Pl 3 (1.2.1) performance associated with bycatch risk
as function of effort (using avg score across area, fleet)
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Figure S1.8.3 Functional form of
performance indicator 1.2.1

1.2.2 Discard mortality (of undersized target species, or from high-grading of target species)

As described above, given a minimum legal length MLL , we compute the undersize catch, UCs 5 4y,
from equation (16). We assume that the minimum legal length for each species group is length at
maturity.

Given i) the fishery’s history of not exceeding the coral trout TAC, ii) that the commercial fishery
prefers plate-size fish, iii) the cost of fishing is high such that the fishery becomes uneconomic as
catch rates decrease, and iv) that the recreational sector does not high grade, we assume no high
grading. Furthermore, high-grading is irrelevant in the context of a value function unless it is
assumed to be a direct or indirect function of the TAC.

We calculate the total proportion of discards by fleet, species, region and year, Dy 5 4, by
standardising the undersize catch relative to the total (legal and undersize) take

UCs 5,4y

maxage
(Ff,s,A,y ! Za:l g Mg Sa,f,s ! Na,s,A,y)

Df SAY =

We then average over fleet, species and region to yield a mean overall discard, meanD,.

To find the PI for discarding, we normalise according to the worst possible expected discard
percentage (0.5, as above) (Figure S1.8.4)

meanDy
0.5

Pl,=1-

Values of Pl ,, < 0 are set to 0, and values of PI,, > 1 are setto 1.



Pl 4 (1.2.2) minimise discard mortality (of undersize target
species)
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Figure S1.8.4 Functional form of performance indicator 1.2.2

1.2.3 Broader ecological risks; and 1.2.4 Risk to Threatened, Endangered, and Protected Species

(TEPS)

We assume broader ecological risk (Pl ,,) is a function of effort. We set the Pl to 1 when effort is O,

and let it linearly decrease to 0.8 between 0 and a target effort level. Between the target and limit
effort, we let this Pl value linearly decrease from 0.8 to 0; it is 0 when effort exceeds the limit.
(Figure S1.8.5).

We set target effort to be half of the effort averaged over the last 5 years of the historical time
series, and limit effort to be the historical high effort. Even though TEP interactions appear to be
infrequent, there is the concern that these are not reported, so the historical high effort is probably
an appropriate limit.

Effort is summed over the two regions and three fleets to obtain total effort for the year, TotE,

TOtEy = ZA Zf Ef,A,y

We thus set target and limit effort levels as

Zz:Histyr
z=Histyr—

5

4 TOtE;
TargetE, = 0.5

LimitE = 0.8 - max ZZ Ef,A,y=1:Histyr
A f

We determine the Pl between the target and the limit effort, assuming linear decline

PIS _ (0.8(leltE—TotEy)
Y (LimitE-TargetE)

); TargetE < TotE, < LimitE

Below the target, we use another straight line:

(0.8—1.0)-TotEy, +1

Plsy = (Caaois > + 1) TotE, < TargetE

if Pls,, <0, Plg,, =0



PI5 (1.2.3) minimise broader ecological risks (function of
total effort)
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Figure S1.8.5 Functional form of performance indicator 1.2.3

We formulate the TEP risk (Pl ) in a similar manner, except that between the target and limit
effort, the Pl value is a weak inverse exponential function of effort (Figure $1.8.6).

For the TEP risk, we use an exponential function between the target and limit effort:

1.8 x —

1 ((1-TotE,)-(1-TargetE,))/((1-LimitE)-(1-TargetE,))
Plg, = ( 18 )— 1

Below the target, the same straight-line equation as for the broader ecological risk applies:

(0.8—1.0)-TotEy, +1

Plg, = ( (Targets) ); TotE, < TargetE

if Plg, <0, Plg, =0

P16 (1.2.4) minimise TEP risks (function of total effort)
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Figure S1.8.6 Functional form of performance indicator 1.2.4

1.3. Risk of localised depletion

We separate risks due to fishing and those due to environmental variation (cyclones and climate
change)



1.3.1 Localised depletion due to fishing

We calculate this risk only for CT and RTE that is, for s =1 and 2.
We compute biomass by region, relative to that region's unfished biomass
RelBiog 4, = TotBioMs 4,/ TotBioM; 44

and assume that the Pl is 1 above a relative region-specific biomass of 0.5, 0 below a relative region-
specific biomass of 0.2, and tracks linearly with relative biomass between these values (Figure
$1.8.7)

0.5

Scores sy = B m

" RelBiog 4, + (1 );0.2 < RelBiog 4, < 0.5

_r
(0.5-10.2)
if RelBiog,, < 0.2, Pl;,1=10
if RelBiog 4, > 0.5, Pl;,,=1
The Pl is the minimum across the species and regions:

Pl;,, = minimumg4(Scoreg4,)

P17 (1.3.1) minimise risk of localised depletion
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Figure S1.8.7 Functional form of performance indicator 1.3.1

1.3.2 Localised depletion due to environmental events (e.g. cyclone, climate change)

As described above, we treat cyclones and climate change as separate model scenarios (with
accompanying relevant fleet dynamics, and the perceived positive and negative impacts on each
species group).

However, the PI for localised depletion must reflect the need to be conservative and precautionary
given that availability is reduced as a result of environmental perturbations. To do so, we apply a
20% penalty to the target relative biomasses used in Pl 1.1.1, by dividing these by 0.8. We then use a
dome specification as for performance indicator 1.1.1, with the penalized targets.

That is, if the relative biomass is within 10% of the target range, the Pl is 1:



B,
Plg, =1;0.45 < ——< 0.825
) BO
Below the penalised limit of (0.2/0.8=) 25% of the unfished biomass, the Pl is 0. Between the lower
end of the 10% tolerance around the lower penalised target value, and the limit of 0.25, the PI tracks
linearly with relative biomass:

PI By+ 1 ' )025<By<045
8Y 7 (0.5-0.25) B, ( (0.5-025)/)" """ T B,

Above the upper target value + 10%, the Pl decreases linearly from TRP to the unfished biomass,
down to a minimum of (currently) (set as variable) 0.5 (i.e. we're half as happy as at target):

05—-1.0) B 0.5—-1.0
P18,y: ( ) ) y+< ( )

By > 0.825
(1.0 — 0.75) B, '

"~ (1.0-0.75))’ B,

If the relative biomass of any one species is below the limit reference point, then the overall Pl is
zero. Otherwise, for each of the alternative specifications, the overall Pl is taken as the average
values across both species.

P18 (1.3.2 minimise environmental perturbation risk)
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Figure S1.8.8 Functional form of performance indicator 1.3.2

2.1.1 Commercial fishing industry profits

We calculate this Pl for the commercial sector, fleet 1, as price multiplied by catch, minus costs,
which, for each region, A, and year, y,are

Costy 4y = Fuelcost, 4 Eq 4, + GearUnity - E; 4, + CatchUnit; - Cy 4,
where
GearUnit; is the cost of commercial gear associated with one day's commercial effort, set to 0.1

CatchUnit; is the cost associated with one unit of commercial catch, set to 0.1.



FuelCost is the cost associated with one unit of catch, set to 20 for the northern region, and 10 for
the southern region.

Commercial profit is then
Profit,, = Z(Z(pricei‘y *CatM; 1 4,) — Costy 4)
A i

where the commercial fleet is indexed as fleet 1, and unit Price is 5 for CT, 2 for RTE and 1 for OS.

We compute the value of the PI (Figure S1.8.9) by taking the ratio of profit to that at MEY,
approximated by taking the simulated historical high profit for the commercial sector (this
corresponds to about 0.6B, for the CT species group)

Ply,, = Y(Profit, , / ProfitMEY;)

If the current profit exceeds the approximation for profit at MEY, the performance indicator reduces
linearly until it reaches zero at 1.5 times the profit at MEY

Ply, = =2 - (Profit,, / ProfitMEY;) + 3; 1.5 < (Profit,, / ProfitMEY;) < 1.0

If the current profit exceeds 1.5 time the approximation for profit at MEY, the performance indicator
is 0.

Ply, = 0; (Profit,, / ProfitMEY;) > 1.5

In addition, if the biomass of any one species is less than the limit reference point of 0.2B0, the PI=0

Bg,
Plyy = 0; 222 <02

P19 (2.1.1) Commercial fishing industry profits
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Figure $1.8.9 Functional form of performance indicator 2.1.1

2.1.2 Charter sector profits

We assume that gross profit for charter operators is the product of effort in days (as a proxy for the
number of people fishing per day), multiplied by the charter price per day.

As with the commercial sector, costs are calculated for each region, A, and year, y,
Costy 4, = Fuelcost, 4 - E3 4 + GearUnit, - E; 4, + CatchUnit, - Cy 4,
where
GearUnit is the cost of gear associated with one day's effort, here set to 0.1
CatchUnit is the cost associated with one unit of catch, here set to 0.05.
FuelCost is the fuel cost associated with one day’s effort, here set to 10
Charter profit is then

Profit,, = XYapricey - E; 4, — CoSty 4,y
where
pricey is the price charged by charter operators for one day of effort.

As with the commercial sector profit (Figure $1.8.9), we compute the Pl is by taking the ratio of
profit to that at MEY, approximated by test simulations projecting forward so that the charter profit
stabilised, noting that this corresponded approximately to 0.5B, for the CT group, and to 0.55 for the
RTE group.

PIlO,y, = PTOfitZ‘y / PTOfltMEYZ

As with the commercial profit, if the current profit exceeds the approximation for profit at MEY, the
performance indicator reduces linearly until it reaches zero at 1.5 times the profit at MEY

Pliy, = —2- (Profit,, / ProfitMEY,) + 3; 1.5 < (Profit,, / ProfitMEY,) < 1.0

If the current profit exceeds 1.5 time the approximation for profit at MEY, the performance indicator
is zero:

PIlO,y = 0, (PTOfitZ‘y /PTOfltMEYZ) > 1.5

In addition, if the biomass of any one species is less than the limit reference point of 0.2B0, PI=0



B
Py, = 0; % <0.2
s,0

2.1.3 Indigenous commercial benefits

In the absence of a better understanding, we assume that indigenous commercial benefits scale with
commercial profit, and as such, we specify this as an additional weighting on the commercial profit
PI.

2.2. Value of recreational and charter fisher experience (direct to participant)

We assume the value of recreational fishing and charter experiences to the participants is a
weighted function of catch, catch-per-unit-effort (CPUE), and effort. We assume the same
weightings between the charter and recreational fleets, since we are considering the same
recreational participants (i.e. the fishers, rather than the charter boat operators).

We assume the following weights on catch, CPUE, and effort, respectively:

Recwts = (0.4,0.3,0.3)

We assume the following weights on the catch of each species group (CT, RTE, OS), respectively:
RecCwts = (0.4,0.3,0.3)

We apply the species weightings to the catch by weight (as opposed to catch-by-numbers, since
trophy fish are more highly valued):

WtRecCy,, = X; RecCwts; X}_, CatM; ¢ 4.,

ZiZ]%:Z Ciray
RecCPUE,, = /ch:z Ef ay

The recreational utility is then the weighted sums of recreational catch, CPUE, and effort, where
each region’s utility is, in turn, weighted according to the proportion of recreational effort in that

region:
3_,E
RecUtily, = %(Recwtsl *WtRecCyy + Recwts, - RecCPUE,, + Recwtss -
Y72 Er.ay)

We then average over all regions

RecUtil
AvgRecUtil, = 2aRec lA‘y/Narea

and compute the Pl by standardising this average by the maximum historical recreational utility:

Pl AvgRecUtil,
12Y ™ HistMax(AvgRecUtil)

where the denominator is the maximum historical AvgRecUtil.



ifPIlZ‘y > 1, P112,y =1

2.3 Flow-on economic benefits to local communities

This is a function of the commercial and charter profits by region from PIs 2.1.1 and 2.1.2, and
recreational effort by region.

We turn recreational effort by region into a dollar value (related to expenditure on fuel, bait, and
accommodation) by applying a scalar.

The average benefit is calculated as:

Narea 2
AvgBenefit, = Profits, +RecEff_dollar_scalary - E5 4 Narea
) y et o1 fy Ay

where RecEff dollar_scalar is the dollar value of one unit of recreational effort, by region, currently
setto 10.0.

We obtain the Pl by normalising relative to the historical maximum value:
Ply3, = AvgBenefit,/max (AvgBenefitp;s)
ifP113‘y > 1, P113‘y =1

2.4 Short term (inter-annual) economic risk

We approximate short-term risk as the interannual percent variability in profit, assessed by the
coefficient of variation in profit (CV) for each fleet over the past 10 years.

We assume a “hockey stick” relationship between the CV and Pl score for each fleet, where a
variation of +/- 10% CV is optimal and equates to a Pl value of 1, and that +/- 25% is the limit below
which the Pl score value is O (Figure $1.8.10).

We calculate this Pl for the commercial and charter fleets only:

StdeU(ZiProfiti,f,yr—‘):yr)
mean(X; Profit; fyr—o.yr)

CVprofity =

if CVprofity < 0.1,CVscores = 1.0

. cVprofit; + (1
(0.25 — 0.1) pmflf+< +

CVscorer = );0.1 < CVprofity < 0.25

(0.25 — 0.1)

If the CV for any one fleet is below the Limit Reference Point, then whole score for this objective is
zero:

if CVprofit; > 0.25,Pl,,, = 0.0
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Figure S1.8.10 Functional form of performance indicator 2.4, for one fleet

Otherwise, the Pl is the mean of the CV scores across the commercial and charter fleets
Pliay, = X}, CVscores/2

2.5 Costs of management associated with the harvest strategy: monitoring, undertaking
assessments, adjusting management controls

As a starting point, we assume that if the TAC for each species group exceeds 1.5 times the historical
high catch, management costs increase. The species group score is 0 if the TAC is under the
threshold and 1 is the threshold is exceeded. The Pl is the average of the species group scores

0; TACi‘y > 1.5(maX(Ci‘hist))

1; TAC;, < 1.5(max(Ci‘hist))

Score; = {
Ly =

PL. - Y. Score;
15Y ™ Nspecies

3.1 Willingness to comply with the harvest strategy

We assume that willingness to comply with the harvest inversely scales with the complexity of
management; that is, the more management controls, the higher the lack of compliance.

Conditioned on the TAC by species i and region A, TAC; 4 , divided among each of the sectors
(fleets), the maximum number of management controls is

MaxMgmtControls = Narea - Nspecies - Nfleet
The actual number of management controls is
MgmtControls = Nsector - TACarea - Nspecies

Where Nsector is the number of sectors (fleets) receiving a TAC (as opposed to a static quota), and
TACarea is the number of regions to which separate TACs apply.



The possibility of failure of the harvest strategy due to its complexity is:
ComplexFail = MgmtControls/MaxMgmtControls

We also assume the lack of compliance because of people actively disagreeing with the harvest
strategy, and assume this is normally distributed about a target combined (across all species) TAC.
That is, the further the TAC is from the target, the lack of compliance increases (Figure $1.8.11). We
assume a target combined TAC of 4,500t and a standard deviation of 1000t:

normcoeff = 1/(StDevTAC - /(2 - m))

TargetRef = normcoeff - e~ 0-5(0-0/5tDevTAC)*

-0 5.(Zi.A(TACi,A)—TaTQEtTotTAC)Z
normcoeff ) stDevTAC

TargetRef

DisagreeFail =

PI16 (3.1) - propensity to agree with harvest strategy given
the TAC
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Figure $1.8.11 Functional form of the “disagree fail” component of performance indicator 3.1

We compute the Pl value by adding each of these two weighted terms and subtracting from 1:
Plig, = 1.0 — (wtl- ComplexFail + wt2 - DisagreeFail)/2
where wt1 =0.4, wt2 = 0.6 currently.

The first term on the right hand side pertains to inadvertent mistakes; the second term is an active
disregard due to disagreeing with regulations

4.1 Equity between recreational, charter, indigenous and commercial fishing

For this PI, we consider equitable access to the resource and social/public perceptions of the fishery.



4.1.1 Equitable access to the resource

We approximate equitable access by the extent to which the end of year catch proportion by sector
(fleet) f and species i conformed to the specified (fixed) allocation fraction AllocFrac:

TotCatMl-‘f = Z CatMl-‘f‘A‘y
A

To tCatMl-‘f
YrXaCatMis 4,

AllocDev; s = abs << - AllocFraci‘f>/AllocFraci‘f>

where AllocFrac is currently assumed to be 0.6, 0.2 and 0.2 for each of the commercial, charter and
recreational fleets, respectively, for each of the three species groups.

The deviation from equitable access follows another hockey stick relationship (Figure $1.8.12):

D _ 1.0 AllocD +<1 AllocThresh ) AllocTol

Vs = (AllocThresh — AllocTol) octeiy (AllocThresh — AllocTol)/’ octo

< AllocDev;y < AllocThres
Devyy = L9 AllocD AllocTol); AllocTol < AllocD
€Vif = (allocThresh — AllocTol) 110cDeviy — AllocTol); AllocTol < AllocDev s
< AllocThres
Dev;y = 1.0; AllocDev;y > AllocThres
Dev;y = 0; AllocDev; s < AllocTol

where

AllocThresh is the deviation threshold above which the fleets are dissatisfied, set at 20%
AllocTol is the deviation tolerance below which the fleets are satisfied, set at 2%

We determine the Pl is by the average deviation across species groups and sectors:

Pli;yr=1— Z Z Devi‘f/(Nspecies e Nfleet)
i f

if TotCatM;; = 0.0,  Plj;,, =0

Given that the TAC is divided according to these allocation fractions, and we assume perfect
information, there should not be deviations, at least for the commercial sector.
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Figure $1.8.12 Functional form of performance indicator 4.1.1

4.2 Social perceptions of the fishery

In this case, we use Pls that capture public perception around environmental damage caused by the
fishery.

4.2.1 Public perception around discard mortality (compliance with size limits, environmental
sustainability, and waste)

We already have indicators of minimising the risk associated with discarding (P, ,, 1), and
Threatened, Endangered, and Protected Species (TEPS) (Plg y,1).

We recast these Pls so that the higher their value, the lower the risk:
RiSkDiscards =1- PI4,y,1
RiSkTEP = 1 - PI6,y,1

For the TEPS risk, we assume that the perception is 0 when the risk is 0, and rises linearly with risk to
be 0.2 when the risk is 10%:

PeTceptTEp =2 RiSkTEP; RiSkTEP < 01,

At and above a risk of 10%, the perception again linearly increases, from 0.2 to 1.0 at 50% risk.
Above 50% risk, the TEPS “perception score” is 1.0:

0.8

. 0.8-0.5
(0.5 —0.1)

PerceptTEp = - m

- RiSkTEp + (1 ),01 < RiSkTEp < 05

lf RiSkTEP > 0.5,Pe7”ceptTEp =1.0

For the discarding risk, we assume a saturating relationship, where there is no concern below 50%
risk, with a linear increase in perception (concern) above this.

if Riskp;sc < 0.5, Perceptp;s. = 0.0



1

(1.0 —05) [iskoisc + (1

Perceptpisc = );0.5 < Riskpisc < 1.0

"~ (1.0-0.5)

We then weight the two perceptions and subtract this from 1 to obtain the Pl (Figure $1.8.13):
Pligyr =1 — (0.7 - Perceptp;sc + 0.3 - Perceptrgp)

The stronger weighting on discarding is due to a greater public awareness of this relative to any
awareness of the fishery interacting with TEPS.

Pl 18 (4.2.1) Minimise adverse public perception re:
discards, TEPs
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Figure $1.8.13 Functional form of performance indicator 4.2.1

4.2.2 The potential for fishing to be perceived as a positive activity with benefits to the community
(commercial, rec, and charter)

The concept here is that if the fishery is sustainable, with positive flow-on community benefits,
public perception will be high.

We assume the potential for fishing to be perceived as a positive activity scales directly with
objectives 1.1.1 (CT and RTE sustainability), 1.1.2 (OS sustainability), and 2.3 (flow-on economic
benefits), and take a (hon-weighted) average across them:

Pligyr=(PL yr + Plyyyr + P35, )/3.0

4.3 Net social value to the local community from use of the resource

These performance indicators include access to local seafood, and spatial (community) equity.

4.3.1 Access to local seafood (all species)

We assume that this Pl is a function of the non-exported landings (= dead CT, plus all RTE and OS)
that applies to the commercial and charter sector catches (that is, fleet f=1 and 2).

We assume some fixed proportion of live to dead CT (currently, that 10% of CT catch is non-live)
(PercDeadCT = 0.1).

We assume the Pl is O if the local available domestic percentage is <20%, and 0.8 if the local available
domestic percentage achieves a historical proportion, which we assume to be 0.5
(PastDomProp = 0.5).



We assume a hockey stick relationship for values between these two thresholds (Figure $1.8.14). If
the local available percentage exceeds that from the past, the Pl value increases linearly from 0.8 to
1.0 when the local available percentage is 100%.

The total domestic percentage catch is

TotDomPerc
2 2 3 3 3
=| PercDeadCT - Z Z TotCatMy 5.4, + Z Z Z TotCatM; s 4 /Z Z TotCatM; s 4
f=1 4 f=1s=2 A f=1s=1 A
where s=1is CT, and s=2 and 3 are RTE and OS respectively.
If the total catch is zero, 213‘:1 DN TotCatM; », = 0, then TotDomPerc = 0.
The Pl is then
if TotDomPerc < 0.2,Ply, =0
Ply, = 02 TotDomP +<10 02 )TtD P
20Y ™ (1.0 — PastDomProp) orvomberc (1.0 — PastDomProp))’ orvomberc

> PastDomProp

0.8

(PastDomProp — 0.2)
< TotDomPerc < PastDomProp

0.4
-TotDomPerc + (0.8 ); 0.2

PI = -
20,y (PastDomProp — 0.2)

P1 20 (4.3.1) Increase access to local seafood vs total
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Figure $1.8.14 Functional form of performance indicator 4.3.1

4.3.2 Equity between regions and local communities

We assume the equitable proportions of catch (by weight) by region are those of the relative
average biomass across species groups

SpatialFrac, = Y1°P°"S AreaFracNs , /Nspecies

where AreaFracNs 4 is the fixed proportion of species s in each region A.



The deviation threshold, above which the region is “unhappy”, is set at 20%:
SpAllocThres = 0.2

The deviation tolerance, below which the region is “happy”, is set at 5%:
SpAllocTol = 0.05

The absolute percent difference between the relative catch by region and the equitable proportion
is calculated

SpAllocDev, = abs(TotCatArea,/TotCat — SpatialFrac, )
We assume a hockey stick relationship for values between the two thresholds (Figure $1.8.15).
SpDevPerf, = 0; SpAllocDev, < SpAllocTol

SpDevPerf, = 1; SpAllocDev, > SpAllocThres

1

Play = - SpAllocD
2Ly = (SpAllocThres — SpAllocTol) ~PH 07 ¢
n (1 0 SpAllocThres
"~ (SpAllocThres — SpAllocTol)
< SpAllocThres

); SpAllocTol < SpAllocDev,

Pl 21 (4.3.2) Maximise spatial equity vs spatial allocation
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Figure $1.8.15 Functional form of performance indicator 4.3.2

If at least one region yields no catch, the value of the Plis O
if TotCatArea, = 0.0,Pl;, =0

Otherwise, the Pl is the one minus the region-averaged spatial allocation deviation:

Narea

SpAllocDev
Ply, = 1.0 - <ZA P A)



$1.9 The multi-objective value function

For each year y, we have a vector of 22 Pls, {PI;.5; ,}

We calculate a multi-objective value function for any set of stakeholder group g’s weightings, by
multiplying each Pl by its weight, and summing:

Nind

Vo.9y = Z Pljy -Wtj4
=

In each year, we seek the harvest strategy (i.e. TAC) (assuming size limit is fixed) that maximises the
value function for that group, V5 g -

Alternative harvest strategy specifications are:

i) Species-specific TACs: this is a 3x1 array comprising TACs for coral trout, red throat
emperor and SOCI.
i) Region-specific, species-specific TACs: this is a 3x2 matrix, comprising TACs for each of
the 3 species groups and regions.
The initial values for TACs are those from the previous year.

We use the R function optim to optimise the value function, with the TAC matrix as the model
parameters.

In each year, we optimise the value function for each set of stakeholder group’s weightings.

Once the optimal TACs are found, we call the CalcPerfind function one more time to ensure that the
corresponding values and Pls are obtained (for each preference/stakeholder group).

Given the optimum strategy (TACs) for the gth stakeholder group's weightings, we calculate the
value function for every other set of stakeholder group weightings, k:

Nind

Vg,k,y = Z Plg‘y‘1 . Wtj,k
g=1

Each column of the matrix is standardised relative to the value for that column’s stakeholder group
for which the strategy is optimal, so that the diagonal elements are equal to 1).

For each year, this gives a matrix of values according to each set of stakeholder group weightings,
calculated using the Pls derived from the optimal TACs (the optimal strategy) for each stakeholder
group. Each row represents one stakeholder group’s optimal strategy, which is applied to each
stakeholder group’s preference weighting, by column:

Vity Vizy o Vigy = Viny)
Vory ™ Vany
Vg1 Vo.9.y

-Vn,l,y Vn,Z,y ot Vn,g,y ot Vn.n,y-



When each column is standardised relative to the value for the stakeholder group for which the
strategy is optimal (i.e. each column’s values are divided by the value in the row corresponding to
that column), the result is a matrix of relative values whose diagonals equate to 1.

We use two alternative criteria to select the overall optimal TACs (= harvest strategy) across all the
stakeholder preference groups. We take either:

e The highest average value across all stakeholder weightings: that is, the row of the matrix
that has the highest average, indicating that the strategy is overall optimal across all
preference groups, or

e The highest minimum value across all stakeholder weightings: that is, the row of the matrix
that has the highest minimum value across the row, indicating that this strategy results in
the “minimum whinge” across all preference groups.

We then run the population dynamics and calculate the Pls, using the overall optimal TACs for that
year.
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