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Nonlocal Image Editing
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Abstract—In this paper, we introduce a new image editing
tool based on the spectrum of a global filter computed from
image affinities. Recently, it has been shown that the global filter
derived from a fully connected graph representing the image
can be approximated using the Nystrom extension. This filter
is computed by approximating the leading eigenvectors of the
filter. These orthonormal eigenfunctions are highly expressive of
the coarse and fine details in the underlying image, where each
eigenvector can be interpreted as one scale of a data-dependent
multiscale image decomposition. In this filtering scheme, each
eigenvalue can boost or suppress the corresponding signal com-
ponent in each scale. Our analysis shows that the mapping of
the eigenvalues by an appropriate polynomial function endows
the filter with a number of important capabilities, such as edge-
aware sharpening, denoising, tone manipulation, and abstraction,
to name a few. Furthermore, the edits can be easily propagated
across the image.

Index Terms—Image editing, non-local filters,

extension.

Nystrom

I. INTRODUCTION

DGE-AWARE image filtering is a key tool in image
processing, computer vision and graphics. In most exist-
ing methods the underlying image is first decomposed into
piecewise smooth and detail layers. Then, a variety of capabil-
ities, such as tone mapping, edge editing and edit propagation
are developed based on this type of decomposition [2]-[6].
The optimal edge-aware filter coarsens details of the image,
yet the principal edges are ideally not altered. Given the
difficulty in determining what should qualify as an edge,
and which edge should be preserved or smoothed, designing
such a filter is quite challenging. Many smoothing operators
have been proposed in the past few years, and anisotropic
diffusion is perhaps one of the most well-known methods [7].
Anisotropic diffusion tends to preserve (and even sharpen)
main edges while smoothing the texture regions. However,
the iterative nature of this filter can make the computational
burden quite heavy. Also, the ideal iteration number for each
region of the image could be different; yet, an infinite iteration
number can produce a constant image.
Several non-linear (data-dependent) operators such as the
bilateral filter [8], [9] have been used for the same task.
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Chen et al. [10] used the bilateral filter, while progressively
incrementing the spatial and range width of the Gaussian for
building a pyramid of image layers. In a similar iterative
approach [11], the bilateral filter is applied successively on
the coarsened image while decreasing the range width. In all
of these methods edges are preserved by the gradual change
in the tuning parameters of the bilateral kernel. However, the
kernel weights have to be recomputed in every iteration.

Almost all existing edge-aware methods use the same gen-
eral idea: Using a local operator, they decompose the image
into base layer and detail layer and then manipulate each
layer and recombine separately to reach the desired edit. There
are two main problems with this approach:

« Since noise is always an unavoidable part of our imaging
systems, boosting the detail layer usually worsens the
signal-to-noise-ratio (SNR). Even with today’s mega-
pixel images, the trade off between sharpness and SNR is
still a bottleneck. Increasing exposure time will result in
higher SNR, but a more blurry image. On the other hand,
a short exposure leads to sharper but noisier images.

« While it is often desirable to treat similar edges of an
image in the same way, the existing local filters have
irregular behaviors when handling edges with slightly
different brightness and gradient profiles. In other words,
global structure common among similar edges are usually
ignored by the low-level feature vectors associated with
each pixel. Even with all the edge-aware operators in
hand, performing local adjustments to pixels and then
evenly propagating the edit to the similar regions all
across the image has proved to be challenging.

To alleviate the first problem, some methods have been pro-
posed that build on classic linear unsharp masking. Adaptive
unsharp masking [12] controls contrast enhancement in texture
areas and avoids noise magnification by leaving relatively
smooth regions unchanged. A hierarchical framework based
on Non-Local Means (NLM) kernel [13] is proposed in [14]
where noise removal is applied first as a separate step and
then the detail layers are extracted. Another technique in [15]
applies an offset to the bilateral filter to change its normal
coarsening behavior to sharpening. This adaptive bilateral filter
sharpens an image by increasing the slope of edges; however,
its sharpening strength is limited. Recently a new restoration
method for handling mild blur and strong noise has been
introduced in [16], where using the steering kernel regression
technique [17] both denoising and sharpening are combined
in one framework.

To mitigate the second problem, there have been some
efforts to interactively propagate the edits to regions with
similar appearance. Recently, the sparse optimization for-
mulation is used to provide stroke-based editing workflows
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Some leading eigenvectors computed from the luminance channel of the house image using 0.01% of the pixels. (a) House. (b) v2(12 = 0.9917).

(c) v3(43 = 0.9045). (d) vig(4109 = 0.2406). (e) vo5(L25 = 0.0508). (f) v509(450 = 0.0025).

with propagative tonal adjustments [6], [18], [19]. Using an
edge-aware energy minimization method, the tonal adjustment
imposed by the user is interpolated to the pixels with similar
luminance. Farbman et al. [5] also proposed an edit prop-
agation method based on the concept of diffusion distances
which can measure closeness of pixels on a manifold space.
By approximating a diffusion map built upon this high-
dimensional similarity measure, the input adjustments can
propagate to nearby pixels on the manifold.

In our framework, the two above-mentioned shortcomings
of the existing methods are tackled at the same time. Our
image filter is global in the sense that all the node (pixel)
pairs on the graph (image) are directly connected to each
other. As shown in [1], the eigen-decomposition of the cor-
responding symmetric, doubly-stochastic filter matrix can be
approximated using the Nystrom extension. The obtained
eigenvectors are very informative of the similar regions and
edge information of the image! (Fig. 1). More specifically, the
approximated eigenfunctions enable us to employ diffusion
distance for propagating the same manipulation over pixels
belonging to similar regions globally. Having the spectrum of
the filter, simultaneous noise suppression and detail enhance-
ment become much easier by mapping the spectrum of the
filter using a polynomial function, with a few parameters (slid-
ers) to tune. Our experimental results show that this strategy
reduces the halo artifacts around principal edges, avoids the
common noise magnification problem, and can interactively
propagate the user’s edit across the intended similar regions
with ease. In contrast to [5], our approach does not require

1Supplementary materials, including MATLAB code, additional experi-
mental results and manuscript figures are available at the project website:
http://www.soe.ucsc.edu/~htalebi/NLEditing.html

the solution of a complex optimization problem to achieve
this effect.

Our contributions are as follows: First, our framework
handles noise naturally, because the image is projected into
the data-adapted basis obtained from affinity weights. In other
words, the noise is naturally separated from the underlying
signal components by projecting the image into the approx-
imated leading eigenvectors. Second, our global framework
is better than the existing propagation approaches where the
global affinity approximation is used just as a guide mask.
In addition to providing such a mask, the proposed scheme is
able to deliver a filtering tool with many capabilities.

In what follows, a description of global filter and its
eigen-decomposition are given in Section II. Then, our detail
manipulation strategy is explained in Section III. Next, our
propagation mask is described in Section IV. After discussing
our experimental results for different applications of the work,
we conclude the paper in Section VI.

II. THE GLOBAL FILTER

Our filtering framework is based on non-parametric regres-
sion in which a kernel function K;; measures the similarity
between the samples y; and y;, located at x; and x; coordi-
nates, respectively. The NLM kernel [13] is a very popular
data-dependent filter in which the photometric similarity is
captured in a patch-wise manner:

2
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Kij =exp

where y; and y; are patches centered at x; and X; coordinates,
and A, and h, denote the spatial and photometric smoothing
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Fig. 2. Filter approximation using Nystrom extension. Set A represents m samples from input image and set B contains the rest of pixels (n —m). Matrix K4
represents the kernel weights of the sample set A and K4p shows the kernel weights between set A and set B. Sinkhorn algorithm approximates the filter
sub-matrices W 4 and W 4 g through an iterative normalization procedure. These sub-matrices can be used to approximate m leading orthonormal eigenvectors

and eigenvalues of the filter matrix. In this example m is set as 50.

parameters, respectively.”> These weights form the positive,
symmetric kernel (affinity) matrix K. The non-parametric
framework yields a global filter description as follows:

y=D 'Ky =Wy, 2)

where y denotes the vectorized image of length n, and the
matrix D = diag[d;, da, ..., d,] has the row summation of
the kernel weights as d; = Z?:l Kij.

A. The Filter Matrix

The positive, row-stochastic filter matrix W is not generally
symmetric, though it has real, positive eigenvalues [20]. More
specifically, the eigenvalues of W lie in the interval [0, 1]
with the largest one uniquely equal to one with corresponding
eigenvector vi = ﬁ[l, 1,..., 117 ([21], [22]). This implies
that the filter W preserves the average brightness of the input
image y.

Although W is not a symmetric matrix, it can be closely
approximated with a symmetric, positive definite, doubly (i.e.,
row- and column-) stochastic matrix [23]. The symmetric W
enables us to compute its eigen-decomposition as follows:

W =VSv7, 3

in which the eigenvectors V = [vy, ..., v,] specify a complete
orthonormal basis for R” and S = diag[4y, ..., 4,] contains
the eigenvalues in decreasing order 0 < 4, < ... < 4; = 1.

B. Truncated Filter

In our global filtering framework, the filter matrix is not
a full-rank local filter and thus can be closely approximated
with a low-rank matrix. Namely, the filter matrix can be
approximated with its m leading eigenvectors:

W, = VS, VI, “)

in which V,, = [vy,...,v,] and S,, = diag[4,..., Anl
Global features of the underlying image are represented in
these leading eigenvectors. This has been shown in Fig. 1

2Typically, in the NLM, hy is set to fairly large number; hence the
non-locality.

where some eigenvectors with different indices are illustrated.
Various features of the image are encoded by these basis
functions. Eigenvectors with lower indices contain principal
edges and corresponding eigenvectors of larger indices repre-
sent texture regions. As can be seen, these features are globally
separated in each eigenmode.

C. Nystrom Extension

A solution for reducing the computational burden of our
global scheme is proposed in [1] where instead of computing
each element of the filter W, some sample rows (or columns)
of the filter are exactly computed and used to approximate the
remaining rows. As shown by Williams and Seeger [24], the
Nystrom method [25] gives a practical solution when working
with huge affinity (similarity) matrices by operating on only
a small portion of the complete matrix to produce a low-rank
approximation. This approximation enables us to obtain the
eigen-decomposition of the filter W,,, given in (4).

Our filter approximation is illustrated in Fig. 2. First, the
input image is uniformly sampled to form the sample set A
with m pixels (typically m < n). The rest of (n — m) pixels
are assigned to set B. Then, the affinity matrices K4 (for
pixels in set A) and K4p (between pixels in sets A and B)
are computed. These sub-matrices are m rows (or columns) of
the kernel matrix as:

Ky
K= [
K5

A )

Kp

Then, using Sinkhorn algorithm ( [26], [27]), the corre-
sponding filter sub-matrices W4 and W4p are approximated
where:

6
Wi, ©

_|Wa Wy
v-lwg, W)

The sub-matrices Kp and Wp are not explicitly computed
or stored at any step of our approximation [1]. Eigen-
decomposition of the symmetrized matrix Q (shown in Fig. 2)
gives the leading orthonormal eigenvectors V,, and eigenval-
ues S,, of the approximated filter.
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Fig. 3. Some leading eigenvectors computed from the luminance channel of the house image using less than 0.04% of the pixels. (hx = 20, hy = 5). (a) House.
(b) va(42 =0.9966). (c) v3(43 = 0.9948). (d) vig(419 = 0.9667). (e) vp5(Lr5 = 0.8810). (f) v509(450 = 0.7387).

Multiscale Decomposition

Input Image

T= W, %ysk

Multiscale Reconstruction

Fig. 4.
and adding them together.

D. Non-Local Affinities

The spatial and photometric smoothing parameters of the
kernel (hy and hy in (1)) can affect the rank of the kernel
matrix K. Specially small #, makes the kernel matrix K to
be high-rank (more diagonally dominant), and as a result,
the Nystrom extension will need more samples for an accu-
rate reconstruction of the eigenvectors of the filter matrix.
However, we observed that this approximation of the filter
matrix W,,, also has some nice applications. To illustrate, the
leading eigenvectors of Fig. 1(a) are computed for the kernel
with small spatial smoothing parameter in Fig. 3. Comparing
these eigenvectors to the ones presented in Fig. 1, it can be

(a) Mutiscale decomposition: The low-pass filter Wy, is used to extract detail layers y ;. Multiscale reconstruction: Weighting each layer with a;

seen that the spatial term forces the eigenvectors to become
piecewise smooth. As we will discuss in Section V, these
eigenfunctions force the filter to become a local smoother.
In this paper, h, is assumed to be very large (practically
NLM kernel without the spatial term) for the purpose of detail
manipulation, and fixed as 20 for other applications. Based
on image content, we also optimize 4, to minimize the filter
approximation error (See Appendix A).

III. EIGENVALUE MAPPING FUNCTION

The filtered image ¥ can be expressed as:

y=/W)y )
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Fig. 5. The process given in Fig. 4 can be interpreted as the band-pass V, f (Sm)VZ1 in which the eigenvalues are a polynomial function of the low-pass

filter’s eigenvalues given by (14).
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where in general, f(W) denotes a matrix function. Analo-
gously to scalar analytic functions, matrix functions of an nxn
square matrix W can be defined using a power series:

fW) =D W ®)
=0

The above series exists and is finite for a given argument, if the
coefficients ¢; satisfy > iojcix’ < oo [31]. Therefore for
any analytic function f(x) there exists a corresponding matrix
function f(W) constructed by the power series. The analytic
(differentiability) constraint can be relaxed over a closed
interval using the Weierstrass approximation theorem [32]
which only needs the function f(x) to be continuous on
an interval [a, b]. Based on this theorem, for every ¢ > 0,
there exists a polynomial pg(x) of sufficiently high degree &,
such that for all x in [a, b], we have || f(x) — px(x)|| < €.
Consequently, the matrix function f(W) given in (8) can be

20 .25 30 35 40 45

(d)

(a)-(d) The 3th order function f(4;) is evaluated for different a; weights.

approximated by a matrix polynomial p;(W) of order k:
FW) &~ p(W) = col + c1 W + W2 + - - + o WE (9)

with k a function of ¢, as long as the eigenvalues of W reside
in a closed compact interval. Having the matrix filter eigen-
decomposition as W = VSV | any continuous function on the
eigenvalue interval [0, 1] can be approximated as:

FW) =~ coVIVT + 1 VSVT + ¢, VS2VT oo o VSEVT
= V(col + 1S + 287 + - - - + e SHVT

= Vpr(S)VT (10)

where pi(S) = diag[pk(41), pk(42), - -+, px(4s)] denotes the
mapped eigenvalues. Instead of approximating, we chose to
directly use a polynomial function for f(x), because it con-
veniently gives the interesting interpretation of the multiscale
decomposition/reconstruction explained in the following.
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a, ¥ 20 a ¥ 20 a1 ¢ 20
(4%) z 20 a ; 20 (44/) z 20
asz g ¥ 20 as 0 —— 20 as g ¥ 20
Xy o 2 A4 0 2 Ay o 2

aq o' 20
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Fig. 7. Contrast and detail manipulation of the house corner image. (a) Input image, (b) a1 = 1,00 = l,a3 =l,a4 =14,(c)a; =4,ap =l,a3 =1,a4 =1,
doar=1lay=12,a3=1,a4=1,() a1 =1l,ap =1,03 =20,04 =1, (f) a1 =4,a9 = 3,03 =3, a4 = 1.05.

A. Multiscale Detail Manipulation

Fig. 4 depicts the multiscale decomposition and reconstruc-
tion where the input image y is layered to k detail layers
¥4 and one basic smooth layer yu such that the exact
decomposition is:

Y=Yg + ...+ Yk T Yk (11)

The edited image ¥ can be computed by weighting each layer
and adding them back together:
Y=o1yg + ...+ oYk + a1y (12)

Replacing the orthonormal eigen-decomposition of the filter
W,, in the above, the equivalent filter is (Fig. 5):

Y = a1(I—Wy)y + aaW, (I — Wy,)y
+ o+ WA — W)y + i Wy
~ V(a1 (I = Sp) 4+ a2Sm (@ — Sp)
+ o+ S A =S, + a1 SE)VTy
= V(a1 I+ S0 —ay) + an (a3 — a2)
+ oot SE(arsr — a))Vhy
= VufSn)Vhy (13)

where the approximation concerns replacing y by VmIV,Ey
(see Appendix B for detailed explanations). Function f has
the following effect on each eigenvalue 4;:

fj) = a1+ (a2 —ar)ij + (a3 — az)/ﬁ

+ .4 (o — ak—l)i];_l + (ag+1 — ak)i];- (14)

This is a special polynomial with f(0) = a; and f(1) = atgy1-
The two coefficients o and a1 correspond to the first detail
layer and the basic smooth image, respectively. For example,
a 3rd order polynomial is evaluated as a function of the
input eigenvalues in Fig. 6. While the input eigenvalues act
as a low-pass filter (this is equivalent to a; = 0,a; = 1,
o3 = l,04 = 1 in the new filter f(W,,), the function
f can change the filter’s behavior with @; as the tuning
parameter. The mapped eigenvalues in Fig. 6(a) keep the
details of the image untouched, but the leading eigenvalue
manipulates the contrast of the image. Fig. 6(b) is a high-pass
filter with the opposite effect as compared to part (a). Fig. 6(c)
and (d) are two band-pass filters boosting the eigenvectors con-
taining the main edges and possibly suppressing the existing
noise.

Figs. 7-10 give a visual comparison of the filters described
above. As can be seen, applying the filter f(W,,) can boost the
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(a) Flower
a ¥ 20 241 g 20 a, 7 20
2%) z 20 (L%) & 20 (L%) z 20
as g ¥y 20 as g 20 a3 g v 20
Ay o 2 Ay o 2 Ay o 2
(d) Medium Scale Details
aq o' - 20 aq o' 20 a1 o I 20
ar o' 20 (2%) ! 20 a2 o v 20
—_——
as g ¥y 20 a3 v 20 as v 20
Ay o 2 Ay o 2 a4 o 2
Fig. 8. Contrast and detail manipulation of the flower image. (a) Input image, (b) a1 = 1,ap = 1,a3 = l,a4 =15, (c) a1 =5, a0 = l,a3 =1,a4 =1,

doar=1,ap=10,a3=1,04=1,() a1 =1l,ap =1, a3 =15, a4 =1, () a1 =3,a2 =5,a3 = 10,a4 = 1.1.

contrast and details of the image in fine, medium and coarse
scales.

IV. GLOBALIZING MASK

As discussed earlier, the proposed global filter connects
all the pixels in the image with weights commensurate to
their similarity. As a result, any set of edits can be appro-
priately globalized to the whole image. In particular, one
can automatically endow similar pixels with likewise similar
editing parameters. Using the concept of diffusion maps [33],
each pixel located at position x; is mapped into a manifold
defined by the weighted eigenvectors as:

W, (x;) = (Ahvio, A50i3, . . .y Abyim) (15)
where ¢ denotes the diffusion parameter and v;; denotes
the i-th entry of the k-th eigenvector. The squared diffusion
distance between two pixels located at positions x; and x; is
defined as:

m
D7 (xi, %)) = 1%, (x;) — W, (x) 5 = D A (vir — vj1)* (16)
=2

As t grows, the diffusion distance between any two pixels on
the manifold shrinks. We employ a simple Gaussian function
to embed this squared distance into [0, 1] interval and define
the propagation mask as:

M; (x;) = exp(—D?(x;, X;)) (17)

where x; refers to the average diffusion map (given in (15))
over a region S selected by the user. M; values close to one
represent the pixel candidates to be propagated with the edit
and M, values close to zero stand for pixels that receive a small
fraction of the edit. Fig. 11 illustrates the globalizing mask
evaluated for different diffusion parameters obtained from the
user’s input. As can be seen, larger diffusion parameters lead
to more aggressively propagated masks. Using these masks,
it can be seen that the edited region is propagated to the
similar pixels in Fig. 12 and Fig. 13. Comparing results of
the global editing (Fig. 12(d) and Fig. 13(d)) and propagated
edit (Fig. 12(e) and Fig. 13(e)), we can conclude that: (1) The
main edges of the image are preserved and there is almost no
halo effect on them, (2) Existing noise in image regions with
low SNR is no longer boosted. Our results are also compared
to the adaptive [12] and constraint [28] unsharp masking
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Ay o ¥ 20 a; o' 20 a3 o I 20
as ¥ 20 az %, az T ¥————,
Uy o ¥ 2 Ay 0 ¥ 2 Ay o " 2

Fig. 9. Contrast and detail manipulation of the old man image. (a) Input image, (b) a; = 1,00 =1,a3 =1, 04 =14, (c) a1 =3,ap =1, a3 =1,a4 =1,
day=lLoar=8,a3=1lLas=1, () a;=1l,ap=1,a3=16,a4 =1, ) a1 =2,02 =3,a3 =5,a4 = 1.1.

Fig. 10. Contrast and detail manipulation of the door image. (a) Input image, (b) a1 = 1,ap = l,a3 =l,a04 = 1.5, (c) a1 =5,ap = l,a3 = 1,04 = 1,
@ar=LlLay=10,03=1,aa=1, () a; =lL,ap =1,a3 =20, a4 =1, (f) a1 = 3,02 =6,a3 =10, a4 = L.1.

in Fig. 12 and Fig. 13. As can be seen, while the sharpness is Depending on the application, the user can include the
well enhanced, both noise and artifacts are suppressed in our spatial term in the NLM kernel (1). This leads to a class
results. of eigenvectors shown in Fig. 3 where similarity is captured
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(h) =10

~(b) Adaptive Unsharp Masking —

zoomed region-from

Fig. 12. Detail propagation of the Persepolis image compared to the results from adaptive unsharp masking [12] and constraint unsharp masking [28]. Edit
propagation (shown in (e)) reduces the halo artifacts compared to the global edit (shown in (d)) and adaptive unsharp masking [12].

more locally. Propagation masks built on these eigenvectors
are used to explore other applications of our framework in the
following.

V. PRACTICAL APPLICATIONS

The global filter studied here has many applications such as
sharpening, denoising, image recoloring, colorization, image
abstraction and fake depth of field. For the purpose of recol-
oring and abstraction the kernel can be computed from the
luminance channel. Color channels can be used to make the

kernel for colorization and fake depth of field. In general, after
computing the leading eigenvectors, an appropriate propaga-
tion mask is built to apply the user’s input.

A. Recoloring

Figs. 14-15 illustrate recoloring examples where the color
strokes are propagated. These color strokes are applied on
the chrominance channels. As discussed previously, image
pixels can be represented by their corresponding diffusion map
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Detail propagation of the castle image compared to the results from adaptive unsharp masking [12] and constraint unsharp masking [28]. Edit

propagation (shown in (e)) reduces noise and halo artifacts compared to the global edit (shown in (d)) and adaptive unsharp masking [12].

Fig. 14.

coordinates given in (15). Thus, each image region selected by
user strokes contains a group of pixels with the diffusion map
vectors assigned to them. A binary mask can be obtained (see
Figs. 14(c)-15(c)) using k-means clustering with the center of
each diffusion map group as its initialization points. As shown
in Figs. 14(d)-15(d), using this guide mask, the input color
brushes are propagated in the chroma channels. Again, the

Recoloring example based on the propagation mask. Results from the proposed method (d) and color replacement tool of Photoshop CC (e) are
compared. (a) Tulips. (b) User’s input. (c) Mask. (d) Output. (e) Photoshop CC.

mask can be tuned using the diffusion parameter ¢. Our
globalizing mask for colorization application is also obtained
through the same procedure described here.

Non-local nature of our recoloring method is better illus-
trated in Fig. 14 where a small color brush on one tulip is
effectively propagated to other tulips. Color replacement tool
in Photoshop CC was used for the same purpose in Fig. 14(e).
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(a) Purple Flower

(¢) Mask

Fig. 15.

: (d) Output -

Fig. 16.
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(b) Two color brushes

(d) Output

Recoloring example based on the propagation mask. The mask (c) is built based on the two input color brushes (b).

(c) Mask

_(e) Colorization using optimirzation__[29] -

Colorization example based on the propagation mask. The gray scale image is given in (a) and our input brush colors are shown in (b). Using

the mask in (c) the color brushes are propagated throughput the gray image (shown in (d)). For a better comparison, our output is shown next to the results

from [29].

As can be seen, the result obtained from Photoshop fails
to evenly propagate the color stroke. Given that the color
replacement tool employs a soft propagation mask, it tends
to unequally spread the input color even across the same
objects. Fig. 15 shows recoloring example by two different
color brushes. In this case the mask was tuned by the diffusion
parameter (¢) in a way that the right and left side flowers in
the image fall into different clusters.

B. Colorization

Our colorization example is shown in Fig. 16 where three
input color brushes are propagated on the gray input image.
The mask is based on affinities computed from the luminance

channel. Same as recoloring, the mask is binerized using
k-means to obtain a segmented guide map Fig. 16(c). The edit
is propagated to the chroma components and the luminance
channel is not changed. We also compared our result with the
colorization method of Levin et al. [29] where an optimization
problem is solved to propagate the input color scribbles. For
the purpose of fair comparison, we fed the same color brushes
shown in Fig. 16(b) to both methods. This example indicates
superiority of our method while working with a few color
brushes. As can be seen in the optimization colorization result,
blue color is leaked on the trees. While adding more color
brushes specially around the object boundaries may result in
a better performance from [29], our method takes advantage
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(f) Blur map for input (e)

Fig. 17.

| (g) Output for i
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(d) Photoshop @

; (h) Photoshop G

Fake depth of field example. Based on the depth map, pixels with lower map values are more blurred. Our results shown in (c) and (g) are

competitive to the manually edited outputs from Photoshop software in (d) and (h).

Fig. 18. Image abstraction application. (a) Input image and zoomed regions, (b) Our abstraction result as § = Wﬁ,y with iteration number k = 0.1, (c) The
abstracted image given in (b) is stylized using the edge-exaggeration and luminance quantization of [30], (d) Result from [30].

of the guide mask to easily distinguish the sky and forrest
regions. Yet, working with segmented guide masks might
sometimes lead to false color propagation too. The project
webpage contains more colorization examples comparing both
methods and also shows some failed cases.

C. Fake Depth of Field

We can also employ the proposed propagation mask
for applying fake depth of field. Although the produced mask
does not represent the true depth information of the image,
it still can be used to apply selective blur to each image region.
Two examples are illustrated in Fig. 17, where the user selects
the region which is supposed to stay in focus. Then, our blur
map is built using the globalizing mask explained in Sec. IV
and based on this, each pixel is blurred using a Gaussian
function. The blur intensity of each pixel is proportional to
the mask such that mask values close to 0 receive more
blur. Our results are compared with the manually edited
results obtained from Photoshop CC software where the same
Gaussian blur was selected. The blur propagation of the results
from Photoshop are manually tuned to get the best possible
output. As can be seen, results obtained from our blur map is
competitive with the Photoshop outputs.

Based on our observation, the kernel’s spatial and photo-
metric terms play important roles in building the blur map.

We used the RGB channels in the photometric term of the
NLM kernel and included the spatial term as:

RGB
—lIxi —x;11>  —lyi

2 "

RGB 2
—-Y; Il

K,'j = exp (18)

The spatial term enforces the locality of the propagated blur
and the RGB photometric term distinguishes object boundaries
with different colors. Relatively large iy values suit blur maps
of images with distinctive color boundaries in background and
foreground. On the other hand, blur maps of images with
comparably similar color in background and foreground could
be better localized by tuning h,. Of course any fake depth
of field method has its own limitations since the real depth
information is not available.

D. Abstraction

Fig. 18 illustrates the abstraction application where iteration
of the filter leads to stylized filtered image asy = W],‘ny (effect
of the iteration number k is illustrated in the project website
where different results are shown with various iteration num-
bers). In practice, instead of multiplication of the filter matrix,
the iterative filtering is implemented by raising the eigenvalues
to a power.
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(a) Flower (c) Monastery

(b) Rock

Fig. 19. Test images with the following mean gradient magnitudes: (a) 3.66,
(b) 7.51, (c) 12.78.

Fig. 18 shows our stylized result compared to the one from
Winnemoler et al. algorithm [30]. In this method, the input
image is filtered by an iterative bilateral filter to produce a
piece-wise smooth output. Then, an edge-exaggeration step
followed by a luminance quantization is employed to stylize
the abstracted image (see Fig. 18(d)). To further stylize our
abstracted result shown in Fig. 18(b) and also for a better
comparison to [30], the edge-exaggeration and luminance
quantization of [30] was applied on our abstracted result to
produce Fig. 18(c). Although comparing abstracted images is
very subjective, Fig. 18(c) and Fig. 18(d) show that replacing
the iterative bilateral smoother of [30] with our filter can result
in visually superior results.

VI. CONCLUSION

In the current work, some applications of the global, affinity
based filters are explored. Having eigenfunctions of these
filters, complex nonlinear smoothing or sharpening operators
are easily implemented by means of mapping the correspond-
ing eigenvalues. The global nature of the eigenvectors let
us propagate these edits easily throughout the image. This
type of editing enables us to prevent noise magnification and
also effectively reduce common artifacts such as halo. Beside
filtering applications, the obtained propagation map can be
used to effect many other types of edits.

APPENDIX A
PARAMETER TUNING OF THE FILTER

The approximated filter spans the input image onto its
eigenvectors. These projected image coefficients are b; = VJT.y
where j = 1,...,m. For any m < n, energy of these
coefficients is less than the energy of the input image as
> b? < >" | y? (ideally, the two energy terms are equal).
The approximated filter should preserve energy of the image,
which means f should be close to one, where:

m 12

2=t

2
2oy
Assuming that the sample number m is fixed, £ is determined
by the kernel smoothing parameter.

The approximation accuracy is directly affected by the
smoothing parameter of the NLM kernel (%, given in (1)). For
the images given in Fig. 19, £ is computed using different
smoothing parameters in Table I. As can be seen, f gets
closer to one for larger h,. However, for a better multiscale

decomposition, it is necessary to select a small smoothing
parameter. We set f > 99.9% to determine the optimal

B = (19)
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TABLE I
f PERCENTAGE VA LUES FOR IMAGES GIVEN IN FIGURE 19

Ry 2 4 6 8 10
| _Flower | 99.95 | 99.59 | 100 | 100 | 100 |
[~ Rock ~|[799.837] 799.95 | 99.97 | 99.987| 99.99 ]

Monastery | 99.63 | 99.80 | 99.88 | 99.93 | 99.96
4.5 T
—— House corner
- - -Door
4 —o—0ld Man
—=— Rock
g 351 == Flower n
&
@
z

Fig. 20.  Approximation error of (13) computed as relative RMSE =
- T
W x 100% for different numbers of retained eigenvectors m.

kernel parameter. This test could be useful after approximation
to check if the kernel parameter is not too small or large.
To avoid the computation burden, a simple ad-hoc method
is introduced in the following to adapt the kernel smoothing
parameter into the latent image.

Image content has a direct impact on the accuracy of
the approximation. Images containing more variants tend to
settle for larger h, (for a fixed f). This can be observed
by comparing the mean gradient magnitude of the test
images (given in Fig. 19) and the S values in Table I.
Without any need to compute £, we empirically estimate
the smoothing parameter as a function of the mean gradient
magnitude:

~ 0

N S —
hy = 7 g)f] gX] + gzzgxz

where g, and g, denote the gradient vectors in x; and x
directions.

(20)

APPENDIX B
APPROXIMATION OF EQ. 13
The approximation made in (13) is y ~ VmIV,Ey, or in
effect replacing the identity matrix with VmV;l. This assump-
tion means that the underlying image y should be “well repre-
sented" (or spanned) by these eigenvector bases. For a better
validation of this approximation, Fig. 20 shows relative root-

mean-square-error (relative RMSE = %{l"ﬁyll x 100%)
for some of the test images. The relative RMSE values are
computed for images in range [0,255] and various values of m.
Unsurprisingly, the approximation error shrinks as the number
of retained eigenvectors grows. Overall, keeping m > 75 in

our framework leads to around 1% approximation error.
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