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Abstract. Algorithms are given for reconstructing an approximation to an unknown con-
vex body from finitely many values of its brightness function, the function giving the
volumes of its projections onto hyperplanes. One of these algorithms constructs a convex
polytope with less than a prescribed number of facets, while the others do not restrict the
number of facets. Convergence of the polytopes to the body is proved under certain essential
assumptions including origin symmetry of the body. Also described is an oracle-polynomial-
time algorithm for reconstructing an approximation to an origin-symmetric rational convex
polytope of fixed and full dimension that is only accessible via its brightness function. Some
of the algorithms have been implemented, and sample reconstructions are provided.

1. Introduction

The brightness function of a convex body in R
n gives the ((n−1)-dimensional) volume of

its (orthogonal) projections onto hyperplanes. (See Section 2 for unexplained terms and
notation.) Aleksandrov’s projection theorem states that any two origin-symmetric convex
bodies in R

n that have the same brightness function must be equal; see, for example,
Theorem 3.3.6 of [8]. Published in 1937, and utilizing radically new machinery developed
at the time by Aleksandrov, this result is quite remarkable since the data is so weak;
only the volumes of the projections, and nothing about their shapes, is known. However,
Aleksandrov’s theorem does not provide a method by which an origin-symmetric convex
body can be reconstructed from its brightness function. The main purpose of this paper
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is to provide algorithms for such a reconstruction, thereby solving a basic problem in
geometric tomography (see Problem 3.6 of [8]), the area of mathematics concerning the
retrieval of information about a geometric object from data concerning its sections or
projections.

Suppose that n ≥ 2, 0 < r < R, and K is an unknown origin-symmetric convex body
in R

n such that rB ⊂ K ⊂ RB, where B is the unit ball. Given the values of the brightness
function of K in a set Uk = {ui : i = 1, . . . , k} of directions such that Uk ∪−Uk is spaced
sufficiently closely in Sn−1 in terms of n, r , and R, our algorithms construct an origin-
symmetric convex polytope Pk that has the same brightness function as K in the directions
in Uk . We actually describe two variants, one (Algorithms BrightLSQ and BrightLP) in
which an upper bound for the number of facets of Pk is not prescribed, and the other
(Algorithm BrightNFacets) in which this number is prescribed. Algorithm BrightNFacets
might be suitable if it is known a priori that the convex body K is a polytope (in which
case an upper bound for the number of its facets is quite likely also known), while
Algorithms BrightLSQ or BrightLP should be used if it is not known whether K is a
polytope.

In Theorems 6.1 and 6.2 below, we show that if {±ui } is a dense set of directions in
Sn−1, then Pk → K in the Hausdorff metric as k → ∞. Moreover, the proofs provide
estimates on the rate of convergence as a function of n, R, and a measure of the spread
of the vectors ui , i = 1, . . . , k, in Sn−1. The extra assumption that K is also a convex
polytope with the prescribed number of facets is of course necessary for convergence
in Algorithm BrightNFacets. The hypotheses of the denseness of {±ui } and the origin
symmetry of K are also necessary, as is explained at the end of Section 6.

The algorithms proceed in two phases. In Phase I the brightness measurements are
used to find the surface area measure of the approximating convex polytope Pk . Since
the brightness function of a convex body is, up to a constant, the cosine transform of its
surface area measure, Phase I essentially requires the inversion of the cosine transform.
In Phase II Pk is reconstructed from its surface area measure.

An algorithm for Phase II was first published by Little [23]. As far as we know,
three groups of researchers have considered this part of our problem since then, each
apparently unaware of the others. Sumbatyan and Troyan [26] provide a method based
on solving nonlinear PDEs, for the purpose of reconstructing a cavity from ultrasound.
Kaasalainen, Lamberg, Lumme, and Boswell (see [18] and the references given there)
treat a problem in astrophysics in which the shape of a rotating atmosphereless object such
as an asteroid is to be reconstructed by a method called disk-integrated photometry; these
authors employ a considerably more elaborate version of Little’s algorithm. Motivated
by computer vision, Lemordant et al. [22] also modify Little’s algorithm, and it is their
approach that seems the most appropriate for our purposes. In Section 3 we present
this as Algorithm MinkData, since it does not appear to be well known to the geometry
community. We shall also have use for a polynomial-time algorithm due to Gritzmann
and Hufnagel [11] for reconstructing, in a fixed dimension, a convex polytope whose
surface area measure is approximately equal to a given one.

Phase I has also been considered before, though in a quite different context. In [17]
Kiderlen needs to invert the cosine transform in order to estimate the directional dis-
tribution of a fiber process from its rose of intersection, a function on the unit sphere
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giving certain averages of intersections of the process with hyperplanes through the ori-
gin. One of his algorithms is a linear program based on a result of Campi et al. [6], and
this can also be applied to our situation in the case when the number of facets of the
reconstructed polytope is left free (see Algorithm BrightLP below). Before we learned
of the work of Kiderlen, we developed a least squares approach for this purpose (Algo-
rithm BrightLSQ below). We are grateful to Markus Kiderlen for drawing our attention
to Algorithm BrightLP.

In Section 7 below, we present an oracle-polynomial-time algorithm for reconstructing
an approximation to an origin-symmetric rational convex polytope of fixed and full di-
mension that is only accessible via its brightness function. This relies on the polynomial-
time algorithm for Phase II in [11] (which, however, has not been implemented) and the
linear program approach to Phase I in Algorithm BrightLP.

While we are concerned in this paper only with the solution of a problem in convex
geometry/geometric tomography in which the input brightness function values are given
exactly, it is important to stress that experiments suggest that our algorithms also work
with noisy data. In fact, this is one reason why we provide both Algorithm BrightLSQ
and Algorithm BrightLP. For exact data, the linear program (LP) in Algorithm BrightLP
should run faster. (At least in regard to Phase I; see the comments in Section 10.)
When the data is noisy, however, the constraint (21) may cause solutions to degener-
ate, even to a single point, a problem that does not occur with the program (LLS) in
Algorithm BrightLSQ. The presence of noise is unavoidable in practice, and affects
performance and stability of any algorithm. For this reason we prefer not to provide a
performance analysis in this paper, but rather to do this in a future paper focusing on
noisy data and directed towards the engineering community, where geometrical recon-
struction problems of this type are of considerable interest. For example, the simpler
problem of reconstruction from noisy support function measurements has already been
studied fairly extensively; see [16], [20], and [21].

2. Definitions, Notation, and Preliminaries

As usual, Sn−1 denotes the unit sphere, B the unit ball, o the origin, and ‖ · ‖ the norm
in Euclidean n-space R

n . It is assumed throughout that n ≥ 2. A direction is a unit
vector, that is, an element of Sn−1. If u is a direction, then u⊥ is the (n − 1)-dimensional
subspace orthogonal to u. If x, y ∈ R

n , then x · y is the inner product of x and y and
[x, y] denotes the line segment with endpoints x and y.

Let 0 < ε < 1. A set U ⊂ Sn−1 is called an ε-net if each point in Sn−1 is within a
distance ε of some point in U .

If A is a set, dim A is its dimension, that is, the dimension of its affine hull, and ∂ A
is its boundary. The notation for the usual orthogonal projection of A on a subspace S
is A | S.

We write Vk for k-dimensional Lebesgue measure in R
n , where k = 1, . . . , n, and

where we identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional
convex body in R

n , then V (K ) is its volume Vk(K ). Define κn = V (B). The notation dz
will always mean dVk(z) for the appropriate k = 1, . . . , n.
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A set is origin symmetric if it is centrally symmetric, with center at the origin.
If K is a compact convex set in R

n ,

hK (x) = max{x · y: y ∈ K }
is its support function and

bK (u) = V (K | u⊥),

for u ∈ Sn−1, its brightness function.
Let K be a convex body in R

n , that is, a compact convex set with nonempty interior.
The projection body of K is the origin-symmetric convex body 
K defined by

h
K = bK .

An introduction to the theory of projection bodies is provided in Chapter 4 of [8].
Cauchy’s projection formula (see, for example, (A.43), p. 361 of [8]) says that

bK (u) = 1

2

∫
Sn−1

|u · v| dS(K , v), (1)

for all u ∈ Sn−1. Here S(K , ·) is the surface area measure of K , defined for Borel subsets
E of Sn−1 by

S(K , E) = Vn−1(g
−1(K , E)), (2)

where g−1(K , E) is the set of points in ∂K at which there is an outer unit normal vector
in E . Another useful formula is

bK (u) = nV(K , n − 1; [o, u]) (3)

for all u ∈ Sn−1, where the right-hand side is the mixed volume of n − 1 copies of K
and one copy of the line segment [o, u]. See p. 360 and also Appendix A of [8] for an
introduction to mixed volumes and the surface area measure.

A fundamental result for the present paper is Minkowski’s existence theorem (see,
for example, Theorem A.3.2 of [8]), which says that a Borel measure µ in Sn−1 is the
surface area measure of some convex body K in R

n , unique up to translation, if and only
if µ is not concentrated on any great sphere and∫

Sn−1
u dµ(u) = o.

If K is a convex body in R
n , we denote the surface area of K by S(K ). Cauchy’s

surface area formula (see (A.47), p. 361 of [8]) states that

S(K ) = 1

κn−1

∫
Sn−1

bK (u) du. (4)

The isoperimetric inequality (see (B.12), p. 370 of [8]) can be written(
S(K )

nκn

)n

≥
(

V (K )

κn

)n−1

. (5)
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The Hausdorff distance δ(K , L) between two convex bodies in R
n can be conveniently

defined by

δ(K , L) = ‖hK − hL‖∞.

The treatise of Schneider [25] is an excellent general reference for all of these topics.
The following deep result was proved independently by Campi [4] (for n = 3) and

Bourgain and Lindenstrauss [2]. The latter authors state their theorem in terms of a metric
other than the Hausdorff metric, and make an additional assumption on the distance be-
tween the projection bodies. Groemer [14, Theorem 5.5.7] presents the version below that
is more suitable for our purposes, and his proof yields the estimate of the constant in (7).
This involves some tedious calculations (see http://www.ac.wwu.edu/∼gardner;
no attempt was made to obtain the optimal expression). In (7) and throughout the paper,
the “big O” notation is used in the sense of “less than a constant multiple depending only
on n.”

Proposition 2.1. Let K and L be origin-symmetric convex bodies in R
n, n ≥ 3, such

that

r0 B ⊂ K , L ⊂ R0 B,

for some 0 < r0 < R0. If 0 < a < 2/(n(n + 4)), there is a constant c = c(a, n, r0, R0)

such that

δ(K , L) ≤ cδ(
K , 
L)a . (6)

Moreover, if 0 < a < 2/(n(n + 4)) is fixed, r0 < 1, and R0 > 1, then

c = O(r−2n−1
0 R5

0). (7)

Let U = {ui ∈ Sn−1: i = 1, . . . , k}. The nodes corresponding to U are defined as
follows. The hyperplanes u⊥

i , i = 1, . . . , k, partition R
n into a finite set of polyhedral

cones, which intersect Sn−1 in a finite set of regions. The nodes±vj ∈ Sn−1, j = 1, . . . , l,
are the vertices of these regions. Thus, when n = 2, the nodes are simply the 2k unit
vectors, each of which is orthogonal to some ui , i = 1, . . . , k. When n = 3, each vj is
of the form (ui × ui ′)/‖ui × ui ′ ‖, where 1 ≤ i < i ′ ≤ k, and l ≤ k(k − 1)/2. In general,
l = O(kn−1).

Campi et al. [5] proved the following result.

Proposition 2.2. Let K be a convex body in R
n and let U = {ui ∈ Sn−1: i = 1, . . . , k}

span R
n . Among all convex bodies with the same brightness function values as K in the

directions in U , there is a unique origin-symmetric convex polytope P , of maximal
volume and with each of its facets orthogonal to one of the nodes corresponding to U .

3. Reconstruction from Surface Area Measures

By its definition (2), the surface area measure of a convex polytope in R
n whose facets

have volumes aj and outer unit normals vj , j = 1, . . . , m, is simply the sum of point
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masses of weight aj at vj . Therefore Minkowski’s existence theorem implies that given
reals aj > 0 and unit vectors vj , j = 1, . . . , m, that span R

n and satisfy

m∑
j=1

ajvj = o, (8)

there is a convex polytope P in R
n with dim P = n whose facets have volumes aj and

outer normals vj , j = 1, . . . , m. The following algorithm for reconstructing such a P
was proposed and implemented (at least for n = 3) by Lemordant et al. [22].

Algorithm MinkData

Input: Natural numbers n ≥ 2 and m ≥ n; real numbers aj > 0 and
directions vj ∈ Sn−1, j = 1, . . . , m, that span R

n and satisfy (8).
Task: Compute the k-dimensional faces, k = 0, . . . , n − 1, of a convex

polytope P in R
n whose facets have volumes aj and outer normals vj ,

j = 1, . . . , m.
Action: If n = 2:
Order the directions vj so that the corresponding polar angles are increas-

ing with j . Let x0 = o and for j = 1, . . . , m let xj = xj−1 +ajvj . In view of
(8), xn = o and so {xj : j = 1, . . . , m} form the vertices of a convex polygon
P ′ with edges of length aj parallel to the directions vj , j = 1, . . . , m. The
output polygon P is P ′ rotated by π/2 about o.

Otherwise, if n ≥ 3:
1. For real numbers hj > 0, j = 1, . . . , m, let h = (h1, . . . , hm) and

let P(h) be the convex hull of the half-spaces with outer normals vj and
bounding hyperplanes at distances hj from the origin, j = 1, . . . , m. Let

ā =
m∑

j=1

aj .

With initial guess h(0) = (1/ā, 1/ā, . . . , 1/ā), if needed, solve the nonlinear
optimization problem (NL):

maxh V (P(h))1/n, (9)

subject to
m∑

j=1

aj hj = 1 (10)

and hj ≥ 0, j = 1, . . . , m. (11)

Let ĥ = (ĥ1, . . . , ĥm) be a solution to (NL), and let

h̃ = (nV(P(ĥ)))−1/(n−1)ĥ

and P = P(h̃).
2. Compute the k-dimensional faces of P for k = 0, . . . , n − 1.
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A few remarks concerning Algorithm MinkData are appropriate. Firstly, it is an
adaptation of the earlier algorithm of Little [23], which was based on Minkowski’s
original proof of his existence theorem (see Theorem 7.1.1 of [25]). This proof shows
that the vector of distances from the origin to the hyperplanes containing the facets of
the convex polytope with facets of volumes aj and outer normals vj , j = 1, . . . , m, is,
up to a scaling constant, the solution of the optimization problem (NL′):

minh

m∑
j=1

aj hj , (12)

subject to V (P(h)) = 1 (13)

and hj ≥ 0, j = 1, . . . , m. (14)

The transition from (NL′) to the equivalent problem (NL) is achieved by programming
duality; see Section 2.4 of [22]. In problem (NL), the objective function in (9) is concave
by the Brunn–Minkowski inequality (see, for example, Section B.2 of [8] or Section 6.1
of [25]). Therefore (NL) involves a concave objective function and linear constraints.
As is the case for (NL′), the solution only gives the vector of distances from the origin
to the hyperplanes of the desired polytope up to a scaling factor, which however is easy
to calculate and is given above in Step 1.

The computation of the volume V (P(h)) for the objective function in (9) must be
carried out at each step of the optimization problem (NL). The polytope P(h) is known
in its H-representation, that is, by the equations of the hyperplanes containing its facets.
Therefore V (P(h)) can be calculated by Lasserre’s algorithm (see [19]).

The output polytope P is also known in its H-representation. Step 2 can be im-
plemented by first computing the vertices of P , that is, its V-representation, from its
H-representation, and then computing the convex hull of P from its V-representation.
An algorithm for this purpose is described by Barber et al. [1].

Büeler et al. [3] provide an in-depth survey of techniques and extensive remarks
concerning polytope volume computation and related matters concerning their H- and
V-representations.

As was mentioned in the Introduction, other algorithms for reconstruction from sur-
face area measures can be found in [18] and [26]. For more details concerning the
polynomial-time algorithm in [11], see Section 7.

4. Some Lemmas

This section contains some technical lemmas that we need for the algorithms in the next
section.

Lemma 4.1. Let R > 0, let 0 < ε < 1, and let U be an ε-net in Sn−1. Suppose that
K and L are compact convex sets in R

n such that hK (u) = hL(u) ≤ R for each u ∈ U .
Then

δ(K , L) ≤ 2εR

1 − ε
.
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Proof. Let u∗ be the point in Sn−1 where hK attains its maximum. Let u0 be the point
in U nearest to u∗ and let w0 = (u∗−u0)/‖u∗−u0‖. Then the subadditivity and positive
homogeneity of hK (see p. 16 of [8]) gives

hK (u∗) ≤ hK (u0) + hK (u∗ − u0) = hK (u0) + ‖u∗ − u0‖hK (w0) ≤ R + εhK (u∗).

Therefore, for all u ∈ Sn−1,

hK (u) ≤ hK (u∗) ≤ R

1 − ε
.

The same argument shows that hL(u) ≤ R/(1 − ε) for each u ∈ U .
Let u ∈ Sn−1, let u1 be the point in U nearest to u, and let w1 = (u − u1)/‖u − u1‖.

Using the subadditivity and positive homogeneity of hK and hL , we obtain

hK (u) − hL(u) ≤ hK (u1) + hK (u − u1) − (hL(u1) − hL(u1 − u))

= hK (u − u1) + hL(u1 − u)

= ‖u − u1‖(hK (w1) + hL(−w1)) ≤ 2εR

1 − ε
.

The same bound applies to hL(u) − hK (u), and this proves the lemma.

Lemma 4.2. Let 0 < r < R, let 0 < ε < rn−1/(5Rn−1), and let U be an ε-net in
Sn−1. Let K and L be origin-symmetric convex bodies such that rB ⊂ K ⊂ RB and
bK (u) = bL(u) for each u ∈ U . Then r0 B ⊂ L ⊂ R0 B, where

R0 = 3nκn

κn−1

(
3

2

)1/(n−1) Rn

rn−1
and r0 = κn−1rn−1

2n Rn−2
0

. (15)

Proof. The assumptions rB ⊂ K ⊂ RB and bK (u) = bL(u) for each u ∈ U imply that

s = κn−1rn−1 ≤ h
K (u) = h
L(u) ≤ κn−1 Rn−1 = t,

for all u ∈ U . Since ε < s/(5t), Lemma 4.1 applied with K , L , and R replaced by 
K ,

L , and t , respectively, gives

δ(
K , 
L) ≤ 2εt

1 − ε
<

s

2
.

From this and sB ⊂ 
K ⊂ tB we obtain

s

2
B ⊂ 
L ⊂ 3t

2
B. (16)

Cauchy’s surface area formula (4) now yields

S(L) = 1

κn−1

∫
Sn−1

bL(u) du ≤ 3nκnt

2κn−1
.
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From the isoperimetric inequality (5), it follows that

V (L) ≤ κn

(
3t

2κn−1

)n/(n−1)

.

Let x ∈ ∂L , and let u = x/‖x‖. Then basic properties of mixed volumes (see (A.18),
p. 355, and (A.26), p. 357 of [8]) yield

V (L , n − 1; [o, x]) ≤ V (L , n − 1; L) = V (L).

Using this, (3), (16), and the linearity property [8, (A.16), p. 355] of mixed volumes, we
obtain

s

2
‖x‖ ≤ ‖x‖bL(u) = nV(L , n − 1; [o, x]) ≤ nV(L).

Consequently,

‖x‖ ≤ 2n

s
V (L) = R0,

where R0 is given by (15), and hence L ⊂ R0 B.
Let c be the largest number such that cB ⊂ L . There are common parallel supporting

hyperplanes to cB and L at contact points z,−z ∈ ∂(cB) ∩ ∂L . Let S be the closed
slab bounded by these hyperplanes, and note that L ⊂ S ∩ R0 B. If u is any direction
orthogonal to z, then (S ∩ R0 B) | u⊥ ⊂ E , where E is an (n − 1)-dimensional box, the
product of n − 1 mutually orthogonal edges, with one edge parallel to z of length 2c and
n − 2 edges orthogonal to z, each of length 2R0. Therefore

s

2
≤ bL(u) ≤ 2n−1cRn−2

0 ,

so r0 B ⊂ L , where r0 is as in (15).

Lemma 4.3. Let 0 < r < R, let 0 < ε < rn−1/(5Rn−1), and let U be an ε-net in
Sn−1. Let K be an origin-symmetric convex body in R

n such that rB ⊂ K ⊂ RB, let
m ∈ N be even, and let aj > 0 and vj ∈ Sn−1, j = 1, . . . , m, be such that aj = aj+m/2

and vj+m/2 = −vj for j = 1, . . . , m/2, and

bK (u) =
m∑

j=1

aj |u · vj |, (17)

for each u ∈ U . Then the vectors vj , j = 1, . . . , m, span R
n .

Proof. Suppose that the assumptions of the lemma hold but that the span of the vectors
vj , j = 1, . . . , m, is a q-dimensional subspace S in R

n for some q = 1, . . . , n−1. Since
rB ⊂ K ⊂ RB, we have

s = κn−1rn−1 ≤ h
K (u) = hZ (u) ≤ κn−1 Rn−1 = t,
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for u ∈ U , where

hZ (u) =
m∑

j=1

aj |u · vj |,

for u ∈ Sn−1, is the support function of a q-dimensional origin-symmetric zonotope (i.e.,
a finite vector sum of line segments; see, for example, p. 133 of [8]) in S. Lemma 4.1
applied with K , L , and R replaced by 
K , Z , and t , respectively, gives

δ(
K , Z) ≤ 2εt

1 − ε
<

s

2
.

Since sB ⊂ 
K , we have (s/2)B ⊂ Z , which is impossible.

5. Reconstruction from Brightness Functions

Our first two algorithms attempt to construct an origin-symmetric convex polytope whose
brightness function values are equal to those of a given origin-symmetric convex body
in a prescribed finite set of directions.

Algorithm BrightLSQ

Input: Natural numbers n ≥ 2 and k ≥ n; mutually nonparallel di-
rections ui ∈ Sn−1, i = 1, . . . , k, that span R

n; brightness function values
bK (u1), . . . , bK (uk) of an unknown origin-symmetric convex body K in R

n .
Task: Construct an origin-symmetric convex polytope P in R

n such that
bP(ui ) = bK (ui ), i = 1, . . . , k.

Action:
Phase I:
1. Calculate the nodes (see Section 2) ±vj ∈ Sn−1, j = 1, . . . , l, corre-

sponding to ui ∈ Sn−1, i = 1, . . . , k.
2. Write α = (α1, . . . , αl) when αj ≥ 0, j = 1, . . . , l. Solve the following

constrained linear least squares problem (LLS):

minα

k∑
i=1

(
bK (ui ) −

l∑
j=1

αj |ui · vj |
)2

, (18)

subject to αj ≥ 0, j = 1, . . . , l. (19)

Let α̂j , j = 1, . . . , l ′, l ′ ≤ l, be a suitably relabeled solution to (LLS)
in which any α̂j with α̂j = 0 has been discarded. Let m = 2l ′, and let
aj = aj+m/2 = α̂j and vj+m/2 = −vj for j = 1, . . . , m/2. Then (8) is
satisfied. If the vectors vj , j = 1, . . . , m, span R

n , Minkowski’s existence
theorem implies that there is a unique origin-symmetric convex polytope P
with facets of volumes aj and outer normals vj , j = 1, . . . , m.

Phase II:
3. Use Algorithm MinkData to reconstruct P from aj and vj , j =

1, . . . , m.
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The following algorithm, due to Markus Kiderlen, achieves the same purpose as
Algorithm BrightLSQ by a linear programming approach.

Algorithm BrightLP

The input and task for this algorithm are as in Algorithm BrightLSQ. It
proceeds in the same way except that in Step 2, (LLS) is replaced by the
following linear program (LP):

minα

k∑
i=1

(
bK (ui ) −

l∑
j=1

αj |ui · vj |
)

, (20)

subject to
l∑

j=1

αj |ui · vj | ≤ bK (ui ), i = 1, . . . , k, (21)

and αj ≥ 0, j = 1, . . . , l. (22)

The next algorithm attempts to construct from the data an origin-symmetric convex
polytope with less than or equal to a prescribed even number N of facets.

Algorithm BrightNFacets

Input: Natural numbers n ≥ 2, N even with N ≥ 2n, and k ≥ N/2; mutu-
ally nonparallel directions ui ∈ Sn−1, i = 1, . . . , k, that span R

n; brightness
function values bK (u1), . . . , bK (uk) of an unknown origin-symmetric con-
vex body K in R

n .
Task: Construct an origin-symmetric convex polytope P in R

n with less
than or equal to N facets and such that bP(ui ) = bK (ui ), i = 1, . . . , k.

Action:
Phase I:
1. If αj ≥ 0 and ωj ∈ Sn−1, j = 1, . . . , N/2, let α = (α1, . . . , αN/2)

and ω = (ω1, . . . , ωN/2). Solve the following constrained nonlinear least
squares problem (NLS):

min(α,ω)

k∑
i=1

(
bK (ui ) −

N/2∑
j=1

αj |ui · ωj |
)2

, (23)

subject to αj ≥ 0, j = 1, . . . , N/2, (24)

and ωj ∈ Sn−1, j = 1, . . . , N/2. (25)

Let (α̂, ω̂), where α̂ = (α̂1, . . . , α̂m/2) and ω̂ = (ω̂1, . . . , ω̂m/2), m ≤ N ,
be a suitably relabeled solution to (NLS) in which each α̂j and ω̂j with α̂j = 0
has been discarded. Let aj = aj+m/2 = α̂j , vj = ω̂j , and vj+m/2 = −ω̂j ,
j = 1, . . . , m/2. These definitions and the constraints (24) and (25) ensure
that aj > 0 and vj ∈ Sn−1, j = 1, . . . , m, and that (8) holds. If the vectors
vj , j = 1, . . . , m, span R

n , Minkowski’s existence theorem implies that
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there is a unique origin-symmetric convex polytope P with facets of volumes
aj and outer normals vj , j = 1, . . . , m.

Phase II:
2. Use Algorithm MinkData to reconstruct P from aj and vj , j =

1, . . . , m.

Remarks concerning the assumption that the unknown convex body K is origin sym-
metric can be found in Sections 6 and 10. As stated, the algorithms in this section may
not succeed in their tasks, since Phase II cannot be performed if the output vectors vj

from Phase I lie in a proper subspace of R
n . In practice, of course, one can run the

algorithms and simply discard the output of Phase I in the case of such a degeneracy.
However, the following theorem provides some reasonable extra conditions on the input
which guarantees that the algorithms will succeed.

Theorem 5.1. Suppose that 0 < r < R, U = {ui ∈ Sn−1: i = 1, . . . , k} is a
set of mutually nonparallel directions such that U ∪ −U is an ε-net with 0 < ε <

rn−1/(5Rn−1), and K is an origin-symmetric convex body in R
n with rB ⊂ K ⊂ RB.

Then Algorithms BrightLSQ and BrightLP succeed in their tasks, and if in addition K
is a convex polytope with N facets, Algorithm BrightNFacets succeeds in its task.

Proof. By Proposition 2.2, there is an origin-symmetric convex polytope with the same
brightness function measurements as K in the input directions, each of whose facets has
outer unit normal vj for some j = 1, . . . , m. Since the output aj and vj , j = 1, . . . , m,
of Phase I of Algorithm BrightLSQ could be the volumes and outer unit normals of the
facets of this polytope, the optimal value of the objective function in (18) is zero.

The output aj and vj , j = 1, . . . , m, from Phase I of Algorithm BrightLSQ also
constitute a possible output of Phase I of Algorithm BrightLP, because these values
satisfy the constraint (21) in the program (LP) with equality; they also give a zero
optimal objective function value in (20).

If the unknown convex body K in Algorithm BrightNFacets is a convex polytope
with N facets, then the output aj and vj , j = 1, . . . , m, of Phase I could be the volumes
and outer unit normals of the facets of this polytope. Therefore the optimal value of the
objective function in (23) is zero.

For each algorithm, therefore, the optimal objective function value in the correspond-
ing optimization program is zero. Therefore (17) holds in each case. Lemma 4.3 implies
that the vectors vj , j = 1, . . . , m, span R

n , and Phase II can be performed to construct
the output polytope P . By (1) and (17), bP(ui ) = bK (ui ) for i = 1, . . . , k.

6. Proof of Convergence

Theorem 6.1. Let n ≥ 2, let 0 < r < R, and let K be an origin-symmetric convex
body in R

n such that rB ⊂ K ⊂ RB. Let ui , i ∈ N, be a sequence of mutually non-
parallel directions such that {±ui } is dense in Sn−1. For either Algorithm BrightLSQ or
Algorithm BrightLP, let Pk , k ≥ n, be an output, if any, to the algorithm corresponding
to input directions ui , i = 1, . . . , k. Then δ(K , Pk) → 0 as k → ∞.
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Proof. For each k, let

�k = max
u∈Sn−1

min
1≤i≤k

{‖u − ui‖, ‖u − (−ui )‖}. (26)

Then the set Uk = {ui : i = 1, . . . , k} is such that Uk ∪ −Uk is an ε-net in Sn−1, where
ε = �k . Since {±ui } is dense in Sn−1, �k → 0 as k → ∞, so we can choose an N0 so that
�k < rn−1/(5Rn−1) for k ≥ N0. By Theorem 5.1, for k ≥ N0, Algorithm BrightLSQ
or Algorithm BrightLP produce a convex polytope Pk such that

h
K (±u) = bK (±u) = bPk (±u) = h
Pk (±u), (27)

for u ∈ Uk .
By assumption K ⊂ RB, so 
K ⊂ κn−1 Rn−1 B. Using (27), we apply Lemma 4.1

with U = Uk and K , L , and R replaced by 
K , 
Pk , and κn−1 Rn−1, respectively, to
obtain

δ(
K , 
Pk) ≤ 2�kκn−1 Rn−1

1 − �k
< 5

2�kκn−1 Rn−1, (28)

for k ≥ N0.
Suppose that n = 2. It is easy to see (see p. 130 of [8]) that the projection body 
L

of any origin-symmetric convex body L is just 2L rotated by π/2 about o. From (28) it
then follows directly that

δ(K , Pk) = 1
2δ(
K , 
Pk) ≤ 5

2�k R, (29)

for k ≥ N0.
Now suppose that n ≥ 3. From Lemma 4.2 with U = Uk and L = Pk we conclude

that

r0 B ⊂ Pk ⊂ R0 B, (30)

where R0 and r0 are given by (15), and these containments also hold for K since r0 ≤ r
and R ≤ R0. By (6), (15), (28), and (30), for each 0 < a < 2/(n(n + 4)) there is a
c′ = c′(a, n, r, R) > 0 such that

δ(K , Pk) ≤ c′�a
k , (31)

for k ≥ N0.
The estimates (29) and (31) imply that for n ≥ 2, δ(K , Pk) → 0 as k → ∞.

Exactly the same proof yields the following theorem, with the same estimates for
convergence.

Theorem 6.2. Let n ≥ 2 and N be natural numbers with N even and N ≥ 2n.
Let 0 < r < R, and let K be an origin-symmetric convex polytope in R

n with N
facets satisfying rB ⊂ K ⊂ RB. Suppose that ui , i ∈ N, is a sequence of mutually
nonparallel directions such that {±ui } is dense in Sn−1. Let Pk , k ≥ n, be an output,
if any, to Algorithm BrightNFacets corresponding to input directions ui , i = 1, . . . , k.
Then δ(K , Pk) → 0 as k → ∞.
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The proof above of Theorem 6.1 can be shortened somewhat, but we have included
bounds that are useful in estimating the speed of convergence; indeed, they will be needed
in the proof of Theorem 7.2 below. These estimates show that for a fixed k it is desirable
to choose the input directions ui , i = 1, . . . , k, in order to minimize �k . When n = 2,
one can take these directions with equally spaced polar angles in the interval [0, π), so
that �k = π/k and

δ(K , Pk) ≤ 5π R

2k

when k > 5π R/r . As Kiderlen [17] also notes, for n ≥ 3 and general k, it is not known
how to minimize �k , but special cases of this problem are solved; see [7].

A separate proof of convergence for Algorithm BrightLP can be based on a result
of Campi et al. [6]. This says that for any zonoid and finite set of directions, there is
a zonotope that has the same support function values as the zonoid in those directions.
Since every projection body is a zonoid (see Theorem 4.1.11 of [8]), this result can be
applied to 
K to obtain (27). Kiderlen [17] also utilizes the result of Campi et al. and
we thank him for bringing to our attention its applicability here.

The assumption of origin symmetry in our convergence theorems is necessary, since
−K has the same brightness function as K . The lack of uniqueness is actually more
serious. To see this, let K be a convex body such that −K �= K . Let Kt be a convex
body which, by Minkowski’s existence theorem, can be defined by

S(Kt , ·) = (1 − t)S(K , ·) + tS(−K , ·) (32)

for 0 ≤ t ≤ 1. Then bKt = bK for 0 ≤ t ≤ 1, by (1). By the Kneser–Süss inequality
(see Theorem 7.1.3 of [25]), V (Kt ) is strictly increasing for 0 ≤ t ≤ 1

2 (and strictly
decreasing for 1

2 ≤ t ≤ 1), so there are infinitely many mutually noncongruent convex
bodies whose brightness function equals that of K . Also, the existence of nonspherical
convex bodies of constant brightness (see, for example, Section 3.3 of [8]) shows that
even the unit ball is not determined among all convex bodies, up to translation, by its
brightness function. In fact, only origin-symmetric parallelotopes are determined in this
sense; see [9].

Let U be any finite set of directions in Sn−1, and let K be an origin-symmetric convex
polytope in R

n with at least one facet not orthogonal to any of the nodes corresponding
to U . Proposition 2.2 implies that there is an origin-symmetric convex polytope P with
the same brightness function as K in the directions in U and facets orthogonal to these
nodes. Therefore P is not a translate of K . Furthermore, let U be an arbitrary, possibly
infinite, set of directions such that U ∪ −U is not dense in S1. Then there exists an
open arc W in S1 such that (U ∪ −U ) ∩ W = ∅. Let w1, w2 be the endpoints of W , let
w ∈ W , and let Q be the parallelogram with diagonal [−w, w] and edges parallel to w1

and w2. Any origin-symmetric convex m-gon contained in Q and with vertices at −w

and w has the same brightness function as the line segment [−w, w] in all the directions
in U . Therefore equality of brightness functions, even in a large set of directions, is
not sufficient to guarantee equality of origin-symmetric convex bodies, even if these
are polytopes with equal numbers of facets. It also follows that the hypothesis on the
sequence {ui } of directions in Theorems 6.1 and 6.2 is in general necessary.
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Origin symmetry is not required in Algorithm MinkData. Despite the remarks above,
there are also modified versions of Algorithms BrightLSQ, BrightLP, and BrightNFacets,
and Theorems 6.1 and 6.2, for which the origin symmetry of K is not required. Indeed,
if K is an arbitrary convex body, its Blaschke body ∇K , defined by (32) with t = 1

2 ,
is the unique origin-symmetric convex body with the same brightness function. Since
b∇K = bK , the proofs of Theorems 6.1 and 6.2 show that under the same assumptions, the
outputs of the modified forms of Algorithms BrightLSQ, BrightLP, and BrightNFacets,
that accept as input an arbitrary convex body K , converge to ∇K in the Hausdorff metric.

Further remarks about disposing with origin symmetry can be found in Section 10.

7. An Oracle-Polynomial-Time Algorithm

In this section we describe an oracle-polynomial-time algorithm for reconstructing an
approximation to an origin-symmetric rational convex polytope of full and fixed dimen-
sion from its brightness function. Such complexity results are somewhat technical, but
we attempt to keep the description brief by referring to other sources.

We begin with the problem n-MinkApp.

Instance: m ∈ N; nonzero rational vectors zj , j = 1, . . . , m, no two positively
dependent, that span R

n; positive rationals cj , j = 1, . . . , m, such that

m∑
j=1

cj zj = o; (33)

a rational error bound ε0 > 0.
Task: Determine a rational vector b̄ = (b̄1, . . . , b̄m) such that the volume āj of the

facet {x ∈ P̄: x · zj = b̄j } of the polytope

P̄ = {x ∈ R
n: Ax ≤ b̄},

where A is the matrix whose rows are zj , j = 1, . . . , m, satisfies

|cj‖zj‖ − āj | ≤ ε0.

Gritzmann and Hufnagel [11, Theorem 1] proved that this problem can be solved in
polynomial time. They employ the standard binary Turing machine model in which the
input data is encoded in binary form, and the performance of the algorithm is measured
in terms of the number of operations of a Turing machine. In this model, all input and
output must be rational. Neither unit normals nor facet volumes of a rational convex
polytope (i.e., a polytope with rational vertices) need be rational. Therefore an instance
of n-MinkApp takes rational vectors zj and rationals cj that correspond to unit normals
zj/‖zj‖ and facet volumes cj‖zj‖ of a rational polytope

P = {x ∈ R
n: Ax ≤ b}.

The output is the H-representation of a polytope P̄ that has the same outer unit normals
as P and whose facet volumes are within the prescribed error bound ε0 of those of P .
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We wish to formulate a similar problem for which the output corresponds to an
origin-symmetric rational convex polytope that approximates an unknown one P that
is only accessible via its brightness function. Note that even for rational polytopes P
and rational vectors w, bP(w/‖w‖) is not necessarily rational. However, by (3) and the
linearity property [8, (A.16), p. 355] of mixed volumes,

bP

(
w

‖w‖
)

= nV

(
P, n − 1;

[
o,

w

‖w‖
])

= n

‖w‖V (P, n − 1; [o, w]),

so ‖w‖bP(w/‖w‖) is rational if V (P, n − 1; [o, w]) is rational. Now the volume of
a rational convex polytope is rational by the determinant formula, so by the so-called
polarization formula [8, (A.8), p. 353], any mixed volume of rational polytopes is rational.
This shows that ‖w‖bP(w/‖w‖) is rational.

Clearly any representation of P itself cannot be part of the input. To handle such
situations, the notion of an oracle has been developed; see, for example, [12] and p. 26
of [15]. We assume that the unknown rational convex polytope P in R

n is well bounded,
that is, rB ⊂ P ⊂ RB for some rational numbers 0 < r < R. The oracle we require has
the following input and output:

Oracle input: A rational vector w in R
n .

Oracle output: The rational ‖w‖bP(w/‖w‖).

The size of an integer p is 〈p〉 = 1 +  log2(|p| + 1)!. The size of a rational p/q,
where p and q are relatively prime, is 〈p〉 + 〈q〉, and the size of a rational vector is
the sum of the sizes of its components. The size 〈P〉 of a well-bounded rational convex
polytope P is defined to be the sum of 〈r〉, 〈R〉, and the sizes of the vertices of P . (Here
we are assuming the oracle has access to P in its V-representation. This is not important,
however, since a V-representation can be converted to an H-representation, and vice
versa, in polynomial time when the dimension is fixed; see [12].) It is a consequence of
4.2.1 of [13] that when n is fixed, V (P, n − 1; [o, w]) and hence ‖w‖bP(w/‖w‖) can
be computed in a time bounded by a polynomial in 〈P〉 and 〈w〉.

Note that with our formulation of the oracle, it does not conform to the general
assumption about oracles on p. 26 of [15] that the size of the oracle output is bounded
by a polynomial in the size of the input. However, the unknown polytope P is fixed and
must be accessible to the oracle in order for it to produce an output, so it is reasonable
to allow the size of this output to depend on 〈P〉 as well as 〈w〉.

With this background, we can now describe the algorithmic problem n-BrightApp.

Instance: Rationals 0 < r < R and a rational error bound ε > 0.
Task: Find a rational matrix A and rational vector b̄ such that

P̄ = {x ∈ R
n: Ax ≤ b̄}

is an origin-symmetric convex polytope in R
n satisfying δ(P, P̄) < ε, where P is

an origin-symmetric rational convex polytope in R
n such that rB ⊂ P ⊂ RB, that is

accessible only via the above brightness function oracle.
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We remind the reader that the “big O” notation denotes “less than a constant multiple
depending only on n.” For the main result in this section we need the following lemma.

Lemma 7.1. For each rational ε > 0 and n ≥ 2, there is a set W of O(ε1−n) rational
vectors in R

n such that U = {w/‖w‖: w ∈ W } is an ε-net in Sn−1 and 〈w〉 = O(〈ε〉),
for each w ∈ W .

Proof. We first prove by induction on n that there is an ε-net U ′(n, ε) of O(ε1−n) points
in Sn−1. Clearly there is a set of O(ε−1) points in S1 that form an ε-net. Suppose that
U ′(n − 1, ε/2) is an (ε/2)-net in Sn−2 containing O(ε2−n) points. Let

X =
{
−1 + jε: j = 0, . . . ,

[
2

ε

]}
,

and Y = U ′(n − 1, ε/2) × X . Then X is an (ε/2)-net in [−1, 1], so Y is an ε-net in the
cylinder Sn−2 × [−1, 1] containing O(ε1−n) points. The map of this cylinder into Sn−1

that takes (1, u, z) to (
√

1 − z2, u, z), where we use cylindrical coordinates, does not
increase distances between points. The image U ′(n, ε) of Y under this map is therefore
an ε-net in Sn−1 containing O(ε1−n) points.

Let ε = p/q , where p and q are relatively prime. For each u0 ∈ U ′(n, ε/4), let
w = w(u0) be the nearest rational vector to u0 that is not contained in B and whose
components all have denominators that are integer multiples of nq. The vectors u0 and
w are contained in a cube, and therefore a ball D, of diameter

√
n/(nq) = 1/(

√
nq). If

C is the cap in Sn−1 formed by intersecting the convex hull of o and D with Sn−1, then
the diameter of C is no larger than that of D, and u0 and w/‖w‖ belong to C . Therefore
‖u0 − w/‖w‖‖ ≤ 1/(

√
nq). Let u ∈ Sn−1 be arbitrary, and suppose, without loss of

generality, that u0 is the point in U ′(n, ε/4) nearest to u. Then∥∥∥∥u − w

‖w‖
∥∥∥∥ ≤ ‖u − u0‖ +

∥∥∥∥u0 − w

‖w‖
∥∥∥∥ ≤ ε

4
+ 1√

nq
≤
(

1

4
+ 1√

n

)
ε < ε.

Therefore W = {w(u0): u0 ∈ U ′(n, ε/4)} is a set of O(ε1−n) rational vectors in R
n

such that U = {w/‖w‖: w ∈ W } is an ε-net in Sn−1. It is clear from the definition of
W that for each w ∈ W we have 〈w〉 = O(〈ε〉).

The order of ε in the previous lemma is optimal, but the proof does not provide the
best-known constant, which apparently can be deduced from a result of Rogers [24].

We can now state the main result. In an oracle-polynomial time algorithm (see p. 27
of [15]) each call of the oracle counts one step. Of course, since the output of the oracle
is used in the algorithm, its time depends also on the size of the unknown polytope P .

Theorem 7.2. For each fixed n ∈ N, n-BrightApp can be solved in oracle-polynomial
time.

Proof. Fix n ∈ N and let ε > 0 be rational. For a suitable q to be computed later,
Lemma 7.1 implies that there is an M so that with k = Mqn−1, there is a (1/q)-net
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U = {u1, . . . , uk} in Sn−1, where each u ∈ U is of the form u = w/‖w‖ for some
rational vector w such that 〈w〉 = O(〈q〉). We first use Algorithm BrightLP and the above
brightness function oracle with input rationals wi such that ui = wi/‖wi‖, i = 1, . . . , k,
to find outer normals and facet volumes of an origin-symmetric convex polytope Pk

such that δ(P, Pk) < ε/2. Then we run the polynomial-time algorithm for n-MinkApp,
with a rational error bound ε0, also to be computed later, small enough to ensure that
the resulting origin-symmetric convex polytope P̄ satisfies δ(Pk, P̄) < ε/2 and hence
δ(P, P̄) < ε. (We remark that the algorithm for n-MinkApp in [11] also provides a
Hausdorff metric approximation from estimates of facet volumes as an intermediate
step.)

The size of the input to Algorithm BrightLP (the same as that for Algorithm BrightLSQ
above) is bounded by O(〈q〉) and a polynomial in 〈P〉. Step 1 of Algorithm BrightLP
involves the computation of the nodes ±vj , j = 1, . . . , l, corresponding to U . As we
noted in Section 2, l = O(kn−1). Each u ∈ U is of the form u = w/‖w‖ for some
rational vector w and the nodes ±vj in each antipodal pair are parallel to a line that is the
intersection of n − 1 hyperplanes, each orthogonal to one of these rational vectors. Thus
each such line can be computed by solving n − 1 equations with rational coefficients,
each of size O(〈q〉). To each node vj , therefore, there corresponds a rational vector zj

for which vj = zj/‖zj‖ with 〈zj 〉 = O(〈q〉) and which can be computed in time O(〈q〉).
We need to work with the following equivalent modification (LP′) of (LP), whose

input consists of the rationals ‖wi‖bP(wi/‖wi‖), i = 1, . . . , k, and rational vectors zj ,
j = 1, . . . , l, and whose variables are β = (β1, . . . , βl):

minβ

k∑
i=1

(
‖wi‖bP

(
wi

‖wi‖
)

−
l∑

j=1

βj |wi · zj |
)

, (34)

subject to
l∑

j=1

βj |wi · zj | ≤ ‖wi‖bP

(
wi

‖wi‖
)

, i = 1, . . . , k, (35)

and βj ≥ 0, j = 1, . . . , l. (36)

The input to (LP′) is bounded by O(〈q〉) and a polynomial in 〈P〉. As is well known,
the linear program (LP′) can be solved in polynomial time. Let β̂j , j = 1, . . . , l ′, l ′ ≤ l,
be a suitably relabeled solution to (LP′) in which any β̂j with β̂j = 0 has been discarded.
Let m = 2l ′, let cj = cj+m/2 = β̂j , and let vj+m/2 = −vj and zj+m/2 = −zj for
j = 1, . . . , m/2. Then the rational vectors zj and rationals cj correspond to unit normals
vj = zj/‖zj‖ and facet volumes cj‖zj‖ of an origin-symmetric polytope Pk such that
bPk (±ui ) = bP(±ui ), i = 1, . . . , k. Observe also that (33) is satisfied and hence the
rational quantities zj and cj , j = 1, . . . , m, form a suitable input to the problem n-
MinkApp.

It remains to compute a suitable q and ε0. Following exactly the proof of Theorem 6.1
and choosing a = 1/(n(n + 4)), we conclude that if 1/q < rn−1/(5Rn−1), then

δ(P, Pk) ≤ c(n, r0, R0)

(
5

2q
κn−1 Rn−1

)1/(n(n+4))

,

where R0 and r0 are given by (15) and c(n, r0, R0) is the constant from Proposition 2.1
corresponding to a = 1/(n(n + 4)). Therefore we can ensure that δ(P, Pk) < ε/2 by
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choosing

q > max

{
5

(
R

r

)n−1

, 5
2κn−1 Rn−1(2ε−1c(n, r0, R0))

n(n+4)

}
.

By (7), we can choose q so that it is bounded by a polynomial in r−1, R, and ε−1.
To find a suitable estimate for ε0, let āj denote the volume of the j th facet of the

polytope P̄ corresponding to the output of n-MinkApp for which the input quantities are
zj and cj , j = 1, . . . , m. By (1), for each u ∈ Sn−1 we have

h
Pk (u) = bPk (u) =
m/2∑
j=1

(cj‖zj‖)|u · vj |

and

h
P̄(u) = bP̄(u) =
m/2∑
j=1

āj |u · vj |.

Therefore

|bPk (u) − bP̄(u)| ≤ δ(
Pk, 
P̄) ≤
m/2∑
j=1

|cj‖zj‖ − āj | <
mε0

2
, (37)

for all u ∈ Sn−1. The containment (30) holds for Pk , so

s0 = κn−1rn−1
0 ≤ bPk (u) ≤ κn−1 Rn−1

0 = t0,

for all u ∈ Sn−1, where R0 and r0 are given by (15). It follows, using (37), that if
ε0 < κn−1rn−1

0 /m, we have

s0

2
B ⊂ 
P̄ ⊂ 3t0

2
B.

Following exactly the proof of Lemma 4.2 from (16) on, with K , L , r , and R, replaced
by Pk , P̄ , r0, and R0, respectively, yields

r1 B ⊂ P̄ ⊂ R1 B, (38)

where

R1 = 3nκn

κn−1

(
3

2

)1/(n−1) Rn
0

rn−1
0

and r1 = κn−1rn−1
0

2n Rn−2
1

. (39)

Since r1 ≤ r0 and R0 ≤ R1, (38) also holds for Pk . By (6) with a = 1/(n(n + 4)) again,
we have

δ(Pk, P̄) ≤ c(n, r1, R1)
(mε0

2

)1/(n(n+4))

.

Consequently, we can guarantee that δ(Pk, P̄) < ε/2 by choosing

ε0 < min

{
κn−1rn−1

0

m
,

2

m
(2ε−1c(n, r1, R1))

−n(n+4)

}
.

By (7), (15), and (39), ε−1
0 can be chosen so that it is bounded by a polynomial in r−1,

R, and ε−1.
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8. Implementation

With the assistance of a Western Washington University student, Chris Street, we have
implemented Algorithms MinkData, BrightLSQ, BrightLP, and BrightNFacets. The vari-
ous optimization problems, (LLS), (LP), and (NLS) in Phase I of Algorithms BrightLSQ,
BrightLP, and BrightNFacets, are solved by using the optimization toolbox from MAT-
LAB. The function fmincon from this toolbox, which employs a variety of nonlinear
optimization techniques such as line search or Newton’s method, is suitable for (NLS).
Another function, lsqnonneg, is suitable for (LLS), and the function linprog is used
for (LP).

Note that if the simplex algorithm is used to solve (LP), then the number l ′ in Phase II
of Algorithm BrightLP can be no greater than the number k of constraints in (21). Then
the number m = 2l ′ of facets of the output polyhedron is at most 2k. However, linear
programming software, including MATLAB’s linprog, often employs interior-point
and other methods, and then the output may have more than 2k facets.

Phase II of Algorithms BrightLSQ, BrightLP, and BrightNFacets calls Algorithm
MinkData. When n = 2, this is straightforward and can be done within MATLAB. When
n ≥ 3, our implementation of Step 1 of Algorithm MinkData again uses MATLAB’s
fmincon for solving the problem (NL). At each step of (NL), the computation of
the volume V (P(h)) is done by a free C++ program called Vinci obtainable from
ftp://ftp.ifor.math.ethz.ch/pub/volume/Volumen.html.

The conversion from H-representation to V-representation and computation of the
convex hull in Step 2 of Algorithm MinkData are handled by the free qhull pro-
gram available fromhttp://www.geom.umn.edu/software/download/qhull.
html.

When n = 3, qhull can provide the output in the form of a Mathematica graphics
object which can be displayed by the Mathematica graphics package.

9. Sample Reconstructions

Figure 1 shows reconstructions of the regular octahedron with vertices at (±1, 0, 0),

(0,±1, 0), and (0, 0,±1) from a finite set of values of its brightness function. The input
consisted of exact brightness function measurements in the 21 directions corresponding
to the spherical polar angles{(

2rπ

5
,

sπ

8

)
: r = 0, . . . , 4, s = 0, . . . , 4

}
.

Algorithm BrightLSQ was used to produce the convex polyhedron with 20 facets on the
left of Fig. 1. The output of Algorithm BrightLP was the polyhedron with 28 facets on
the right. In both cases the reconstructed polyhedron has the same brightness function
as the octahedron in the above 21 directions, to 10 decimal places. The reconstructions
took less than 3 minutes on a standard PC with a 466 MHz Celeron processor and 128
MB RAM. (All but a few seconds of this time was required for Phase II.)

On the left of Fig. 2, a polyhedron P is depicted that has 18 facets; it is the con-
vex hull of the points (0, 0,± 3

2 ), H , and −H , where H is the hexagon with vertices
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Fig. 1. Reconstructions of an octahedron from its brightness function.

(cos(kπ/6), sin(kπ/6), 1
2 ), k = 1, 3, 5, 7, 9, 11. Reconstructions of P using Algorithms

BrightLSQ and BrightLP are the polyhedrons with 36 and 46 facets shown in the center
and on the right of Fig. 2, respectively. The input consisted of exact brightness function
measurements in the 36 directions corresponding to the spherical polar angles{(

2rπ

7
,

sπ

12

)
: r = 0, . . . , 6, s = 0, . . . , 6

}
.

In both cases the corresponding brightness values of the reconstructed polyhedron are
within 2% of those of P . Times for reconstructions on the PC described above were
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Fig. 2. Reconstructions of a polyhedron from its brightness function.
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Fig. 3. Reconstructions of an ellipsoid from its brightness function.

as follows. Algorithm BrightLSQ required 2.5 minutes for Phase I and 6 minutes for
Phase II, while Algorithm BrightLP took about 2 minutes for Phase I and 10 minutes for
Phase II.

Figure 3 (top left) displays the standard ellipsoid

{
(x, y, x):

x2

a2
+ y2

b2
+ z2

c2
≤ 1

}

with parameters a = 1.2, b = 1, and c = 0.4. At the top right and bottom left of
Fig. 3 are reconstructions produced by Algorithms BrightLSQ and BrightLP, respec-
tively. The input comprised a small data set of exact brightness function measure-
ments of this ellipsoid in a certain set of 10 directions. This set of directions mini-
mizes the spread �10 of the measurement directions in (26), and is congruent to that
on the web page of N. Sloane, in the library of best-known chordal packings of lines
at http://www.research.att.com/∼njas/grass/dim3/. Both the 20-faceted
polyhedron at the top right of Fig. 3 and the 50-faceted polyhedron at the bottom left
have brightness functions that agree up to 12 decimal places with that of the ellipsoid
in this set of 10 directions. The reconstructions took about 2 minutes and 11 minutes,
respectively, on the PC described above. (All but a few seconds of this time was required
for Phase II.)
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As a more ambitious reconstruction, we have included at the bottom right of Fig. 3
a 72-faceted reconstruction of this ellipsoid, produced by Algorithm BrightLSQ from a
larger data set of exact brightness function measurements taken in a set of 50 randomly
generated directions. The corresponding 50 brightness function values of the recon-
structed polyhedron agree with those of the ellipsoid to within 2%. This reconstruction
took about 3 minutes for Phase I and 23 minutes for Phase II.

10. Concluding Remarks and Future Work

It appears that our implementation of Algorithms BrightLSQ and BrightLP are quite
successful. As was mentioned in the Introduction, these work with some noise present,
and we plan to analyze the effect of noise in a future paper.

It is interesting that although Algorithm BrightLP should be considerably faster than
Algorithm BrightLSQ, this was not generally true in our experiments. As expected,
running times for Phase I of Algorithm BrightLP are somewhat shorter than those for
Algorithm BrightLSQ, though the difference does not seem to be a dramatic one. How-
ever, the software we use seems to result in the number of facets in the output of Al-
gorithm BrightLP being larger than that of Algorithm BrightLSQ, with a corresponding
longer process time for Phase II. Since the time taken for Phase II is the dominant
factor, our implementation of Algorithm BrightLSQ generally runs faster than Algo-
rithm BrightLP.

Though we have had some success with Algorithm BrightNFacets in two dimensions,
at present our implementation of it runs too slowly in three dimensions for practical use.
Evidently this is due to the essential nonlinearity in (NLS) caused by the constraint (25).
Nevertheless, this least squares problem is of a special type known as separable. In view
of this, there is the possibility of improving performance by a variant of the Newton
method, where each of the unknowns α and ω is treated separately in each iteration.
See, for example, the article by Golub and Pereyra [10]. There is also the possibility
of using the input brightness function values to improve on an arbitrary initial guess.
In Section 9.3 of [8], various methods are discussed for estimating quantities such as
surface area or volume from the brightness function, and the initial guess could be chosen
accordingly.

In the future we plan to implement a completely different algorithm for recon-
structing polyhedra with a prescribed number of facets. Gil Kalai observed that it
should be possible to run Algorithm BrightLSQ or BrightLP and then perform a cluster
analysis on the resulting output. Initial experiments indicate that this might be quite
successful.

There are circumstances other than origin symmetry under which a convex body is
determined, up to translation and reflection in the origin, by its brightness function. In
order to understand this, let K and L be convex polytopes with bK = bL . Then the
Blaschke bodies ∇K and ∇L satisfy b∇K = b∇L , so Aleksandrov’s projection theorem
implies that ∇K = ∇L . From the definition of the Blaschke body, we see that every
facet of K (or L) must be parallel to some facet of ∇K (or ∇L , respectively), and hence
that each facet of K is parallel to some facet of L . It also follows that for each direction
u, the sum of the volumes of the facets of K orthogonal to u must equal the sum of
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the volumes of the facets of L orthogonal to u. Even if K is “generic” in that it has no
two facets parallel, and K and L have the same number of facets, one cannot in general
conclude that K = ±L , up to translation; for example, Figure 3.8 of [8] displays two
noncongruent generic 9-gons with equal brightness functions. However, these additional
assumptions imply that if K has facets of volumes aj and mutually nonparallel outer
normals vj , j = 1, . . . , m, then L has facets of volumes aj and outer normals ±vj ,
j = 1, . . . , m. Minkowski’s existence theorem then shows that if K �= ±L , there is a
proper subset I of {1, . . . , m} such that

m∑
j=1

ajvj =
∑

{ajvj : j ∈ I } +
∑

{aj (−vj ): j ∈ {1, . . . , m}\I }

= 0,

so that

∑
{ajvj : j ∈ I } =

∑
{ajvj : j ∈ {1, . . . , m}\I } = 0. (40)

By (40) and Minkowski’s existence theorem, there are (possibly degenerate) convex
polytopes K1 and K2 such that K1 has facets of volumes aj and outer normals vj for
j ∈ I , while K2 has facets of volumes aj and outer normals vj for j ∈ {1, . . . , m}\I .
This is clearly impossible if m ≤ 5, for example, so generic pentagons are determined,
up to translation and reflection in the origin, among all pentagons by their brightness
function.

In fact, it is quite straightforward to modify Algorithm BrightNFacets so that the
origin symmetry is relaxed in both input and output. To do this, one replaces N/2 by an
arbitrary natural number q ≥ n and adds (8), with m replaced by q, to the constraints to
ensure a convex output. If required, a suitable initial guess (α(0), ω(0)) can be obtained
as follows. Generate random unit vectors ω

(0)
j , j = 1, . . . , q, and, for some fixed ε0 > 0,

random reals ε0 ≤ α
(0)
j ≤ 1, j = 1, . . . , q − n. Then use (8), with m replaced by q, to

determine suitable α
(0)
j , j = q − n + 1, . . . , q. Repeat the process until these n numbers

also lie between ε0 and 1. The formulation of convergence theorems for this algorithm
in situations such as those described in the previous paragraph should be possible, but
we do not pursue this here.
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