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Abstract — In this chapter, we discuss a novel framework for adaptive en-
hancement and spatio-temporal upscaling of videos containing complex mo-
tions. Our approach is based on multidimensional kernel regression, where
each pixel in the video sequence is approximated with a 3-D local (Taylor)
series, capturing the essential local behavior of its spatiotemporal neighbor-
hood. The coefficients of this series are estimated by solving a local weighted
least-squares problem, where the weights are a function of the 3-D space-time
orientation in the neighborhood. As this framework is fundamentally based
upon the comparison of neighboring pixels in both space and time, it implic-
itly contains information about the local motion of the pixels across time,
therefore rendering unnecessary an explicit computation of motions of modest
size. When large motions are present, a basic, rough motion compensation
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step returns the sequence to a form suitable again for motion-estimation-free
super-resolution. The proposed approach not only significantly widens the ap-
plicability of super-resolution methods to a broad variety of video sequences
containing complex motions, but also yields improved overall performance.
Using several examples, we illustrate that the developed algorithm has super-
resolution capabilities that provide improved optical resolution in the output,
while being able to work on general input video with essentially arbitrary
motion.

3.1 Introduction

The emergence of high definition displays in recent years (e.g. 720× 1280 and
1080×1920 or higher spatial resolution, and up 240Hz in temporal resolution),
along with the proliferation of increasingly cheaper digital imaging technology
has resulted in the need for fundamentally new image processing algorithms.
Specifically, in order to display relatively low quality content on such high
resolution displays, the need for better space-time upscaling, denoising, and
deblurring algorithms has become an urgent market priority, with correspond-
ingly interesting challenges for the academic community. The existing liter-
ature on enhancement and upscaling (sometimes called super-resolution1) is
vast and rapidly growing in both the single frame case [9, 17] and the multi-
frame (video) case [6, 8, 10, 12, 16, 24, 36, 39, 43], and many new algorithms
for this problem have been proposed recently. Yet, one of the most fundamen-
tal roadblocks has not been overcome. In particular, in order to be effective,
essentially all the existing multi-frame super-resolution approaches must per-
form (sub-pixel) accurate motion estimation [6, 8, 10, 12, 16, 24, 36, 39, 43, 27].
As a result, most methods fail to perform well in the presence of complex mo-
tions which are quite common. Indeed, in most practical cases where complex
motion and occlusions are present and not estimated with pinpoint accuracy,
existing algorithms tend to fail catastrophically, often producing outputs that
are of even worse visual quality than the low-resolution inputs.

In this work, we address the challenging problem of spatiotemporal video
super-resolution in a fundamentally different way, which removes the need
for explicit subpixel accuracy motion estimation. We present a methodology
that is based on the notion of consistency between the estimated pixels, which
is derived from the novel use of kernel regression [35], [31]. Classical kernel
regression is a well-studied, non-parametric point estimation procedure. In
our earlier work [31], we generalized the use of these techniques to spatially

1To clarify the use of words super-resolution and upscaling, we note that if the algo-
rithm does not receive input frames that are aliased, it will still produce an output with
a higher number of pixels and/or frames (i.e. “upscaled”), but which is not necessarily
“superresolved”.
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adaptive (steering) kernel regression, which produces results that preserve
and restore details with minimal assumptions on local signal and noise mod-
els [37]. Other related non-parametric techniques for multidimensional signal
processing have emerged in recent years as well. In particular, the concept of
normalized convolution [19], and the introduction of support vector machines
[26] are notable examples. In the present work, the steering techniques in
[31] are extended to 3-D where, as we will demonstrate, we can perform high
fidelity space-time upscaling and super-resolution. Most importantly, this is
accomplished without the explicit need for accurate motion estimation.

In a related work [28], we have generalized the non-local means (NLM)
framework [2] to the problem of super-resolution. In that work, measuring
the similarity of image patches across space and time resulted in “fuzzy” or
probabilistic motions, as explained in the Chapter by Protter and Elad. Such
estimates also avoid the need for explicit motion estimation and give relatively
larger weights to more similar patches used in the computation of the high
resolution estimate. Another recent example of a related approach appears in
[5] where Danielyan, et al. have presented an extension of the block-matching
3-D filter (BM3D) [4] for video super-resolution, in which explicit motion esti-
mation is also avoided by classifying the image patches using a block matching
technique. The objectives of the present work, our NLM-based approach [28],
and Video-BM3D [5] just mentioned are the same: namely, to achieve super-
resolution on general sequences, while avoiding explicit (subpixel-accurate)
motion estimation. These approaches represent a new generation of super-
resolution algorithms that are quite distinctly different from all existing super-
resolution methods. More specifically, existing methods have required highly
accurate subpixel motion estimation and have thus failed to achieve resolution
enhancement on arbitrary sequences.

We propose a framework which encompasses both video denoising, spa-
tiotemporal upscaling, and super-resolution in 3-D. This framework is based
on the development of locally adaptive 3-D filters with coefficients depending
on the pixels in a local neighborhood of interest in space-time in a novel way.
These filter coefficients are computed using a particular measure of similarity
and consistency between the neighboring pixels which uses the local geometric
and radiometric structure of the neighborhood. To be more specific, the com-
putation of the filter coefficients is carried out in the following distinct steps.
First, the local (spatiotemporal) gradients in the window of interest are used
to calculate a covariance matrix, sometimes referred to as the “local structure
tensor” [18]. This covariance matrix, which captures a locally dominant ori-
entation at each pixel, is then used to define a local metric for measuring the
similarity between the pixels in the neighborhood. This local metric distance
is then inserted into a (Gaussian) kernel which, with proper normalization,
then defines the local weights to be applied in the neighborhood.

The above approach is based on the concept of steering kernel regression
(SKR), earlier introduced in [31] for images. A specific extension of these con-
cepts to 3-D signals for the express purpose of video denoising and resolution



66 Super-Resolution Imaging

enhancement are the main subjects of this chpater. As we shall see, since the
development in 3-D involves the computation of orientation in space-time [13],
motion information is implicitly and reliably captured. Therefore, unlike con-
ventional approaches to video processing, 3-D SKR does not require explicit
estimation of (modestly sized but essentially arbitrarily complex) motions, as
this information is implicitly captured within the locally “learned” metric. It
is worth mentioning in passing here that the approach we take, while inde-
pendently derived, is in the same spirit as the body of work known as Metric
Learning in the machine learning community, e.g. [38].

Naturally, the performance of the proposed approach is closely correlated
with the quality of estimated space-time orientations. In the presence of noise,
aliasing, and other artifacts, the estimates of orientation may not be initially
accurate enough, and as we explain in Section 3.2.3, we therefore propose
an iterative mechanism for estimating the orientations, which relies on the
estimate of the pixels from the previous iteration.

To be more specific, as shown in Figure 3.8, we can first process a video se-
quence with orientation estimates of modest quality. Next, using the output of
this first step, we can re-estimate the orientations, and repeat this process sev-
eral times. As this process continues, the orientation estimates are improved,
as is the quality of the output video. The overall algorithm we just described
will be referred to as the 3-D iterative steering kernel regression (3-D ISKR).

As we will see in the coming sections, the approach we introduce here is
ideally suited for implicitly capturing relatively small motions using the ori-
entation tensors. However, if the motions are somewhat large, the resulting
(3-D) local similarity measure, due to its inherent local nature, will fail to
find similar pixels in nearby frames. As a result, the 3-D kernels essentially
collapse to become 2-D kernels centered around the pixel of interest within the
same frame. Correspondingly, the net effect of the algorithm would be to do
frame-by-frame 2-D upscaling. For such cases, as discussed in Section 3.2.4,
some level of explicit motion estimation is unavoidable to reduce temporal
aliasing and achieve resolution enhancement. However, as we will illustrate in
this chapter, this motion estimation can be quite rough (accurate to within a
whole pixel at best). This rough motion estimate can then be used to “neu-
tralize” or “compensate” for the large motion, leaving behind a residual of
small motions, which can be implicitly captured within the 3-D orientation
kernel. In summary, our approach can accommodate a variety of complex mo-
tions in the input videos by a two-tiered approach: (i) large displacements are
neutralized by rough motion compensation either globally or block-by-block
as appropriate, and (ii) 3-D ISKR handles the fine-scale and detailed rest of
the possibly complex motion present.

This chapter is organized as follows: in Section 3.2, first we briefly describes
the fundamental concepts behind the SKR framework in 2-D and present the
extension of the SKR framework to 3-D including discussions of how our
method captures local complex motions and performs rough motion compen-
sation, and explicitly describe its iterative implementation. In Section 3.3,
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we provide some experimental examples with both synthetic and real video
sequences, and we conclude this chapter in Section 3.4.

3.2 Adaptive Kernel Regression

In this section, we first review the fundamental framework of kernel regression
(KR) [37] and its extension, the steering kernel regression (SKR) [31], in 2-D.
Then, we extend the steering approach to 3-D and discuss some important
aspects of the 3-D extension.

3.2.1 Classic Kernel Regression in 2-D

The KR framework defines its data model as

yi = z(xi) + εi, xi ∈ ω, i = 1, · · · , P, (3.1)

where yi is a noise-ridden sample measured at xi = [x1i, x2i]
T (Note: x1i and

x2i are spatial coordinates), z( · ) is the (hitherto unspecified) regression func-
tion of interest, εi is an i.i.d. zero mean noise, and P is the total number of
samples in an arbitrary “window” ω around a position x of interest as illus-
trated in Figure. 3.1. As such, the KR framework provides a rich mechanism
for computing point-wise estimates of the regression function with minimal
assumptions about global signal or noise models.

While the particular form of z( · ) may remain unspecified, we can develop a
generic local expansion of the function about a sampling point xi. Specifically,
if the position of interest x is near the sample at xi, we have the N -th order

FIGURE 3.1: The data model for the kernel regression framework
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Taylor series

z(xi) ≈ z(x) + {∇z(x)}T
(xi − x) +

1

2
(xi − x)T {Hz(x)}T

(xi − x) + · · ·

≈ β0 + βT
1 (xi − x) + βT

2 vech
{
(xi − x)(xi − x)T

}
+ · · · (3.2)

where ∇ and H are the gradient (2×1) and Hessian (2×2) operators, respec-
tively, and vech( · ) is the half-vectorization operator that lexicographically
orders the lower triangular portion of a symmetric matrix into a column-
stacked vector. Furthermore, β0 is z(x), which is the signal (or pixel) value of
interest, and the vectors β1 and β2 are

β1 =

[
∂z(x)

∂x1
,

∂z(x)

∂x2

]T

,

β2 =
1

2

[
∂2z(x)

∂x2
1

,
∂2z(x)

∂x1∂x2
,

∂2z(x)

∂x2
2

,

]T

. (3.3)

Since this approach is based on local signal representations (i.e. Taylor series),

a logical step to take is to estimate the parameters {βn}N
n=0 using all the

neighboring samples {yi}P
i=1 while giving the nearby samples higher weights

than samples farther away. A weighted least-square formulation of the fitting
problem capturing this idea is

min
{βn}N

n=0

P∑

i=1

[
yi − β0 − βT

1 (xi − x) − βT
2 vech

{
(xi − x)(xi − x)T

}
− · · ·

]2

·KH(xi − x)

(3.4)

with

KH(xi − x) =
1

det(H)
K(H−1(xi − x)), (3.5)

where N is the regression order, K( · ) is the kernel function (a radially sym-
metric function such as a Gaussian), and H is the smoothing (2 × 2) matrix
which dictates the “footprint” of the kernel function. The simplest choice of
the smoothing matrix is H = hI, where h is called the global smoothing
parameter. The contour of the kernel footprint is perhaps the most impor-
tant factor in determining the quality of estimated signals. For example, it
is desirable to use kernels with large footprints in the smooth local regions
to reduce the noise effects, while relatively smaller footprints are suitable in
the edge and textured regions to preserve the underlying signal discontinuity.
Furthermore, it is desirable to have kernels that adapt themselves to the local
structure of the measured signal, providing, for instance, strong filtering along
an edge rather than across it. This last point is indeed the motivation behind
the steering KR framework [31] which we will review Section 3.2.2.
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Returning to the optimization problem (3.4), regardless of the regression
order (N), and the dimensionality of the regression function, we can rewrite
it as the weighted least squares problem:

b̂ = arg min
b

(y − Xb)
T

K (y − Xb) , (3.6)

where

y =
[

y1, y2, · · · , y
P

]T
, b =

[
β0, βT

1 , · · · , βT
N

]T
, (3.7)

K = diag
[

KH(x1 − x), KH(x2 − x), · · · , KH(x
P
− x)

]
(3.8)

and

X =




1, (x1 − x), vech
{
(x1 − x)(x1 − x)T

}
, · · ·

1, (x2 − x), vech
{
(x2 − x)(x2 − x)T

}
, · · ·

...
...

...
...

1, (x
P
− x), vech

{
(x

P
− x)(x

P
− x)T

}
, · · ·


 (3.9)

with “diag” defining a diagonal matrix. Using the notation above, the opti-
mization (3.4) provides the weighted least square estimator:

b̂ =
(
XT KX

)−1
XT K y (3.10)

and the estimate of the signal (i.e. pixel) value of interest β0 is given by a
weighted linear combination of the nearby samples:

ẑ(x) = β̂0 = eT
1 b̂ =

P∑

i=1

Wi(K, H , N, xi − x) yi (3.11)

where e1 is a column vector with the first element equal to one and the rest
equal to zero,

∑
i Wi = 1, and we call Wi the equivalent kernel weight function

for yi (q.v. [31] or [37] for more detail). For example, for zeroth order regression
(i.e. N = 0), the estimator (3.11) becomes

ẑ(x) = β̂0 =

P∑

i=1

KH(xi − x) yi

P∑

i=1

KH(xi − x)

, (3.12)

which is the so-called Nadaraya-Watson estimator (NWE) [23], which is noth-
ing but a space-varying convolution (if samples are irregularly spaced).

What we described above is the “classic” kernel regression framework,
which as we just mentioned, yields a pointwise estimator that is always a
local “linear”, though possibly space-varying, combination of the neighboring
samples. As such, it suffers from an inherent limitation. In the next sections,
we describe the framework of steering KR in two and three dimensions, in
which the kernel weights themselves are computed from the local window (or
cube), and therefore we arrive at filters with more complex (nonlinear and
space-varying) action on the data.
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3.2.2 Steering Kernel Regression in 2-D

The steering kernel approach is based on the idea of robustly obtaining local
signal structures by analyzing the radiometric (pixel value) differences locally,
and feeding this structure information to the kernel function in order to affect
its shape and size.

Consider the (2 × 2) smoothing matrix H in (3.5). As explained in Sec-
tion 3.2.1, in the generic “classical” case, this matrix is a scalar multiple of the
identity with the global parameter h. This results in kernel weights which have
equal effect along the x1- and x2-directions. However, if we properly choose
this matrix, the kernel function can capture local structures. More precisely,
we define the smoothing matrix as a symmetric positive-definite matrix:

Hi = hC
− 1

2
i (3.13)

which we call the steering matrix and where, for each given sample yi, the
matrix Ci is estimated as the local covariance matrix of the neighborhood
spatial gradient vectors. A naive estimate of this covariance matrix may be
obtained as

Ĉnaive
i = JT

i Ji, (3.14)

with

Ji =




...
...

zx1(xj), zx2(xj)
...

...


 , xj ∈ ξi, j = 1, · · · , Q, (3.15)

where zx1( · ) and zx2( · ) are the first derivatives along x1- and x2-axes, ξi is
the local analysis window around a sample position xi, and Q is the number
of rows in Ji. However, the naive estimate may in general be rank deficient or
unstable. Therefore, instead of using the naive estimate, we obtain covariance
matrices by using the (compact) singular value decomposition (SVD) of Ji.
A specific choice of Ci using the SVD for the 2-D case is introduced in [31],
and we will show Ci for the 3-D case in Section 3.2.3.

With the above choice of the smoothing matrix and a Gaussian kernel, we
now have the steering kernel function as

KHi(xi − x) =

√
det(Ci)

2πh2
exp

{
− 1

2h2

∥∥∥C
1
2
i (xi − x)

∥∥∥
2

2

}
, (3.16)

and the weighted least square estimator as

b̂ =
(
XT KsX

)−1
XT Ks y (3.17)

where

Ks = diag
[

KH1(x1 − x), KH2(x2 − x), · · · , KH
P

(x
P
− x)

]
. (3.18)
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Again, for example, for zeroth order (i.e. N = 0), the estimator (3.17) yields
a pointwise estimator:

ẑ(x) = β̂0 =

P∑

i=1

KHi(xi − x) yi

P∑

i=1

KHi(xi − x)

, (3.19)

which is the data-adapted version of NWE. It is noteworthy that, as shown
in the weight matrix Ks (3.18) involving the steering matrices {Hi}P

i=1 of all

the neighboring samples {yi}P
i=1, the steering kernel function (3.16) effectively

captures the local image structures. We will graphically show the steering
kernels shortly in Figure 3.3.

Figure 3.2 illustrates a schematic representation of the estimates of local
covariance matrices Ci in (3.13) at a local region with one dominant orienta-
tion. First, we compute gradients zx1( · ) and zx2( · ) of the given image, where
the gradients are illustrated as vectors with red arrows. In this example, we
set the size of the regression window ω to 5 × 5 and and the size of the win-
dow ξ for the calculation of the covariance estimate is set to 3× 3. Therefore,
the overall analysis window becomes 7 × 7. Next, sliding the window ξi for
i = 1, · · · , 25, we compute the covariance matrix Ci for each pixel yi in the
middle (5×5) portion. Once Ci’s are available, we perform the steering kernel
regression (3.17) with the weights given by the Ci’s and estimate the pixel
value z(x) at the position of interest. Graphical representations of the steer-
ing kernel weights for noise-free (Pepper and Parrot) images are illustrated in

FIGURE 3.2: A schematic representation of the estimates of local covariance
matrices at a local region with one dominant orientation: First, we estimate the
gradients and compute the local covariance matrix Ci from the local gradient
vectors for each pixel in the local analysis window ωi around the position of
interest (i.e. x13 in the figure).
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Figure 3.3. Figures 3.3(c) and (d) show the steering weight Ks given by (3.16)
without

√
detCi/2πh2 at every 11 pixels in the horizontal and vertical direc-

tions. It should be noted that we compute the steering kernels KHi(xi−x) as
a function of each xi with the position of interest x held fixed. Thus, the ker-
nel involves not only Ci at the position of interest but also its neighborhoods’,
and the steering kernel weights effectively take local image structures into ac-
count. Moreover, the steering weights spread wider in flat regions and spread
along edges while staying small at the texture regions (for example the region
around Parrot’s eye). Therefore, the steering kernel filtering smoothes pixels
strongly along the local structures rather than across them. Figures 3.3(e)
and (f) show the scalar values

√
detCi/2πh2 of (3.16). The scalars become

large at edges and textured regions and small at flat regions. We also note
that even for the highly noisy case, we can obtain stable estimates of local
structure [31].

3.2.3 Space-time (3-D) Steering Kernel Regression

So far, we presented the KR framework in 2-D. In this section, we introduce the
time axis and present space-time SKR to process video data. As mentioned in
the introductory section, we explain how this extension can yield a remarkable
advantage in that space-time SKR does not necessitate explicit (sub-pixel)
motion estimation.

First, introducing the time axis, similar to the 2-D data model, we have
the data model in 3-D as

yi = z(xi) + εi, xi ∈ ω, i = 1, · · · , P, (3.20)

where yi is a noise-ridden sample at xi = [x1i, x2i, ti]
T , x1i and x2i are spa-

tial coordinates, ti (= x3i) is the temporal coordinate, z( · ) is the regression
function of interest, εi is an i.i.d. zero-mean noise process, and P is the total
number of nearby samples in a 3-D neighborhood ω of interest, which we will
henceforth call ω a “cubicle”. As in (3.2), we also locally approximate z( · )
by a Taylor series in 3-D, where ∇ and H are now the gradient (3 × 1) and
Hessian (3 × 3) operators, respectively. With a (3 × 3) steering matrix (Hi),
the estimator takes the familiar form:

ẑ(x) = β̂0 =
P∑

i=1

Wi(K, Hi, N, xi − x) yi. (3.21)

It is worth noting that 3-D SKR is a pointwise estimator of the regression
function z( · ) and it is capable of estimating a pixel value at arbitrary space-
time positions x. The derivation for the steering matrix is quite similar to the
2-D case. Indeed, we again define Hi as

Hi = hC
− 1

2
i , (3.22)
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where the covariance matrix Ci can be naively estimated as Ĉnaive
i = JT

i Ji
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(a) Pepper image (b) Parrot image
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(c) SK weights of the pepper image (d) SK weights of the parrot image
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(e) Scaling values of the pepper image (f) Scaling values of the parrot image

FIGURE 3.3: Graphical representations of steering kernel weights (3.18) for
(a) Pepper and (b) Parrot images: The figures (c) and (d) illustrate the steer-
ing weight matrices Ks given by (3.16) without

√
det Ci/2πh2 at every 11

pixels in horizontal and vertical directions. For this illustration, we chose the
analysis window sizes ω = 11 × 11 and ξ = 5 × 5. The figures (e) and (f)
shows the scalar values

√
det Ci/2πh2. The scalars becomes large at edge and

textured regions and small at flat regions.
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with

Ji =




...
...

...
zx1(xj), zx2(xj), zt(xj)

...
...

...


 , xj ∈ ξi, j = 1, · · · , Q, (3.23)

where zx1( · ), zx2( · ), and zt( · ) are the first derivatives along x1-, x2-, and
t-axes, ξi is a local analysis cubicle around a sample position at xi, and Q is
the number of rows in Ji. Once again for the sake of robustness, as explained
in Section 3.2.2, we compute a more stable estimate of Ci by invoking the
SVD of Ji with regularization as:

Ĉi = γi

3∑

q=1

̺qvqv
T
q , (3.24)

with

̺1 =
s1 + λ′

s2s3 + λ′
, ̺2 =

s2 + λ′

s1s3 + λ′
,

̺3 =
s3 + λ′

s1s2 + λ′
, γi =

(
s1s2s3 + λ′′

Q

)α

, (3.25)

where ̺q and γi are the elongation and scaling parameters, respectively, λ′

and λ′′ are regularization parameters that dampen the noise effect and restrict
γi, the denominators of ̺q’s from being zero (q.v. Appendix 3.5.1 for the
derivations), and Q is the number of rows in Ji. We fix λ′ = 1 and λ′′ = 0.1
throughout this work. The singular values (s1, s2, and s3) and the singular
vectors (v1, v2, and v3) are given by the (compact) SVD of Ji:

Ji = UiSiV
T

i = Ui diag {s1, s2, s3} [v1, v2, v3]
T . (3.26)

similar to the 2-D case, the steering kernel function in 3-D is defined as

KHi(xi − x) =

√
det(Ci)

(2πh2)3
exp

{
− 1

2h2

∥∥∥C
1
2
i (xi − x)

∥∥∥
2

2

}
, (3.27)

with x = [x1, x2, t]. The main tuning parameters are the global smoothing
parameter (h) in (3.27) and the structure sensitivity (α) in (3.25). The specific
choices of these parameters are indicated in Section 3.3, and Appendix 3.5.2
gives more details about the parameters h and α.

Figure 3.4 shows visualizations of the 3-D weights given by the steering
kernel function for two cases: (a) a horizontal edge moving vertically over
time (creating a tilted plane in the local cubicle), and (b) a small circular
dot also moving vertically over time (creating a thing tube in a local cubicle).
Considering the case of denoising for the pixel located at the center of each
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data cube of Figures 3.4(a) and (b), we have the steering kernel weights illus-
trated in Figures 3.4(c)(d) and (e)(f). Figures 3.4(c)(d) and (e)(f) show the
cross-sections and the isosurface of the weights, respectively. As seen in these
figures, the weights faithfully reflect the local signal structure in space-time.

(a) A tilted plane (b) A thin tube

(c) Cross-sections of SK weights of (a) (d) Cross-sections of SK weights of (b)

(e) The isosurface of (c) (f) The isosurface of (d)

FIGURE 3.4: Visualizations of steering kernels for (a) the case of one horizon-
tal edge moving up (this creates a tilted plane in a local cubicle) and (b) the
case of one small dot moving up (this creates a thin tube in a local cubicle).
(a) and (b) show some cross-sections of the 3-D data, and (b) and (c) show
the cross-sections of the weights given by the steering kernel function when
we denoise the sample located at the center of the data cube, and (d) and (e)
show the isosurface of the steering kernel weight for (a) and (b), respectively.
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Also, Figure 3.5 gives a graphical representation of the 3-D steering kernel
weights for the Foreman sequence. In the figure, we show the cross sections
(transverse, sagittal, and axial) of the video (3-D) data, and draw the cross
sections of the steering kernel weights at every 15 pixels in every direction.
For this example, we chose the analysis cubicle sizes ω = 15 × 15 × 15 and
ξi = 5×5×5. It is worth noting that the orientation structures which appear in
the x1-t and x2-t cross sections are motion trajectories, and our steering kernel
weights fit the local motion trajectories without explicit motion estimation.

As illustrated in Figures 3.4 and 3.5, the weights provided by the steering
kernel function capture the local signal structures which include both spatial
and temporal edges. Here we give a brief description of how orientation infor-
mation thus captured in 3-D contains the motion information implicitly. It is
convenient in this respect to use the (gradient-based) optical flow framework
[1, 11, 20] to describe the underlying idea. Defining the 3-D motion vector as
m̃i = [m1, m2, 1]T = [mT

i , 1]T and invoking the brightness constancy equa-
tion (BCE) [15] in a local cubicle centered at xi, we can use the matrix of

 

0

0.5

1

1.5

2

FIGURE 3.5: A graphical representation of 3-D steering kernel weights (3.27)
for the Foreman sequence: The figure illustrate cross-sections of the steering
weight matrices Ks given by (3.27) at every 15 pixels in horizontal, vertical,
and time. For the illustration, we chose the analysis cubicle sizes ω = 15 ×
15 × 15 and ξi = 5 × 5 × 5.
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gradients Ji in (3.23) to write the BCE as

Jim̃i = Ji

[
mi

1

]
= 0. (3.28)

Multiplying both sides of the BCE above by JT
i , we have

JT
i Jim̃i = Ĉnaive

i m̃i ≈ 0. (3.29)

Now invoking the decomposition of Ĉi in (3.24), we can write

3∑

q=1

̺qvq

(
vT
q m̃i

)
≈ 0. (3.30)

The above decomposition shows explicitly the relationship between the
motion vector and the principal orientation directions computed with in the
SKR framework. The most generic scenario in a small cubicle is one where the
local texture are features move with approximate uniformity. In this generic
case, we have ̺1, ̺2 ≫ ̺3, and it can be shown that the singular vector v3

(which we do not directly use) corresponding to the smallest singular value
̺3 can be approximately interpreted as the total least squares estimate of the
homogeneous optical flow vector m̃i

‖m̃i‖
[40, 3]. As such, the steering kernel

footprint will therefore spread along this direction, and consequently assign
significantly higher weights to pixels along this implicitly given motion di-
rection. In this sense, compensation for small local motions is taken care of
implicitly by the assignment of the kernel weights. It is worth noting that a
significant strength of using the proposed implicit framework (as opposed to
the direct use of estimated motion vectors for compensation) is the flexibil-
ity it provides in terms of smoothly and adaptively changing the elongation
parameters defined by the singular values in (3.25). This flexibility allows the
accommodation of even complex motions, so long as their magnitudes are not
excessively large. When the magnitude of the motions is large (relative to the
support of the steering kernels, specifically) a basic form of coarse but explicit
motion compensation will become necessary.

There are two approaches that we can consider to compensate for large
displacement. In our other work in [34], we presented the motion-assisted
steering kernel (MASK) method, which explicitly feeds local motion vectors
directly into 3-D kernels. More specifically, we construct 3-D kernels by shifting
the 2-D (spatial) steering kernels by motion vectors. Moreover, in order to
suppress artifacts in the estimated videos due to the errors in motion vectors,
we compute the reliability of each local motion vector, and penalize the 2-D
steering kernels accordingly. In the next section, we describe an alternative
approach that does not require accurate motion vectors. In general, it is hard
to estimate motions in the presence of occlusions and nonrigid transitions. As
shown in Figure 3.5, the 3-D steering kernel effectively fits them. Therefore,
all we need is to compensate large displacements by shifting the video frames
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with whole pixel accuracy, and the 3-D steering kernels implicitly take the
leftover motions into account as local 3-D image structures.

3.2.4 Kernel Regression with Rough Motion Compensation

Before formulating the 3-D SKR with motion compensation, first, let us dis-
cuss how the steering kernel behaves in the presence of relatively large mo-
tions2. In Figures 3.6(a) and (b), we illustrate the contours of steering kernels
the pixel of interest located at the center of the middle frame. For the small dis-
placement case illustrated in Figure 3.6(a), the steering kernel ideally spreads
across neighboring frames, taking advantage of information contained in the
space-time neighborhood. Consequently, we can expect to see the effects of res-
olution enhancement and strong denoising. On the other hand, in the presence
of large displacements as illustrated in Figure 3.6(b), similar pixels, though
close in the time time dimension, are found far away in space. As a result, the
estimated kernels will tend not to spread across time. That is to say, the net
result is that the 3-D SKR estimates in effect default to the 2-D case. How-
ever, if we can roughly estimate the relatively large motion of the block and
compensate (or “neutralize”) for it, as illustrated in Figure 3.6(c), and then
compute the 3-D steering kernel, we find that it will again spread across neigh-
boring frames and we regain the interpolation/denoising performance of 3-D
SKR. The above approach can be useful even in the presence of aliasing when
the motions are small but complex in nature. As illustrated in Figure 3.7(b),

2It is important to note here that by large motions we mean speeds (in units of pixels
per frame) which are larger than the typical support of the local steering kernel window,
or the moving object’s width along the motion trajectory. In the latter case, even when the
motion speed is slow, we are likely to see temporal aliasing locally.

(a) (b) (c)

FIGURE 3.6: Steering kernel footprints for (a) a video with small displace-
ments, (b) a video with large displacements, and (c) the video after neutral-
izing the large displacements.
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if we cancel out these displacements, and make the motion trajectory smooth,
the estimated steering kernel will again spread across neighboring frames and
result in good performance.

In any event, it is quite importance to note that the above compensation
is done for the sole purpose of computing the more effective steering kernel
weights. More specifically, (i) this “neutralization” of large displacements is
not an explicit motion compensation in the classical sense invoked in coding
or video processing, (ii) it requires absolutely no interpolation, and therefore
introduces no artifacts, and (iii) it requires accuracy no better than a whole
pixel.

To be more explicit, 3-D SKR with motion compensation can be regarded
as a two-tiered approach to handle a wide variety of transitions in video.
Complicated transitions can be split into two different motion components:
large whole-pixel motions (mlarge

i ) and small but complex motion (mi):

mtrue
i = m

large
i + mi, (3.31)

where m
large
i is easily estimated by, for instance, optical flow or block matching

algorithms, but mi is much more difficult to estimate precisely.
Suppose a motion vector m

large
i = [mlarge

1i , mlarge
2i ]T is computed for each

pixel in the video. We neutralize the motions of the given video data yi by
m

large
i , to produce a new sequence of data y(x̃i), as follows:

x̃i = xi +

[
m

large
i

0

]
(ti − t), (3.32)

where t is the time coordinate of interest. It is important to reiterate that
since the motion estimates are rough (accurate to at best a single pixel) the
formation of the sequence y(x̃i) does not require any interpolation, and there-
fore no artifacts are introduced. Rewriting the 3-D SKR problem for the new

(a) (b)

FIGURE 3.7: Steering kernel footprints for (a) a video with a complex motion
trajectory, and (b) the video after neutralizing the relatively large displace-
ments.
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sequence y(x̃i), we have:

min
{βn}N

n=0

P∑

i=1

[
y(x̃i) − β0 − βT

1 (x̃i − x) − βT
2 vech

{
(x̃i − x)(x̃i − x)T

}
− · · ·

]2

·K
H̃i

(x̃i − x)

(3.33)

where the steering matrix H̃i is computed from the motion-compensated se-
quence y(x̃i). Similar to the 2-D estimator (3.11), the above minimization
yields the following pixel estimator at the position of interest (x) as

ẑ(x) = β̂0 = eT
1

(
X̃T K̃sX̃

)−1

X̃T K̃s ỹ

=
P∑

i=1

Wi(K, H̃i, N, x̃i − x) y(x̃i), (3.34)

where ỹ is column-stacked vector of the given pixels (y(x̃i)), and X̃ and K̃s

are the basis matrix and the steering kernel weight matrix constructed with
the motion compensated coordinates (x̃i); that is to say,

ỹ =
[

y(x̃1), y(x̃2), · · · , y(x̃
P
)
]T

, b =
[

β0, βT
1 , · · · , βT

N

]T
,

K̃s = diag
[

K
H̃1

(x̃1 − x), K
H̃2

(x̃2 − x), · · · , K
H̃

P

(x̃
P
− x)

]
, (3.35)

and

X̃ =




1, (x̃1 − x), vech
{
(x̃1 − x)(x̃1 − x)T

}
, · · ·

1, (x̃2 − x), vech
{
(x̃2 − x)(x̃2 − x)T

}
, · · ·

...
...

...
...

1, (x̃P − x), vech
{
(x̃P − x)(x̃P − x)T

}
, · · ·


 . (3.36)

In the following section, we further elaborate on the implementation of the 3-D
SKR for enhancement and super-resolution, including its iterative application.

3.2.5 Implementation and Iterative Refinement

As we explained earlier, since the performance of the SKR depends on the
accuracy of the orientations, we refine it to derive an iterative algorithm we
call iterative SKR (ISKR), which results in improved orientation estimats
and therefore a better final denoising and upscaling result. The extension for
upscaling is done by first interpolating or upscaling using some reasonably
effective low-complexity method (say the “classic” KR method) to yield what
we call a pilot initial estimate. The orientation information is then estimated
from this initial estimate and the SKR method is then applied to the input
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video data yi which we embed in a higher resolution grid. To be more precise,
the basic procedure, as shown in Figure 3.8 is as follow.

First, estimate the large motions (mlarge
i ) of the given input sequence

({yi}P
i=1). Then using m

large
i , we neutralize the large motions and generate a

motion-compensated video sequence ({y(x̃i)}P
i=1). Next, we compute the gra-

dients (β̂(0)

1 = [ẑx1( · ), ẑx2( · ), ẑt( · )]T ) at the sampling positions {x̃i}P
i=1 of the

motion-compensated video. This process is indicated as the “pilot” estimate

in the block diagram. After that, we create steering matrices (H̃ (0)

i ) for all

the samples y(x̃i) by (3.22) and (3.24). Once H̃
(0)

i are available, we plug them
into the kernel weight matrix (3.35) and estimate not only an unknown pixel

value (z(x)) at a position of interest (x) by (3.34) but also its gradients (β̂(1)

1 ).

This is the initialization process shown in Figure 3.8(a). Next, using β̂
(1)

1 , we

re-create the steering matrices H̃
(1)

i . Since the estimated gradients β̂
(1)

1 are
also denoised and upscaled by SKR, the new steering matrices contain better

orientation information. With H̃
(1)

i , we apply SKR to the embedded input
video again. We repeat this process several times as shown in Figure 3.8(b).
While we do not discuss the convergence properties of this approach here, it is
worth mentioning that typically, no more than a few iterations are necessary
to reach convergence3. Finally, we perform deblurring on the upscaled videos

3It is worth noting that the application of the iterative procedure results in a tradeoff of
bias and variance in the resulting final estimate. As for an appropriate number of iterations,

(a) Initialization

(b) Iteration

FIGURE 3.8: Block diagram representation of the 3-D iterative steering kernel
regression with motion compensation: (a) the initialization process, and (b)
the iteration process.
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to recover the high frequency components. Appendix 3.5.3 shows the detailed
method that we use in this work.

Figure 3.9 illustrates a simple super-resolution example, where we created
9 of synthetic low resolution frames from the image shown in Figure 3.9(a)
by blurring with a 3 × 3 uniform PSF, shifting the blurred image by 0, 4,
or 8 pixels4 along the x1- and x2-axes, spatially downsampling with a factor
3 : 1, and adding white Gaussian noise with standard deviation 2. One of the
low resolution frames is shown in Figure 3.9(b). Then we created a synthetic
input video by putting those low resolution images together in random order.
Thus, the motion trajectory of the input video is not smooth and the 3-D

a relatively simple stopping criterion can be developed based on the behavior of the residuals
(the difference images between the given noisy sequence and the estimated sequence) [33]

4Note: this amount of shift creates severe temporal aliasing.

(a) Original (b) Low resolution frame (c) Lanczos

(d) Robust SR [8] (e) NLM base SR [28] (f) ISKR with motion comp.

FIGURE 3.9: A simple super-resolution example: (a) the original image, (b)
one of 9 low resolution images generated by blurring with a 3×3 uniform PSF,
spatially downsampling with a factor of 3 : 1, and adding white Gaussian noise
with standard deviation 2, (c) an upscaled image by Lanczos (single frame
upscale), (d) an upscaled image by robust super-resolution (SR) [8], and (e)
an upscaled image by non-local mean (NLM) based super-resolution [28], and
(f) an upscaled image by 3-D ISKR with rough motion compensation. The
corresponding PSNR values are (c)19.67, (d)30.21, (e)27.94, and (f)29.16[dB],
respectively.
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steering kernel weights cannot spread effectively along time as illustrated in
Figure 3.7(a). The upscaled frames by Lanczos, robust super-resolution [8],
non-local mean based super-resolution [28], and 3-D ISKR with rough motion
estimation at time t = 5 are shown in Figures 3.9(c)-(f), respectively.

In the presence of severe temporal aliasing arising from large motions, the
task of accurate motion estimation becomes significantly harder. However,
rough motion estimation and compensation is still possible. Indeed, once this
compensation has taken place, the level of aliasing artifacts within the new
data cubicle becomes mild, and as a result, the orientation estimation step is
able to capture the true space-time orientation (and therefore implicitly the
motion) quite well. This estimate then leads to the recovery of the missing
pixel at the center of the cubicle, from the neighboring compensated pixels,
resulting in true super-resolution reconstruction as shown in Figure 3.9.

It is worth noting that while in the proposed algorithm in Figure 3.8,
we employ an SVD-based method for computing the 3-D orientations, other
methods can also be employed such as that proposed by Farnebäck et al. using
local tensors in [7]. Similarly, in our implementation, we used the optical flow
framework [21] to compute the rough motion estimates. This step too can be
replaced by other methods such as a block matching algorithm [41].

3.3 Examples

The utility and novelty of our algorithm lies in the fact that it is capable
of both spatial and temporal (and therefore spatiotemporal) upscaling and
super-resolution. Therefore, in this section we study the performance of our
method in both spatial and spatiotemporal cases.

3.3.1 Spatial Upscaling Examples

In this section, we present some denoising/upscaling examples. The sequences
in this section contain motions of relatively modest size due to the effect of
severe spatial downsampling (we downsampled original videos spatially with
the downsampling factor 3 : 1) and therefore motion compensation as we
described earlier was not necessary. In Section 3.3.2, we illustrate additional
examples of spatiotemporal video upscaling.

First, we degrade two videos (Miss America and Foreman sequences), us-
ing the first 30 frames of each sequence, blurring with a 3 × 3 uniform point
spread function (PSF), spatially downsampling the videos by a factor of 3 : 1
in the horizontal and vertical directions, and then adding white Gaussian noise
with standard deviation σ = 2. Two of the selected degraded frame at time
t = 14 for Miss America and t = 7 for Foreman are shown in Figures 3.10(a)
and 3.11(a), respectively. Then, we simultaneously upscale and denoise the
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degraded videos by Lanczos interpolation (frame-by-frame upscaling), the NL-

(a) The degraded frame at time t = 14 (b) Lanczos

(c) NLM based SR[28] (d) 3-D ISKR

FIGURE 3.10: A video upscale example using Miss America sequence: (a) the
degraded frame at time t = 14, (b) the upscaled frame by Lanczos interpo-
lation (PSNR = 34.25[dB]), (c) the upscaled frame by NLM-means based
SR [28] (PSNR = 34.95[dB]), and (d) the upscaled frame by 3-D ISKR
(PSNR = 35.65[dB]). Also, the PSNR values for all the frames are shown
in Figure 3.12(a).



Locally Adaptive Kernel Regression for Space-Time Super-Resolution 85

means based approach of [28], and 3-D ISKR, which includes deblurring5 the
upscaled video frames using the BTV approach [8]. Hence, we used a radially
symmetric Gaussian PSF which reflects an “average” PSF induced by the ker-
nel function used in the reconstruction process. The final upscaled results are
shown in Figures 3.10(b)-(d) and 3.11(b)-(d), respectively. The correspond-
ing average PSNR values across all the frames for the Miss America example

5Note that the 3×3 uniform PSF is no longer suitable for the deblurring since the kernel
regression gives its own blurring effects.

(a) The degraded frame at time t = 7 (b) Lanczos

(c) NLM based SR[28] (d) 3-D ISKR

FIGURE 3.11: A video upscaling example using Foreman sequence: (a) the
degraded frame at time t = 7, (b) the upscaled frame by Lanczos interpolation
(PSNR = 30.98[dB]), (c) the upscaled frame by NL-means based SR [28]
(PSNR = 32.21[dB]), and (d) the upscaled frame by 3-D ISKR (PSNR =
33.58[dB]). Also the PSNR values for all the frames are shown in Figure 3.12(b)
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are 34.05[dB] (Lanczos), 35.04[dB] (NL-means based SR [28]), and 35.60[dB]
(3-D ISKR) and the average PSNR values for Foreman are 30.43[dB] (Lanc-
zos), 31.87[dB] (NL-means based SR), and 32.60[dB] (3-D ISKR), respectively.
The graphs in Figure 3.12 illustrate the PSNR values frame by frame. It is
interesting to note that while the NL-means method appears to produce more
crisp results in this case, the corresponding PSNR values for this method are
surprisingly lower than that for the proposed 3-D ISKR method. We believe,
as partly indicated in Figure 3.14, that this may be in part due to some left-
over high frequency artifacts and possibly lesser denoising capability of the
NL-means method.

As for the parameters of our algorithm, we applied SKR with the global
smoothing parameter h = 1.5, the local structure sensitivity α = 0.1 and a
5 × 5 × 5 local cubicle and used an 11 × 11 Gaussian PSF with a standard
deviation of 1.3 for the deblurring of Miss America and Foreman sequences.
For the experiments shown in Figures 3.10 and 3.11, we iterated SKR 6 times.

The next example is a spatial upscaling example using a section of a real
HDTV video sequence (300× 300 pixels, 24 frames), shown in Figure 3.13(a),
where no additional simulated degradation is added. As seen in the input
frames, the video has real compression artifacts (i.e. blocking). In this example,
we show the deblocking capability of the proposed method, and the upscaled
results by Lanczos interpolation, NLM-based SR [28] and 3-D ISKR with a
factor of 1 : 3 (i.e. the output resolution is 900 × 900 pixels) are shown in
Figures 3.13(b)-(d), respectively. The proposed method6 is able to remove the
blocking artifacts effectively as well as to upscale the video.

6We applied our method to the luminance channel only.
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(a) Miss America (b) Foreman

FIGURE 3.12: The PSNR values of each upscaled frame by Lanczos, NL-
means based SR [28], and 3-D ISKR for (a) the results of Miss America shown
in Fig. 3.10 and (b) the results of Foreman shown in Fig. 3.11.
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3.3.2 Spatiotemporal Upscaling Examples

In this section, we present two spatiotemporal upscaling examples (also known
as, frame interpolation and frame rate upconversion) by 3-D ISKR using Car-
phone and Salesman sequences. Unlike the previous examples (Miss America
and Foreman), in the next examples, Carphone sequence has relatively large

(a) The input frame at t = 5 (b) Lanczos

(c) NLM-based SR[28] (d) 3-D ISKR

FIGURE 3.13: A spatial upscaling example of a real video: (a) Texas football
sequence in luminance channel, and (b)-(d) the upscaled frames by Lanczos
interpolation, NL-based SR [28] and 3-D ISKR, respectively. The input se-
quence has 24 frames in total and it is a real HD-TV content which carries
compression artifacts, namely block artifacts. We upscale the video with the
spatial upscaling factor of 1 : 3.
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and more complex displacements between frames, and Salesman sequence con-
tains motion occlusions. In order to have better estimations of steering ker-
nel weights, we estimate patchwise (4 × 4 block) translational motions by
the optical flow technique [21], and apply 3-D ISKR to the roughly motion-
compensated inputs.

Though we did not discuss temporal upscaling much explicitly in the text
of this chapter, the proposed algorithm is capable of this functionality as well
in a very straightforward way. Namely, the temporal upscaling is effected by

(a) The input at t = 27 (b) Lanczos (t = 27) (c) NML-based SR (t = 27)

(d) 3-D ISKR (t = 26.5) (e) 3-D ISKR (t = 27) (f) 3-D ISKR (t = 27.5)

FIGURE 3.14: A Carphone example of video upscaling with spatial upscaling
factor 1 : 2: (a) the input video frame at time t = 27 (144 × 176, 30 frames),
(b)-(c) upscaled frames by Lanczos interpolation and NLM-based SR method
[28], respectively, and (d)-(f) upscaled frames by 3-D ISKR at t = 26.5, 27,
and 27.5, respectively.
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producing a pilot estimate and improving the estimate iteratively just as in
the spatial upscaling case illustrated in the block diagrams in Figure 3.8. We
note that this temporal upscaling capability, which essentially comes for free
in our present framework, was not possible in the NL-means based algorithm
[28].

The first example in Figure 3.14 is a real experiment7 of space-time upscal-
ing with a native Carphone sequence in QCIF format (144× 176, 30 frames).
Figure 3.14 shows (a) the input frame at time t = 27 and (b)-(c) the upscaled
frames by Lanczos interpolation and NLM-based method [28], and (d)-(f) the
upscaled frames by 3-D ISKR at t = 26.5, 27 and 27.5, respectively. The esti-
mated frames in Figure 3.14(d)-(f) shows the application of 3-D ISKR, namely
simultaneous space-time upscaling.

The final example shown in Figure 3.15 is also a real example of frame
interpolation (temporal upscaling) using Salesman sequence where, although
there is no global (camera) motion, the both hands move toward different
directions and occlusions can be seen around the tie as shown in the input
frames (Figure 3.15(a)). In this example, we estimate intermediate frames at
times t = 6.5 and t = 7.5, and the frames in Figure 3.15(b) are the results by
3-D ISKR. 3-D ISKR successfully generated the intermediate frames without
producing any artifacts.

3.4 Conclusion

Traditionally, super-resolution reconstruction of image sequences has relied
strongly on the availability of highly accurate motion estimates between the
frames. As is well-known, subpixel motion estimation is quite difficult, partic-
ularly in situations where the motions are complex in nature. As such, this
has limited the applicability of many existing upscaling algorithms to sim-
ple scenarios. In this chapter, we extended the 2-D steering KR method to an
iterative 3-D framework, which works well for both (spatiotemporal) video up-
scaling and denoising applications. Significantly, we illustrated that the need
for explicit subpixel motion estimation can be avoided by the two-tiered ap-
proach presented in Section 3.2.4, which yields excellent results in both spatial
and temporal upscaling.

Performance analysis of super-resolution algorithm remains an interest-
ing area of work, particularly with the new class of algorithms such as the
proposed and NLM-based method [28] which can avoid subpixel motion esti-
mation. Some results already exist which provide such bounds under certain

7That is to say, the input to the algorithm was the native resolution video, which was
subsequently upscaled in space and time directly. In other words, the input video is not

simulated by downsampling a higher resolution sequence.
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simplifying conditions [29], but these results need to be expanded and studied
further.

Reducing the computational complexity of 3-D ISKR is of great impor-
tance. Most of the computational load is due to (in order of severity): (i) the
computations of steering (covariance) matrices (Ci) in (3.22), (ii) the genera-
tion of the equivalent kernel coefficients (Wi) in (3.34) from the steering kernel
function with higher (i.e., N = 2), and (iii) iterations. For (i), to speed up
the estimation of Ci, instead of application of SVD, which is computationally
heavy, we can create a lookup table containing a discrete set of representative
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FIGURE 3.15: A Salesman example of frame interpolation: (a) original (input)
video frames at time t = 6 to 7, (b) intermediate frames estimated by 3-D
ISKR at t = 6.5 and t = 7.5.
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steering matrices (using, say, vector quantization), and choose an appropriate
matrix from the table given local data. For (ii), computation of the second
order (N = 2) filter coefficients (Wi) from the steering kernel weights (3.35)
may be sped up by using an approximation using the lower order (e.g. zeroth
order, N = 0) kernels. This idea was originally proposed by Haralick in [13]
and may be directly applicable to our case as well. For (iii), we iterate the
process of steering kernel regression in order to obtain better estimates of
orientations. If the quantization mentioned above gives us fairly reasonable
estimates of orientations, we may not need to iterate.

3.5 Appendix

3.5.1 Steering Kernel Parameters

Using the (compact) SVD (3.26) of the local gradient vector Ji (3.23), we can
express the naive estimate of steering matrix as:

Ĉnaive
i = JT

i Ji = ViS
T
i SiV

T
i

= Vi diag
{
s2
1, s

2
2, s

2
3

}
V T

i

= s1s2s3Vi diag

{
s1

s2s3
,

s2

s1s3
,

s3

s1s2

}
V T

i

= Qγi [v1, v2, v3] diag {̺1, ̺2, ̺3} [v1, v2, v3]
T

= Qγi

3∑

q=1

̺qvqv
T
q , (3.37)

where

̺1 =
s1

s2s3
, ̺2 =

s2

s1s3
, ̺3 =

s3

s1s2
, γi =

s1s2s3

Q
, (3.38)

and Q is the number of rows in Ji. Since the singular values (s1, s2, s3) may
become zero, we regularized the elongation parameters (̺q) and the scaling
parameter (γi) as shown in (3.25) from being zero.

3.5.2 The Choice of the Regression Parameters

The parameters which have critical roles in steering kernel regression are the
regression order (N), the global smoothing parameter (h) in (3.22) and (3.27),
and the structure sensitivity (α) in (3.25). It is generally known that the
parameters N and h control the balance between the variance and bias of
the estimator [30]. The larger N and the smaller h, the higher the variance
becomes and the loser the bias. In this work, we fix the regression order N = 2.

The structure sensitivity α (typically 0 ≤ α ≤ 0.5) controls how strongly
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the size of the kernel footprints is affected by the local structure. The product
of the singular values (s1, s2, s3) indicates the amount of the energy of the local
signal structure: the larger the product, the stronger and the more complex
the local structure is. A large α is preferable when the given signal carries
severe noise. In this work, we focus on the case that the given video sequences
have a moderate amount of noise and fix α = 0.1.

Ideally, although one would like to automatically set these regression pa-
rameters using a method such as cross-validation [14, 25], SURE (Stein’s unbi-
ased risk estimator) [22] or a no-reference parameter selection [42], this would
add significant computational complexity to the already heavy load of the
proposed method. So for the examples presented in the chapter, we make use
of our extensive earlier experience to note that only certain ranges of values
for the said parameters tend to give reasonable results. We fix the values of
the parameters within these ranges to yield the best results, as discussed in
Section 3.3.

3.5.3 Deblurring

Since we did not include the effect of sensor blur in the data model of the KR
framework, deblurring is necessary as a post-processing step to improve the
outputs by 3-D ISKR further. Defining the estimated frame at time t as

ẑ(t) = [· · · , ẑ(xj), · · · ]T , (3.39)

where j is the index of the spatial pixel array and u(t) as the unknown image
of interest, we deblur the frame z(t) by a regularization approach:

û(t) = arg min
u

∥∥u(t) − G ẑ(t)
∥∥2

2
+ λCR(û(t)), (3.40)

where G is the blur matrix, λ(≥ 0) is the regularization parameter, and CR( · )
is the regularization term. More specifically, we rely on our earlier work and
employ the bilateral total variation (BTV) framework [8]:

CR(u(t)) =

ν∑

v1=−ν

ν∑

v2=−ν

η|v1|+|v2|
∥∥u(t) − F v1

x1
F v2

x2
u(t)

∥∥
1

(3.41)

where η is the smoothing parameter, ν is the window size, and F v1
x1

is the shift
matrix that shifts u(t) v1-pixels along x1-axis.

In the present work, we use the above the BTV regularization frame-
work to deblur the upscaled sequences frame-by-frame, which is admittedly
suboptimal. In our work [32], we have introduced a different regularization
function called adaptive kernel total variation (AKTV). This framework can
be extended to derive an algorithm which can simultaneously interpolate and
deblur in one integrated step. This promising approach is part of our ongoing
work and is outside the scope of this chapter.
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