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Abstract— Most existing state-of-the-art image denoising algo-
rithms are based on exploiting similarity between a relatively
modest number of patches. These patch-based methods are
strictly dependent on patch matching, and their performance
is hamstrung by the ability to reliably find sufficiently similar
patches. As the number of patches grows, a point of diminishing
returns is reached where the performance improvement due
to more patches is offset by the lower likelihood of finding
sufficiently close matches. The net effect is that while patch-
based methods, such as BM3D, are excellent overall, they are
ultimately limited in how well they can do on (larger) images
with increasing complexity. In this paper, we address these
shortcomings by developing a paradigm for truly global filtering
where each pixel is estimated from all pixels in the image. Our
objectives in this paper are two-fold. First, we give a statistical
analysis of our proposed global filter, based on a spectral
decomposition of its corresponding operator, and we study the
effect of truncation of this spectral decomposition. Second, we
derive an approximation to the spectral (principal) components
using the Nyström extension. Using these, we demonstrate that
this global filter can be implemented efficiently by sampling a
fairly small percentage of the pixels in the image. Experiments
illustrate that our strategy can effectively globalize any existing
denoising filters to estimate each pixel using all pixels in the
image, hence improving upon the best patch-based methods.

Index Terms— Image denoising, non-local filters, Nyström
extension, spatial domain filter, risk estimator.

I. INTRODUCTION

DENOISING of images is perhaps the most basic image
restoration problem. The degradation model for the

denoising problem can be described as:

y = z + e (1)

where column vectors z and y denote the (vectorized) under-
lying latent image and its noisy observation, respectively. The
vector e represents zero-mean white noise1 with variance σ 2

(which is assumed to be spatially invariant in this paper). There
have been numerous denoising algorithms to estimate z from
y, and in general most of these methods can be categorized
as patch-based filters. While some denoising approaches such
as the bilateral filter [1], LARK [2] and NLM [3] estimate
each pixel separately fusing other “similar” neighborhood
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pixels; more recent state-of-the-art patch-based methods such
as BM3D [4] and PLOW [5] denoise a group of similar
patches together. Overall, most existing approaches, including
the present one, can be unified as data-dependent filtering
schemes [6].

Patch-based filtering is founded on the assumption that the
latent image has a locally sparse representation in some trans-
form domain. Wavelet and DCT in [4], principle component
analysis (PCA) in [7], and over-complete dictionaries in [8] are
the frequently used transforms. The filtering process is defined
as applying a shrinkage function to the transform coefficients
and recovering the estimated patches by inverse transform.
However, performance of these patch-based methods is strictly
dependent on how well the similar patches are matched [9].
Specifically, for images that are well represented by locally
sparse transform (i.e. images with locally repetitive structure
such as House in Fig. 6), the shrinkage operator keeps most of
the basis elements belonging to the latent signal and effectively
removes the noise components. Yet, when the similar patches
are not easily representable in a sparse way (i.e. images
with locally non-repetitive, or semistochastic structures such
as Mandrill in Fig. 6), the signal components and the noise
elements can be mistakenly shrunk together. Consequently,
performance of the patch-based filtering will be affected by
the lack of locally (in the nearest neighbor sense) similar
patches [10].

As shown in [6], a spatial domain denoising process has a
transform domain filtering interpretation, where the orthogonal
basis elements and the shrinkage coefficients are respectively
the eigenvectors and eigenvalues of a symmetric, positive
definite (data-dependent) filter matrix. For filters such as NLM
and LARK the eigenvectors corresponding to the dominant
eigenvalues could well represent latent image contents. Based
on this idea, the SAIF method [11] was recently proposed
which is capable of controlling the denoising strength locally
for any given spatial domain method. SAIF iteratively filters
local image patches, and the iteration method and iteration
number are automatically optimized with respect to locally
estimated MSE. Although this algorithm does not set any the-
oretical limitation over this local window size, computational
burden of building a matrix filter for a window as large as the
whole image is prohibitively high.

As shown by Williams and Seeger [12], the Nyström
method [13] gives a practical solution when working with
huge affinity (similarity) matrices by operating on only a small
portion of the complete matrix to produce a low-rank
approximation. The Nyström method was initially introduced
as a technique for finding numerical solutions to eigen-
decomposition problems in [13] and [14]. The Nyström
extension has been useful for different applications such as
manifold learning [15], image segmentation [16], and image
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Fig. 1. Comparison of the local and global filter weights for the NLM kernel [3]. The filter weights are computed for the two labeled pixels.

editing [17]. Fortunately, in our global filtering framework,
the filter matrix is not a full-rank local filter and thus can
be closely approximated with a low-rank matrix using the
Nyström method.

Our contribution to this line of research is to introduce an
innovative global denoising filter, which takes into account all
informative parts of an image (see Fig. 1). Distinctly, with this
global filter in hand, the concept of patch-based processing is
no longer restrictive, and we are able to show that performance
of the existing patch-based filters are improvable.

The block diagram of the proposed global image denois-
ing (GLIDE) framework is illustrated in Fig. 2. As can be
seen, after applying a pre-filter on the noisy image, a small
fraction of the pixels are sampled to be fed to the Nyström
method. Then, the global filter is approximated through its
eigenvalues and eigenvectors. The final estimate of the image
is constructed by means of shrinkage of the filter eigenvalues.

The paper is organized as follows. Section II describes
our statistical analysis of the global filter based on an iter-
ative shrinkage strategy. Section III provides our proposed
three-step algorithm for approximating the symmetric global
filter based on the Nyström extension. After this eigen-
decomposition approximation, performance of our global filter
is presented in Section IV. Finally we conclude this paper in
Section V.

II. STATISTICAL ANALYSIS OF THE FILTER

With zi representing the i -th underlying pixel, our measure-
ment model for the denoising problem is:

yi = zi + ei , for i = 1, . . . , n, (2)

where yi is the noisy pixel value and ei denotes the additive
noise. The vectorized measurement model for recovering the
underlying pixels z = [z1, . . . , zn]T is given by (1).

Most spatial domain filters can be represented through the
following non-parametric restoration framework [2], [6]:

ẑi = arg min
zi

n
∑

j=1

[zi − y j ]2 Kij , (3)

where the kernel function Kij measures the similarity between
the samples yi and y j , and ẑi denotes the i -th estimated pixel.

The bilateral filter [1] is perhaps the most well-known kernel
which smooths images by means of a nonlinear combination of
nearby image values. This filter combines pixel values based
on both their geometric closeness and their photometric sim-
ilarity. The NLM [3] is another very popular data-dependent

filter which closely resembles the bilateral filter except that
the photometric similarity is captured in a patch-wise manner.
More recently, the LARK [2] was introduced which exploits
the geodesic distance based on estimated gradients.

Minimizing equation (3) gives a normalized weighted
averaging process in which some data-adaptive weights are
assigned to each pixel:

ẑi = wT
i y, (4)

where the weight vector wi is

wi = 1
∑n

j=1 Kij
[Ki1, Ki2, . . . , Kin ]T . (5)

in which [Ki1, Ki2, . . . , Kin ] denotes the i -th row of the
symmetric kernel matrix K. The filtering process for all the
pixels can be represented by stacking the weight vectors
together:

ẑ =

⎡

⎢

⎢

⎢

⎣

wT
1

wT
2
...

wT
n

⎤

⎥

⎥

⎥

⎦

y = Wy, (6)

where the positive, row-stochastic filter matrix W is used to
estimate the denoised signal ẑ. W is not generally symmetric,
though it has real, positive eigenvalues [6]. In particular, the
eigenvalues of W satisfy 0 ≤ λi ≤ 1; the largest one is
uniquely equal to one (λ1 = 1) while the corresponding
eigenvector is v1 = 1√

n
[1, 1, . . . , 1]T [18], [19]. The last

property implies the desirable feature that a flat image stays
unchanged after filtering by W.

While W is not a symmetric matrix, it can be closely
approximated with a symmetric, positive definite, doubly (i.e.,
row- and column-) stochastic matrix [20]. The symmetric W
enables us to compute its eigen-decomposition as follows:

W = VSVT, (7)

in which the eigenvectors V = [v1, . . . , vn] specify a complete
orthonormal basis for R

n and S = diag[λ1, . . . , λn ] contains
the eigenvalues in decreasing order 0 ≤ λn ≤ · · · < λ1 = 1.

Denoting n as the total number of the pixels in the
image, our one-shot, global filter for the whole image can
be expressed as:

ẑ = Wy = VSVT y, (8)

This implies that the image y is first projected onto the
eigenvectors of W, then each mode of the projected signal
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Fig. 2. GLIDE’s pipeline. From left to right, for a noisy image we first apply a pre-filter to reduce the noise level. Then using a spatially uniform sampling,
the global kernel is approximated by employing the Nyström extension (A and B represent the samples and the rest of the pixels in the image, respectively).
As is discussed in Section III, using the obtained kernel, the leading eigenvalues and eigenvectors of the filter are approximated (The eigenvector v1 is not
shown because it is constant). Finally, the optimal filter is constructed by shrinking (iteration and truncation) the eigenvalues. The filter optimization step is
detailed in Section II.

is shrunk by its corresponding eigenvalue, and finally after
mapping back to the signal domain, the recovered signal ẑ is
produced.

Not surprisingly, the computational burden of constructing
and decomposing such a large matrix as W is prohibitively
high. However, the Nyström approximation, combined with
our statistical analysis allows an efficient solution. Before
proceeding to the filter approximation, the behavior of the filter
(in terms of MSE) is analyzed.

A. Ideal Full Space Filter

Let’s assume that all of the eigenmodes of the filter W
are used without any change and the filter W is stochastically
independent from the input image y. Then, starting from MSE
of each pixel, in Appendix A we show that the overall ideal
MSE for the whole image is:

MSE ≈
n

∑

j=1

(1 − λ j )
2b2

j + σ 2λ2
j (9)

where in the above, ‖bias( ẑ )‖2 = ∑n
j=1(1 − λ j )

2b2
j and

var( ẑ ) = σ 2 ∑n
j=1 λ2

j and b = VT z = [b1, . . . , bn]T contains
the projected signal in all modes (consistent with the MSE
analysis in [6]). Apparently MSE is a function of the latent
signal, noise, filter eigenvalues and eigenvectors. The filter
eigenvalues are the shrinkage factors which directly tune the
filtering performance.

As discussed in [6], minimization of the MSE as a function
of the filter eigenvalues leads to the Wiener filter:

λ∗
j = 1

1 + snr−1
j

(10)

where snr j = b2
j

σ 2 . This optimum shrinkage requires exact
knowledge of the signal-to-noise ratio in each channel.

Estimation accuracy can sometimes be improved by shrink-
ing or setting some coefficients to zero. By doing so we may
sacrifice some bias to reduce the variance of the estimated val-
ues, and hence may improve the overall estimation accuracy.

B. Truncated Filter

The filtering framework in (8) can be performed for the
leading (say m < n) eigenvalues of the filter W. As we show
in Appendix B, such a filter has the following MSE:

MSE(m) =
n

∑

i=1

z2
i +

m
∑

j=1

(

(λ2
j − 2λ j )b

2
j + σ 2λ2

j

)

(11)

where in the above, ‖bias( ẑ )‖2 = ∑n
i=1 z2

i + ∑m
j=1(λ

2
j −

2λ j )b2
j and var( ẑ ) = σ 2 ∑m

j=1 λ2
j . For the sake of compar-

ison, we can assume that all the signal modes are available
and then

∑n
i=1 z2

i can be replaced with
∑n

i= j b2
j . After some

simplifications we can rewrite our MSE expression as:

MSE(m)=
n

∑

j=1

(1 − λ j )
2b2

j + σ 2λ2
j

︸ ︷︷ ︸

MSE

+
n

∑

j=m+1

(2λ j −λ2
j )b

2
j −σ 2λ2

j

(12)
As can be seen, MSE(m) of the truncated filter differs from (9)
by the amount given in the second term of (12); i.e. �MSE =
∑n

j=m+1(2λ j −λ2
j )b

2
j −σ 2λ2

j . This difference is also composed
of bias and variance parts as �MSE = �‖bias‖2+�var where

�‖bias‖2 =
n

∑

j=m+1

(2λ j − λ2
j )b

2
j (13)

�var = −
n

∑

j=m+1

σ 2λ2
j (14)

This shows, consistent with intuition, that the truncation lowers
the variance and increases the bias. Given this analysis, we can
determine when truncation improves the MSE. That is, when
is �MSE < 0. A simple sufficient condition is that for all j ,

snr j <
λ j

2 − λ j
(15)

Intuitively we can conclude that all the channels in the range
of m + 1 ≤ j ≤ n with sufficiently small signal-to-noise ratio
should be set to zero. This inequality can also be expressed
as:

λ j >
2

1 + snr−1
j

(16)
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Fig. 3. Filter weights with different shrinkage (k) and truncation (m) parameters are computed for the labeled pixel in the House image.

Comparing this inequality with the Wiener shrinkage criterion
in (10), it can be seen that λ j > 2λ∗

j . That is, the condition
implied by (16) is a stronger form of shrinkage than what the
Wiener condition would dictate.

C. Iterative Filter

Although the estimated MSE can be reduced by truncating
some of the eigenmodes, hard thresholding prevents the accu-
racy of the estimation to be close to optimal. To ameliorate
this shortcoming, iteration can gradually tune the (truncated)
filter to softly vary its filtering strength. As such, the iteration
and truncation numbers are the only parameters to be globally
optimized. Our iterative diffusion model [6] is:

ẑ = ̂W y = VmSk
mVT

my, (17)

where Vm = [v1, v2, . . . , vm], Sk
m = diag[λk

1, λ
k
2, . . . , λ

k
m ] and

k denotes the iteration number.2 Fig. 3 illustrates correspond-
ing filter weights of the marked pixel in the House image.
As can be seen, different iteration and truncation numbers can
effectively vary the behavior of the filter to find similar pixels
all over the image.

With this model, we can rewrite (11) for the truncated
iterative filter:

MSE(k, m) =
n

∑

i=1

z2
i +

m
∑

j=1

(

(λ2k
j − 2λk

j )b
2
j + σ 2λ2k

j

)

(18)

Overall, our minimization problem will be extended to
estimating the shrinkage (̂k ) and truncation (m̂) factors from

2It is noteworthy that the spectral decomposition of Wk makes it possible
to replace k with any real number. It is important to note that because of this,
k can really be thought of as a shrinkage parameter that controls the rate of
decay of the modified eigenvalues λk

j . Going forward, we will use the terms
“shrinkage factor” and “iteration number” interchangeably.

an estimate of MSE:

̂k, m̂ = arg min
k,m

M̂SE(k, m) (19)

where M̂SE(k, m) denotes an estimate of MSE(k, m). The
shrinkage and truncation parameters are simultaneously opti-
mized such that (̂k, m̂) is the global minimum of M̂SE(k, m).
Minimization of M̂SE(k, m) determines the best parameters to
help avoid under- or over-smoothing.

Although the diffusion iteration is chosen in our framework,
our analysis makes it possible to use other iterations too. In
general, any iterative approach can be defined as substituting
the eigenvalues λ j with a shrinkage function fk(λ j ) where in
the case of diffusion fk(λ j ) = λk

j . Another alternative can be
the boosting iteration which is a complementary mechanism to
recycle lost details of the filtered signal [6], [11]. In this case,
the eigenvalues will be shrunk as fk(λ j ) = 1 − (1 − λ j )

k+1.

D. Practical Filtering

In the estimation of the MSE in (18), we assumed that the
filter W is stochastically independent from the input image y.
It has been shown that in the case of a smooth filter (kernel
with small gradient), a pre-filter can effectively decouple W
from y [20]. The smoothness of the filter is approximately true
when the filter is computed for locally homogenous patches.
By approximating the local signal-to-noise ratio, this type
of MSE estimator has been shown to work quite well [11].
However, in the case of the global filter, pixels with different
local structures are connected to each other; which means
drastic changes in the filter values. In other words, W and y
are not stochastically decoupled. This nonlinearity specifically
affects the estimated variance in the ideal MSE presented
in (18). Inspired by the SURE estimator [21], we can show
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Fig. 4. Optimal filter weights for the labeled pixels in the images. The optimal iteration and truncation numbers for each image are estimated as, House:
̂k = 0.16 and m̂ = 40, Barbara: ̂k = 0.14 and m̂ = 65, Mandrill: ̂k = 0.33, m̂ = 165.

that the estimated variance can be modified as:

var(̂z) ≈ σ 2
m

∑

j=1

λ2k
j + 2σ 2

⎛

⎝div(̂z(y)) −
m

∑

j=1

λk
j

⎞

⎠ (20)

where div( ẑ (y)) ≡ ∑

i
∂ ẑi (y)
∂yi

. In the case of a strictly linear

filter, div( ẑ (y)) = ∑m
j=1 λk

j , which leads to the ideal variance
in (18). Intuitively, the second term in (20) takes care of the
variance due to the nonlinearity.

It is quite straightforward to show that the bias term in (18)
can be better estimated as:

‖bias(̂z)‖2 ≈
n

∑

i=1

y2
i − σ 2 +

m
∑

j=1

(λ2k
j − 2λk

j )(b̌
2
j − σ 2) (21)

where b̌ = VT y. Expected value of this estimator is exactly
the ideal squared bias in (18). Overall, the estimated MSE of
the general nonlinear filter has the following form:

M̂SE(k, m) = SURE(k, m) =
n

∑

i=1

y2
i − σ 2

+
m

∑

j=1

(λ2k
j − 2λk

j )b̌
2
j + 2σ 2div(̂z(y)) (22)

which is the SURE estimator [21]. For large data sets (such as
our global framework), closeness of the SURE risk estimator
to the actual MSE is assured by the law of large numbers.

Approximation of div(̂z(y)) has been studied in [22] and
[23]. Ramani’s Monte-Carlo algorithm [23] uses a first-order
difference approximation to obtain an estimate of the diver-
gence term. Based on this method, the divergence term can
be computed from div(̂z(y)) = 1

ε aT (̂z(y) − ẑ(y′)) where
y′ = y + εa in which a is a zero-mean i.i.d random vector
of unit variance and in practice ε gets small positive values
(in theory ε −→ 0).

Performance of the proposed estimator in (22) is evaluated
in Figs. 4 and 5. As can be seen in Fig. 4, the optimized
filter weights for the labeled pixels are computed based on
the estimated iteration and truncation parameters. The actual
and estimated MSE plots are shown in Fig. 5 where as can
be seen, the estimated shrinkage parameters are very close to
their actual values.

III. FILTER APPROXIMATION

Until now, our statistical analysis was based on the fact that
we can compute the filter W for the whole image. This filter
is n × n for an image containing n pixels, which obviously
demands a high computational and storage cost. Since we
only need the eigen-decomposition of this matrix, we can
approximate the first p eigenvectors and eigenvalues of it
without direct computation of all elements of W. Although
this idea has not been studied for the purpose of filtering
before, [16] used it in the context of spectral grouping, where
at first the matrix K is approximated by means of the Nyström
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Fig. 5. Corresponding MSE of the images in Fig. 4. The ideal and estimated iteration and truncation numbers are respectively: House (ideal: 0.19, 45,
estimated: 0.16, 40), Barbara (ideal: 0.14, 65, estimated: 0.14, 65), Mandrill (ideal: 0.34, 160, estimated: 0.33, 165).

method [13], and then a symmetric normalized version of this
matrix is used for a data clustering scheme. Our objective
is different because in the end we need to approximate the
filtering matrix W, hence we first review what is done in [16]
and then adapt it to the approximation we need to effect here.

In the following, the Nyström approach for approximating
the similarity (affinity) matrix K is used first and then the
Sinkhorn method (sec. III-B) is applied to estimate the eigen-
decomposition of the symmetric, doubly-stochastic filter W.
Since the approximated eigenvectors are not exactly orthog-
onal, finally an orthogonalization procedure is employed to
obtain an orthonormal approximation for eigen-decomposition
of W. These steps are shown in Algorithm 1 and we will
discuss them in more details below.

A. Nyström Approximation

This method is a numerical approximation for estimating
the eigenvectors of the symmetric kernel matrix K:

K = ���T (23)

where � = [φ1, . . . ,φn] represents the orthonormal eigenvec-
tors and � = [π1, π2, . . . , πn] contains the eigenvalues of K.
Nyström [13] suggests that instead of computing all the entries
of K, we can sample our data points and estimate the leading
eigenvectors of the matrix K and, as a result, an approximation
˜K can then be built from those estimated eigenvectors.

Having p pixels in a sampled subimage A, we can compute
the p × p kernel matrix KA which represents the similarity
weights of pixels in A. We also define the subimage B
containing the rest of (n−p) pixels, followed by the p×(n−p)
matrix KAB , which contains the kernel weights between pixels

in A and B. The similarity matrix K in block form is therefore:

K =
[

KA KAB

KT
AB KB

]

(24)

where KB denotes the (n − p) × (n − p) similarity weights
between pixels in the subimage3 B. As can be seen, (24) can
be thought of as a permutation of the old K. Nyström suggests
the following approximation for the first p eigenvectors of K:

˜� =
[

�A

KT
AB�A�−1

A

]

(25)

where KA = �A�A�T
A. Intuitively, we can say that the

first p entries of ˜� are computed exactly, and the (n − p)
remaining ones are approximated by a weighted projection
of KAB over the eigenvectors of KA. Then the approximated
similarity matrix will be:

˜K = ˜��A˜�
T

=
[

�A

KT
AB�A�−1

A

]

�A
[

�T
A �−1

A �T
AKAB

]

=
[

KA KAB

KT
AB KT

ABK−1
A KAB

]

(26)

Comparing (24) and (26) it can be seen that the huge matrix
KB is approximated by KT

ABK−1
A KAB .

A key aspect of the Nyström approximation is the sampling
procedure in which the columns (or rows) of the original K
are selected. The Nyström method was first introduced by a
uniform distribution sampling over data [12]. Efficiency of
the uniform sampling has been explored in many practical
applications [15], [16]. More recently, theoretical aspects

3When n 
 p, KB can be huge.
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Algorithm 1 Spectral Approximation of the Filter W

of nonuniform sampling techniques on real-world data sets
have been studied [24], [25]. In general, these nonuniform
sampling procedures are biased toward selection of the most
informative points of the data-set. However, due to the
imposed complexity of the nonuniform distribution updating
procedure, practical application of these adaptive methods is
limited.

In the current framework, our data are images which contain
a high degree of spatial correlation between pixels. This leads
us to use spatially uniform sampling instead of the random
sampling procedure. Spatially uniform sampling is a simple
but effective approach in which the spatial distance of the
samples are always equally fixed.

To study the performance of the Nyström approximation,
we evaluate the relative accuracy defined in [25]:

Relative Accuracy = ‖K − K(r)‖F

‖K − ˜K(r)‖F
× 100

where K and K(r) are the actual kernel and its exact rank-r
approximation. The approximated kernel ˜K(r) is reconstructed
by using r leading eigenvectors from the Nyström method. The
relative accuracy is lower bounded by zero and will ideally
approach 100%.

The relative accuracy of approximating the globalized NLM
kernel [3] as a function of the sampling rate is shown for some
benchmark images in Fig. 6. We fixed r = 50 to capture about
90% of the spectral energy of the global kernel for each image.
The samples are uniformly selected over the image lattice, and
the relative accuracy is averaged for 20 sampling realizations.
It can be seen that while higher sampling percentage leads to
smaller error in the approximated kernel matrix, a saturation
point is reached beyond 20% sampling density. Furthermore,
for a fixed sampling rate the error depends on the contents of
the underlying image. Surprisingly, textured images with high
frequency components such as Mandrill produce less error
compared to smooth images like House. This observation is
consistent with results of [26] where it is shown that the error
of the Nyström approximation is proportional to coherency of
the kernel eigenvectors.

One could assume that at this point we can easily compute
our approximated W and we are done! But as discussed earlier,
statistical analysis of this filter needs access to its eigen-
decomposition. Constructing a huge W matrix and then com-
puting its eigenvectors is too expensive. Instead, in the follow-
ing we explore an efficient way to find the eigenvectors of W.

B. Sinkhorn

The filter W is the row-normalized kernel matrix K:

W = D−1K (27)

where D = diag[∑n
j=1 K1 j ,

∑n
j=1 K2 j , ..,

∑n
j=1 Knj ]. We

approximate the matrix W with a doubly-stochastic (symmet-
ric) positive definite matrix, using Sinkhorn’s algorithm [20].
Based on this method, given a positive valued matrix K, there
exist diagonal matrices R = diag(r) and C = diag(c) such
that Wsym = RKC.

Since we have estimated the leading eigenvectors of K,
there is no need to compute RKC. Instead, as can be seen
in Algorithm. 1, Wsym is approximated by its two sub-blocks
WA and WAB where:

Wsym =
[

WA WAB

WT
AB WB

]

(28)

Again, the Nyström method could give the approximated
eigenvectors, but the only minor problem is that these eigen-
vectors are not quite orthogonal. In the following we discuss
an approximation of the orthogonal eigenvectors.
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Fig. 6. Accuracy of the kernel approximation for different sampling rates (sampling rate percentage is defined as p
n × 100% where p denotes the number

of samples and n represents number of pixels in the image). For the ease of computation of the exact filter, 150×150 subimages of Mandrill, Barbara and
House are selected.

C. Orthogonalization

With the two sub-blocks WA and WAB in hand,
here we derive an expression for approximating the
orthogonalized eigenvectors ˜V. As discussed in [16], for
any positive definite matrix, the orthogonalized approximated
eigenvectors can be solved in one step. Let W1/2

A denote
the symmetric positive definite square root of WA . We
define Q = WA + W−1/2

A WAB WT
ABW−1/2

A and we also
consider the eigen-decomposition of this symmetric matrix as
Q = VQSQVT

Q . Then, it can been shown that the approx-
imated symmetric ˜W is diagonalized by ˜S = SQ and ˜V
where:

˜V =
[

WA

WT
AB

]

W−1/2
A VQS−1/2

Q (29)

Then the approximated filter can be expressed as:

˜W = ˜V˜S˜V
T

(30)

Proof of this approximation is given in Appendix C.
The described three-step procedure provides us with an

approximation of the leading eigenvectors and eigenvalues of
the filter. Denoising performance of the approximated filter is
compared to the exact filter in Fig. 7. These results suggest
that the proposed approximation with a small sampling rate
can almost reach performance of the exact filter.

IV. EXPERIMENTS

In this section performance of our algorithm is compared
to state-of-the-art denoising methods for some benchmark
images. We selected NLM [3] as our baseline kernel; however,
any other non-local kernel could also be used. Pixel samples of
the Nyström extension are uniformly selected and the sampling
rate is set as 1% (p = n

100 ) and is kept fixed throughout the
experiments.

Performance of the proposed filter is quantified across
different noise levels in Table I. For each noise level, we report
the Monte-Carlo average performance for each algorithm over
5 different noise realizations. We highlight (in bold) both the

best results, and also results that are statistically within the
margin of standard error from the best results (0.05 dB in
PSNR and 0.005 SSIM). In this set of experiments, the pre-
filtered images are obtained from NLM. As can be seen, our
method consistently improves upon NLM in terms of PSNR
and SSIM index [27], especially for high noise levels where
local similar pixels are more difficult to find.

Fig. 8 demonstrates the denoising results obtained by NLM
compared to the proposed method. In addition to the PSNR
improvement, visual quality of the proposed method also is
superior to the NLM filter. As it can be seen, both edges and
smooth features of the image are preserved better than the
other methods.

In the next set of experiments shown in Table II, the pre-
filtered images are obtained from BM3D [4]. Our method can
improve upon BM3D especially at high noise levels and for
images with semi-stochastic textures which contain relatively
few similar patches.

Denoising results of the Mandrill and Monarch images for
BM3D and the globalized BM3D are compared in Fig. 9.
As can be seen, the proposed method can bootstrap the
performance of BM3D.

Since in practice the distribution of the noise is not additive
white Gaussian, we also tested our algorithm for real noise in
color images.4 In this set of experiments the best results are
optimized using the no-reference quality metric in [28]. Fig. 10
shows performance of the proposed method for improving the
NLM filter. We also compare our results to the commercial
Neat Image™denoising software in Fig. 11. As can be seen,
our result is competitive to the commercial state-of-the art
denoising. We note that our Matlab code and additional results
are available at the project website.5

Running time for denoising a 256 × 256 grayscale image
with an unoptimized implementation of our method is

4The color denoising is applied in YUV space, where the weights are
computed from the Y channel, and applied to the U and V channels.

5http://www.soe.ucsc.edu/~htalebi/GLIDE.php.
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Fig. 7. Comparison of the denoising performance (AWG with σ = 20) of the exact and approximated filter for the subimages in Fig. 6.

TABLE I

PSNR VALUES OF NLM [3] (1ST COLUMN), AND THE PROPOSED METHOD (2ND COLUMN). RESULTS NOTED ARE AVERAGE PSNR (TOP)

AND SSIM [27] (BOTTOM) OVER 5 INDEPENDENT NOISE REALIZATIONS FOR EACH σ

TABLE II

PSNR VALUES OF BM3D [4] (1ST COLUMN), AND THE PROPOSED METHOD (2ND COLUMN). RESULTS NOTED ARE AVERAGE PSNR (TOP) AND

SSIM [27] (BOTTOM) OVER 5 INDEPENDENT NOISE REALIZATIONS FOR EACH σ

about 160 seconds on a 2.8 GHz Intel Core i7 processor.
However, parallelizing can significantly speed up our method.
For instance, running time of the parallelized version of our
code executed with 4 separate cores takes about 50 seconds.

V. CONCLUSION

This work is, to our knowledge, the very first truly global
denoising algorithm to be proposed. The global approach
goes beyond the dominant paradigm of non-local patch-based
processing, which we have shown here to be inherently
limited. The specific contribution we have made is to develop
a practical algorithm to compute a global filter which in effect
uses all the pixels in the input image to denoise every single
pixel. By exploiting the Nyström extension, we have made
the global approach computationally tractable. Since the global
filter uses all the pixels of the image, exact computation of the
filter weights has a complexity O(n2), whereas the proposed

sample based approximation, the complexity is reduced to lin-
ear time O(pn), where p is the number of samples, typically
a small fraction of the total number of pixels. At the same
time, the experimental results demonstrated that the proposed
approach improves over the best existing patch-based methods
in terms of both PSNR and subjective visual quality. While this
improvement is modest, it is only a starting point, as we have
good reason to believe that the improvement in performance
brought by the global approach will grow substantially with
increasing image size. In an upcoming work, we will present
a more detailed analysis of the asymptotic performance of
global denoising filters and quantify this gain as a function
of image size and the degrees of freedom implied by the the
image content.

To better understanding the global filter in this paper, we
studied the oracle performance of the proposed method and
compared this to the oracle performance of other (mainly
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Fig. 8. Comparison of denoising performance on noisy images corrupted by AWGN of σ = 40. (a), (d) Noisy input, (b), (e) NLM [3], (c), (f) G-NLM.

patch-based) methods in Table III.6 As can be seen, the
oracle GLIDE outperforms other oracle methods by a sig-
nificant margin. While this margin is only a bound on
how much improvement we can expect in practice, it does
convey an interesting and tantalizing message. Namely (at least
asymptotically) patch-based methods are inherently limited
in performance [9] in a way that global filtering is not.
More specifically, the oracle PSNR values for the global filter
point to essentially perfect reconstruction of the noise-free
image, which is apparently impossible to achieve for oracle
versions of algorithms like such as BM3D, even if all the
filter parameters are known exactly.

APPENDIX A

MSE OF THE WHOLE IMAGE

From (8) we can show that each row of W can be expressed
as:

wT
i =

n
∑

j=1

λ j v j (i)vT
j , (31)

where v j (i) denotes the i -th entry of the j -th eigenvector.
Then each estimated pixel ẑi has the following form:

ẑi =
n

∑

j=1

λ j v j (i)vT
j y, (32)

6The oracle NLM has all the kernel weights computed from the clean image
and in the case of the oracle BM3D [4] which has been shown to be near
optimal [29] (among patch-based methods), the pre-filtered image is replaced
by the clean image (which means that the Wiener shrinkage and the patch
grouping are implemented perfectly). Similarly, the oracle GLIDE has all the
global weights computed from the clean image.

Bias of this estimate can be expressed as:

bias(̂zi ) = zi − E(̂zi ) =
n

∑

j=1

v j (i)vT
j z −

n
∑

j=1

λ j v j (i)vT
j z

=
n

∑

j=1

(1 − λ j )v j (i)b j (33)

where b = VT z = [b1, . . . , bn]T contains the projected signal
in all modes. The variance term also has the following form:

var(̂zi ) = σ 2(wT
i wi ) = σ 2(

n
∑

j=1

λ j v j (i)vT
j )(

n
∑

j ′=1

λ j ′v j ′(i)v j ′)

= σ 2
n

∑

j=1

λ2
j v j (i)

2 (34)

where in the last equation we have vT
j v j ′ = δ j j ′ for the

orthonormal basis functions. Overall, the MSE of the i -th
estimated pixel is:

MSEi = bias(̂zi )
2 + var(̂zi )

= (

n
∑

j=1

(1 − λ j )v j (i)b j )
2 + σ 2

n
∑

j=1

λ2
j v j (i)

2. (35)

This expression can be used to analyze the framework given
in (32).

The estimated MSE of the whole image is given by:

MSE =
n

∑

i=1

MSEi =
n

∑

i=1

bias(̂zi )
2 +

n
∑

i=1

var(̂zi ) (36)
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Fig. 9. Comparison of denoising performance on noisy images corrupted by AWGN of σ = 50. (a), (d) Original image, (b), (e) BM3D [4], (c), (f) G-BM3D.

Reminding the orthonormality of the eigenvectors VT V =
VVT = I, the variance term can be written as:

n
∑

i=1

var(̂zi ) =
n

∑

i=1

σ 2
n

∑

j=1

λ2
j v j (i)

2

= σ 2
n

∑

j=1

λ2
j

n
∑

i=1

v j (i)
2 = σ 2

n
∑

j=1

λ2
j (37)

where the last equation comes from
∑n

i=1 v j (i)2 = 1. We also
can write the bias term as follows:

n
∑

i=1

bias(̂zi )
2 =

n
∑

i=1

⎛

⎝

n
∑

j=1

(1 − λ j )v j (i)b j

⎞

⎠

2

=
n

∑

i=1

n
∑

j=1

((1 − λ j )
2v j (i)

2b2
j

+ (1 − λ j )v j (i)b j

n
∑

l �= j

(1 − λl )vl(i)bl)

=
n

∑

j=1

((1 − λ j )
2b2

j

n
∑

i=1

v j (i)
2

+ (1 − λ j )b j

n
∑

l �= j

(1 − λl)bl

n
∑

i=1

vl(i)v j (i))

=
n

∑

j=1

(1 − λ j )
2b2

j (38)

where in the last equation
∑n

i=1 vl(i)v j (i) = 0 with l �= j .

From what we have for the squared bias and variance we can
conclude:

MSE =
n

∑

j=1

(1 − λ j )
2b2

j + σ 2λ2
j . (39)

APPENDIX B

MSE ANALYSIS OF THE TRUNCATED FILTER

Each row of the truncated filter can be expressed as:

w̃T
i =

m
∑

j=1

λ j v j (i)vT
j , (40)

where v j (i) denotes the i -th entry of the j -th eigenvector.
Then each estimated pixel ẑi has the following form:

ẑi =
m

∑

j=1

λ j v j (i)vT
j y, (41)

Bias of this estimate can be expressed as:7

bias(̂zi ) = zi − E(̂zi ) = zi −
m

∑

j=1

λ j v j (i)b j (42)

where b = VT z = [b1, . . . , bm ]T contains the projected signal
in the first m modes. The variance term also has the following

7It is worth pointing out that in the truncated space zi �= ∑m
j=1 v j (i)vT

j z,

because VVT �= I.
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Fig. 10. Comparison of denoising performance on the real noise. (a) and (d) Noisy image, (b) and (e) CBM3D [4], (c) and (f) G-NLM.

form:

var(̂zi ) = σ 2(w̃T
i w̃i ) = σ 2(

m
∑

j=1

λ j v j (i)vT
j )(

m
∑

j ′=1

λ j ′v j ′(i)v j ′)

= σ 2
m

∑

j=1

λ2
j v j (i)

2 (43)

The MSE of the i -th estimated pixel is:

MSEi = bias(̂zi )
2 + var(̂zi )

= (zi −
m

∑

j=1

λ j v j (i)b j )
2 + σ 2

m
∑

j=1

λ2
j v j (i)

2

= z2
i +

m
∑

j=1

(λ2
j (b

2
j + σ 2)v j (i)

2

− 2ziλ j v j (i)b j ) (44)

Having MSEi , we can show that the total MSE for the whole
image is:

MSE =
n

∑

i=1

MSEi =
n

∑

i=1

z2
i +

m
∑

j=1

(

(λ2
j − 2λ j )b

2
j + σ 2λ2

j

)

(45)
where ‖bias(̂z)‖2 = ∑n

i=1 z2
i + ∑m

j=1(λ
2
j − 2λ j )b2

j and
var(̂z) = σ 2 ∑m

j=1 λ2
j .

APPENDIX C

EIGENVECTOR ORTHOGONALIZATION

Having the two sub-blocks WA and WAB of the filter W
and defining Q = WA + W−1/2

A WAB WT
AB W−1/2

A with the
eigen-decomposition Q = VQSQVT

Q , we aim to show that the
orthonormal eigenvector bases for the estimated filter ˜W are:

˜V =
[

WA

WT
AB

]

W−1/2
A VQS−1/2

Q (46)

We first need to check ˜W = ˜VSQ˜V
T

:

˜W =
{[

WA

WT
AB

]

W−1/2
A VQS−1/2

Q

}

SQ{S−1/2
Q VT

QW−1/2
A

[

WA WAB
]}

= ˜VSQ˜V
T

(47)

In addition, we check the orthogonality of ˜V as follows:

˜V
T
˜V = S−1/2

Q VT
QW−1/2

A

[

WA WAB
]

[

WA

WT
AB

]

W−1/2
A VQS−1/2

Q

= S−1/2
Q VT

QQVQS−1/2
Q

= I (48)

As a result, the approximated eigen-decomposition is orthog-
onal.
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Fig. 11. Comparison of denoising performance on the real noise. (a) Noisy image, (b) Neat Image™, (c) G-NLM. (Neat Image™denoising software is
available at http://www.neatimage.com.)

TABLE III

PSNR VALUES OF ORACLE NLM [3] (1ST COLUMN), ORACLE BM3D [4] (2ND COLUMN), AND THE ORACLE GLIDE (3RD COLUMN).

RESULTS NOTED ARE AVERAGE PSNR OVER 5 INDEPENDENT NOISE REALIZATIONS FOR EACH σ
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