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Abstract

Statistical and Information-Theoretic Analysis of Resolution in Imaging and

Array Processing

by

Morteza Shahram

This work investigates some detection-theoretic, estimation-theoretic and information-

theoretic methods to analyze the problem of determining resolution limits in imaging

systems. The canonical case study is formulated based on a model of the blurred image

of two closely-spaced point sources of unknown brightness. To quantify a measure of

resolution in statistical terms, we address the following question: What is the mini-

mum detectable separation between two point sources at a given signal-to-noise ratio

(SNR), and for pre-specified probabilities of detection and false alarm?”. Furthermore,

asymptotic performance analysis for the estimation of the unknown parameters is car-

ried out using the Cramer-Rao bound. Also, we analyze the problem of resolution by

computing the Kullback-Leibler distance to further confirm the earlier results and to

establish a link between the detection-theoretic approach and Fisher information. To

study the effects of variation in point spread function (PSF) and model mismatch, we

present a perturbation analysis of the detection problem as well. The proposed analy-

sis methodologies presented are carried out for the general two-dimensional model and

general sampling scheme. We consider different sampling scenarios and in particular

study the case of under-Nyquist (aliased) images.



The approach we have advocated for determining resolution limits in imaging

can be similarly used to develop statistical algorithms and performance limits for

resolving sinusoids with nearby frequencies, in the presence of noise. Here the problem

is that of distinguishing whether the received signal is a single-frequency sinusoid or a

double-frequency sinusoid. We derive a locally optimal detection strategy that can be

applied in a stand-alone fashion or as a refinement step for existing spectral estimation

methods, to yield improved performance.
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Chapter 1

Introduction

1.1 Information-Theoretic Imaging

The problem of resolution historically has been of significant interest in differ-

ent communities in science and engineering; for example in astronomy, optics, different

applications in physics, array processing and imaging. We focus on the problem of

achievable resolution in imaging practice for the following reasons. First, the problem

of resolving point sources can be considered as a canonical case study to investigate

the performance of imaging systems and image restoration techniques. Second, devel-

oping different techniques to resolve point sources is indeed a concern in real-world

applications, e.g. astronomy.

Resolution in imaging systems can be interpreted as a fundamental compos-

ite estimation/detection problem, and we will explain the detail of such a concept

in what follows. Resolvability in imaging is therefore considered and categorized as

1



an information-theoretic problem [48]. Information-theoretic imaging concerns two

classes of analyses: to apply fundamental statistical and information-theoretic prin-

ciples to imaging and to optimally (or suboptimally) extract information from image

data. The first type of analysis includes, for example, exploring fundamental perfor-

mance bounds on detection and estimation or information retrieval [57].

Information theory and statistical methods have been very successfully stud-

ied and applied to communication systems. But imaging problems have benefitted

much less from the use of information-theoretic methodologies for two reasons: First,

the image computing problems are harder; and second, there have not been all-agreed

standards of abstract formulation of the problems in imaging [48]. Nevertheless, in

the last decade, information theoretic imaging has received remarkable attention to

build connections between the advanced theory of information and imaging, and image

processing problems. As pointed out by others earlier [57], the broad interpretation of

information-theoretic imaging includes every problem of imaging in which information

theory plays a role.

1.2 Resolution Limits in Imaging

In incoherent optical imaging systems the image of an ideal point source is

captured as a spatially extended pattern known as the point-spread function (PSF), as

shown for the one-dimensional case in Figure 1.1. In two dimensions, this function is

the well-known Airy diffraction pattern [22]. When two closely-located point sources

2



are measured through this kind of optical imaging system, the measured signal is the

incoherent sum of the respective shifted point spread functions. According to the

classical Rayleigh criterion, two incoherent point sources are ”barely resolved” when

the central peak of the diffraction pattern generated by one point source falls exactly

on the first zero of the pattern generated by the second one. A more detailed and

complete explanation of incoherent imaging and related topics can be found in [22]

and [19].

−10 −8 −6 −4 −2 0 2 4 6 8 10
0  

0.2

0.4

0.6

0.8

1  

SLIT 

Figure 1.1: Image of point source captured by diffraction-limited imaging

The first part of the research reported in this thesis is concerned with the

statistical analysis of the resolution limit in a so-called ”diffraction-limited” imaging

system. The canonical case study here is that of incoherent imaging of two closely-

spaced sources of possibly unequal brightness. The objective is to study how far beyond

the classical Rayleigh limit of resolution one can reach at a given signal to noise ratio.

In other words, we define resolution statistically as the ultimate ability to distinguish

whether the captured (noise-corrupted) data originated from one point source or two

3
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Figure 1.2: Incoherent imaging of two closely located point sources

closely-spaced point sources. The analysis uses tools from statistical detection and

estimation theory to specifically find explicit relationships for the minimum detectable

distance between two closely-spaced point sources imaged incoherently at a given SNR.

In this chapter, we will first review the basics of a canonical imaging system

and identify the signal based on which we will build our analytic framework. After

introducing the signal model, the related literature will be discussed.

1.3 Optical Imaging Model

In order to design and study the performance of imaging and image restora-

tion systems, it is essential to characterize the image degradation effects due to the

physical parameters of the imaging device. Degradations include noisy measurements,

blur, illumination and color imperfection (underexposure, overexposure) and so forth.

Especially, accurate image modelling is a key factor in image restoration processing

[49, 3]. Fortunately, a deep understanding of optical imaging systems has been devel-
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oped using concepts of communication and linear system theories[22]. For example, the

effect of imaging components such as apertures, lenses and sensors can be considered

as deterministic functions in a linear space-invariant framework.

1.3.1 Blurring by Diffraction: Point Spread Function

A simple schematic of a pinhole imaging system is shown in Figure 1.3. As-

suming the rays of light move in a straight line, the output image I2(x, y) will be a

geometric projection of the aperture. But there is in fact no sharp boundary between

dark and bright areas in the imaging plane and the observed image is diffusely blurred

[49]. Such a system is known as a diffraction-limited (or incoherent) imaging system

and the blurring phenomenon is called diffraction. Diffraction is the major cause of

blurring in remotely sensed images captured by telescopes, microscopes, infrared or

usual cameras [3]. The model of diffraction is mathematically described by a point

spread function (PSF) which can be computed by the Fraunhofer far filed approxima-

tion of the electromagnetic propagation of the light wave [22]. According to Franhofer

approximation, the PSF is modelled by the amplitude square of the Fourier transform

of system’s aperture A(ξ, ζ)[22]:

h(x, y) =
∣∣∣∣
∫

A(ξ, ζ) exp
(
−j

2π

λz
(xξ + yζ)

)
dξdζ

∣∣∣∣
2

(1.1)

where λ is the wavelength of radiation and z is the system focal length (the distance

between the aperture and the imaging plane), see Figure 1.3. For instance the PSF of
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circular and square apertures have the following forms as shown in Figure 1.4 [22]:

Circular: A(ξ, ζ) = Π

(√
ξ2 + ζ2

w

)
(1.2)

=⇒ h(x, y) =

(
2πw2

λz

)2

jinc2

(
2πw

√
x2 + y2

λz

)
(1.3)

Square: A(ξ, ζ) = Π
(

ξ

2wx

)
Π

(
ζ

2wy

)
(1.4)

=⇒ h(x, y) =
(

4wxwy

λz

)2

sinc2
(

2wxx

λz

)
sinc2

(
2wyy

λz

)
(1.5)

where

Π(t) =





1 t < 1

0 t ≥ 1
(1.6)

sinc(t) =
sin(πt)

πt
(1.7)

jinc(t) =
∫ 2π
0 exp(jθ + jt cos θ)dθ

2πjt
(1.8)

Referring to Figure 1.3, the observable image will be obtained by the following inte-

gration [42]:

I2(x, y) =
∫ ∫

I1(ξ, ζ)h
(

x +
z

z1
ξ, y +

z

z1
ξ

)
dξdζ (1.9)

where h(x, y) is the point spread function and I1(x, y) and I2(x, y) denote the input

(scene) and output (observation) intensities, respectively. By changing variables in

the following form:

ξ′ = − z

z1
ξ, (1.10)

ζ ′ = − z

z1
ζ, (1.11)
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Equation 1.9 can be readily rewritten as a two-dimensional convolution (denoted by

∗∗) of the input intensity and the point spread function:

I2(x, y) =
(

z1

z

)2

I1

(
z1

z
x,

z1

z
y

)
∗ ∗h(x, y) (1.12)

Adding a lens to the imaging system as shown in Figure 1.5 will result in:

I2(x, y) =
(

z1

z − z2

)2

I1

(
z1

z − z2
x,

z1

z − z2
y

)
∗ ∗h(x, y) (1.13)

Original Scene
),(1 yxI

Aperture
),( yxp

Imaging Plane
),(2 yxI

1z z

Figure 1.3: Pinhole imaging system

1.3.2 Other Causes of Blurring

Another type of blurring in images is introduced by an out-of-focus lens.

The intensity of defocusing is a function of the shape of the aperture and the lens and

the distance between the camera and the object. For instance in a circular aperture

with radius R, the point spread function due to out-of-focus lens (assuming spatially

uniform blur) is given by [3]:

pdef (x, y) =





1
πR2

√
x2 + y2 < R2

0
√

x2 + y2 ≥ R2

(1.14)
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Original Scene
),(1 yxI

Aperture
),( yxp

Imaging Plane
),(2 yxI

1z z

Circular w

Square wx

wy

Figure 1.4: Circular and Square Aperture

Also, in underwater or astronomical remote imaging, images may be blurred by a

atmospheric or underwater turbulence. Blur in these images in long-term exposures

is approximately modelled by a Gaussian function[21, 3]:

patm(x, y) =
1√

2πσ2
atm

exp

(
−x2 + y2

2σ2
atm

)
(1.15)

where σ2
atm parameterizes the amount of blur. In summary, the total blurring effect

in an imaging system can be modelled by the convolution of all point spread functions

(Figure 1.6):

h(x, y) ∗ ∗patm(x, y) ∗ ∗pdef (x, y) ∗ ∗ · · · (1.16)
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Original Scene
),(1 yxI

Aperture
with Lens

),( yxp

Imaging Plane
),(2 yxI

z1 z

z2

Figure 1.5: Lens in Imaging [19]

Original Scene
),(1 yxI

Aperture
with Lens

),( yxp

Imaging Plane
),(2 yxI

z1 z

Turbulence

Defocus

Figure 1.6: Several blurring in imaging[19]

1.3.3 Noise Assumptions

As mentioned before, noise is another type of the degradation in an imag-

ing system. When an optical field reaches a photo-detector, a quantum of energy is

absorbed in the form of a photon. The number of photons recorded during a light

exposure is a random quantity modelled by a Poisson distribution. However the elec-

tric signal generated by charge coupled devices (CCD) or other detectors contains

other forms of noise which are mostly caused by thermal noise in the data acquisition

process. Thermal noise is modelled by additive zero-mean Gaussian noise. Gaussian

9



distribution is also used to characterize the behavior of other noises (e.g. photon

counting noise) in limiting conditions according to the central-limit theorem [3, 63].

1.3.4 Fundamental Problem: Definition

The direct result of previous sections is that the image of an ideal point

source is captured as a spatially extended pattern known as the point-spread function

(PSF). This pattern is shown for the one-dimensional case in Figure 1.1. When two

closely-located point sources are imaged, the measured signal is the incoherent sum of

the respective shifted point spread functions (Figure 1.2). To define the problem in

the one-dimensional case, let us assume that the original signal of interest is the sum

of two impulse functions with amplitudes
√

α1 and
√

β1 separated by a small distance

d as shown in Figure 1.2:

√
α1δ

(
x− d

2

)
+

√
β1δ

(
x +

d

2

)
(1.17)

From Equation 1.12, given samples at xk (k = 1, · · · , N) of the measured signal, the

measured discrete signal resulting from a slit with length w in one-dimensional case,

as seen in Figure 1.2 is 1:

g(x) = s(xk; α1, β1, d, w, z, z1) + w(xk) (1.18)

=
(

z1

z

) (
α1δ

(
z1

z
xk − d

2

)
+ β1δ

(
z1

z
xk +

d

2

))
∗

(
w

λz

)2

sinc2
(

wxk

λz

)

+w(xk) (1.19)

=

(
w2z1

λz3

) (
α1

z

z1
δ

(
xk − z

z1

d

2

)
+ β1

z

z1
δ

(
xk +

z

z1

d

2

))
∗ sinc2

(
wxk

λz

)

1The effect of other blurring function will be considered in next sections.
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+w(xk) (1.20)

=
(

w

λz

)2 (
α1sinc2

(
w

λz
xk − w

λz1

d

2

)
+ β1sinc2

(
w

λz
xk +

w

λz1

d

2

))

+w(xk) (1.21)

where w(xk) is assumed to be a zero-mean Gaussian white noise process with variance

σ2. Now defining new auxiliary variables:

µ =
w

λz
, (1.22)

ν =
w

λz1
, (1.23)

α =
(

w

λz

)2

α1 = µ2α1, (1.24)

β =
(

w

λz

)2

β1 = µ2β1, (1.25)

Equation 1.21 can be written in the following form

g(xk) = s(xk; α, β, d) + w(xk) (1.26)

= αsinc2
(

µxk − ν
d

2

)
+ βsinc2

(
µxk + ν

d

2

)
+ w(xk) (1.27)

As an example, let us calculate some typical values of the parameters for this imaging

scenario. The wavelength of visible light is in the range of 400-900 ×10−9 m. Let the

distances ω, z1 and z be in the range of 1-10 mm, 1-100 m and 5-10 cm, respectively.

Then we will have µ in the range 104 to 106 and ν in the range 10-1000.

Without loss of generality, hereafter we assume that µ = 1 and ν = 1. With

the above definition we write the measured image (in one-dimensional case) as

g(xk) = s(xk; α, β, d) + w(xk) = αh

(
xk − d

2

)
+ βh

(
xk − d

2

)
+ w(xk) (1.28)
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As we will see later, this model will be generalized in this thesis. For example we will

study the 2-D signal model and also asymmetrically located point sources.

For the above model, if the distance between point sources is less than the

Rayleigh spacing, the two point sources are (in the classical Rayleigh sense) ”unre-

solvable”. It is important to note that the Rayleigh criterion does not consider the

presence of noise. The Rayleigh criterion for resolution in an imaging system is gen-

erally considered as an accurate estimate of limits in practice. But under certain

conditions related to signal-to-noise ratio (SNR), resolution beyond the Rayleigh limit

is indeed possible. This can be called the super-resolution limit [40]. Indeed, at suf-

ficiently high sampling rates, and in the absence of additive noise, arbitrarily small

details can be resolved.

1.4 Literature Review

In the last forty years or so, there have been several attempts, and more

recently surveys, of the problem of resolution from the statistical viewpoint. Of these,

the most significant earliest works were done by Helstrom [24, 25, 26]. In particular, in

[25, 26], he derived lower bounds on the mean-square error of unbiased estimators for

the point source positions, the distance between the sources, and the radiance values,

using the Cramér-Rao inequality. In [25], he considered two separate situations. In

the first, the problem of whether any signal was present or not was treated, whereas

in the second, the question of whether one or two sources were present was treated.
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(This second scenario is, of course, what interests us in the present work.) Helstrom

described a geometrical optics field model of the problem involving a general radiance

distribution and point spread function, for objects with arbitrary shape. To study the

case of the circular aperture and point sources, he applied a complex and remarkable

set of approximations and simplifications of the initial model.

In [40, 39], an approximate statistical theory was given to compute the re-

quired number of detected photons (similar to the notion of signal to noise ratio) for

a certain desired resolution, and the value of achievable resolution by image restora-

tion techniques was also investigated by numerical and iterative deconvolution. In

these papers the definition of resolution was made as the separation of the two point

sources that can be resolved through a deconvolution procedure. In [39], the analysis

of the achievable resolution in deconvolved astronomical images was studied based on

a criterion similar to Rayleigh’s.

In [8] two-point resolution in imaging systems was studied using a model-

fitting theory for coherent and partially coherent imaging, where the probability of

resolution (probability of detection) was computed for different models. Also in [2]

the Cramér-Rao lower bound formulation was used to study the limits to attainable

precision of estimated distances of the two point sources. Assuming a Gaussian PSF,

they determined a lower bound for the variance of estimation of the distance. Finally,

in [9], the reader can find a very comprehensive review of past and present approaches

to the concept of resolution.

Another view of the resolution problem from the information theory perspec-
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tive is given in [35]. This line of thinking, again with simplifying approximations, is

used to compute limits of resolution enhancement using Shannon’s theorem of max-

imum transferable information via a noisy channel. This paper considers the case of

equally bright nearby point sources and derives an expression relating resolution (here

defined as the inverse of the discernable distance between two equally bright point

sources), logarithmically to the SNR.

Other papers in which some direct applications of information theory to sam-

pled imaging systems have been introduced are [16, 17, 15, 27]. The main feature of

these papers is end-to-end (sensor-to-display) analysis of the problem of imaging and

image restoration and to unify the design of image gathering and display devices [16].

Huck et al in [27] developed some formulations to study the performance of the imag-

ing process including image gathering, data transmission, and image display. They

compute change of information rate for whole system which was claimed to be closely

correlated to the fidelity and clarity of final observed images.

The results of our research extend, illuminate, and unify the earlier works

in this field using more modern tools in statistical signal processing. As mentioned

before, the first part of this work is concerned with the statistical analysis of the

ultimate resolving power in incoherent imaging of two closely-located point sources.

We use locally optimal tests, which lead to more explicit, readily interpreted, and

applicable results. In addition, we study various cases including unknown and/or

unequal intensities, which have not been considered in their full complexity before.

The present results clarify, arguably for the first time, the specific effects of the relevant
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parameters on the definition of resolution, and its limits, as needed in practice.

We formulate the problem of two-point resolution in terms of statistical es-

timation/detection. Our approach is to define a quantitative measure of resolution in

statistical terms by addressing the following question: what is the minimum separation

between two point sources (maximum attainable resolution limit) that is detectable

at a given signal-to-noise ratio (SNR). In contrast to earlier definitions of resolution,

there is little ambiguity in our proposed definition, and all parameters (PSF parame-

ters, noise variance, sampling rate, etc.) will be explicitly present in the formulation.

1.5 Organization of the Thesis

To gain maximum intuition and perspective from the foregoing analysis, we

will first carry out our detection-theoretic analysis in the one-dimensional case in

Chapter 2. We study various cases including unknown and/or unequal intensities,

which have not been considered in their full complexity before.

The analysis for the one-dimensional signal model will later be extended to

the two-dimensional case in Chapter 3 in which general analytical results are also

derived for arbitrary sampling schemes. Our framework in Chapter 3 treats the most

general case where all the parameters involved in the signal model are unknown to the

detector. Furthermore, we consider two cases, where the value of noise variance (σ2)

is known and where it is unknown. For both cases we develop corresponding detection

strategies and obtain the explicit relationship between SNR and the parameters in the
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model.

In Chapter 4, the estimation-theoretic and information-theoretic approaches

will be discussed. In the interest of completeness, we also compute the Fisher Infor-

mation matrix (and Cramér-Rao (CR) lower bound) in closed form for two different

cases. The Cramér-Rao lower bound formulation is used to study the limits to at-

tainable precision of estimated distances of the two point sources. We carry out this

analysis for the case of under-sampled images and for a general PSF. Another appeal-

ing and informative analysis is to compute the symmetric Kullback-Leibler Distance

(KLD) or Divergence [36, p. 26]. KLD is a measure of discriminating power between

two hypotheses, and is directly related to the performance figure of a related optimal

detector. To accurately compute the KLD for the underlying problem, we make some

essential extensions to the conventional formula of approximating the KLD [36]. We

shall see an interesting and important connection between the KLD analysis and the

detection-theoretic analysis. A significant question which has not been addressed in

the past is to analyze the effect of a known or unknown perturbation of PSF on the

detection performance. Variation in PSF can be caused by other blurring elements in

the system, for example an out-of-focus lens or atmospheric or underwater turbulence.

We first address the problem of finding the change in the required SNR due to a vari-

ation of the PSF. This will help us to analyze sensitivity to model inaccuracies. This

is the topic of interest in Chapter 5.

Chapter 6 includes an interesting extension of the proposed approach to the

filed of spectral analysis and direction finding. The methodology we present for deter-
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mining resolution limits in optical imaging is quite similar to that of finding direction

of arrivals for incident waves at a receiver array. Finally in Chapter 8, results will be

summarized and concluded and future directions will be discussed.

1.6 Important Notations

α and β point source intensities (brightness)
d the distance between point sources
s(x) or s(x, y) Respective 1-D or 2-D signal of interest in

continuous domain
s(xk) or s(xk, yl) The discretized signal
s The vector notation of the discretized sig-

nal (in 1-D and 2-D models)
g(xk) or g(xk, yl) The discretized measured signal (in 1-D

and 2-D models)
g The vector notation of the discretized

measured signal (in 1-D and 2-D models)
θ The vector of parameters
σ2 Noise variance
SNR Signal-to-Noise Ratio
h(x) or h(x, y) The 1-D or 2-D point spread function
hi(x) The i-th partial derivative of h(x)
hi The vector notation of hi(x)
hij(x, y) The i-th partial derivative of h(x, y) with

respect to x followed by the j-th partial
derivative of h(x, y) with respect to y

hij The vector notation of hij(x, y)
Ei The norm-2 energy of hi(x)
Eij The norm-2 energy of hij(x, y)
Λ The Fisher information matrix
J The Kullback-Leibler distance
det(A) The determinant of matrix A
tr(A) The trace of matrix A
AT The transpose of matrix A
A−1 The inverse of matrix A
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Chapter 2

Detection-Theoretic Approach:

One-Dimensional Signal

In this chapter, we focus on the problem of resolution limit for a canonical case of a

1-D imaging scenario. We consider two hypothesis testing problems. First, we mainly

concentrate on the problem of detectablity of separation between point sources (spa-

tial super-resolution) and develop detection frameworks for different cases based on

the signal parameters being known or unknown to the detector. The second detection

problem deals with the problem of resolvability of difference in brightness of closely-

spaced point sources (grey-level super-resolution). The latter has application in, for

example, determining achievable contrast between adjacent surfaces in thermal imag-

ing. The presented results in this chapter are for the case where the measured image

is (unaliased) super-critically and uniformly sampled. These results will be extended

to more general sampling schemes in Chapter 3.
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2.1 Signal Model

To gain maximum intuition and perspective from the foregoing analysis, all

discussion in this chapter will be carried out in the one-dimensional case, which will

later (in Chapter 3) be extended to the two-dimensional case. To begin, let us assume

that the original signal of interest is the sum of two impulse functions separated by a

small distance d:

√
αδ(x− d

2
) +

√
βδ(x +

d

2
) (2.1)

As mentioned before, the image will be the incoherent sum of two point spread func-

tions1, resulting from an imaging aperture (or slit in one-dimensional case, as seen in

Figure 1.2):

s(x; α, β, d) = αh

(
x− d

2

)
+ βh

(
x +

d

2

)
(2.2)

where for our specific case of incoherent imaging h(x) = sinc2(x) =
[

sin(πx)
πx

]2
, but

other PSF’s can also be considered. Finally, the measured signal includesis composed

of discretized samples corrupted with additive (readout) noise. Given samples at

xk (k = 1, · · · , N) of the measured signal, we can rewrite the measurement model as:

g(xk) = s(xk; α, β, d) + w(xk) = αh

(
xk − d

2

)
+ βh

(
xk +

d

2

)
+ w(xk) (2.3)

where w(xk) is assumed to be a zero-mean Gaussian white noise process with variance

σ2 .
1From now on we refer to α and β as intensities and also we assume that α, β > 0. Also, note

that this model (for now) assumes point sources symmetrically placed about the (known) origin. This
model will be generalized later in this Chapter.
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2.2 Statistical Analysis Framework

The question of whether one or two peaks are present in the measured signal

can be formulated in statistical terms. Specifically, for the proposed model the equiv-

alent question is whether the parameter d is equal to zero or not. If d = 0 then we

only have one peak, and if d > 1 then there are two resolved peaks according to the

Rayleigh criterion. So the problem of interest revolves around values of d in the range

of 0 ≤ d < 1. Therefore, we can define two hypotheses, which will form the basis

of our statistical framework. Namely, let H0 denote the null hypothesis that d = 0

(one peak present) and let H1 denote the alternate hypothesis that d > 0 (two peaks

present):




H0 : d = 0 One peak is present

H1 : d > 0 Two peaks are present
(2.4)

Given discrete samples of the measured signal, we can rewrite the problem as:




H0 : g = s0 + w

H1 : g = s + w
(2.5)

where

g = [g(x1), · · · , g(xN )]T ,

w = [w(x1), · · · , w(xN )]T ,

s = [s(x1;α, β, d), · · · , s(xN ;α, β, d)]T ,

s0 = [s0(x1), · · · , s0(xN )]T ,
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and

s(xk; α, β, d) = αh

(
xk − d

2

)
+ βh

(
xk +

d

2

)
, (2.6)

s0 (xk) = s (xk;α, β, d) |d=0 = (α + β)h (xk) . (2.7)

This is a problem of detecting a deterministic signal with unknown parameters (α,

β, and d, in general). From (2.5), since the probability density function (PDF) un-

der H1 is not known exactly, it is not possible to design optimal detectors (in the

Neyman-Pearson sense) by simply forming the likelihood ratio. The general structure

of composite hypothesis testing is involved when unknown parameters appear in the

PDFs [33, p. 248]. There are two major approaches for composite hypothesis testing.

The first is to use explicit prior knowledge as to the likely values of parameters of

interest and apply a Bayesian method to this detection problem. However, there is

generally no such a priori information available. Alternately, the second approach, the

Generalized Likelihood Ratio Test (GLRT) first computes maximum likelihood (ML)

estimates of the unknown parameters, and then will use this estimated value to form

the standard Neyman-Pearson (NP) detector. Our focus will be on GLRT- type meth-

ods because of less restrictive assumptions and easier computation and implementa-

tion; but most importantly, because uniformly most powerful (UMP) and locally most

powerful (LMP) tests can be developed for the parameter range 0 ≤ d < 1.

To be a bit more specific, consider the case where it is known that α = β = 1,

with the parameter d unknown. The GLRT approach offers to decide H1 if

L(g) =
max

d
p(g, d,H1)

p(g,H0)
=

p(g, d̂,H1)
p(g,H0)

> γ (2.8)
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where d̂ denotes the ML estimate of d, and p(g, d,H1) and p(g,H0) are PDFs underH1

and H0, respectively. Assuming additive white Gaussian noise (AWGN) with variance

σ2 and ŝ = [s(x1; 1, 1, d̂), · · · , s(xN ; 1, 1, d̂)]T we will have:

L(g) =

1
(2πσ2)N/2

exp(− 1
2σ2

‖g− ŝ‖2)

1
(2πσ2)N/2

exp(− 1
2σ2

‖g− s0‖2)

= exp
(
− 1

2σ2

(
−‖ŝ‖2 + ‖s0‖2 + 2gT (ŝ− s0)

))

Therefore, H1 will be chosen if

−‖ŝ‖2 + 2gT (ŝ− s0) > γ′ (2.9)

Equivalently,
N∑

k=1

−
[
αh

(
xk − d̂

2

)
+ βh

(
xk +

d̂

2

)]2

+ 2

[
αh

(
xk − d̂

2

)
+ βh

(
xk +

d̂

2

)
− (α + β)h(xk)

]
g(xk) > γ′, (2.10)

where the ML estimate of d in the above involves solving the following minimization

problem:

min
d

N∑

k=1

[
αh

(
xk − d

2

)
+ βh

(
xk +

d

2

)
− g(xk)

]2

⇒ d̂ (2.11)

It should be clear from the above that this detection/estimation problem is highly

nonlinear. However, since the range of interest are the values of 0 ≤ d < 1, these rep-

resenting resolution beyond the Rayleigh limit, it is quite appropriate for the purposes

of the our analysis to consider approximating the model of the signal around d = 0,

and to apply locally optimal detectors. This is the approach we take.
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2.3 (Quadratic) Model Approximation

Much of the complexity we encountered in the earlier formulation of the

problem can be remedied by appealing to an approximation of the signal model. This

approximate model is derived by expanding the signal about the small parameter

values around d = 0. As alluded to earlier, this approximation is quite adequate in

the sense that all the parameter values of interest for resolution beyond the Rayleigh

diffraction limit are contained in the range [0, 1] anyway.

We consider the Taylor series expansion of s(xk; α, β, d) around d = 0, with

all other variables fixed2. More specifically,

s(xk; α, β, d) ≈ (α + β)h(xk) +
β − α

2
dh1(xk) +

α + β

8
d2h2(xk) (2.12)

where h1(.) and h2(.) denote the first and second order derivatives of h(.) and where

for h(x) =sinc2(x):

h1(xk) =
∂h(x)

∂x

∣∣∣∣
x=xk

=
2 sin(πxk)(sin(πxk)− πxk cos(πxk))

π2x3
k

(2.13)

h2(xk) =
∂2h(x)

∂x2

∣∣∣∣∣
x=xk

=
(4π2x2

k − 3) cos(2πxk)− 4πxk sin(2πxk) + 3
2π2x4

k

(2.14)

In the above approximation, we elect to keep terms up to order 2 of the Taylor ex-

pansion. This gives a rather more accurate representation of the signal, and more

importantly, if we only kept the first order term, then in the case α = β, the first

order term would simply vanish and no term in d would appear in the approximation.

The reader can find a more detailed discussion on the accuracy of this approximation
2It is important here to note that this is an approximation about the parameter of interest d, and

not the variable x; as such it therefore is a global approximation of the function.
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in Appendix A. The proposed approximation simplifies the hypothesis testing problem

to essentially a linear detection problem (as we will see in the next section). The ap-

proximation is helpful in that we can carry out our analysis more simply. In addition,

it leads to a general form of locally optimum detectors[33, p. 217] as will be discussed

later in Section 2.4.1.

Continuing with vector notation we have:

s ≈ (α + β)h +
β − α

2
dh1 +

α + β

8
d2h2 (2.15)

where

h = [h(x1), · · · , h(xN )]T

h1 = [h1(x1), · · · , h1(xN )]T

h2 = [h2(x1), · · · , h2(xN )]T

Writing in the form of hypotheses described earlier in (2.5):




H0 : g̃ = (α + β)h + w

H1 : g̃ = (α + β)h + β−α
2 dh1 + α+β

8 d2h2 + w
(2.16)

where we distinguish g̃ from g due to the approximated model. According to this

model, we define the measured signal-to-noise ratio as follows:

SNR =
1
σ2

∥∥∥∥(α + β)h +
β − α

2
dh1 +

α + β

8
d2h2

∥∥∥∥
2

(2.17)

For any differentiable symmetric PSF (h(x)) and in the case of above-Nyquist sam-
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pling, the following relations can be verified3

hTh1 = 0

hT
2 h1 = 0

hTh2 = −hT
1 h1

Therefore, we can rewrite (2.17) in the following form:

SNR =
1
σ2

[
(α + β)2E0 +

(
β − α

2

)2

d2E1 +
(

α + β

8

)2

d4E2 +
(

α + β

2

)2

d2E1

]

=
1
σ2

[
(α + β)2E0 − αβd2E1 +

(
α + β

8

)2

d4E2

]
(2.18)

where we define

E0 = hTh = fs

∫ +∞

−∞
h2(x)dx (2.19)

E1 = hT
1 h1 = fs

∫ +∞

−∞

[
∂h(x)

∂x

]2

dx (2.20)

E2 = hT
2 h2 = fs

∫ +∞

−∞

[
∂2h(x)

∂x2

]2

dx (2.21)

as energy terms4.
3For instance

hT h1 =

∫ +∞

−∞
h(x)

∂h(x)

∂x
dx =

∫ +∞

−∞

1

2

∂

∂x
[h(x)]2dx =

1

2
h2(x)

∣∣∣
+∞

−∞
= 0

and

hT h2 + hT
1 h1 =

∫ +∞

−∞
h(x)

∂2h(x)

∂x2
+

(
∂h(x)

∂x

)2

dx =

∫ +∞

−∞

∂

∂x
h(x)

∂h(x)

∂x
dx = h(x)

∂h(x)

∂x

∣∣∣∣
+∞

−∞
= 0

since the PSF has finite energy and limx→±∞ h(x, y) = 0
4In above-Nyquist sampling, SNR is independent of N (and fs) since energy terms are all propor-

tional to fs. See Appendix B for details and explicit computations of these energy terms for the case
of h(x) =sinc2(x).
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2.4 Detection Theory for the Approximated Model

In this section, we develop detection strategies for the hypothesis testing

problem of interest based upon the approximated model. It is illuminating to study the

various cases of interest in order. Our first assumptions are: equal known intensities,

symmetrically located point sources about a given center, and the energy constraint

α+β = 2. In the interest of clarity and ease of exposition, we start with the case when

all these assumptions hold. Then we will extend the discussion in order of increasing

levels of generality by relaxing an assumption in each step. Namely, we will treat the

problem for the following cases:

• The case of equal known intensities α = β = 1, with symmetrically located point

sources

• The case of unknown intensities but α+β = 2, with symmetrically located point

sources

• The case of unknown intensities but α + β = 2, asymmetrically5 located point

sources

• The case of unknown intensities, asymmetrically located point sources

By considering (2.16), we notice that when α + β = 2 is known to the detector (the

first three cases), (α + β)h is a common known term in both hypotheses and it is

5where point sources are located at −d1 and +d2 instead of − d
2

and d
2
.
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independent from d. Therefore we may simplify further:




H0 : y = w

H1 : y = β−α
2 dh1 + β+α

8 d2h2 + w
(2.22)

where y = g̃− (α + β)h. As we began to describe earlier, when α = β, the hypothesis

test will be reduced to the case of detecting a known signal with unknown positive

amplitude (D = d2). For this case, there exist well-known optimal detection strategies.

2.4.1 The Case of Equal Intensities , Symmetrically Located Point

Sources

When α = β = 1, (2.22) is reduced to:




H0 : y = w

H1 : y = d2

4 h2 + w
(2.23)

It is readily shown that given this model, the ML estimate for the parameter d2 is

given by

d̂2 = 4(hT
2 h2)−1hT

2 y (2.24)

Next, the test statistic resulting from the (generalized) Neyman-Pearson likelihood

ratio is given by:

T (y) =
1
σ2

(hT
2 h2)−1

(
hT

2 y
)2

(2.25)

We note that the expression for the test-statistic is essentially an energy detector with

the condition that the value of d2 is in fact estimated from the data itself. The detector
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structure, due to our knowledge of the sign of the unknown distance parameter, is

effectively producing a one-sided test, and hence is in fact a Uniformly Most Powerful

(UMP) detector in the sense that it produces the highest detection probability for

all values of the unknown parameter, and for a given false-alarm rate [33, p. 194].

Therefore, the above test-statistic can be simply replaced by:

T ′(y) =
√

T (y) =
√

1
σ2

(hT
2 h2)−1

(
hT

2 y
)

(2.26)

For any given data set y, we decide H1 if the statistic exceeds a specified threshold:

T ′(y) > γ (2.27)

The choice of γ is motivated by the level of tolerable false alarm (or false-positive) in a

given problem, but is typically kept very low6. The detection rate (Pd) and false-alarm

rate (Pf ) for this detector are related as [33, p. 254]:

Pd = Q
(
Q−1(Pf )−√η

)
(2.28)

where

η =
d2

4

√
E2

σ2
(2.29)

and Q is the right-tail probability function for a standard Gaussian random variable

(zero mean and unit variance); and Q−1 is the inverse of this function [33, p. 20].

A particularly intriguing and useful relationship is the behavior of the smallest peak
6In [8, 65] a similar criterion (in a different framework) has been proposed, where they applied a

sign test (i.e. a fixed threshold) to decide if there is one or two point sources present. This approach
gives a detector with a fixed false alarm rate.
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separation d, which can be detected with very high probability (say 0.99), and very

low false alarm rate (say 10−6) at a given SNR. According to (2.18), (2.28) and (2.29),

the relation between dmin and required SNR can be made explicit

SNR = (Q−1(Pf )−Q−1(Pd))2
64E0 − 16d2E1 + d4E2

d4E2
(2.30)

= (Q−1(Pf )−Q−1(Pd))2
(

64E0

E2

1
d4
− 16E1

E2

1
d2

+ 1
)

. (2.31)

The above expression gives an implicit relation between the smallest detectable dis-

tance between the two (equal intensity) sources, at the particular SNR. As an example,

for h(x) =sinc2(x) and for the specified choice of Pd = 0.99 and Pf = 10−6, if we col-

lect N samples at xk within the interval [−10, 10], at just above the Nyquist rate, we

have

SNR = 50.12
140
π4 − 14

π2 d2 + d4

d4

=
72.04− 71.1d2 + 50.12d4

Nd4

A plot of this function is shown in Figure 2.1. It is worth noting that in (2.31), the

term involving d−4 dominates for small d. Therefore, a reasonably informative (but

approximate) way to write SNR is

SNR ≈ (Q−1(Pf )−Q−1(Pd))2
E0

E2

1
d4

=
c

Nd4
, (2.32)

where the coefficient c is a function only of the selected Pf and Pd. It is worth noting

that for any sampling rate higher than the Nyquist rate, we can rewrite c in (2.32) as

29



follows:

c = 64
(
Q−1(Pf )−Q−1(Pd)

)2

∫ +∞

−∞
h2(x)dx

∫ +∞

−∞

[
∂2h(x)

∂x2

]2

dx

(2.33)

A plot of the approximate expression in (2.32) is also shown in Figure 2.1, to be

compared against the exact expression (2.31). The above relation (2.32) is a neat and

rather intuitive power law that one can use to, for instance, understand the required

SNR to achieve a particular resolution level of interest below the diffraction limit.
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Figure 2.1: Minimum detectable d as a function of SNR (in dB) at the Nyquist rate (exact
and approximate)
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2.4.2 The case of unknown α and β, symmetrically located point

sources

In this section we discuss a more general case where neither the intensities

α and β, nor the distance d, are known7. Equation 2.22 leads to a detection problem

defined in terms of a linear model over the parameter set θ defined as follows:

y = Hθ + w (2.34)

H = [h1, h2] (2.35)

θ =




d(α− β)

d2

4


 , (2.36)

where we note that the matrix H has orthogonal columns. Specifically, the detection

problem is now posed as:




H0 : Aθ = b

H1 : Aθ 6= b
(2.37)

where

A =




1 0

0 1


 b =




0

0


 (2.38)

The GLRT for this problem is given by [33, p. 274]:

T (y) =
1
σ2

θ̂TAT
[
A

(
HTH

)−1
AT

]−1

Aθ̂ (2.39)

=
1
σ2




(
hT

1 y
)2

E1
+

(
hT

2 y
)2

E2


 (2.40)

7But we assume that α + β = 2 is known to the detector
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where

θ̂ =
(
HTH

)−1
Hy (2.41)

The performance of this detector is characterized by:

Pf = Qχ2
2
(γ) (2.42)

Pd = Q
χ
′2
2 (λ)

(γ) (2.43)

λ =
1
σ2

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ (2.44)

=
1
σ2

((
α− β

2

)2

d2E1 +
1
16

d4E2

)
(2.45)

where Qχ2
2

is the right tail probability for a Central Chi-Squared PDF with 2 degrees

of freedom, and Q
χ
′2
2 (λ)

is the right tail probability for a non-central Chi-Squared PDF

with 2 degrees of freedom and non-centrality parameter λ. In order to perform the

same analysis as Section 2.4.1 (i.e. dmin vs. SNR curve), we start by computing the

required λ from the above expressions, based on the fixed values of Pd and Pf . Then,

using the relation (2.18), we will have:

SNR = λ(Pf , Pd)
64E0 − 16αβd2E1 + d4E2

4 (α− β)2 d2E1 + d4E2

(2.46)

where λ(Pf , Pd) represents the value of required non-centrality parameter as a function

of the desired Pf and Pd. For instance, for the case of h(x) =sinc2(x), with Pd = 0.99

and Pf = 10−6 we have:

SNR = 56.29
140
π4 − 14

π2 αβd2 + d4

7
2π2 (α− β)2d2 + d4

(2.47)

32



It is useful to compare the performance of this detector (in terms of minimum de-

tectable d) against the ”best” case where the parameters d, α and β are actually

known. In fact, a comparison in Figure 2.2 demonstrates that, happily (and perhaps

rather unexpectedly), the curves are very close, implying that the performance of

GLRT is very close to the optimal detector for which all parameters are known.
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Figure 2.2: dmin versus SNR(dB) for α = β = 1

An interesting observation arises from a comparison of the minimum de-

tectable d for the cases α = β and α 6= β, shown in Figure 2.3. It is seen that unequal

α and β yield better detection. That is, for a fixed d, the required SNR for resolving

two closely-spaced unequally bright point sources is smaller than the SNR required

to resolve two equally spaced sources. This results seems counter-intuitive. Yet, the

reason behind it is somewhat clear in hindsight. Equal α and β produce a perfectly
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symmetric signal (without noise) and therefore result in redundancy in the measured

signal content. With unequal α and β, an anti-symmetric part is added to signal

information and better decision is made possible. This phenomenon is a result of the

assumption of symmetry of point sources around the known origin (x = 0). If the

center of point sources is not known, the results can be different, as we will explained

in the next section.
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Figure 2.3: GLRT for α 6= β and the case α = β, symmetric sources; dmin versus SNR(dB)

2.4.3 The case of unknown intensities but α + β = 2, asymmetrically

located point sources

With the earlier machinery in place, in this section, we study the case when

the point sources are not located symmetrically around the origin (x = 0). We consider
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the following model for this case:

g(xk) = s(xk; α, β, d1, d2) + w(xk) = αh (xk − d1) + βh (xk + d2) + w(xk)(2.48)

where d1 and d2 are unknown and d = d1 + d2 is the distance between point sources.

The Taylor expansion for the signal term in (2.48) around (d1, d2) = (0, 0) is given by:

s(xk; α, β, d1, d2) = (α + β)h(xk) + (−αd1 + βd2)h1(xk) +
αd2

1 + βd2
2

2
h2(xk) (2.49)

Here we consider the general case of unknown α and β but α + β = 2 is known to

the detector. However, we assume that the test for determining whether one peak is

present or two peaks are present is performed at some point located between the two

point sources. Hence, the hypothesis test can be expressed as:



H0 : [d1 d2] = [0 0]

H1 : [d1 d2] 6= [0 0]
(2.50)

or equivalently



H0 : g̃(xk) = (α + β)h(xk) + w(xk)

H1 : g̃(xk) = (α + β)h(xk) + (−αd1 + βd2)h1(xk) + αd2
1+βd2

2
2 h2(xk) + w(xk)

(2.51)

By removing the known common term (α + β)h(xk), the signal can be expressed as

the following linear model:

y = Hθa + w

where

H = [h1, h2]

θa =



−αd1 + βd2

αd2
1 + βd2

2

2


 (2.52)
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where the subscript ”a” an θa is denoting the asymmetric case, to be distinguished

from (2.36). Then, the corresponding hypotheses are given by




H0 : Aθa = b

H1 : Aθa 6= b
(2.53)

where

A =




1 0

0 1


 b =




0

0




just as in Section 2.4.2. The GLRT for (2.53) will be:

T (y) =
1
σ2




(
hT

1 y
)2

E1
+

(
hT

2 y
)2

E2


 (2.54)

From (2.54), the performance of this detector is characterized by:

Pf = Qχ2
2
(γ)

Pd = Q
χ
′2
2 (λ)

(γ)

λ =
1
σ2


(−αd1 + βd2)

2 E1 +

(
αd2

1 + βd2
2

2

)2

E2


 (2.55)

Now, to obtain the relation between SNR and (d1, d2), we first need to compute SNR

for the model of (2.48), which is given by:

SNR =
1
σ2


(α + β)2E0 − αβ(d1 + d2)2E1 +

(
αd2

1 + βd2
2

2

)2

E2


 (2.56)

The value of σ2 in (2.55) can be obtained for desired Pd and Pf . By substituting this

value in (2.56) we will have:

SNR = λ(Pf , Pd)
(α + β)2E0 − αβ(d1 + d2)2E1 +

(
αd2

1+βd2
2

2

)2
E2

(−αd1 + βd2)
2 E1 +

(
αd2

1+βd2
2

2

)2
E2

(2.57)
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In order to present the results in this case, let us assume that8 αd1 ≈ βd2 (i.e. we

perform the test at a point which is closer to the stronger peak.). It can be easily

shown that the value of λ in (2.55) is maximized for the case of α = β. This shows

that when αd1 ≈ βd2, the performance for the case of equal intensities is better than

the performance of the case with unequal intensities. Figure 2.4 confirms this result

by showing the curves of dmin vs. SNR for two cases: equal intensities and unequal

intensities (we consider here the case of h(x) =sinc2(x)). By comparing this result

and that of the previous section, we conclude that the assumption of symmetrically

located point sources around the test point plays a very important role in the detection

performance. Also, it is worth mentioning that with the assumption of αd1 ≈ βd2, we

can approximate (2.57) for the range of small d1 and d2 in the following informative

ways:

SNR ≈ λ(Pf , Pd)
4(α + β)2

(
αd2

1 + βd2
2

)2

E0

E2
= λ(Pf , Pd)

4
d2

1d
2
2

E0

E2
= λ(Pf , Pd)

4(α + β)4

α2β2d4

E0

E2
(2.58)

More interestingly, one can verify that if the value of α+β and the condition

αd1 = βd2 (which is quite achievable in practice) is known to the detector, the GLRT

framework will result in uniformly most powerful test. The reason for this case is that

the first element in (2.52) vanishes and the second element is always positive resulting

in optimality.
8See Appendix C for a justification
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Figure 2.4: dmin versus SNR(dB); d = d1 + d2 and αd1 = βd2; equal intensities and unequal
intensities

2.4.4 The case of unknown intensities, asymmetrically located point

sources

Here, we analyze the most general case in which we assume that the energy

of point sources (α + β) is unknown to the detector, as well as the individual α, β, d1

and d2. Recalling (2.51), we can set up another linear model as follows:

g̃ = Huθu + w

where

Hu = [h, h1, h2]
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θu =




α + β

−αd1 + βd2

αd2
1 + βd2

2

2




, (2.59)

and the subscript ”u” denotes the completely unknown parameters. The above setup

leads to the following hypothesis test:




H0 : Auθu = b

H1 : Auθu 6= b
(2.60)

where

Au =




0 1 0

0 0 1


 b =




0

0




The GLRT for (2.60) will be:

T (g̃) =
1
σ2




(
hT

1 g̃
)2

E1
+

(
E2hT g̃ + E0hT

2 g̃
)2

E0
(
E0E2 − E2

1

)


 (2.61)

The performance of this detector is given by9:

Pf = Qχ2
2
(γ)

Pd = Q
χ
′2
2 (λ)

(γ)

λ =
1
σ2


(−αd1 + βd2)

2 E1 +

(
αd2

1 + βd2
2

2

)2 (
E2 − E2

1

E0

)
 (2.62)

Consequently the relation between d1 and d2 vs. SNR is given by:

SNR = λ(Pf , Pd)
(α + β)2E0 − αβ(d1 + d2)2E1 +

(
αd2

1+βd2
2

2

)2
E2

(−αd1 + βd2)
2 E1 +

(
αd2

1+βd2
2

2

)2
(

E2 − E2
1

E0

) (2.63)

9Note that according to the Cauchy-Schwarz inequality E0E2 ≥ E2
1 always.
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By comparing (2.57) and (2.63), it can be readily shown that because of the negative

term −E2
1

E0
, the detector without the knowledge of α + β performs more poorly than

the detector which knows α+β = 2. Figure 2.5 displays the performance of these two

different detectors in terms of the minimum detectable d vs SNR for the example of

h(x) =sinc2(x).
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0
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0.3

0.4
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0.9

SNR(dB)

d m
in

 PD=0.99 PFA=10−6

α+β=2 is known to the detector
α+β=2 is not known to the detector

Figure 2.5: dmin versus SNR(dB); d = d1 + d2 and αd1 = βd2 detectors with and without
the assumption of α + β = 2

2.5 Resolvability in Difference of Brightness

In previous sections we discussed the minimum detectable distance d between

two point sources. In this section, we are interested in carrying out the same analysis to

determine the minimum detectable difference in brightness (α−β); which corresponds
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to the following hypothesis test:




K0 : α− β = 0

K1 : α− β 6= 0
(2.64)

where α−β is unknown to the detector. We present our approach here for the simpler

case where point sources are located symmetrically and α + β = 2 is known to the

detector. We note that the Taylor expansion in (2.12) is directly applicable for this

problem as well, since the unknown variable α − β to be decided whether it is zero

or not in (2.64) appears as the variable around which the said Taylor expansion is

written. Therefore we reconfigure this hypothesis test as




K0 : g̃ = (α + β)h + O(d2) + w

K1 : g̃ = (α + β)h + β−α
2 dh1 + O(d2) + w

(2.65)

We note that the first-order approximation here will be sufficient to capture the dif-

ference between point sources. This first-order approximation is shown to be accurate

for this specific problem, since point sources are closely located and also the difference

between intensities is small, resulting in a very small β−α
2 d.

Similar to the solution proposed in Section 2.4.1, the following approximate

relationship can be derived between the minimum detectable α− β and SNR:

SNR ≈ c1

Nd2(α− β)2
(2.66)

in which c1 is a function of the selected Pf and Pd. Therefore as α → β or d → 0, the

required SNR grows with a power law.
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Finally, we are interested to combine the hypothesis tests in (2.4) and (2.64)

into a single multiple hypothesis test, i.e.




H0 : α− β = 0 and d = 0

H10 : α− β = 0 and d > 0

H11 : α− β 6= 0 and d > 0

. (2.67)

What we call here the sequential approach first performs the test for (2.4) which is to

decide whether d = 0 or not, and then decides between K0 and K1. We present a proof

here to show that the sequential approach is equivalent to a GLRT directly proposed

for the multiple hypothesis testing problem in (2.67). Let ≺γ denote the ordering in

GLR sense. For example we write

p(g|H0) ≺γ p(g|H1) (2.68)

if

p(g|H1)
p(g|H0)

> γ. (2.69)

Now we can see that if the above ordering holds meaning d > 0, then the sequential

test is optimal. The reason is that the acceptance regions for H10 and H11 are the

complementary subsets of the acceptance region for H1. Also we note that

p(g|H1)
p(g|H0)

=
p(g|d > 0)
p(g|d = 0)

≥ p(g|d > 0, α− β = 0)
p(g|d = 0)

=
p(g|H10)
p(g|H0)

(2.70)

and10

p(g|H1)
p(g|H0)

=
p(g|d > 0)
p(g|d = 0)

≥ p(g|d > 0, α− β 6= 0)
p(g|d = 0)

p(g|H11)
p(g|H0)

(2.71)

10because α− β 6= 0 only constrains the signal space, so in this case the PDF of signal can not be
greater.
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Hence, if p(g|H1) ≺γ p(g|H0) (it is decided that d = 0), we can show that

p(g|H10) ≺γ p(g|H0) (2.72)

p(g|H11) ≺γ p(g|H0), (2.73)

too. This again proves the optimality of the sequential test (in GLRT sense).

2.6 Concluding Remarks

We have set out in this chapter to address the question of resolution from a

sound statistical viewpoint. In particular, we have explicitly answered a very practical

question: What is the minimum detectable distance between two point sources imaged

incoherently at a given signal-to-noise ratio? Or equivalently, what is the minimum

SNR required to discriminate two point sources separated by a distance smaller than

the Rayleigh limit? Based on different assumption and models, we explicitly studied

four different cases in our detection-theoretic approach, from the simplest to the most

general case. We employed a hypothesis testing framework using like locally most

powerful tests, where the original highly nonlinear problem was approximated using

a quadratic model in the parameter d. We also discussed asymptotic performance for

estimation of the unknown parameters.

The major conclusion is that for a given imaging scenario (in this case, in-

coherent imaging through a slit), with required probabilities of detection and false

alarm, the minimum resolvable separation between two sources from uniformly sam-

pled data can be derived explicitly as a function of the SNR of the imaging array,
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and the sampling rate. The most useful rule of thumb we glean from these results is

that for the case of equal intensities (or for the case unequal intensities with a proper

choice of test point), the minimum resolvable distance is essentially proportional to

the inverse of the SNR to the fractional power of 1/4. The proportionality constant

was shown to be a function of the probabilities of detection and false alarm and the

point spread function. In deriving these results, we have unified and generalized much

of the literature on this topic that, while sparse, has spanned the course of roughly

four decades.

The analysis has been carried out in one dimension to facilitate the presenta-

tion and to yield maximum intuition. In the next chapter we carry out the analysis for

the general 2-D model and also under-Nyquist and non-uniform sampling schemes.
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Chapter 3

Detection-Theoretic Approach:

Extension to two-Dimensional

and Under-Sampled Signals

3.1 Introduction

Having studied the problem with a one-dimensional signal model and uni-

form over-Nyquist sampling scheme in Chapter 2, we now present an extension to a

more general model including two-dimensional scenario and arbitrary non-uniformly-

sampled and/or sub-sampled images. To begin, let the original image of interest consist

of two impulse functions positioned at points (px, py) and (qx, qy), a small distance of

d =
√

(px − qx)2 + (py − qy)2 apart. That is, the signal model is

I(x, y) =
√

αδ(x− px, y − py) +
√

βδ(x + qx, y + qy). (3.1)
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We consider the following two-dimensional model for the measured (discrete) signal:

g(xk, yl) = s(xk, yl) + w(xk, yl) (3.2)

= αh(xk − px, yl − py) + βh(xk + qx, yl + qy) + w(xk, yl) (3.3)

k, l ∈ {1, 2, ..., N}

where h(x, y) is the blurring kernel1 (representing the overall point-spread-function

(PSF) of the imaging system) and w(xk, yl) is assumed to be a zero-mean Gaussian

white noise process with variance σ2.

The statistical analysis is similarly formulated based on the ability to dis-

tinguish whether the measured image is generated by one point source or two point

sources. This can be posed as a hypothesis testing problem, i.e.




H0 : d = 0 One point source

H1 : d > 0 Two point sources
, (3.4)

or equivalently




H0 : g(xk, yl) = (α + β)h(xk, yl) + w(xk, yl)

H1 : g(xk, yl) = αh(xk − px, yl − py) + βh(xk + qx, yl + qy) + w(xk, yl)
. (3.5)

3.2 Detection-Theoretic Approach

In the test (3.5), when the model parameters are unknown, the probability

density function (PDF) under both hypothesis is therefore not known exactly, resulting

in a composite hypothesis testing problem. As a common alternative, we use the GLRT
1For convenience and ease of presentation only, we assume that the point spread function is a

symmetric function throughout this chapter, i.e. h(x, y) = h(−x, y) = h(x,−y) = h(−x,−y).
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framework. As will be shown later, the performance of such a detector is very close to

that of an ideal detector, to which the values of all the parameters in the model are

known. Hence, the performance of the suggested detector can be reasonably considered

as an approximate performance bound in practice.

Applying the GLRT approach to the problem of interest directly will produce

a highly nonlinear test statistic (see Chapter 2). However, since the range of interest

for the value of d is assumed to be small (below the Rayleigh limit2), similar to the

one-dimensional case, we can benefit from approximating the model of the signal for

nearby point sources. The approximate model is obtained by expanding the signal in

a Taylor series about the small parameter values around (px, qx, py, qy) = (0, 0, 0, 0).

By introducing the partial derivatives of h(x, y) as

hij(xk, yl) =
∂i+jh(x, y)

∂xi∂yj

∣∣∣∣∣
x=xk,y=yl

, (3.6)

we write the signal model in the following (lexicographically scanned) vector form (e.g.

[h]lN+k = h(xk, yl)):

s̃ = Hθ (3.7)

where

H = [h, h10, h01, h20, h02, h11] (3.8)
2Throughout this chapter, we assume without loss of generality that d = 1 corresponds to the

Rayleigh limit.
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θ =




α + β

−αpx + βqx

−αpy + βqy

1
2(αp2

x + βq2
x)

1
2(αp2

y + βq2
y)

αpxpy + βqxqy




. (3.9)

We elect to keep terms up to order 2 of the above Taylor expansion which gives a

more accurate representation of the signal and avoids trivial approximations in cases

where the first order terms would simply vanish. This approximation leads to a linear

detection problem and also is equivalent to the framework of locally most powerful

tests [33, p. 218].

We first consider the case where the noise variance is known to the detector.

By substituting the above approximated model into (3.5), the hypothesis test can be

rewritten as 



H0 : Aθ = 0

H1 : Aθ 6= 0
(3.10)

where

A =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (3.11)
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The test (3.10) is a problem of detecting a deterministic signal with unknown parame-

ters. The generalized likelihood ratio test (GLRT) for the approximated model yields

[33, p. 274]:

T (g) =
1
σ2

θ̂
T
AT

[
A

(
HTH

)−1
AT

]−1

Aθ̂ (3.12)

where

θ̂ =
(
HTH

)−1
HTg (3.13)

is the unconstrained maximum likelihood estimate of θ. g is the (lexicographically

scanned) vector form of the measured signal ([g]lN+k = g(xk, yl)). For any given data

set g, we decide H1 if the statistic exceeds a specified threshold,

T (g) > γ. (3.14)

It is worth mentioning that since the hypothesis test in (3.4) is a one-sided test, the

above formulations (the Taylor approximation and the generalized likelihood ratio

setup for the problem in (3.10)) can be viewed as a locally most powerful detector [33,

p. 218]. From (3.12), the performance of this detector is characterized by

Pf = Qχ2
5
(γ) (3.15)

Pd = Q
χ
′2
5 (λ)

(γ) (3.16)

λ =
1
σ2

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ, (3.17)

where Qχ2
5

is the right tail probability for a Central Chi-Squared PDF with 5 degrees

of freedom, and Q
χ
′2
5 (λ)

is the right tail probability for a non-central Chi-Squared
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PDF with 5 degrees of freedom and non-centrality parameter λ. For a specific desired

Pd and Pf , we can compute the implied value for the non-centrality parameter from

(3.15) and (3.16). We call this value of the non-centrality parameter λ(Pf , Pd). This

notation is key in illuminating a very useful relationship between the SNR and the

smallest separation which can be detected with high probability, and low false alarm

rate. From (3.17) we can write

σ2 =
1

λ(Pf , Pd)
θTAT

[
A

(
HTH

)−1
AT

]−1

Aθ. (3.18)

Also, by defining the SNR as

SNR =
1
σ2

θTHTHθ, (3.19)

and replacing the value of σ2 with the right hand side of (3.18), the relation between

the parameter set θ and the required SNR can be made explicit3:

SNR = λ(Pf , Pd)
θTHTHθ

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ

(3.25)

3To give an insight into the terms in the expression for required SNR, let us denote

HT H =

[
a bT

b C

]
(3.20)

where

a = hT h (3.21)

b =
[
hT h10, hT h01, hT h20, hT h02, hT h11

]T
(3.22)

C = AHT HAT (3.23)

Then we can show [
A

(
HT H

)−1
AT

]−1

= C− 1

a
bbT (3.24)

This form gives a rather better intuition to the established relationship between the required SNR and
the resolvability. For instance it can be readily proved that the appearance of the subtracted term in
the denominator of (3.25) ( 1

a
bbT ) is due to the energy of point sources (α + β) being unknown to the

detector. In other words, if only the value of α + β is known to the detector, this term would vanish
and the related term in the denominator would be given by �T AT CA�.
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The above analysis can be well extended to the case where σ2 is unknown a priori,

and this will be done next. The corresponding hypotheses for this case are given by




H0 : Aθ = 0, σ2 > 0

H1 : Aθ 6= 0, σ2 > 0
(3.26)

The GLRT for (3.26) [33, p. 345] gives the following test statistic:

Tu(g) =
θ̂

T
AT

[
A

(
HTH

)−1
AT

]−1

Aθ̂

gT

[
I−H

(
HTH

)−1
HT

]
g

> γ (3.27)

where subscript ”u” denotes the case of unknown noise variance, I is the identity

matrix, and

θ̂ =
(
HTH

)−1
HTg (3.28)

is the unconstrained maximum likelihood estimation of θ. For any given data set y,

we decide H1 if the statistic exceeds a specified threshold,

Tu(y) > γ′. (3.29)

From (3.12), the performance of this detector is characterized by [33, p.186]

Pf = QF5,N−6
(γ′) (3.30)

Pd = QF ′5,N−6(λu)(γ
′) (3.31)

λu =
1
σ2

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ, (3.32)

where QF5,N−6
is the right tail probability for a Central F distribution with 5 numerator

degrees of freedom and N − 6 denominator degrees of freedom; and QF ′5,N−6(λu) is the
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right tail probability for a non-central F distribution with 5 numerator degrees of

freedom and N − 6 denominator degrees of freedom, and non-centrality parameter.

In this GLRT context, the following relation between the parameter set θ

and the required SNR (denoted by a subscript ”u”) can be obtained:

SNRu = λu(Pf , Pd)
θTHTHθ

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ

, (3.33)

which mirrors (3.25), with the only difference in performance being the change of

coefficient from λ(Pf , Pd) to λu(Pf , Pd). It can be easily verified that λ(Pf , Pd) <

λu(Pf , Pd) for Pd > Pf .

In either case, an important question is to consider how different this ob-

tained performance is from that of the ”ideal” clairvoyant detector, to which all the

parameters (i.e. θ and σ2) are known. We first note that in this case the hypothesis

test in (3.10) will be a standard linear Gauss-Gauss detection problem. Also, we can

further simplify the problem by seeing that the term (α + β)h in the signal model

in (3.7) is a common known term under both hypotheses and can be removed. As a

result, the following relationship can be obtained for the completely known case:

SNRid = η(Pf , Pd)
θTHTHθ

θTATAHTHATAθ
, (3.34)

where the subscript ”id” denotes the ideal case and η(Pf , Pd) is the required deflection

coefficient[33, p. 71] computed as

η =
(
Q−1(Pf )−Q−1(Pd)

)2
, (3.35)
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where Q−1(·) is the inverse of the right-tail probability function for a standard Gaus-

sian random variable (zero mean and unit variance). Comparing the expression in

(3.25) to that of (3.35), we have

SNR
SNRid

=
λ(Pf , Pd)
η(Pf , Pd)

θTATAHTHATAθ

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ

(3.36)

where we note that η(Pf , Pd) < λ(Pf , Pd), provided Pd > Pf . Also, according to

(3.20)-(3.24)

AHTHAT −
[
A

(
HTH

)−1
AT

]−1

= C−C +
1
a
bbT =

1
a
bbT (3.37)

is a positive definite matrix. As a result, as expected, SNRu > SNR> SNRid, always.

However, as we will demonstrate in the following subsection, the difference between

SNRu and SNRid is quite small over most of the parameter range. Also, we note that

similar to the analysis presented in section 2.4.1 the proposed detector in the limiting

case (where intensities are known and equal4) indeed produces a uniformly optimal

test (same as ideal detector). Furthermore, for the general case as we will show later,

the difference between performances of the proposed detector and ideal detector is

very small. Therefore, we argue that the GLRT framework used to suggest a detector

can be reasonably accounted to set a performance limit in practice.

The expressions in (3.25) or (3.33) are in general applicable to any sampling

scheme including non-uniformly sampled or under-sampled (aliased) images. How-

ever, since the energy of a bandlimited signal in the continuous domain is that of its

uniformly (and super-critically) discretized version divided by sampling rate, the right
4The earlier developed approach for this case can be easily extended to the current 2-D model.
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hand side of these expressions should be understood more generally as depending upon

the sampling offsets (phases) of the discrete images. In particular, for under-sampled

images, the energy terms in HTH will vary significantly as sampling phase changes.

We will study this effect in Section 3.2.2.

An interesting related question is how the availability of multiple observa-

tions of the image (i.e. several frames with different sampling phases) affects the

performance. Let Ωl denote the l-th set of acquired samples (i.e. l-th frame in a video

sequence) out of a total of L frames, and let Hl and SNRl represent the corresponding

H and the required SNR of the l-th image. Then, the overall required SNR is given

by

SNRL = λ(Pf , Pd)
θTHT

LHLθ

θTAT
[
A

(
HT

LHL

)−1
AT

]−1

Aθ

, (3.38)

where

HL =
L∑

l=1

Hl. (3.39)

Furthermore, it can be proved that

SNRL ≤ 1
L

L∑

l=1

SNRl (3.40)

with equality sign for the case of over-sampled frames. The reason behind this is that

the energy of signal in over-Nyquist case is a constant value and does not depend on

the phase of sampling. Hence, each (super-critically sampled) frame has the same

effect on the detection performance. In other words, in this case HT
mHm = HT

nHn =
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1
LHT

LHL for 1 < m, n < L. However in under-Nyquist case, some frames (due to

better placement of samples) provide more information for detectability than others.

In the following pages, we further analyze the performance results obtained

earlier for over-sampled images. Next we look into a case where the image is under-

sampled to see the effect of aliasing on the performance. Having earlier derived the

general expression for the performance, to facilitate the presentation, in what follows,

we will often consider a particular case with the following set of conditions (we may

call this the symmetric case):

• px = py, qx = qy = 0

• α = β = 1

• h(x, y) = h(
√

x2 + y2) = h(r) (angular symmetric kernel)

Some examples of angular symmetric kernels which will be used later in this thesis

are ”jinc-squared” and Gaussian windows. The former (jinc2(r)) is the PSF resulting

from a single circular aperture and is characterized by

jinc(r) =
1

2πr
√−1

∫ 2π

0
exp[

√−1(θ + r cos θ)]dθ =
J1(2πr)

2πr
(3.41)

where J1(·) is the first order Bessel function of the first kind[22]. The Gaussian kernel,

on the other hand, can be considered as a typical approximation of the overall effect of

various elements in the imaging systems (including aperture, CCD, out of focus lens,

atmospheric or underwater turbulence etc); it is given by

h(r) =
1√

2πσ2
r

exp

(
− r2

2σ2
r

)
. (3.42)
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A plot of the above kernels is shown in Figure 3.1, where we note that we have normal-

ized the corresponding Rayleigh spacings for both functions to be 1 (this corresponds

to σr = 0.35 in (3.42)).

Due to the existence of sidelobes, under the above normalization, we expect

the jinc2 PSF to provide better resolution (but increased sensitivity to) under fixed

SNR conditions. In the coming sections, we will look for confirmation of this intuition.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
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1.4

1.6

jinc2

Gaussian

Figure 3.1: Normalized one-dimensional cut of the point spread functions used to present
the results
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3.2.1 Over-Nyquist sampling

In this section, we further simplify the earlier results for the over-Nyquist

case. To begin, we note that the energy terms can be written as

P = HTH =




E0 0 0 −E10 −E01 0

0 E10 0 0 0 0

0 0 E01 0 0 0

−E10 0 0 E20 E11 0

−E01 0 0 E11 E02 0

0 0 0 0 0 E11




(3.43)

where

Eij = hT
ijhij =

1
4π2

∫ π

−π

∫ π

−π
uivj |H(u, v)|2dudv (3.44)

= f2
s

∫ +∞

−∞

∫ +∞

−∞

[
∂i+jh(x, y)

∂xi∂yj

]2

dxdy. (3.45)

The zero elements in (3.43) are due to the orthogonality of some of the partial deriva-

tives with each other5. With the above notation, we will also have

Q = AT
[
A

(
HTH

)−1
AT

]−1

A (3.46)

5For instance
∫ +∞

−∞

∫ +∞

−∞
h(x, y)

∂h(x, y)

∂x
dxdy =

∫ +∞

−∞

∫ +∞

−∞

1

2

∂h2(x, y)

∂x
dxdy

=

∫ +∞

−∞

1

2
h2(x, y)

∣∣∣
+∞

−∞
dxdy = 0

since the PSF has finite energy and limx→±∞ h(x, y) = 0
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=




0 0 0 0 0 0

0 E10 0 0 0 0

0 0 E01 0 0 0

0 0 0 E20 − E2
10

E0
E11 − E10E01

E0
0

0 0 0 E11 − E10E01

E0
E02 − E2

01

E0
0

0 0 0 0 0 E11




(3.47)

Let us now consider the symmetric case. For the over-sampled case, as d → 0, we will

have

SNR ≈ λ(Pf , Pd)
N2

64
d4

E2
10

E0E20 − E2
10

(3.48)

where we can show that

E0 =
∫ +∞

0
rh2(r)dr, (3.49)

E10 = π

∫ +∞

0
r

[
∂h(r)

∂r

]2

dr, (3.50)

E20 =
π

4

∫ +∞

0

3
r

[
∂h(r)

∂r

]2

+ 3r

[
∂2h(r)

∂r2

]2

dr (3.51)

See Appendix E for detailed calculation of these energy terms.6 Figure 3.2 shows the

minimum detectable d vs SNR for the proposed local detector in (3.27) and the ideal

detector. The former detector has been suggested for the case where all the model
6We note that due to the Cauchy-Schwartz inequality E2

10 < E0E20, the right hand side of (3.48)
is always positive. Also, as discussed in Section 2.4.1, this term will vanish if the amplitude of the
original scene (α + β) is known to the detector. This is to say

SNR ≈ λ(Pf , Pd)

N2
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d4

E0

E20
.
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parameters including the noise variance is unknown to the detector. However as can

be seen, for any given d, the difference between the required SNR for these detectors

is at most 3-4 dB.
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Figure 3.2: Minimum detectable d as a function of SNR (in dB) (just above the Nyquist
rate); Gaussian PSF

3.2.2 Under-Nyquist Sampling

Super-critical sampling of a bandlimited function (e.g. h(x, y) and its deriva-

tives) preserves its energy by a factor related to the sampling rate, regardless of sam-

pling offset. However, for the under-Nyquist (aliased) case every element of HTH will

be a function of sampling phases in x and y directions (we call these sampling phases φ

and ψ)7. This leads to a rather complicated expression for the required SNR versus d.
7See Appendix D
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To clarify further, let Psub be the product HTH for this case. In general, this matrix

will have the following form:

Psub = P +
Lu∑

m=0

Lv∑

n=0

[
Pm,n

c

L∑

l=0

cos(mφl + nψl) + Pm,n
s

L∑

l=0

sin(mφl + nψl)

]
(3.52)

where P is defined in (3.43) (for the over-sampled case) and Pm,n
c ’s and Pm,n

s ’s are

the matrices resulting from aliased components8. Specializing to the symmetric case,

we have

SNR ≈ λ(Pf , Pd)
1
d4

4‖h‖2 + 4d2hTh20 + d4‖h02‖2

(
‖h02‖2 − [hTh20]2

‖h‖2

) (3.53)

We note that the energy terms in the above expression involve cos(·) and cos2(·) terms.

Figures 3.3 and 3.4 show the minimum, maximum and average values of

the required SNR over the possible range of sampling phases for jinc-squared and

Gaussian kernels, respectively. These curves are generated by using (3.25), which is

the expression for the required SNR corresponding to the proposed detector in (3.27).

For a given value of d, the required SNR is computed for the values of φ and ψ drawn

uniformly in the range of [0, 2π]. Then the maximum, minimum, and average of these

values are computed.

The curves are shown for the case where only one frame (i.e. one set of uni-

formly sampled data) is available. Nevertheless, it can be proved that the maximum,

minimum and average values of the resolvability (or required SNR) remain the same

for arbitrary number of frames (i.e. periodically non-uniform sampled image). This
8Lu, Lv, φl, and ψl have been defined in Appendix D.
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follows by noting that the number of frames or the sampling rate are embedded inside

the ”SNR” on the left hand side of (3.25) and (3.33). For instance, for resolving a

particular separation, doubling the sampling rate does not change the required SNR,

but rather implies that the same detection performance can be achieved with twice

the noise variance as compared to the original sampling rate.

It is seen that the required SNR for the case where the PSF is a Gaussian

is on average 3 dB (and 16 dB at ”worst case”) more than for that for the case

of simple circular aperture. This can be explained by noting that the jinc-squared

kernel contains more energy in its second derivative. The more energy in the second

partial derivative means bigger difference between the PDF’s under the two hypotheses

and therefore better detectability. Also, we note that the jinc-squared window has a

larger effective bandwidth which lets more high frequency information through. This

phenomenon will also be observed in the following sections. Finally, Figures 3.5 and

3.6 show the average and maximum resolvability at different sampling rates below

Nyquist. As observed, change of sampling rate has much less effect on the average

performance (i.e. the required total SNR) compared to that of the performance at

worst case (Figure 3.6). These worst cases occur when at some sampling scenarios

(e.g. at 50% Nyquist), the discrete measured signal includes two strong peaks located

far from each other (or roughly speaking, where the acquired samples are far from the

point sources). This phenomenon clearly degrades the performance of the detector.

On the other hand, if there exist some samples which are positioned closely to the

point sources, the detector collects more information about the underlying signal.
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Figure 3.3: Minimum detectable d as a function of SNR (in dB); best, worst, and average
performance over the possible range of sampling phases (one set of uniform samples 50% below
the Nyquist rate); GLRT detector; h(r) = jinc2(r); known σ2

3.3 Conclusion

In this chapter we investigated the problem of resolving two closely-spaced

point sources (beyond the Rayleigh limit) from noise-corrupted, blurred, and possibly

under-sampled images. We have studied a detection-theoretic framework to derive

performance limits on minimum resolvability. We have discussed the case of under-

Nyquist sampling in several parts of this chapter because of its significance in, for

example, image super-resolution reconstruction [14, 46, 18]. We have also considered

the case where the noise variance is unknown to the detector.

We explicitly found a general, fundamental, and informative relationship to

quantify a (statistical) measure of resolution, and also to reveal the effect of point
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Figure 3.4: Minimum detectable d as a function of SNR (in dB); best, worst and average
performance over the possible range of sampling phases (one set of uniform samples 50% below
the Nyquist rate); GLRT detector; Gaussian kernel; known σ2

spread function and sampling parameters on resolvability. The established expressions

are in general applicable to any point spread function and any arbitrarily sampling

scheme. The analysis for the under-sampled images demonstrates explicitly how the

performance is affected by the sampling phases (sampling offset), while in the over-

Nyquist case the performance is independent from the sampling offset.
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Figure 3.5: Minimum detectable d as a function of SNR (in dB); average performance over
the possible range of sampling phases (one set of uniform samples at different sampling rates);
GLRT detector; jinc-squared kernel; known σ2
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Figure 3.6: Minimum detectable d as a function of SNR (in dB); worst case performance
over the possible range of sampling phases (one set of uniform samples at different sampling
rates); GLRT detector; jinc-squared kernel; known σ2
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Chapter 4

Estimation-Theoretic and

Information-Theoretic

Approaches

4.1 Introduction

In this chapter, we re-analyze the resolution problem by using other statis-

tical and information-theoretic tools. Not only do these approaches verify the earlier

results of this thesis, but we can also observe some very interesting phenomena con-

necting all these different frameworks. We first establish a performance bound on

estimating the parameters of the signal by computing the Fisher information (and

the Cramér-Rao lower bound). We present our calculation for both one-dimensional

and two-dimensional signal models. Secondly, we compute a measure of discriminat-

ing power between two hypotheses (whether there is one point source or two point
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sources) by computing the Kullback-Leibler Distance (KLD). Through this computa-

tion, an interesting connection between the Fisher information and the (asymptotic)

detectablity is observed.

4.2 Estimation-Theoretic Approach, Fisher Information

In this section we present results on the estimation of the unknown parame-

ters of the model. In particular, we study the asymptotic performance of the maximum

likelihood (ML) estimate of the unknown parameters, using the Cramér-Rao lower

bound (CRLB). The standard CRLB [32, p. 27] is a covariance inequality bound

which treats the parameters as unknown deterministic quantities and provides a local

bound on the mean square error (MSE) of their (unbiased) estimate. Being able to

compute a lower bound on the variance of the parameter d, in particular, is rather help-

ful in verifying and confirming the earlier results of the detection-theoretic framework.

For example we shall see how the difference between α and β affects the variance of the

estimate in different cases. In what follows we first present the CRLB derivations for a

one-dimensional signal model and then will extend it to the two-dimensional scenario.

4.2.1 The CRLB Derivations for One-Dimensional Signal

Here, we compute the CRLB for the following cases:

• the signal model in (2.3), i.e. known intensities but unknown d

• the signal model in (2.48), i.e. unknown α, β, d1 and d2
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To verify the details of the calculations (carried out mostly in the frequency domain),

we refer the reader to Appendix B. Recalling (2.3), the CRLB for the parameter d

(assuming α and β known), is given by 1:

var(d̂) ≥ σ2

∑

k

(
∂s(xk, d)

∂d

)2 =
σ2

1
2π

∫ π

−π

∣∣∣∣
∂S(ω, d)

∂d

∣∣∣∣
2

dω

(4.1)

=
σ2

fs

1
π2

15 (α2 + β2) + αβ
π3d5 [(π2d2 − 3) sin(2πd) + 3πd cos(2πd) + 3πd]

,(4.2)

where S(ω, d) is the discrete-time Fourier transform (DTFT) of the signal s(xk, d). To

compute the CRLB for the second case, when α, β, d1 and d2 are unknown, the Fisher

Information matrix is computed2. We have

cov(d̂1, d̂2, α̂, β̂) ≥ Λ−1(d̂1, d̂2, α̂, β̂) (4.3)

where Λ is the 4 × 4 symmetric Fisher Information matrix with its elements defined

by

Λ(1, 1) =
1
σ2

∑

k

(
∂s(xk; α, β, d1, d2)

∂d1

)2

=
α2

2πσ2

∫ π

−π
|ωfsH(ω, fs)|2 dω =

fs

σ2

4π2α2

15

Λ(2, 2) =
1
σ2

∑

k

(
∂s(xk; α, β, d1, d2)

∂d2

)2

=
β2

2πσ2

∫ π

−π
|ωfsH(ω, fs)|2 dω =

fs

σ2

4π2β2

15

Λ(3, 3) =
1
σ2

∑

k

(
∂s(xk; α, β, d1, d2)

∂α

)2

=
1

2πσ2

∫ π

−π
|H(ω, fs)|2 dω =

fs

σ2

2
3

Λ(4, 4) =
1
σ2

∑

k

(
∂s(xk; α, β, d1, d2)

∂β

)2

=
1

2πσ2

∫ π

−π
|H(ω, fs)|2 dω =

fs

σ2

2
3

Λ(1, 2) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂d1

∂s(xk;α, β, d1, d2)
∂d2

=
−αβ

2πσ2

∫ π

−π
|ωfsH(ω, fs)|2 cos(ωfs(d1 + d2))dω

1assuming sampling above Nyquist
2We thank Prof. Jeff Fessler for sharing with us his calculations for the continuous data case.
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=
fs

σ2

2αβ

π3

(
π2(d1 + d2)2 − 3

)
sin(2π(d1 + d2)) + 6π(d1 + d2) cos2(π(d1 + d2))

(d1 + d2)5

Λ(1, 3) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂d1

∂s(xk;α, β, d1, d2)
∂α

=
−α

2πσ2

∫ π

−π
ωfs |H(ω, fs)|2 dω = 0

Λ(1, 4) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂d1

∂s(xk;α, β, d1, d2)
∂β

=
−α

2πσ2

∫ π

−π
ωfs |H(ω, fs)|2 sin(ωfs(d1 + d2))dω

=
fs

σ2

α

2π3

3 sin(2π(d1 + d2))− 4π(d1 + d2) cos2(π(d1 + d2))− 2π(d1 + d2)
(d1 + d2)4

Λ(2, 3) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂d2

∂s(xk;α, β, d1, d2)
∂α

=
β

2πσ2

∫ π

−π
ωfs |H(ω, fs)|2 sin(ωfs(d1 + d2))dω

=
fs

σ2

−β

2π3

3 sin(2π(d1 + d2))− 4π(d1 + d2) cos2(π(d1 + d2))− 2π(d1 + d2)
(d1 + d2)4

Λ(2, 4) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂d2

∂s(xk;α, β, d1, d2)
∂β

(4.4)

=
β

2πσ2

∫ π

−π
ωfs |H(ω, fs)|2 dω = 0

Λ(3, 4) =
1
σ2

∑

k

∂s(xk; α, β, d1, d2)
∂α

∂s(xk;α, β, d1, d2)
∂β

=
1

2πσ2

∫ π

−π
|H(ω, fs)|2 cos(ωfs(d1 + d2))dω

=
fs

σ2

1
2π3

− sin(2π(d1 + d2)) + 2π(d1 + d2)
(d1 + d2)4

where H(ω, fs) is the DTFT of the PSF h(x) sampled at frequency fs. The bound on

the variance of d̂1 and d̂2 can be obtained by taking the elements (1, 1) and (2, 2) of the

inverse Fisher information matrix Λ−1, respectively. Also, the CRLB on d = d1 + d2

is computed by:

CRLB(d̂) =
[
Λ−1

]
11

+
[
Λ−1

]
22

+ 2
[
Λ−1

]
12

. (4.5)
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Figure 4.1 shows the square-root3 of CRLB for d, for fixed values of the intensities

α and β, versus the parameter value d, for two different cases; namely, the known

intensity case with symmetrically located point sources, and the unknown α, β, d1

and d2 case. In this figure, we observe that the curves in each case are rather close for

d > 0.5, and they are distinct when α is unknown and d is smaller than 0.5. In Figure

4.2 the value of d = 0.3 is fixed, and the
√

CRLB for d̂ is shown over a range of values

of α. The graph demonstrates the effect of the difference of α and β on the CRLB. As

seen in this figure, the CRLB for the second case (unknown α, β, d1 and d2) increases

rapidly by moving away from (α, β) = (1, 1); but for known α and β, there is a (rather

slow) decay away from the position α = β = 1. The observed phenomenon is counter-

intuitive, but can be readily explained by looking at the derivatives we computed in the

calculation of the CRLB. When point sources are located symmetrically, with unequal

intensities, the shape of the overall signal is dramatically different than the case when

α = β = 1. This difference is accentuated further as the value of α−β becomes larger.

Whereas for second case, because of uncertainty about the center and intensities of

point sources, if α− β 6= 0, the overall shape looks more like a single peak is present.

The observed behavior is consistent with what we saw before in Section 2.4.3 where we

demonstrated that unequal α and β yields improved detection if the center is known

and vice versa.
3to maintain the same units as d
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Figure 4.1: CRLB(d̂) versus d for two different cases

4.2.2 The CRLB Derivations for the Two-Dimensional Signal

In this section, we carry out the Fisher Information derivations for the general

case. Several papers have computed the Cramér-Rao bound to study the mean-square

error of unbiased estimators for the distance between the point sources[25, 26, 2, 55,

56]. The CRLB analysis assists us to first confirm the earlier results obtained by the

detection-theoretic approach, to better understand the effect of estimation accuracy

on the performance of the local detector developed in Chapter 3, and finally to derive

the KLD in Section 4.3, when we discuss the information-theoretic framework. We

present the analysis for the case where4 Bu < fs < 2Bu and Bv < fs < 2Bv and when

two frames are measured, with sampling phases of (φ1, ψ1) and (φ2, ψ2), respectively.5

4Bu and Bv are defined in Appendix D.
5Such results can be straightforwardly extended to the case where a higher number of frames are

available.
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Figure 4.2: CRLB(d̂) versus α for two different cases

As such, the vector of unknown parameters of the signal model in (3.3) is

t =


px, qx, py, qy︸ ︷︷ ︸

tr

, α, β, φ2, ψ2︸ ︷︷ ︸
ts




T

, (4.6)

in which we identify two sets of parameters: parameters of interest (tr) and nuisance

parameters (ts). We have not assumed φ1 and ψ1 to be unknown, since the first frame

can be considered as the reference frame and the uncertainty about the sampling

phases can be absorbed by the separation between point sources being unknown.

The CRLB for the separation d =
√

(px − qx)2 + (py − qy)2 (i.e a nonlinear

function of t) is given by [32]:

var(d̂) ≥




∂d
∂px

∂d
∂qx

∂d
∂py

∂d
∂qy




T 


[
Λ−1

]
11

[
Λ−1

]
12

[
Λ−1

]
13

[
Λ−1

]
14

[
Λ−1

]
21

[
Λ−1

]
22

[
Λ−1

]
23

[
Λ−1

]
24

[
Λ−1

]
31

[
Λ−1

]
32

[
Λ−1

]
33

[
Λ−1

]
34

[
Λ−1

]
41

[
Λ−1

]
42

[
Λ−1

]
43

[
Λ−1

]
44







∂d
∂px

∂d
∂qx

∂d
∂py

∂d
∂qy




(4.7)
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or

var(d̂) ≥ 1
d2




px(px + qx)

qx(px + qx)

py(py + qy)

qy(py + qy)




T 


[
Λ−1

]
11

[
Λ−1

]
12

[
Λ−1

]
13

[
Λ−1

]
14

[
Λ−1

]
21

[
Λ−1

]
22

[
Λ−1

]
23

[
Λ−1

]
24

[
Λ−1

]
31

[
Λ−1

]
32

[
Λ−1

]
33

[
Λ−1

]
34

[
Λ−1

]
41

[
Λ−1

]
42

[
Λ−1

]
43

[
Λ−1

]
44







px(px + qx)

qx(px + qx)

py(py + qy)

qy(py + qy)




(4.8)

where Λ is the Fisher information matrix defined by

[Λ]ij = −E

[
∂2 ln p(g, t)

∂ti∂tj

]
(4.9)

=
1
σ2

∑

k

∑

l

[
∂

∂ti
αh(x− px, y − py) + βh(x + qx, y + qy)

∣∣∣∣
x=xk,y=yl

(4.10)

× ∂

∂tj
αh(x− px, y − py) + βh(x + qx, y + qy)

∣∣∣∣∣
x=xk,y=yl




The matrix Λ can be partitioned with respect to the parameter sets tr and ts as

Λ =




Λrr Λrs

Λrs Λss


 . (4.11)

The derivation of the Fisher information matrix for the general sampling scheme is

presented in Appendix F. For the over-Nyquist case, we note that the summations

in Fisher information matrix can be simply substituted by continuous integrations.

Furthermore these integrations can be rather easily computed in the frequency domain

for a given point spread function (see Section 4.2 for some examples in 1-D case).

As for the under-Nyquist case, similar to the earlier calculation of energy

terms in Chapter 3, we can see that the Fisher Information Matrix has the following
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components

Λsub = Λ +
Lu∑

n=0

Lv∑

m=0

[
Λn,m

c

L∑

l=0

cos(nφl + mψl) + Λn,m
s

L∑

l=0

sin(nφl + mψl)

]
(4.12)

where Λ is the Fisher information matrix provided there is no aliasing (i.e. same as

what was computed for the over-Nyquist case) and Λn,m
c ’s and Λn,m

s ’s are the related

matrices due to aliasing. For a given value of d, the square root of the CRLB is

computed for the values φ and ψ in the range of [0, 2π]. Then the maximum, minimum

and average values are calculated to be shown in the following figures. For example

these values are displayed in Figure 4.3 for a Gaussian kernel when α = β = 1. As

seen, the estimation task becomes much harder as d decreases.

Figures 4.4 and 4.5 show the average of the square-root of CRLB vs d for two

cases, where α = β and where α 6= β. For the case where the PSF is jinc-squared, the

estimation accuracy is better than the case of Gaussian PSF, due to the larger energy

in the higher order derivatives of a jinc-squared function. The effect of the difference

between intensities (α − β) on the estimation variance is shown in Figures 4.6 and

4.7. These curves indicate that the estimation task is harder for the case of unequal

intensities, as expected.

So far we have explored some detection-theoretic and estimation-theoretic

approaches to the problem of achievable resolution. We have investigated the corre-

sponding performance figures (required SNR for a specific resolvability and the lower

bound on error of estimating the separation). In the following section we use (and

extend) a well-known information-theoretic measure in distinguishing two hypothe-
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rate (Periodically non-uniform sampling); α = β = 1; Gaussian PSF; known σ2

ses. This measure nicely links the asymptotic detection performance to the Fisher

information derived in this section.

4.3 Information-Theoretic Analysis, The Kullback-Leibler

Distance

In the interest of completeness and also verifying the earlier result from yet

another perspective, we investigate the problem of the achievable resolution by an

information-theoretic approach. Namely, we compute the symmetric Kullback-Leibler

Distance (KLD) or Divergence [36, p. 26] for the underlying hypothesis testing prob-

lem. KLD is a measure of discrimination between two hypotheses, and can be directly
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related to the performance of the optimal detector. However, since KLD analysis does

not take the effect of nuisance parameters6 into account, it will indicate a somewhat

loose bound on the detection performance for our problem.

To gain better insight, we first carry out an analysis for the case where the

point sources are symmetric (that is to say px = qx, py = qy and α = β). Having

computed this simpler case, we will extend the result to the general case. To begin,

let p(g, d) and p(g, 0) be the PDFs of the measured signal under hypotheses H0 and

H1 in equation (3.5). Then, we will have (See Appendix G for a proof)

J (d) =
∫

D
[p(g, d)− p(g, 0)] log

(
p(g, d)
p(g, 0)

)
dg (4.13)

6those which are unknown to the detector but are common under both hypotheses
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≈ d4

4σ2

∑

k

∑

l

(
∂2h02(xk, yl)

∂d2

)2

=
d4

4σ2
hT

02h02 (4.14)

as d → 0, where D is the observation (signal) space and we recall that h02 is the partial

second derivative defined in Chapter 3. We note that the KLD measure behaves as

the minimum detectable d raised to the power of 4 (confirming the power law we have

derived for the inverse of the required SNR in earlier sections.). We also note that the

KLD is proportional to the energy of the second derivative of the PSF, indicating its

major role in any measure of detection performance.

Now, let us consider the more general model of unequal and asymmetric point

sources. First, we observe from the above analysis that for the underlying problem,

KLD computation requires an extension to higher order terms (See Appendix G again).
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We utilize this fact to construct our KLD computation for the general case.

To this end, we extend the (low order) formula typically used,

J (tr) ≈ tT
r Λrr|tr=0 tr (4.15)

as in for example [36, p. 26], by a second order approximation

J (tr) ≈ tT
r Λrr|tr=0 tr +

[
col(trtT

r )
]T ∂2Λrr

∂t2
r

∣∣∣∣∣tr=0

[
col(trtT

r )
]

(4.16)

where col(·) denotes the lexicographical (columnwise) scanning operator. After some

algebra (4.16) will lead to7

J (θ) ≈ 1
σ2

θTATAHTHATAθ (4.17)

7Note the difference between � and tr which are defined in (3.9) and (4.6), respectively.
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This is again in general applicable to any arbitrary sampling scenario and point spread

function. It is worth mentioning that the matrix ATAHTHATA is in fact the Fisher

information for the parameter set θ in the quadratic approximated model in (3.7).

Interestingly, the above framework shows that computing KLD in the context of [36]

(that is, an approximation based on small variations of parameter(s) of interest) is in

spirit similar to computing the original KLD for the approximated model. The latter

approach, of course, does not require any concern about higher order terms.
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For an alias-free signal (4.17) can be further simplified to

J (θ) ≈ 1
σ2




−αpx + βqx

−αpy + βqy

1
2(αp2

x + βq2
x)

1
2(αp2

y + βq2
y)

αpxpy + βqxqy




T 


E10 0 0 0 0

0 E01 0 0 0

0 0 E20 E11 0

0 0 E11 E02 0

0 0 0 0 E11







−αpx + βqx

−αpy + βqy

1
2(αp2

x + βq2
x)

1
2(αp2

y + βq2
y)

αpxpy + βqxqy




(4.18)

whereas for the aliased case, the right hand side of (4.17) will depend on the sampling

phases.

For under-sampled images, similar to previous analyses, KLD varies with

sampling phases,

Jsub(θ) = J (θ) +
Lu∑

m=0

Lv∑

n=0

[
Jm,n

c (θ)
L∑

l=0

cos(mφl + nψl) + Jm,n
s (θ)

L∑

l=0

sin(mφl + nψl)

]
(4.19)

where J (θ) is the Fisher information matrix for actual over-sampled image and

Jm,n
c (θ)’s and Jm,n

s (θ)’s are the related terms caused by aliasing. As sampling rate

increases, the terms resulting from aliasing (Jm,n(θ) m + n > 0) will vanish and the

expression in (4.18) is obtained. Figure 4.8 shows variation of KLD over the range of

sampling phases for the symmetric case. We have used the expression in (4.13) to find

the maximum, minimum and average values of KLD for any given separation d. KLD

is beneficial from another perspective, the value of KLD can be asymptotically related

to the probability of detection and false alarm rate and provides an upper bound on

the detection performance[36]. Namely,

Pf (1− Pd) = exp(−NJ ) (4.20)
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as N (number of independent samples) goes to infinity.

4.4 Conclusions

We studied the asymptotic performance of ML estimate of the unknown

parameters, using the Fisher information matrix. Deriving a lower bound on the

variance of the parameter d, in particular, is rather helpful in confirming the results

of detection-theoretic analysis and also justifying the effect of estimation accuracy on

the performance of the proposed detectors. We also derived the symmetric Kullback-

Leibler distance for the underlying problem by extending its standard form to higher

order terms. This analysis provides an upper bound on the detection performance we
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have derived in Chapter 3 and also connects the Fisher information matrix with this

performance bound.
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Chapter 5

Perturbation and Sensitivity

Analysis

5.1 Introduction

The purpose of this chapter is to analyze how other parameters in real-world

imaging can affect the performance of achievable resolution in imaging. The analysis

here helps us to compute the effect of small variations in PSF or changes of PSF by

other blurring functions (e.g. the effect of lens or charge coupled devices (CCD)). In

this section we are interested in studying three cases. In the first case we present an

analysis for an imaging system in which samples are acquired through a CCD. We

study how the detection performance is affected by using such a system as compared

to the idealized point sampling. For the second case, we study the effect of variations

in PSF on the resolvability in a general framework. We assume that the variation in

PSF is known to the detector and we derive the sensitivity of the required SNR vs
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the small change in PSF. The third, and perhaps most important case, is the scenario

where the model (PSF) based on which we design our detector is slightly different

from the actual PSF. The result of these analyses will (for example) help quantify the

importance of precisely knowing the blurring kernel on the resolving power. To gain

more intuition, we concentrate on alias-free images throughout this section.

5.2 Imaging with spatial Integration: CCD Sampling

In real-world imaging there are other possible blurring sources which change

the total PSF of the imaging system. These blurring effects are usually modelled as

a space-invariant functions and can be therefore represented by a linear convolution

with the PSF of imaging system. For instance, imaging with a CCD can be properly

modelled in such a way. To see this effect, let us first recall that in uniform standard

(point) sampling scheme, we have

s(xk, yl) = s(x, y)|x=k/fs, y=l/fs
(5.1)

where fs is the sampling frequency. On the other hand, using a CCD in image gathering

will result in spatial integration of the light-field coming from a (continuous) physical

scene. As an example, CCDs with square area which are uniformly sensitive to light

will generate the following discretized output:

sccd(xk, yl) =
1

W 2

∫ (l−1/2)W

(l+1/2)W

∫ (k−1/2)W

(k+1/2)W
s(x, y)dxdy (5.2)
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where W is the dimension of each CCD cell1, as depicted in Figure 5.1. By defining

rect(x, y) =





1
W 2 |x|, |y| ≤ W/2

0 otherwise
(5.3)

as the blurring kernel of the above CCD, it can be seen that the expression in (5.2)

directly leads to the following

sccd(xk, yl) = s(x, y) ∗ ∗rect(x, y)|x=k/fs, y=l/fs
(5.4)

= I(x, y) ∗ ∗h(x, y) ∗ ∗rect(x, y)︸ ︷︷ ︸
hccd(x, y)

|x=k/fs, y=l/fs
(5.5)

where I(x, y) is the original scene to be imaged, ** denotes the two-dimensional convo-

lution operator and hccd(·, ·) is the overall PSF. Now let SNRccd denote the required

SNR for the image collected by the above CCD sampling scheme. Figure 5.2 shows

the relative difference between this quantity and the required SNR for the point sam-

pling as a function of W . In this example we have considered the symmetric and

over-Nyquist case and have presented the results for both jinc-squared and Gaussian

PSFs.

From a system design point of view, since typically a CCD with larger effective area

has better noise characteristics (i.e. smaller σ2), one can optimize the size of the CCD

by using such a curve in effecting a trade-off with other parameters (like noise variance

vs sampling rate).

In what follows, we investigate the effect of any (small) variations in the PSF on the

required SNR in a general framework using perturbation analysis.
1We ignore the effect of fill factor not being 100%.
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Figure 5.1: A simple structure illustrating the spatial integration caused by CCD

5.3 Variational Derivative Approach

In this section we concentrate on calculating the sensitivity of the required

SNR to (known) variations in PSF. We recall from Chapter 3 that the expression for

required SNR is a function of the PSF and in particular its partial derivatives (up to

the second order). We use well-known techniques in calculus of variations to compute

the overall variation in the required SNR.

To begin, consider the expression for SNR in (3.25) and suppose that the

point spread function is changed by h(x, y) → h(x, y)+∆h(x, y). By using the concept

of variational derivative [20, 60, 70], we can compute the variation in SNR (∆SNR(h))

due to the variation ∆h(x, y). Namely,

∆SNR(h) =
λ(Pf , Pd)

N2

θT ∆PθθTQθ − θT ∆QθθTPθ

θTQθθTQθ
(5.6)

=
λ(Pf , Pd)

N2

θT
(
∆PθθTQ−∆QθθTP

)
θ

θTQθθTQθ
(5.7)
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Figure 5.2: Relative difference between the required SNR for CCD sampling and that of
point sampling

where ∆SNR(h) = SNR(h + ∆h) − SNR(h) and ∆P and ∆Q are perturbations of

matrices P and Q defined in (3.43) and (3.47). We have detailed the derivation of ∆Q

and ∆P in Appendix H. Following these derivations, we present the result for the case

where point sources are located symmetrically , px = py, qx = qy = 0 , α = β = 1, and

h(x, y) = h(
√

x2 + y2) = h(r) (angular symmetric kernel). In this case the required

SNR is given by (3.48). Then the variation is computed as

∆SNR(h) ≈ λ(Pf , Pd)
N2

×
64
d4

2E0∆E0
(
E0E20 − E2

10

)−E2
0 (E0∆E20 + ∆E0E20 − 2E10∆E10)(

E0E20 − E2
10

)2
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As a result, the relative change in SNR is given by2

∆SNR(h)
SNR

≈
∫ +∞

−∞

∫ +∞

−∞
Ah(x, y)∆h(x, y)dxdy, (5.8)

where

Ah(x, y) =

(
E0E20 − 2E2

10

)
h(x, y) + 2E0E10

∂2h(x, y)
∂x2

− E2
0

∂4h(x, y)
∂x4

E0E20 − E2
10

. (5.9)

Invoking the Cauchy-Schwartz inequality, we have

∆SNR(h)
SNR

≤
√∫ +∞

−∞

∫ +∞

−∞
[∆h(x, y)]2dxdy

√∫ +∞

−∞

∫ +∞

−∞
[Ah(x, y)]2 dxdy

or

∆SNR(h)
SNR

≤
√

E0

√
E3

0E40 − E2
0E2

20 − 4E2
0E10E30 + 8E0E2

10E20 − 4E4
10

E0E20 − E2
10

(5.10)

×
√∫ +∞

−∞

∫ +∞

−∞
[∆h(x, y)]2dxdy (5.11)

which indicates that the relative change in SNR is bounded by the energy in the

variation times a term related to energies of the PSF and its derivatives. As an

example, consider the following variation which corresponds to a ”stretching” (ε < 0)

or ”compressing” (ε > 0) of the PSF:

∆h(x, y) = ρ(ε)h([1 + ε]x, [1 + ε]y)− h(x, y) (5.12)

where

ρ(ε) =

∫ +∞

−∞

∫ +∞

−∞
h2(x, y)dxdy

∫ +∞

−∞

∫ +∞

−∞
h2([1 + ε]x, [1 + ε]y)dxdy

(5.13)

=
E0∫ +∞

−∞

∫ +∞

−∞
h2([1 + ε]x, [1 + ε]y)dxdy

. (5.14)

2See Appendix H for details
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is merely an energy normalization factor3. A plot of 1-D cut of stretched and com-

pressed versions of the Guassian PSF is depicted in Figure (5.3).
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Figure 5.3: 1-D cut of stretched (ε = 0.4) and compressed (ε = −0.4) versions of the Guassian
PSF

Figure 5.4 shows the normalized variation in SNR vs ε for the jinc-squared

kernel. As expected, with a narrower point spread function (ε > 0) less SNR is

required to resolve the point sources and vice versa. In fact, we can obtain a closed

form relationship for ∆SNR in this case assuming that the image is sampled super-

critically. Let us consider the expression in (3.48) which includes the energy of PSF

and its partial derivatives. Now let Eij(ε) denote the energy terms for the new kernel
3The expression in (5.12) can be approximated by

∆h(x, y) ≈ ε


−

2

∫ +∞

−∞

∫ +∞

−∞
h(x, y)

[
x

∂h(x, y)

∂x
+ y

∂h(x, y)

∂y

]
dxdy

E2
0

h(x, y) +

[
x

∂h(x, y)

∂x
+ y

∂h(x, y)

∂y

]


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ρ(ε)h([1 + ε]x, [1 + ε]y). It can be shown that

Eij(ε) = (1 + ε)i+jEij(0) (5.15)

After some algebra we will have

∆SNR
SNR

=
(

1
(1 + ε)4

− 1
)

(5.16)

which holds true for any PSF.
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Figure 5.4: Variation in the required SNR vs parameter variation in PSF

5.4 Effects of model mismatch on performance

Another type of analysis is to study the case when the assumed model of

the measured signal does not follow the true model. This is an interesting case study
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which provides answers to the question of how much performance degrades due to

modelling inaccuracies or mismatch.

Let us assume that the actual point spread function is h(x, y) + ∆h(x, y),

whereas the optimal detector is designed for the point spread function h(x, y); so that

∆h(x, y) is the mismatch (unknown to the detector) between the actual PSF and the

assumed PSF. We observe that the (approximated) signal model in this case is now

given by

s̃ + ∆s̃ = (H + ∆H) θ = s̃ + ∆Hθ, (5.17)

where

∆H = [∆h, ∆h10, ∆h01, ∆h20, ∆h02, ∆h11].

The measured signal will then be g+∆Hθ. Consequently, the estimate of the param-

eter vector will be changed to

θ̂ + ∆θ̂ =
(
HTH

)−1
HTg +

(
HTH

)−1
HT ∆Hθ

︸ ︷︷ ︸
b

(5.18)

in which the second term on the right hand side is identified as the ”estimator bias”.

We are now able to show that θ̂ + ∆θ̂ follows a Gaussian PDF with mean θ + b and

variance σ2
(
HTH

)−1
. Using this, we can compute the PDF of Aθ̂ + ∆θ̂ which is

again a Gaussian PDF with mean Aθ +b and variance σ2A
(
HTH

)−1
AT . The PDF

of the suggested test statistics which is compared to a pre-specified threshold similar

to the expression in (3.14),

1
σ2

(
θ̂ + ∆θ̂

)T
AT

[
A

(
HTH

)−1
AT

]−1

A
(
θ̂ + ∆θ̂

)
> γ (5.19)
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is characterized by a non-central Chi-squared PDF under both hypotheses [33, p. 32].

To this end, we conclude that the detection performance in the presence of mismatch

is characterized by

Pf (h + ∆h) = Q
χ
′2
5 (λ1)

(γ) (5.20)

Pd(h + ∆h) = Q
χ
′2
5 (λ2)

(γ) (5.21)

where

λ1 =
1
σ2

bTAT
[
A

(
HTH

)−1
AT

]−1

Ab (5.22)

λ2 =
1
σ2

(θ + b)TAT
[
A

(
HTH

)−1
AT

]−1

A(θ + b) (5.23)

are the resulting non-centrality parameters. It is also worth emphasizing here that

in order to obtain λ1 and λ2, the value of σ2 in the expression above needs to be

computed according to the desired Pd and Pf by using the formula in (3.17).

Now as an example we again use (5.12) to compute the variation in probability of

detection and false alarm rate. Hereafter, we present the results for the case where

the desired detection and false alarm rates are 0.99 and 0.01 respectively. Figure 5.5

and 5.6 show the variation in probability of error vs ε (which controls the stretching or

compressing the PSF as in (5.12)) for two different kernels, each of which at different

values of d. The change in the total probability of error is computed by

Pe(h) =
1
2
[1− Pd(h) + Pf (h)] (5.24)

Pe(h + ∆h) =
1
2
[1− Pd(h + ∆h) + Pf (h + ∆h)] (5.25)

∆Pe = Pe(h + ∆h)− Pe(h)
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=
1
2
[Pf (h + ∆h)− Pf (h)︸ ︷︷ ︸

∆Pf

+Pd(h)− Pd(h + ∆h)︸ ︷︷ ︸
−∆Pd

] (5.26)

Firstly we observe that the detector performance is severely affected for a smaller d

(e.g. d = 0.1). Roughly speaking, for the range of d < 0.3, the proposed detector

completely fails if |ε| exceeds d2/2.
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Figure 5.5: Variation in the error rate vs parameter variation in PSF; h(r) = jinc2(r)

In Figure 5.7 we observe how the probability of error changes as a function of d for

a given ε (i.e. variation in PSF )4. Also Figure 5.8 depicts the variations in PSF

which can be tolerated such that the probability of error is lower than a certain level.

Clearly, this amount highly depends on the separation between point sources. For a

small separation, even a minimal variation in PSF can cause dramatically unpleasant
4Hereafter, we only consider negative ε.

93



−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

ε

∆ Pe, Gaussian PSF

d=0.1
d=0.3
d=0.5

Figure 5.6: Variation in the error rate vs parameter variation in PSF; Gaussian window

results. it is worth noting that the SNR used to generate these figures is the same as

that required for Pe = 0.01 under no model mismatch.

Another interesting question in this regard would be how much extra SNR is

required to compensate the error caused by a model mismatch. To answer this question

let us consider the case where Pd = 0.99 and Pf = 0.01 are the desired detection and

false alarm rate respectively. To satisfy these conditions we see that the threshold

γ must be equal to 15.1 in (3.14). Howevr if there exists any mismatch caused by

the variation in PSF, according to (5.22) and (5.23) we should have λ1 > 33.5 and

λ2 < 0.008 in order to achieve the error rates above. In other words, for a given

∆h(x, y), increasing the SNR can provide the desired detection accuracy only if the
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Figure 5.7: Variation in the error rate vs d for fixed ε; jinc-squared PSF

following inequalities hold simultaneously:

1
σ2

bTAT
[
A

(
HTH

)−1
AT

]−1

Ab < 0.008 (5.27)

1
σ2

(θ + b)TAT
[
A

(
HTH

)−1
AT

]−1

A(θ + b) > 33.5 (5.28)

We note that the first inequality enforces the PDF of the test statistic under H0 to

have smaller non-centrality parameter so that the required Pd is accessible, whereas

the second inequality plays reverse role for the PDF under H1. We can unify the

inequalities in (5.27) and (5.28) as

(θ + b)TAT
[
A

(
HTH

)−1
AT

]−1

A(θ + b)

bTAT
[
A

(
HTH

)−1
AT

]−1

Ab
> 4187.5. (5.29)

Under the above condition a sufficiently high value of SNR can compensate the effect

of model mismatch. To be more realistic let us also carry out the analysis for the

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Pe=0.01, jinc2 PSF

ε

d

∆ Pe=0.01
∆ P

e
=0.05

∆ P
e
=0.25

Figure 5.8: the maximum tolerable ε vs d for the fixed probability of error; jinc-squared PSF

case where we allow the probability of error to be equal to 0.02 (i.e. Pd = 0.98 and

Pf = 0.02). The threshold γ remains the same. However, to satisfy the new conditions

we only need λ > 30.5 and λ < 0.66. In other words it is possible to have an error

rate less than 0.02 if

(θ + b)TAT
[
A

(
HTH

)−1
AT

]−1

A(θ + b)

bTAT
[
A

(
HTH

)−1
AT

]−1

Ab
> 452.23. (5.30)

As an illustration of the above analysis, let us consider the case where PSF undergoes

the same effect as in (5.12). Figure 5.9 shows the amount of mismatch which can

be compensated by presumably high SNR (theoretically as SNR→ ∞) for a given

distance d. We demonstrate two cases: the case where no extra error can be tolerated

(∆Pe = 0) and the case where we allow ∆Pe = 0.01. The results clearly indicate that
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specially for small distance between point sources the detector is extremely sensitive

to (unknown) variation of PSF.
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Figure 5.9: Maximum tolerable ε which can be compensated by sufficiently increasing SNR
vs given d; jinc-squared PSF
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Chapter 6

Application of the Proposed

Approach to Array Processing:

Resolution in the Spectral

Domain

Spectral estimation has a long history and significant applications in signal processing.

In many areas of application, including the vast body of knowledge in array processing

[29], resolving sinusoidal signals with nearby frequencies has been of special interest. In

particular, the problem in array signal processing arises in several contexts, including

direction-of-arrival estimation, when two incoherent plane waves are incident upon a

linear equi-spaced array of sensors [41]. In the past, the vast majority of the techniques

in this area have been based on matrix decomposition methods. Notable instances of

the relevant literature are found in [41, 51, 28, 4, 31, 30].
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These approaches are based principally on second order statistical analysis

which relies on the covariance structure of the measured signal. Extensive work has

been done to determine the performance of such methods [41, 67, 44, 52, 23, 59, 58,

68, 38].

A common question in this area has been to investigate the relationship

between resolution and SNR. Nearly all papers that have addressed this question,

either directly or in a related framework, have been focused on the celebrated MUSIC

algorithm [53] or its variants (e.g. root MUSIC [1]). The earliest related work was

done by Kaveh and Barabell [41] to determine the (minimum) threshold SNR required

to resolve two equi-powered sinusoids in the asymptotic regime. In the context of

array processing, recent work has employed Cramér-Rao bound analysis to investigate

the relationship between resolvability and SNR [55, 56]. While the methods employed

are somewhat different, the results obtained are consistent both with our earlier work

on establishing detection and estimation-theoretic bounds for resolution in imaging

systems [45]-[54], and with the results reported in this chapter.

Without being limited to subspace methods or to asymptotic regimes, a rel-

atively similar question interests us here. We employ a local model-based hypothesis-

testing approach to determine the limits to the resolution of frequencies of nearby tones

in signals measured in the presence of noise, and over short observation intervals. Our

approach is to precisely define a quantitative measure of resolution in statistical terms

by addressing the following question: ”What is the minimum separation between two

frequencies of nearby tones (maximum attainable resolution) that is detectable at a
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given signal-to-noise ratio (SNR), and for pre-specified probabilities of detection and

false alarm (Pd and Pf )?”

As we will demonstrate, in the process of addressing the above question, the

machinery of the analysis will also suggest a corresponding detection strategy that can

be applied in practice. In other words, the final computed performance limit is simply

the result of employing these locally, uniformly, most powerful detectors. In order to

illustrate the relevance of the results, we present comparisons against the general class

of subspace methods, and in particular the MUSIC algorithm, which is perhaps the

most commonly used subspace-based technique in practice. We demonstrate that the

proposed detectors yield significantly improved performance in distinguishing frequen-

cies of nearby tones.

We begin by defining the signal of interest as

s(x; δ1, δ2) = a1 sin (2π(fc − δ1)x + φ1) + a2 sin (2π(fc + δ2)x + φ2) (6.1)

in the range x ∈ [−B
2 , B

2 ], where for convenience we consider the two frequencies fc−δ1

and fc + δ2 to be around a ”center” frequency1 fc. The measured signal is a sampled,

and noise-corrupted version of (6.1) as follows:

f(k; δ1, δ2) = s(k; δ1, δ2) + w(k) (6.2)

= a1 sin
(

2π (fc − δ1)
k

fs
+ φ1

)
+ a2 sin

(
2π (fc + δ2)

k

fs
+ φ2

)
+ w(k),

where the sampling frequency is fs (Hz), assumed to be sufficiently high to avoid

aliasing, and the integer index k is in the range k ∈ {−N−1
2 , · · · , N−1

2 }, where N =
1We note that this center frequency can be assumed to be known or estimated, or the detection

procedure can be repeated at various candidate center frequencies.
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Bfs. The term w(k) is assumed to be a zero-mean Gaussian white noise process with

variance σ2.

According to the so-called Rayleigh criterion [52], the two peaks in the fre-

quency domain corresponding to fc − δ1 and fc + δ2 are barely resolvable if

δ1 + δ2 =
1
B

. (6.3)

We are interested in studying the scenario in which the two frequency components are,

in this ”classical” sense, unresolvable. In practice, this corresponds to the situation

in which the main-lobe of the Fourier transform of the (sum of) two sinusoids is

located in the same FFT bin. So in this context, what we mean by ”signals with short

observation interval” is simply those signals in which the values of B, δ1 and δ2 satisfy

the inequality δ1 + δ2 < 1
B . A scheme of frequency representation of such signal is

depicted in Figure 6.1.

With the above framework in place, we treat the problem of resolution by

formulating a hypothesis test. In particular, the corresponding hypotheses for this

problem are




H0 : δ1 = 0 and δ2 = 0

H1 : δ1 > 0 or δ2 > 0
(6.4)

where H0 embodies the case where only one spectral component is present, whereas

H1 captures the case where two distinct frequencies are present.2 We note here that as
2Note that the hypothesis test in (6.4) is a one-sided test.
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Figure 6.1: Two sinusoids with short observation interval having nearby frequencies: FFT
domain

earlier in this framework we consider δ1 and δ2 to be unknown to the detector, so that

this is a composite hypothesis testing problem. Our approach in this work will again be

to take advantage of the small separation between the frequency components to effect

an approximation that will yield a detector which is locally uniformly most powerful.

As before, this analysis will enable us to explicitly compute the relationship between

minimum detectable frequency separation and SNR. Naturally the methodology we

present here is quite similar to the approach we advocated in earlier chapters for

determining resolution limits in optical imaging [45]-[54].

In Sections 6.1 and 6.2 we study the problem in the case where the noise

variance is known to the detector. In Section 6.3 we also treat the case of unknown

noise variance which is perhaps a more practical scenario. In other words, all the

parameters of the received signal model are considered unknown to the detector. The
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main result of this additional analysis, as we shall see, is that there is little loss in

performance when the noise variance is unknown.

6.1 The Case of Equal and Known Amplitude and Phase

To gain maximum intuition and perspective from the foregoing analysis, we

first consider a simple case with the following assumptions

• a1 = a2 = 1.

• φ1 = φ2 = 0

• δ1 = δ2 = δ

In this case, the measured signal model is given by

f(k; δ) = s(k; δ) + w(k) (6.5)

= sin
(

2π (fc − δ)
k

fs

)
+ sin

(
2π (fc + δ)

k

fs

)
+ w(k) (6.6)

Since the range of interest for the values of δ is small (δ < 1
2B ), (these representing

one wide peak in the frequency domain,) it is quite appropriate for the purposes

of the our analysis (even in the more general case treated in the next Section) to

consider approximating the model of the signal around δ = 0. The second order

Taylor expansion of (6.5) about δ = 0, with all other variables fixed, is

s(k; δ) = h0(k) + δ2h2(k) + O(δ4) (6.7)
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where

h0(k) = 2 sin
(

2πfck

fs

)
(6.8)

h2(k) = −4π2k2

f2
s

sin
(

2πfck

fs

)
(6.9)

By ignoring the O(δ4) terms in (6.7), the approximate measured signal model can then

be written as

f̃(k; δ) = h0(k) + δ2h2(k) + w(k). (6.10)

It is worth noting that in the above approximation, we elect to make explicit

use of terms up to order 2 of the Taylor series, since no linear term in δ appears in

the approximation. By neglecting higher order O(δ4) terms, the hypotheses in vector

form will be




H0 : f̃ = h0 + w

H1 : f̃ = h0 + δ2h2 + w
(6.11)

where

f̃ =
[
f̃

(
−N − 1

2

)
, · · · , f̃

(
N − 1

2

)]T

, (6.12)

and h0, h2, and w are similarly defined. Since h0 is a common (known) term in both

hypotheses, we may simplify further:




H0 : y = w

H1 : y = δ2h2 + w
(6.13)

where we have defined y = f̃ − h0, and the parameter δ is unknown. This is a
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problem of detecting a deterministic signal with an unknown parameter (δ2). We again

apply the GLRT which uses the maximum likelihood (ML) estimates of the unknown

parameters to form the standard Neyman-Pearson (NP) likelihood ratio detector. The

(unconstrained) ML estimate for the parameter δ2 is given by [32]

δ̂2 = (hT
2 h2)−1hT

2 y, (6.14)

which leads to the following GLRT detector:

T (y) =
δ̂2

2

σ2
hT

2 h2 =
1
σ2

(hT
2 h2)−1

(
hT

2 y
)2

(6.15)

where we decide H1 if the statistic exceeds a specified threshold T (y) > γ1. It is worth

noting that T (y) is in fact a quadratic form in a rank-one projection. While it may

seem troublesome to use the unconstrained ML estimate to form the GLRT, in fact,

due to the (known) positivity of δ2, the detector structure is effectively producing a

one-sided test, and hence is in fact a Uniformly Most Powerful (UMP) detector [33,

p. 194], [50, p. 124]. The detector can therefore be described simply as a normalized

matched filter (hT
2 y), giving the best detection rate for a given false alarm rate, and

for all small values of δ2. Hence we can write

T ′(y) =
√

T (y) =
√

1
σ2

(hT
2 h2)−1

(
hT

2 y
)

(6.16)

For any given data set y, we decide H1 if the statistic exceeds a specified threshold3

T ′(y) > γ. (6.17)
3Due to the known positivity of δ2, the threshold (γ) should be positive. In fact another way of

writing the GLRT is: max{δ̂2, 0}(hT
2 h2/σ2) > γ2. This will result in deciding H0 for any negative

estimate of δ2 (i.e. hT
2 y < 0).
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The choice of γ is motivated by the level of tolerable false alarm (or false-positive) in

a given problem, but is typically kept very low. For this matched filter structure, the

detection rate (Pd) and false-alarm rate (Pf ) are related as

Q(Pd) = Q(δ2η + γ) = Q
(
δ2η + Q−1(Pf )

)
(6.18)

where

η =

√
hT

2 h2

σ2
(6.19)

and Q is the right-tail probability function for a standard Gaussian random variable

(zero mean and unit variance); and Q−1 is the inverse of this function. From (6.18)

we can write

δ2η = Q−1(Pf )−Q−1(Pd). (6.20)

The above expression is key in illuminating a very useful relationship between

the SNR and the smallest δ which can be detected with very high probability, and very

low false alarm rate. To see this, it is convenient to define the output (total) SNR as

follows:

SNR =
‖h0 + δ2h2‖2

σ2
. (6.21)

Using (6.19) and (6.21), the relation between minimum resolvable δ (i.e. δmin) and

the required SNR can be made explicit. Namely, SNR can be computed as

SNR =
‖h0 + δ2h2‖2

‖h2‖2
× η2 (6.22)
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By substituting the required value of η from (6.20), we have

SNR = (Q−1(Pf )−Q−1(Pd))2
[
hT

0 h0

hT
2 h2

1
δ4

+ 2
hT

2 h0

hT
2 h2

1
δ2

+ 1

]
. (6.23)

This is a fundamental relationship relating minimum resolvable δ to SNR. To make

the expressions more explicit, the energy terms in (6.23) can be approximated by4

hT
0 h0 ≈ 2N (6.24)

hT
2 h2 ≈ π4N5

10f4
s

=
π4NB4

10

hT
0 h2 ≈ −π2N3

6f2
s

= −π2NB2

6
.

With these approximations, it is readily seen that for the range of 2δB < 1 the relation

(6.23) can be properly summarized by

SNR ≈ 320
π4

(Q−1(Pf )−Q−1(Pd))2

(2δB)4
. (6.25)

A plot of (6.23) and its approximation (6.25) are shown in Figure 6.2. The result

clearly shows that the minimum resolvable separation is essentially proportional to

the inverse of the SNR to the fractional power of 1/4 for the range of 2δB < 1 . Note

that the frequencies here are separated by 2δ.

Looking at (6.23) or (6.25), one may study the effect of sampling rate on

these relationships. It should be mentioned that the sampling rate is embedded inside

the ”SNR” on the left hand side of (6.23) and (6.25). For instance, for resolving a

particular frequency separation (2δ), doubling the sampling rate does not change the

required SNR, but rather implies that the same detection performance can be achieved

with twice the noise variance as compared to the original sampling rate.
4See Appendix I for a justification of these approximations.
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Figure 6.2: 2δB vs. required SNR.

6.2 The General Case: Known Noise Variance

With the results of the previous section in place, we now follow a similar

analysis and extend the results in this section to the general signal model of (6.2),

with unknown amplitudes, phases, and also unknown frequency parameters δ1 and

δ2.5 The second-order Taylor expansion of the signal model around (δ1, δ2) = (0, 0) is

s(k; δ) ≈ α0p0(k) + β0q0(k) + α1p1(k) + β1q1(k) + α2p2(k) + β2q2(k) (6.26)

where

pi(k) =
(

k

fs

)i

sin
(

2πfc
k

fs

)
(6.27)

qi(k) =
(

k

fs

)i

cos
(

2πfc
k

fs

)
(6.28)

5Another more general, and perhaps more practical problem would be to consider the case where
σ2 is also unknown. This is presented in Section 6.3.
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and

α0 = a1 cos(φ1) + a2 cos(φ2) (6.29)

β0 = a1 sin(φ1) + a2 sin(φ2)

α1 = 2π(a1δ1 sin(φ1)− a2δ2 sin(φ2))

β1 = 2π(−a1δ1 cos(φ1) + a2δ2 cos(φ2))

α2 = −2π2(a1δ
2
1 cos(φ1) + a2δ

2
2 cos(φ2))

β2 = −2π2(a1δ
2
1 sin(φ1) + a2δ

2
2 sin(φ2))

Rewriting (6.26) in vector form will result in

s ≈ α0p0 + β0q0 + α1p1 + β1q1 + α2p2 + β2q2 (6.30)

Now, the hypotheses in (6.4) appear in the following form:




H0 : z = α0p0 + β0q0 + w

H1 : z = α0p0 + β0q0 + α1p1 + β1q1 + α2p2 + β2q2 + w
(6.31)

where z denotes the approximate measured signal model. Equation (6.31) leads to a

linear model for testing the parameter set θ defined as follows:

z = Hθ + w (6.32)

H = [p0| q0| p1| q1| p2| q2] (6.33)

θ = [α0 β0 α1 β1 α2 β2]T (6.34)
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where H and θ are an N×6 matrix, and a 6×1 vector, respectively. The corresponding

hypotheses are6





H0 : Aθ = 0

H1 : Aθ 6= 0
(6.35)

where

A =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (6.36)

The GLRT for (6.35) will be

T =
1
σ2

θ̂TAT
[
A

(
HTH

)−1
AT

]−1

Aθ̂ (6.37)

where

θ̂ =
(
HTH

)−1
HTz (6.38)

From (6.37), the performance of this detector is characterized by

Pf = Qχ2
4
(γ) (6.39)

Pd = Q
χ
′2
4 (λ)

(γ) (6.40)

λ =
1
σ2

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ, (6.41)

6Two inequalities constrain the values of the parameters in (6.34): α0α2 ≤ 0 and β0β2 ≤ 0. For
the detector development in Section 6.2 we have ignored these constraints. We note that ignoring
these constraints will still yield a detector, while invoking the constraints will yield (slightly) better
detection performance. At an operating point where very high Pd and low Pf are considered, the
performance of the detector will not be affected much at all by applying these constraints. Indeed,
in such cases, the implied high value of SNR will effectively enforce the constraints with very high
likelihood. In other words, for high SNR cases, the probability of violating these inequality constraints
is negligible.
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where Qχ2
4

is the right tail probability for a Central Chi-Squared PDF with 4 degrees

of freedom, and Q
χ
′2
4 (λ)

is the right tail probability for a non-central Chi-Squared

PDF with 4 degrees of freedom and non-centrality parameter λ. For a specific desired

Pd and Pf , we can compute the implied value for the non-centrality parameter from

(6.39) and (6.40). We call this value of the non-centrality parameter λ(Pf , Pd) and

explicitly denote it as a function of desired probability of detection and false alarm

rate. Meanwhile, similar to the simpler case in the previous section, the SNR in this

case is given by

SNR =
θTHTHθ

σ2
(6.42)

Together, the above yield the relation between the parameter set θ and the required

SNR as follows:

SNR = λ(Pf , Pd)

(
θTAT

[
A

(
HTH

)−1
AT

]−1

Aθ

)−1

θTHTHθ (6.43)

It is instructive to simplify (6.43) by approximating the elements of the matrix HTH.

These approximations (again, justified in Appendix I), yield

HTH ≈




N

2
0 0

−N

4
µ

N3

24f2
s

0

0
N

2
−N

4
µ 0 0

N3

24f2
s

0
−N

4
µ

N3

24f2
s

0 0
−N3

16
µ

−N

4
µ 0 0

N3

24f2
s

−N3

16
µ 0

N3

24f2
s

0 0
−N3

16
µ

N5

160f4
s

0

0
N3

24f2
s

−N3

16
µ 0 0

N5

160f4
s



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where µ =
cos

(
2πfc

fs
N

)
sin

(
2πfc

fs

) . With this approximation, after some algebra and replacing N
fs

by B, (6.43) will result in

SNR ≈ λ(Pf , Pd)
E1 + E2µ + E3B

2 + E4B
2µ + E5B

4

F1B2 + F2B2µ + F3B4
(6.44)

where

E1 = 16(α2
0 + β2

0) (6.45)

E2 = −16(α0β1 + β0α1)

E3 =
4
3

[
α2

1 + β2
1 + 2α0α2 + 2β0β2

]

E4 = −4(α1β2 + β1α2)

E5 =
1
5

(
α2

2 + β2
2

)

F1 =
4
3

(
α2

1 + β2
1

)

F2 =
−8
3

(α1β2 + β1α2)

F3 =
4
45

(
α2

2 + β2
2

)

It is useful to note that for the case where φ1 ≈ φ2 the first two terms in the numerator

of (6.44) dominate its size for small δ1 and δ2 (i.e. δ1, δ2 ¿ 1
B ), as the other terms are

O(δ2
1) and O(δ2

2). Hence, (6.44) can be further approximated to

SNR ≈ λ(Pf , Pd)
E1 + E2µ

F1B2 + F2B2µ + F3B4
(6.46)

To gain further insight, we can consider yet another special case. By assuming a1δ1 ≈

a2δ2, which results from a proper choice of the center frequency fc (See Appendix
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C.2), the values E2, F1, F2 are also negligibly small and we have

SNR ≈ λ(Pf , Pd)
E1

F3B4
(6.47)

= λ(Pf , Pd)
16(α2

0 + β2
0)

4
45

(
α2

2 + β2
2

)
B4

(6.48)

=
45
π4

λ(Pf , Pd)
B4

a2
1 + a2

2 + 2a1a2 cos(φ1 − φ2)
a2

1δ
4
1 + a2

2δ
4
2 + 2a1a2δ2

1δ
2
2 cos(φ1 − φ2)

(6.49)

A plot of (6.49) is shown in Figure 6.3 for the case of equal amplitude and for the case

of a1 = 4a2 (In either case, the amplitudes and phases are not known to the detector.).

As expected, the case of equal amplitudes produces better detection performance.

In order to compare (6.49) with (6.25), let us set δ1 = δ2 = δ, a1 = a2 = 1, φ1 = φ2 = 0

to get7

SNR ≈ 720
π4

λ(Pf , Pd)
(2Bδ)4

(6.50)

As an example, let Pd = 0.99 and Pf = 10−2. Comparing (6.25) and (6.50) shows that

the required SNR for the second case (general case) is increased by a multiplicative

factor of 2.72.

Similar to Sections 2 and 3, we can show that that if the value of a1 + a2

and φ1 = φ2 and the condition a1d1 = a2d2 are known to the detector, the GLRT will

result in uniformly most powerful test. The reason for this case is that the third and

forth elements in (2.52) vanish and the fifth and sixth elements can be combined to

produce a single negative coefficient for the vector cos(φ1)p2 + sin(φ1)q2. Therefore

an optimal test statistics is achievable in this case.
7It should be noted that these parameter values are unknown to the detector in the general case,

therefore we expect poorer performance, as observed.
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Figure 6.3: (δ1 + δ2)B vs. required SNR for equal and unequal amplitudes.

6.3 The General Case: Unknown Noise Variance

The hypothesis test in this case is represented by




H0 : Aθ = 0, σ2 > 0

H1 : Aθ 6= 0, σ2 > 0
(6.51)

The GLRT for (6.51) [33, p. 345] gives the following test statistic:

Tu(z) =
θ̂TAT

[
A

(
HTH

)−1
AT

]−1

Aθ̂

zT

[
I−H

(
HTH

)−1
HT

]
z

> γ (6.52)

where subscript u denote the case of ”unknown noise variance” and I is the identity

matrix. For any given data set z, we decide H1 if the statistic exceeds a specified
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threshold,

Tu(z) > γu. (6.53)

From (6.52), the performance of this detector is characterized by [33, p.186]

Pf = QF4,N−6
(γ) (6.54)

Pd = QF ′4,N−6(λ)(γ) (6.55)

λu =
1
σ2

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ, (6.56)

where QF4,N−6
is the right tail probability for a Central F distribution with 4 numerator

degrees of freedom and N − 6 denominator degrees of freedom, and QF ′4,N−6(λ) is the

right tail probability for a non-central F distribution with 4 numerator degrees of

freedom and N − 6 denominator degrees of freedom, and non-centrality parameter λ.

Similar to the previous section, the required SNR is given by

SNRu = λu(Pf , Pd)
θTHTHθ

θTAT
[
A

(
HTH

)−1
AT

]−1

Aθ

. (6.57)

For the sake of comparison, let us also consider the ideal ”clairvoyant” detector, to

which all the parameters (amplitudes, phases, frequencies and noise variance) are

known. The hypothesis test for such a detector (6.31) will be a standard Gauss-Gauss

detection problem. In that case, we also note that term α0p0 + β0q0 is a common

known term under both hypotheses and can be removed. As a result, the required

SNR for the ideal detector is given by

SNRid = η(Pf , Pd)
θTHTHθ

θTATAHTHATAθ
, (6.58)
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where the subscript ”id” denotes the ideal case and η(Pf , Pd) is the required deflection

coefficient[33, p. 71] computed as

η =
(
Q−1(Pf )−Q−1(Pd)

)2
, (6.59)

where Q−1(·) is the inverse of the right-tail probability function for a standard Gaus-

sian random variable (zero mean and unit variance). Comparing the expressions in

(6.43), (6.57) and (6.58), we conclude that SNRu >SNR>SNRid always since (1)

η(Pf , Pd) < λ(Pf , Pd) < λu(Pf , Pd) and (2) AHTHAT −
[
A

(
HTH

)−1
AT

]−1

is a

positive definite matrix. In Figure 6.4, we compare the performance of the proposed

detector for the unknown σ2 case with those of the detector for the known σ2 case

and the ideal detector (6.58) for the case where a1 = a2 and δ1 = δ2 = δ (curves of

2δ2B versus required SNR) . We observe that knowledge of the noise variance makes

little difference to the performance (around 1 dB in required SNR). It is worth men-

tioning that the estimate of the noise variance used in (6.52) is known to be unbiased

[33, p.346]. Comparing the ideal (unrealizable) detector, the GLR detector in (6.52)

requires 3-5 dB more SNR to achieve the same resolvability.

6.4 Comparison with Existing Subspace-Based Methods

A very significant question is how the above results compare with existing

methods for spectral estimation. Since we claim that the proposed detector structures

are optimal, we expect that, at least for the particular signal model studied here, we

should observe improved performance over existing subspace-based methods. As we
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and δ1 = δ2 = δ. Averaging (integration) is done over possible range of [0, 2π] for both φ1 and
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demonstrate below, this is indeed the case. The subspace methods (e.g. MUSIC) for

spectral estimation are based on eigen-decomposition of the autocorrelation matrix

into orthogonal signal and noise subspaces [30]. In practice, however, since typically

only the time series are available, one uses an estimate of the autocorrelation matrix

derived from the signal samples.

In any event, much work has been done to study the performance and sensi-

tivity of subspace methods (specifically MUSIC) [43, 5, 37, 41, 67, 44, 52, 23, 59, 58,

68, 38, 34]. Here, we make some comparisons to the existing methods. First, we con-

sider the general class of subspace methods, in which we, very optimistically, assume

that the exact autocorrelation matrix is known to the subspace detector under both
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hypotheses. As we will see, the proposed approach outperforms the subspace methods

even in this (unrealistic) situation. Next, we present a comparison to the performance

of the MUSIC algorithm in resolving sinusoids with nearby frequencies.

Throughout this section, we assume that a1 = a2 = 1 and δ1 = δ2 = δ. How-

ever, we will use our detector structure described in Section 6.2, where we assume that

amplitudes, frequencies and phases in the signal model are unknown to the detector8.

Note that for subspace detectors, the phase is typically assumed to be a uniformly

distributed random variable in [0, 2π]. Meanwhile the ”required SNR” computed in

Section 6.2 is in general a function of the phases of the sinusoids. Thus, in order to

set up a fair comparison to subspace methods, we perform the following averaging for

the required SNR over the possible range of φ1 and φ2:

SNRavg =
1

4π2

∫ 2π

0

∫ 2π

0
SNR dφ1dφ2 (6.60)

where subscript ”avg” denotes the averaged value and the integrand (SNR) is the right

hand side of (6.43).

6.4.1 General class of subspace methods; completely known autocor-

relation matrix

We first consider the most idealistic subspace detector structure, to which

the amplitudes a1 = a2 = 1 and frequency variables δ1 = δ2 = δ of the signal model

f(k, δ1, δ2) in (6.2) are known, and where φ1 and φ2 are assumed to be uniformly

distributed random variables in the range of [0, 2π]. To decide whether the received
8We assume that the noise variance is known.

118



signal contains a single frequency component or two frequency components, we set up

the following hypothesis test:




H0 : f ∼ N (
0,R0 + σ2I

)

H1 : f ∼ N (
0,R1 + σ2I

) (6.61)

where R0 and R1 are the autocorrelation matrices of the signal part in (6.2),9

R0 = Re
[
r(fc)rH(fc)

]
(6.62)

R1 =
1
2
Re

[
r(fc + δ)rH(fc + δ)

]
+

1
2
Re

[
r(fc − δ)rH(fc − δ)

]
(6.63)

where Re[·] denotes the real part and r(·) is the vector form of

r(k; fc) = exp
(

j2πfc
k

fs

)

An NP detector for (6.61) decides H1 if

Tc(f) = fT
[(

R1 + σ2I
)−1 −

(
R0 + σ2I

)−1
]
f > γ (6.64)

where subscript ”c” denotes the ”completely known” case. The performance of this

detector can be calculated analytically [33] or through Monte-Carlo simulations, the

result of which is shown in Figure 6.5. For the purpose of simulation, the performance

of (6.64) was computed by averaging over the possible range of φ1 and φ2 similar

to (6.60). It is observed that the required SNR of this idealistic subspace method

is generally between 5-10 dB higher than the required SNR for the proposed GLRT

detector in (6.37). An interesting analysis related to the subspace framework is to

compute the symmetric Kullback-Leibler Distance (KLD) or Divergence (J(·)) [36, p.
9Superscript ”H” in (6.62) and (6.63) denotes conjugate transpose.
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26]. KLD is a measure of difficulty in discriminating between two hypotheses, and is

directly related to the performance figure of the subspace detector. More specifically,

let p(f, 0) and p(f, δ) be the PDFs of the measured signal under hypotheses H0 and

H1 in equation (6.61). Then, we will have10

J(δ) =
∫

D
[p(f, δ)− p(f, 0)] log

(
p(f, δ)
p(f, 0)

)
df ≈ δ4

8
tr




([
R1 + σ2I

]−1 ∂2R1

∂δ2

∣∣∣∣∣
δ=0

)2

(6.65)

as δ → 0, where tr[·] is the trace operator and D is the observation (signal) space. We

note that the KLD measure behaves as the minimum detectable δ raised to the power

of 4, confirming the power law we have derived for the inverse of the required SNR in
10See Appendix G.2.
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earlier sections. A comprehensive analysis of the relationship between divergence and

resolution in a related framework can be found in [52].

6.4.2 Comparison with MUSIC

For further comparison, we simulated the behavior of the MUSIC algorithm

for resolving sinusoids with nearby frequencies. In simulation of MUSIC, the signal is

declared to be resolvable if the output of MUSIC produces two distinct peaks within

an interval around the true frequencies (fc±δ). The simulations for MUSIC are carried

out for cases in which either a single snapshot, or multiple snapshots, are available.

Naturally, we consider the output SNR in the latter case as the sum of SNR’s of each

snapshot.

Here, we develop two different comparison procedures. First, we compare the perfor-

mance of MUSIC with the performance of the detector in (6.37), where we assume that

the center frequency fc, at which we perform the hypothesis test, is known a priori.

Since this might be seen as an unfair comparison, we have put forward an alternative

(perhaps more practical) scenario, too. In this scenario, we first seek assistance from

MUSIC to estimate the center frequency and then apply the proposed detector in

(6.37) centered at the peak estimated by MUSIC.

The results of these experiments are shown in Figure 6.6. First, we observe that the

proposed detector significantly outperforms MUSIC in both cases (using known or es-

timated center frequency). More interestingly, we see that the result of the proposed

detector with estimated center frequency (provided by MUSIC) is very close to the
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performance of the same detector with known center frequency, the latter representing

the ultimate performance bound. This implies that the MUSIC algorithm does a very

promising job in locating the center frequency (i.e. the candidate location where we

can perform a refinement step using our proposed approach). Intuitively, the reason

for this behavior is that for the case where a high probability of resolution (say 0.99)

is considered, a fairly high value of SNR should be provided. This value of SNR will

effectively guarantee a condition under which the MUSIC algorithm will produce the

peak in its spectrum within the range of [fc− δ, fc + δ]. This observation is essentially

in agreement with what has been noted in the past about the stability of MUSIC for

single-sinusoid signals11. See for example [41, 59].

Figure 6.7 shows an example of implementing the proposed approach and

also the results obtained by using MUSIC and FFT methods. We observe that the

computed FFT representation produces a wide pattern around the frequencies present

in the signal (although its maximum is located exactly on the center of frequencies

of the sinusoids denoted by stars). Also, MUSIC results in a single sharp peak at

the same location. To show the effectiveness of the proposed detector, we plot the

probability of presence of a tone at each point in frequency domain. We have used

the estimated values of fc (obtained by either FFT method or MUSIC) and δ1 and

δ2 (form the ML estimate of θ) and we have assumed that probability of presence

of a tone follows the Gaussian distribution (asymptotic pdf for maximum likelihood
11Although the signal in our case is a double-sinusoid, since the frequencies are very close and we

expect MUSIC to produce one peak, this is indeed a similar situation.
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Figure 6.6: 2δB vs. required output SNR for the MUSIC algorithm.

estimate) which can be computed by CRLB analysis [59, 58]. As seen from Figure 6.7,

the Gaussian profiles are very well separated, showing the promising performance of

the proposed approach.

6.5 Conclusion

In this chapter, we have derived a performance bound for the minimum re-

solvable frequency separation between two tones in the presence of noise. We carried

out the analysis in the context of locally optimal detectors, and developed correspond-

ing detection strategies that can in practice produce significant improvements over
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Figure 6.7: An example illustrating the output of MUSIC and standard FFT and also the
output obtained based on the proposed approach

existing spectral estimation methods. For the task of bounding performance, we have

answered a very practical question: ”What is the minimum detectable frequency differ-

ence between two sinusoids at a given signal-to-noise ratio?” Or equivalently: ”What

is the minimum SNR required to discriminate these two sinusoids?”

Compared to existing spectral estimation methods, the proposed locally op-

timal detectors yield significantly improved detection of very nearby frequencies. It is

worth noting that as a matter of implementation, one can always apply an existing

method for spectral estimation (such as MUSIC etc.) to the given signal, and then ap-

ply the proposed detector as a post-processing operation intended to further improve

resolution. As discussed in Section 6.4.2, the application of such a detector, which

uses (for example) MUSIC to estimate the center frequency as the test point, is nearly
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as effective as applying the proposed detector with a known center frequency.

Furthermore, we clearly observed that noise variance being unknown has little

effect on the detection performance. This is a useful observation, since in practice the

variance is often unknown to the receiver.

In closing, we mention that the strategy for the analysis of resolution we have

put forward here is very generally applicable to other types of signal models such as

damped sinusoidal signals. Once the signal model is decided upon, the same line of

reasoning including approximations and the development of locally optimal detectors

can be carried out.
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Chapter 7

Conclusions and Future

Directions

7.1 Summary and Concluding Remarks

This thesis has proposed statistical and information-theoretic frameworks to

study the resolution limits in typical imaging systems and also in spectral estimation

(or equivalently direction finding). The approaches have included detection-theoretic,

estimation-theoretic, information-theoretic frameworks and also variational and per-

turbation analyses.

First, we considered the problem of resolvability from a detection-theoretic

point of view. The underlying hypothesis testing problem here was whether a discrete,

noisy, and blurred signal is originated from a single point source or two closely-spaced

point sources. We developed detection strategies to solve such hypothesis testing prob-

lem and carried out the performance analysis of these strategies. The suggested perfor-
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mance criterion is the relation (or trade-off) between the required SNR for resolving a

given separation between point sources at a pre-specified probability of detection and

false alarm rate, or alternatively the minimum detectable separation at a given SNR.

One of the fundamental results we obtained is that the required SNR is proportional

to the inverse of the separation between point sources raised to the fourth power.

Even if the point sources do not have the same level of brightness, with an intuitively

reasonable choice of the location at which the detector is (locally) implemented, this

statement still holds.

Second, as for the estimation-theoretic framework, we employed the broadly

used Fisher information approach to establish lower bounds on estimation of the sep-

aration between point sources and other possibly unknown parameters (such as inten-

sity of the two point sources). We have observed that the results generated in such a

framework not only verify the earlier results of the detection-theoretic methodology,

but also build an interesting link between the hypothesis testing methodology and the

information-theoretic measures derived later in Chapter 4.

Moreover, as a third method, we computed the Kullback-Leibler distance for

the underlying hypothesis testing problem, which provides an asymptotic measure of

resolvability power in connection to the Fisher information results.

Finally, we have put forward the variational analysis of the detection perfor-

mance where we are interested in studying the effect of any variation of the parameters

in a given imaging system on the performance.For instance we were able to compute

the sensitivity of the proposed performance figure as a function of PSF variations.
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Most of the developed results are presented for both one-dimensional and two-

dimensional cases and also for any general scheme for sampling (sub-Nyquist and non-

uniform sampling). For sub-Nyquist sampling, we have observed that the (detection

or estimation) performance depends on the sampling phases (or offsets).

Overall, we wish to mention that this thesis, we hope, represents one step

forward in an overall methodology for studying problems in imaging and image pro-

cessing that appeals directly to concepts in information theory. This approach and

point of view has been sorely lacking in the imaging community, and we hope that it

will become more pervasive in the years to come.

Moreover, the approach we have advocated for determining resolution limits

in imaging can be similarly used to develop statistical algorithms and performance

limits for resolving sinusoids with nearby frequencies, in the presence of noise. We

formulate the problem as a hypothesis test, the aim of which is to distinguish whether

the received signal contains a single-tone or double-tone. We have considered the most

general case where the amplitudes, frequencies and phases of sinusoids and also the

value of noise variance is unknown to the detector.

By utilizing a quadratic approximation, we in fact carried out the analysis

in the context of locally optimal detectors, and developed corresponding detection

strategies. The performance figure of resolution has been quantified by the following

practical question: ”What is the minimum detectable frequency difference between

two sinusoids at a given signal-to-noise ratio?”

We clearly observed that noise variance being unknown has little effect on
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the detection performance. This is a useful observation, since in practice the variance

is often unknown to the receiver.

Also, the proposed locally optimal detectors yield significantly improved de-

tection of very nearby frequencies, as compared to the existing subspace methods. In

terms of implementing the suggested detection algorithm, we merely need to estimate

the center frequency. Fortunately, as we confirmed by some experiments, this task

can be very effectively performed by using one of the myriad of existing methods for

spectral estimation and then running the proposed detector at the estimated peak.

The performance of such a detector is nearly identical to that of the detector with a

known center frequency.

7.2 Future Directions

In this section, we briefly discuss some future aspects of the analyses devel-

oped in the thesis.

7.2.1 An application to physical fault detection in IC manufacturing

Integrated circuit manufacturing processes require transferring a circuit pat-

tern (including logic gates, memory cells, etc) onto the silicon wafers. This process

is referred to as lithography. However, because of several factors (like irregularity of

surface or mask imperfection) the above process may introduce some errors in repli-

cating the pattern. These errors translate into short or open circuits which make the

manufactured IC useless. Hence, there is a need for metrology and inspection to de-
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tect these physical defects or faults. The commonly employed method is to image the

printed wafer using an SEM (Scanning Electron Microscope) and to inspect this im-

age by matching with the desired, expected pattern. Over time, the dimensions of the

printed circuits are becoming increasingly small (currently 65nm), and this, coupled

with the resolution limits of the SEM, lead to a heavily blurred and noisy version of

the desired image of the wafer.

In this section, we employ and extend the detection frameworks developed

earlier in Chapter 2 to such inspection tasks. The models we put forward here suggests

a detector which evaluates the correctness of a circuit or mask in a simple way. For

comprehensive and practical purposes the method we propose needs to be general-

ized. Such generalization requires better understanding of the physical models of the

underlying systems.

Let us first start with the mask inspection problem. Consider a typical mask

pattern with two isolated holes as shown in Figure 7.1. The hypothesis test here is

to decide whether these bars are connected or not1. In 1-D model, we can write the

following model for the collected image:

g(xk) = αmhm

(
xk − d

2

)
+ αmhm

(
xk +

d

2

)
+ w(xk) (7.1)

where αm is the peak intensity of a single bar and

hm(x) = h(x) ∗ rect(x,w), rect(x,w) =





1 |x| < w
2

0 otherwise
(7.2)

1or whether the distance between the boundaries of these holes is smaller than a required threshold.
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is the overall blurring kernel resulting from the imaging PSF (h(x)) convolved with

the aperture function (or hole shape). w is the width of each hole. We can now use

the developed detectors in Section 2.4 by replacing h(x) with hm(x).

Figure 7.1: A simple scheme of a typical mask pattern

The problem in wafer inspection is however more complicated, since the print-

ing process does not usually produce a sharp edge (perfect rectangle) in the resist

profile. See for example the pattern in Figure 7.2. Therefore to have a faithful model,

one should first estimate the structure of the produced pattern generated from for

example a single point or bar. Perhaps the difficulty is that this pattern is changed in

time and at different locations in the circuit. Also, to decide whether a wafer should

be categorized as a defective one or not there are at least two relevant conditions: the

distance between the patterns and the depth of the valley between them.

Figure 7.2: 1-D version of a resist profile of the two closely spaced bars
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To attempt to overcome these difficulties, we take a rather different viewpoint from

what we have proposed so far in this thesis. Let rect(·, w)(a rectangle with width w),

hp(·) and h(·) represent the shape of the original bar to be printed, the blurring effect

caused by the printing process, and the imaging PSF, respectively. First, we note that

if hp(·) is itself a rectangular pulse, then the resulting burned pattern rect(·)∗hp(·) will

have a trapezoidal shape2, similar to what is shown in Figure 7.2. A block diagram of

the model is shown in Figure 7.3. Now, let us assume that we know the general struc-

ture of hp(·) beforehand and that there however exists a different uncertainty about

stretching (or compressing) of this kernel for each printed component. The reason

is that every printed component maybe affected by adjacent element and space- and

time-varying manufacturing processes. To this end, the uncertainty is not about the

distance between the components to be printed (we in fact know a-priori about their

desired locations and other specifications), but about the stretching or compressing of

the blurring function.

Optical
lithography

hp(x)

SEM
imaging

h(x)

Figure 7.3: Block diagram of the underlying model

Without loss of generality, we suggest the following methodology to remarkably sim-

plify the hypothesis test (to be specified later). To facilitate presentation, let hpn(x)

be a canonical form of the kernel hp(x) (where for example its energy is normalized

2We should mention that we have ignored the effect of soft thresholding in this model.
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to 1). By means of some experiments or perhaps analytical solutions, we will be able

to find a scaled version of hpn(x) (i.e. to find the variable cp in hpn(cpx)) such that

it just satisfies (user-defined minimum acceptability) all the validity conditions (the

distance and depth criteria and possibly others) for the printed circuits. Then we set

hp(x) = hpn(cpx) as our acceptable kernel. In other words, any further stretching of

hp(x) will produce incorrect resist profile. Note that as c → +∞, the kernel will shrink

enough so that it will eventually pass the validity test.

Now consider two closely-spaced bars in the underlying layout, so that

rectw (x− d1) + rectw (x + d2) (7.3)

is the 1-D original pattern3 and that each of these bars experiences different blurring

as discussed earlier which we denote by hp([1 + ε1]x) and hp([1 + ε2]x). If ε1, ε2 > 0,

then we have correctly printed components. The measured discrete image is given by4

g(xk) = s(xk, ε1, ε2) + w(xk) (7.4)

= rectw (x− d1) ∗ hp([1 + ε1]x) ∗ h(x)|x=xk
(7.5)

+ rectw (x + d2) ∗ hp([1 + ε2]x) ∗ h(x)|x=xk
+ w(xk). (7.6)

The signal s(xk) can be globally approximated by the Taylor series around (ε1, ε2) =

(0, 0) as

s(xk, ε1, ε2) ≈ s0(xk, 0, 0) + ε1s1(xk, 0, 0) + ε2s2(xk, 0, 0) (7.7)
3It is worth emphasizing that d1 and d2 are known here.
4We have assumed an additive Gaussian noise here, however a more precise model should include

the effect of both Gaussian and Poisson noises[71].
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where

s0(xk, 0, 0) = [rectw (x− d1) + rectw (x + d2)] ∗ hp(x) ∗ h(x)|x=xk
(7.8)

s1(xk, 0, 0) = xrectw (x− d1) ∗ ∂hp(x)
∂x

∗ h(x)
∣∣∣∣
x=xk

(7.9)

s2(xk, 0, 0) = xrectw (x + d2) ∗ ∂hp(x)
∂x

∗ h(x)
∣∣∣∣
x=xk

(7.10)

or in vector form

s = Hpθp (7.11)

where

Hp = [s0|s1|s2] (7.12)

θp =




1

ε1

ε2




. (7.13)

Finally, the hypotheses H0 and H1 are respectively defined based on whether ε1, ε2

(or both) are negative (the printed circuit is unacceptable) or otherwise (the printed

circuit is acceptable,




H0 : ε1 < 0 or ε2 < 0

H1 : ε1 > 0 and ε2 > 0
. (7.14)

See the critical region in Figure 7.4. A careful reader will notice that this hypothesis

suggests somewhat a pessimistic detector. One may think of proposing a more precise

and critical region (like a smooth curve as the decision boundary).
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Critical
Region

ε1

ε2

Figure 7.4: The critical region of the hypothesis test in (7.14)

7.2.2 Sparsity and Resolution

The theory of overcomplete representations has recently become a very pop-

ular area of research [6, 12, 11, 13]. Many papers have been published to establish the

mathematical and statistical theories behind sparse representations and also to prop-

erly use it in signal processing applications (such as compression, inverse problems in

imaging and many more). Basically, sparsity constraint for a given problem (e.g. im-

age denoising) provides prior information which enables us to recover the underlying

signal even from a set of weak observations about the signal, such as under-sampled

measurements or lower-dimensional projections of the signal.

A natural problem related to sparse representations is to study the question

of resolution limits in imaging or array processing applications [10]. One example is in

resolving frequencies of multiple sinusoids which are placed closer than the Rayleigh

interval. However, as indicated in [69], this leads to extremely ill-posed problems.

What we are suggesting here to overcome the ill-posedness is to utilize the proposed

local detectors. We can readily show that for the case of two sinusoids, use of the local
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detector is quite straight-forward. To solve the problem for the case of more than two

tones in the signal, an extension of the framework is required. As an example, one

may think of modifying and using the multi-stage greedy algorithms [61, 62] in a local

fashion to recover the underlying sparse multi-tone signal.

Given a unitary dictionary Φ and signal g, we want to solve the following

problem5 (i.e. searching the ”sparsest” representation):

minc ‖c‖0 subject to g = Φc (7.15)

The (orthogonal) greedy algorithm is a iterative method which at step l gives an

approximate l-atom representation (a representation in which exactly l atoms con-

tribute). The process initializes by first finding the most dominant present component

(atom) in the signal and then computing the residual. In general for step l we have

r(l) = g− ĝ(l), (7.16)

where r(l) and ĝ(l) denote the residual and the approximated signal at step l, respec-

tively. Also,

ĝ(l) = Φc(l) (7.17)

is the representation at step l, where c(l) is the estimated coefficients of decomposition

and has only l non-zero elements. Then at step l + 1, a new atom is chosen which

has the maximum correlation with the residual resulted from l-th step. Iteration

stops when the level of the residual error is less then a pre-specified threshold. To
5norm 0 of a vector simply means number of non-zero elements in that vector.
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employ this approach locally, one requirement is to decide whether at any stage, the

most recently added atom (tone) can be further resolved to two closely-spaced atoms

(or tones). Note that this hypothesis test is performed at the frequency of the most

recently added component. Moreover some theoretical results as in [11] can be similarly

derived for such specific problem.

7.2.3 Performance Analysis of Resolution in Indirect Imaging

It is worthwhile to note that the strategy for the analysis of resolution we

have put forward in this thesis is very generally applicable to other types of imaging

systems. Once the signal model of a given imaging system is determined the same

line of reasoning can be carried out. The optical imaging scenario we have described

here should really be thought of as a canonical example of the application of the

general strategy we propose for studying resolution. Extensions of these ideas can also

be considered to study limits to resolution for indirect imaging such as in computed

tomography.

In computed tomography, it is appealing to study the effect of SNR as well

as the number of projections on the resolvability. The underlying signal can be chosen

in some other forms rather than point sources. It could be for instance chosen as two

concentric circles with slightly different radii.
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7.2.4 Statistical Bounds on Distinguishing Details

Let s(x; θ) represent a set of signals parameterized by a ”feature” vector

θ. Now given a discrete, blurry, noisy version of such signal we setup the following

hypothesis testing to distinguish whether the measured signal is generated by a set of

parameters θ0 or θ0 + ∆θ:




H0 : θ = θ0

H1 : θ = θ + ∆θ

. (7.18)

or




H0 : ∆θ = 0

H1 : ∆θ 6= 0
. (7.19)

We can now pose the following question ”what is the smallest resolvable detail(s) at

a given SNR and detection accuracy?”. One possible solution is to develop locally

powerful detectors by means of the Taylor approximation around a nominal value of

the parameter of interest (for example ∆θ = 0 in the above hypothesis testing). The

hypotheses here are represented by testing the value of these parameters. Alternative

ways can be proposed based on the estimation-theoretic approach by computing the

Fisher information matrix for the unknown parameters. Onother way is to compute

the KLD and establish an asymptotic performance figure. We carried out a similar

analysis in Section 4.3. Another approach is to derive and utilize the CRLB as we

explain in the following example. In [55, 56], the resolution is characterized based

on the minimum attainable variance (in terms of the CR bound) of estimation of

the underlying parameter(s). For example in point source separation, the minimum
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requirement for resolvability is defined based on whether the standard deviation of

the source separation is less than the actual value of the source separation itself. In

other words, the resolution limit is obtained as the separation at which such equality

is achieved. Interestingly, the results in [55, 56] are similar to that of the proposed

local detector we have developed mainly in Chapters 2 and 3.

We note that the presence of nuisance parameters in the model or clutter

embedded in the original signal needs to be treated carefully. It is worth mentioning

that the approach based on the CR bound is able to formulate and take into account

the presence of the nuisance parameters.

7.2.5 Imaging System Design

A preliminary example of a system design problem is given in Section 5.2

where we discussed the effect of CCD fill factor on detection performance in a trade-

off with noise level. Another interesting scenario is to study the effect of pupil filters

on resolvability. Overall, the statistical analysis machinery we have developed in this

thesis can be thought as a well-defined roadmap to be used in so-called PSF engineering

[7].

7.2.6 Generalization to Different Noise Characteristic or Other Sta-

tistical Uncertainties

Resolution limit in photon-limited imaging systems is another important case

study that needs to be investigated. The noise in these systems is no longer additive
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readout noise and follows the Poisson process. Also, in many cases the underlying

image itself may contain different forms of noise and in particular clutter or unwanted

interference which are also described by a probabilistic function.

Another challenging direction is to investigate the performance of the imaging

systems with time-varying characteristics (for example time-varying PSF particularly

in astronomical applications). Such behavior may be modelled by some probabilis-

tic descriptions as well. The analysis here requires a somewhat more sophisticated

machinery.

We now briefly study the resolution problem for the case where the measured

signal is contaminated by Poisson noise (for example in photon-limited imaging). This

is an important case study in astronomical applications and SEM imaging.

Let g(xk) be the measured signal of the underlying (blurred) signal

s(xk, d1, d2) = αh(xk − d1) + βh(xk + d2)

and let αd1 = βd2. The log-likelihood ratio for the hypothesis testing problem (i.e.

whether d = 0 or d > 0) is given by

LLR = ln
∏

k

s(xk, d1, d2)g(xk) exp(−s(xk, d1, d2))/g(xk)
s(xk, 0, 0)g(xk) exp(−s(xk, 0, 0))/g(xk)

(7.20)

=
∑

k

g(xk) ln
(

s(xk, d1, d2)
s(xk, 0, 0)

)
− s(xk, d1, d2) + s(xk, 0, 0). (7.21)

Approximating the log-likelihood ratio above by the Taylor expansion around (d1, d2) =

(0, 0) will result in

LLR ≈ 1
2
(αd2

1 + βd2
2)

∑

k

(
g(xk)

s(xk, d1, d2)
− 1

)
∂2s(x, d1, d2)

∂x2

∣∣∣∣∣ x = xk. (7.22)
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We note that

αd2
1 + βd2

2 = (α + β)d1d2 =
αβ

α + β
d2, (7.23)

confirming the proportionality of the log-likelihood function with d2. The remaining

steps include computing the probability of detection and false alarm rate for the ap-

proximated test statistics. It is worth mentioning that this approximation is directly

related to an extension of the locally most powerful test [33, p. 218] and one can

straight-forwardly use the result of applying such a framework to study the perfor-

mance for the current case.
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Appendix A

Accuracy of Signal

Approximation Using the Taylor

Series

A.1 On the Accuracy of the Quadratic Approximation

Here, we present an analysis to demonstrate the accuracy of the Taylor ex-

pansion proposed in Section 2.3. We consider the general model of (2.48) and its Taylor

expansion in (2.49). Let us define residual percentage error of the approximation as

follows:

ε =

∥∥∥∥∥s− (α + β)h− (−αd1 + βd2)h1 − αd2
1 + βd2

2

2
h2

∥∥∥∥∥
2

‖s‖2
(A.1)

Consider the case when αd1 = βd2 (See Appendix C). Figure A.1 shows the upper

bound (d = d1 + d2 = 1) for ε as a function of α for h(x) = sinc2(x) (Note that again
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for above-Nyquist sampling, ε is independent from the sampling rate.). The maximum

of ε is less than 20% in any case. Also, as seen in this Figure, the approximation

error for d = 0.7 is always less than 2.5%. Figure A.2 shows the curve for ε vs d for

This figure indicates that the approximation error is quite acceptable for the range of

interest near d = 0. To have a picture of the local error in the approximation, the

error term

e(x;α, β, d1, d2) = s(x; α, β, d1, d2)− (α + β)h(x)− (−αd1 + βd2)h1(x)− αd2
1 + βd2

2

2
h2(x)

is shown in Figure A.3 for two different values of d over the range of the variable x in

[−10, 10].
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Figure A.1: Residual percentage error of the quadratic model; αd1 = βd2
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Figure A.2: Residual percentage error of the quadratic model; α = β = 1
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Figure A.3: Difference between the actual signal and the quadratic model; α = β = 1
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Appendix B

Frequency Domain Derivations

for Computing the Energy Terms

B.1 Frequency Domain representation; Parseval’s Theo-

rem for the Signal s(x; d)

Considering the sampled signal of the general model, where the point sources

are located at −d1 and d2:

s(n; α, β, d1, d2) = s(x;α, β, d1, d2)|x= n
fs

= αh

(
n

fs
− d1

)
+ βh

(
n

fs
+ d2

)
(B.1)
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For the case of above-Nyquist sampling1, in the frequency domain we will have the

following 2π-periodic representation:

S(ω, d) =





H(ω, fs) (α exp(−jωfsd1) + β exp(jωfsd2)) |ω| < 2π
fs

0 2π
fs ≤ |ω| ≤ 2π

(B.2)

where H(ω, fs) = f2
s

2π (2π
fs
−|ω|) is the DTFT of h(xk) when h(x) =sinc2(x) and sampling

rate is fs. Correspondingly, for this case, the functions h1(x) and h2(x) can be written

in the frequency domain as

H1(ω, fs) =





j ωf3
s

2π (2π
fs
− |ω|) |ω| < 2π

fs

0 2π
fs ≤ |ω| ≤ 2π

(B.3)

H2(ω, fs) =





−ω2f4
s

2π (2π
fs
− |ω|) |ω| < 2π

fs

0 2π
fs ≤ |ω| ≤ 2π

(B.4)

Using Parseval’s identities [47]:

∞∑

n=−∞
|x(n)|2 =

1
2π

∫ π

−π
|X(ω)|2dω (B.5)

∞∑

n=−∞
x(n)y∗(n) =

1
2π

∫ π

−π
X(ω)Y ∗(ω)dω (B.6)

we can easily compute the following terms

E0 = hTh = fs
2
3

(B.7)

E1 = hT
1 h1 = fs

4π2

15
(B.8)

E2 = hT
2 h2 = fs

32π4

105
(B.9)

1To recover exactly s(x; d) would mathematically require an infinite number of measurements (or
samples) s(n; d) [66]. But since we have considered a fairly large range (-10 to 10) for sampling, and
since the energy in the tails of the function in the range is very small, the effect of aliasing is essentially
negligible.
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and

hT
1 s0 = hT

1 h2 = 0 (B.10)

Note that in every case the energy terms are proportional to the sampling rate. It can

be shown [64] that the energy of any uniformly (super-critically) sampled version of a

band-limited signal is proportional to sampling rate.
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Appendix C

Is αd1 ≈ βd2 a reasonable

assumption?

This appendix includes a proof for justifying the assumption αd1 ≈ βd2 which states

the estimated test point is (linearly proportionally) closer to the stronger peak. We

present the proof for both cases of localizing the center for resolution in imaging and

direction finding.

C.1 Proof for determining the test point in resolving two

point sources

Suppose that we first wish to determine a location at which in signal we carry

out our hypothesis test. A reasonable way to find a good candidate is to compute the

correlation of the signal with a shifted version of h(x) and find the point where the
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correlation is maximum (this would yield a point near the brighter of the two peaks).

Rsh(|τ |, α, β, d1, d2) =
∫ +∞

−∞
(s(x;α, β, d1, d2) + w(x))h(x + τ)dx (C.1)

=
∫ +∞

−∞
(αh (x− d1) + βh (x + d2) + w(x))h(x + τ)dx

= αRhh(|τ | − d1) + βRhh(|τ |+ d2) + u(|τ |) (C.2)

where Rsh and Rhh are the cross-correlation and autocorrelation functions, respectively

and

u(|τ |) =
∫ +∞

−∞
w(x)h(x + τ)dx (C.3)

is a noise term (with zero mean). It must be clear form the model, that Rsh would

be maximized at τ = 0. Also, Since d1 and d2 are assumed to be small, by using the

Taylor expansion around |τ | − d1 = 0 and |τ |+ d2 = 0, we will have:

Rhh(|τ | − d1) = ξ0 + (|τ | − d1)ξ1 + (|τ | − d1)2ξ2 (C.4)

Rhh(|τ |+ d2) = ξ0 + (|τ |+ d2)ξ1 + (|τ |+ d2)2ξ2 (C.5)

where ξ0, ξ1 and ξ3 are some constant coefficients of the above Taylor expansion. Also,

it can be shown that ξ1 = 0. Therefore, we can write (C.2) as follows:

Rsh(|τ |, α, β, d1, d2) = (α + β)ξ0 +
(
α(|τ | − d1)2 + β(|τ | − d2)2

)
ξ2 + u(|τ |) (C.6)

Taking derivative of Rsh(|τ |, α, β, d1, d2) with respect to τ and setting it to zero will

result in:

(α + β)|τ | = αd1 − βd2 (C.7)

Hence, a proper selection of τ (i.e test point) will lead to αd1 ≈ βd2.
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C.2 Proof for determining the center frequency in resolv-

ing two harmonic signals

Suppose φ1 ≈ φ2. Then the magnitude of the discrete-Time Fourier Trans-

form of the signal is given by [47]

F (f, fc, a1, a2, δ1, δ2) = S(f, fc, a1, a2, δ1, δ2) + W (f) (C.8)

= a1

sin
[
πN

(
f − fc−δ1

fs

)]

sin
[
π

(
f − fc−δ1

fs

)] + a2

sin
[
πN

(
f − fc+δ2

fs

)]

sin
[
π

(
f − fc+δ2

fs

)] + W (f).

where W (f) is the Fourier domain representation of w(xk). A reasonable way to find

a good candidate center frequency (fc), where we can perform our test, is to compute

the correlation of the signal with the following window in the frequency domain,

G(f, fx) =
sin

[
πN

(
f − fx

fs

)]

sin
[
π

(
f − fx

fs

)] (C.9)

and find the point where the correlation is maximum (this would yield a point near

the stronger of the two peaks). Consider

RSG(|fc − fx|, a1, a2, δ1, δ2) =
∫ +∞

−∞
[S(f, fc, a1, a2, δ1, δ2) + W (f)]G(f, fx)df

= a1RGG(|fc − δ1 − fx|) + a2RGG(|fc + δ2 − fx|)

+ RWG(|fx|)

where RSG, RWG and RGG are the cross-correlation and autocorrelation functions

defined as:

RGG(|fc − δ2 − fx|) =
∫ +∞

−∞
G(f, fx)G(f, fc − δ2)df. (C.10)
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RGG(|fc + δ2 − fx|) =
∫ +∞

−∞
G(f, fx)G(f, fc + δ2)df. (C.11)

RWG(|fc − δ1 − fx|) =
∫ +∞

−∞
G(f, fx)W (f)df (C.12)

Since δ1, δ2 ¿ 1
B and fx is expected to be close to fc, we can again use the Taylor

expansion for (C.10) around (fc − δ1 + fx, fc + δ2 − fx) = (0, 0),

RGG(|fc − δ1 − fx|) ≈ ξ0 + (|fc − δ1 − fx|)ξ1 + (fc − δ1 − fx)2ξ2 (C.13)

RGG(|fc + δ2 − fx|) ≈ ξ0 + (|fc + δ2 − fx|)ξ1 + (fc + δ2 − fx)2ξ2, (C.14)

where ξ0, ξ1 and ξ3 are some constant coefficients of the above Taylor expansion. Also,

it can be shown that ξ1 = 0. Therefore, we can write (C.10) as follows:

RSG(|fc − fx|, a1, a2, δ1, δ2) ≈ (a1 + a2)ξ0 (C.15)

+
(
a1(fc − fx − δ1)2 + a2(fc − fx + δ2)2

)
ξ2

Taking derivative of the right hand side of (C.15) with respect to fx and setting it to

zero will result in

(a1 + a2)(fc − fx) ≈ a1δ1 − a2δ2. (C.16)

which suggests to select fc such that lead to a1δ1 ≈ a2δ2. It is worth noting that

application of any subspace-based method to the data will also provide a reasonable

candidate for the center frequency fc, as discussed in Section 6.4.2.
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Appendix D

Sampling Theory, Derivations for

Under-Nyquist Case

D.1 Sampling theory for Under-Nyquist Measurements

To begin, let us first mention that for the case of over-Nyquist sampling,

following relationships are hold:

Eij = hT
ijhij =

1
4π2

∫ π

−π

∫ π

−π
uivj |H(u, v)|2dudv (D.1)

= f2
s

∫ +∞

−∞

∫ +∞

−∞

[
∂i+jp(x, y)

∂xi∂yj

]2

dxdy (D.2)

Whereas in under-Nyquist case, assuming that H(u, v) is band limited to −Bu < u <

Bu and −Bv < v < Bv, we will have:

E0 =
1

4π2

∫ π

−π

∫ π

−π

1
LuLv

∣∣∣∣∣∣

Lu−1∑

i=0

Lv−1∑

j=0

H(u− 2πi, v − 2πj)

∣∣∣∣∣∣

2

dudv (D.3)

=
1

4π2

∫ π

−π

∫ π

−π

1
LuLv

Lu−1∑

i=0

Lv−1∑

j=0

|H(u− 2πj, v − 2πj)|2
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+
2

LuLv

Lu−1∑

i=0

Lv−1∑

i=0

Lu−1∑

i′=i+1

Lv−1∑

j′=j+1

< [
H(u− 2πi, v − 2πj)H∗(u− 2πi′, v − 2πj′)

]
dudv

= f2
s

∫ +∞

−∞

∫ +∞

−∞
h2(x, y)dxdy

+





2
LuLv

Lu−1∑

i=0

Lv−1∑

i=0

Lu−1∑

i′=i+1

Lv−1∑

j′=j+1

cos
(
(i− i′)φ + (j − j′)ψ

)

∫ π

−π

∫ π

−π
H(u− 2πi, v − 2πj)H(u− 2πi′, v − 2πj′)dudv





(D.4)

where Lu = d2Bu
fs
e, Lv = d2Bv

fs
e, and φ and ψ are the sampling phases in vertical

and horizontal directions 0 ≤ φ, ψ ≤ 2π . For instance if Bu < fs < 2Bu and

Bv < fs < 2Bv we will similarly have:

Eij = E0
ij + Ev

ij cos(φ) + Eu
ij cos(ψ) + Euv

ij cos(φ + ψ) (D.5)
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Appendix E

Angular-Symmetric PSF

E.1 Angular Symmetric PSF

Let us consider the case of angular symmetric PSF (h(x, y) = q(
√

x2 + y2) =

q(r)) such as that corresponding to circular aperture. Following relationships for the

partial derivatives can be written in the polar form (r, θ):

∂h(x, y)
∂x

=
∂q(r)
∂r

cos(θ)

∂h(x, y)
∂y

=
∂q(r)
∂r

sin(θ)

∂2h(x, y)
∂x2

=
∂2q(r)
∂r2

cos2(θ) +
∂q(r)
∂r

sin2(θ)
r

∂2h(x, y)
∂y2

=
∂2q(r)
∂r2

sin2(θ) +
∂q(r)
∂r

cos2(θ)
r

∂2h(x, y)
∂y∂x

=
∂2q(r)
∂r2

sin(θ) cos(θ)− ∂q(r)
∂r

sin(θ) cos(θ)
r

After doing some math and by applying

∫ 2π

0
sin(θ) cos(θ)dθ =

∫ 2π

0
sin(θ) cos3(θ)dθ = 0

154



∫ 2π

0
sin2(θ)dθ =

∫ 2π

0
cos2(θ)dθ = π

∫ 2π

0
sin4(θ)dθ =

∫ 2π

0
cos4(θ)dθ =

3π

4
∫ 2π

0
sin2(θ) cos2(θ)dθ =

π

4

We can show that

E0 =
∫ +∞

0
rq2(r)dr (E.1)

E10 = E01 = π

∫ +∞

0
r

[
∂q(r)
∂r

]2

dr (E.2)

E20 = E02 =
π

4

∫ +∞

0

3
r

[
∂q(r)
∂r

]2

+ 3r

[
∂2q(r)
∂r2

]2

dr (E.3)

E11 =
π

4

∫ +∞

0

1
r

[
∂q(r)
∂r

]2

+ r

[
∂2q(r)
∂r2

]2

dr (E.4)

by using

∫ +∞

0

∂q(r)
∂r

∂2q(r)
∂r2

dr = 0

Therefore

SNR =
λ(Pf , Pd)

N2

64E0 − 16d2E10 + d4E20

d4

(
E20 − E2

10

E0

) (E.5)
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Appendix F

Derivations of CRLB

F.1 Derivation of the Fisher Information Matrix

Let Ω1 and Ω2 denote the sets of samples of the first and the second frames,

respectively. From (4.10), the Fisher Information matrix can be written as

Λ = ZTZ (F.1)

where Z = [z1, z2, z3, ..., z8] is defined in the following form

[z1]lN+k =
∂s(x, y)

∂px

∣∣∣∣
x=xk,y=yl

= −αh10(xk − px, yl − py) (F.2)

[z2]lN+k =
∂s(x, y)

∂qx

∣∣∣∣
x=xk,y=yl

= βh10(xk + qx, yl + qy) (F.3)

[z3]lN+k =
∂s(x, y)

∂py

∣∣∣∣∣
x=xk,y=yl

= −αh01(xk − px, yl − py) (F.4)

[z4]lN+k =
∂s(x, y)

∂qy

∣∣∣∣∣
x=xk,y=yl

= βh01(xk + qx, yl + qy) (F.5)

[z5]lN+k =
∂s(x, y)

∂α

∣∣∣∣
x=xk,y=yl

= h(xk − px, yl − py) (F.6)

[z6]lN+k =
∂s(x, y)

∂β

∣∣∣∣
x=xk,y=yl

= h(xk + qx, yl + qy) (F.7)
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[z7]lN+k =
∂s(x, y)

∂φ2

∣∣∣∣
x=xk,y=yl

(F.8)

=





0 (xk, yl) ∈ Ω1

αh10(xk − px, yl − py) + βh10(xk + qx, yl + qy) (xk, yl) ∈ Ω2

[z8]lN+k =
∂s(x, y)

∂ψ2

∣∣∣∣
x=xk,y=yl

(F.9)

=





0 (xk, yl) ∈ Ω1

αh01(xk − px, yl − py) + βh01(xk + qx, yl + qy) (xk, yl) ∈ Ω2
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Appendix G

Details of KLD computation

In this appendix we present the derivations of KLD for two somewhat similar problems

discussed in this thesis. The former is for the case of resolution limit in a 2-D imaging

scenario and the latter is for the case of resolvability is spectral domain.

G.1 Computing the Kullback-Leibler Distance in (4.13)

Directly using the results in [36, p. 26], we can obtain the following expression

for KLD:

J (d) ≈ d2I(0), (G.1)

where I(d) is the Fisher Information measure [32, p 40],

I(d) =
1
σ2

∑

k

∑

l

(
∂s(xk, yl)

∂d

)2

(G.2)

However, for the hypothesis test of interest in (3.5), I(0) is zero and (G.1) is not

directly applicable. Here we extend the approach in [36, p. 26] by considering higher
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order terms. Consider the following Taylor expansion:

J (d) =
∫

D
[p(g, d)− p(g, 0)] log

(
p(g, d)
p(g, 0)

)
dg (G.3)

= J (0) + d
∂J
∂d

∣∣∣∣
d=0

+
d2

2
∂2J
∂d2

∣∣∣∣∣
d=0

+
d3

6
∂3J
∂d3

∣∣∣∣∣
d=0

+
d4

24
∂4J
∂d4

∣∣∣∣∣
d=0

+ O(d6).

Noting that1

∂ip(g, d)
∂di

∣∣∣∣∣
d=0

= 0 i = 1, 3, (G.4)

We will have

J (0) = 0,

∂J
∂d

∣∣∣∣
d=0

=
∫

D
∂p(g, d)

∂d
log

(
p(g, d)
p(g, 0)

)
+ [p(g, d)− p(g, 0)]

∂p(g, d)
∂d

p(g, d)

∣∣∣∣∣∣∣∣
d=0

dg = 0,

∂2J
∂d2

∣∣∣∣∣
d=0

=
∫

D

2
[
∂p(g, d)

∂d

]2

p(g, d)

∣∣∣∣∣∣∣∣∣
d=0

dg = 0,

∂3J
∂d3

∣∣∣∣∣
d=0

=
∫

D

6
∂p(g, d)

∂d

∂2p(g, d)
∂d2

p(g, d)
−

3
[
∂p(g, d)

∂d

]3

[p(g, d)]2

∣∣∣∣∣∣∣∣∣
d=0

dg = 0,

∂4J
∂d4

∣∣∣∣∣
d=0

=
∫

D

8
∂p(g, d)

∂d

∂3p(g, d)
∂d3

+ 6

[
∂2p(g, d)

∂d2

]3

p(g, d)

−
18

[
∂p(g, d)

∂d

]2 ∂2p(g, d)
∂d2

[p(g, d)]2
+

8
[
∂p(g, d)

∂d

]4

[p(g, d)]3

∣∣∣∣∣∣∣∣∣
d=0

dg,

=
∫

D

6

[
∂2p(g, d)

∂d2

]2

p(g, d)

∣∣∣∣∣∣∣∣∣∣∣
d=0

dg.

1Since p(g, d) is an even (and differentiable) function around d = 0.
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As a result, we can write (G.3) as

J (d) ≈ d4

4

∫

D

[
∂2p(g, d)

∂d2

]2

p(g, d)

∣∣∣∣∣∣∣∣∣∣∣
d=0

dg. (G.5)

On the other hand, we observe that

∂2I(d)
∂d2

∣∣∣∣∣
d=0

= − ∂2

∂d2

∫

D
∂2 ln p(g, d)

∂d2
p(g, d)

∣∣∣∣∣
d=0

dg

=
∂2

∂d2

∫

D

[
∂ ln p(g, d)

∂d

]2

p(g, d)

∣∣∣∣∣∣∣∣∣
d=0

dg

=
∫

D

2
∂p(g, d)

∂d

∂3p(g, d)
∂d3

+ 2

[
∂2p(g, d)

∂d2

]3

p(g, d)

−
5

[
∂p(g, d)

∂d

]2 ∂2p(g, d)
∂d2

[p(g, d)]2
+

2
[
∂p(g, d)

∂d

]4

[p(g, d)]3

∣∣∣∣∣∣∣∣∣
d=0

dg

=
∫

D

2

[
∂2p(g, d)

∂d2

]2

p(g, d)

∣∣∣∣∣∣∣∣∣∣∣
d=0

dg. (G.6)

Therefore,

J (d) ≈ d4

8
∂2I(d)
∂d2

∣∣∣∣∣
d=0

(G.7)

=
d4

4σ2

∑

k

∑

l

(
∂2s(xk, yl)

∂d2

)2
∣∣∣∣∣∣
d=0

+
∂s(xk, yl)

∂d

∂3s(xk, yl)
∂d3

∣∣∣∣∣
d=0

=
d4

4σ2

∑

k

∑

l

(
∂2s(xk, yl)

∂d2

)2
∣∣∣∣∣∣
d=0

+ 0

=
d4

4σ2

∑

k

∑

l

(
∂2 [h(xk + d/2, yl) + h(xk − d/2, yl)]

∂d2

)2
∣∣∣∣∣∣
d=0
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=
d4

4σ2

∑

k

∑

l

h2
20(xk, yl)

∣∣∣∣∣
d=0

(G.8)

As we see from (G.7), the divergence for the underlying hypothesis testing problem is

directly related to the second derivative of the Fisher information matrix evaluated at

d = 0.

G.2 Computing the Kullback-Leibler Distance in (6.65)

Similar to the previous section, using the results in [36, p. 26], we have

J(δ) ≈ δ2I(0), (G.9)

where I(δ) is the Fisher Information measure defined as,

I(δ) = −E

[
∂2 ln p(f, δ)

∂δ2

]
=

1
2
tr

[([
R1 + σ2I

]−1 ∂R1

∂δ

)2
]

(G.10)

We again note that for the hypothesis test of interest in (6.61), I(0) is zero and that

an extension is required. Consider the following Taylor expansion:

J(δ) =
∫

D
[p(f, δ)− p(f, 0)] log

(
p(f, δ)
p(f, 0)

)
df (G.11)

= J(0) + δ
∂J

∂δ

∣∣∣∣
δ=0

+
δ2

2
∂2J

∂δ2

∣∣∣∣∣
δ=0

+
δ3

6
∂3J

∂δ3

∣∣∣∣∣
δ=0

+
δ4

24
∂4J

∂δ4

∣∣∣∣∣
δ=0

+ O(δ6).

Also

∂ip(f, δ)
∂δi

∣∣∣∣∣
δ=0

= 0 i = 1, 3,

Therefore

J(0) = 0,
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∂J

∂δ

∣∣∣∣
δ=0

=
∫

D
∂p(f, δ)

∂δ
log

(
p(f, δ)
p(f, 0)

)
+ [p(f, δ)− p(f, 0)]

∂p(f, δ)
∂δ

p(f, δ)

∣∣∣∣∣∣∣∣
δ=0

df = 0,

∂2J

∂δ2

∣∣∣∣∣
δ=0

=
∫

D

2
[
∂p(f, δ)

∂δ

]2

p(f, δ)

∣∣∣∣∣∣∣∣∣
δ=0

df = 0,

∂3J

∂δ3

∣∣∣∣∣
δ=0

=
∫

D

6
∂p(f, δ)

∂δ

∂2p(f, δ)
∂δ2

p(f, δ)
−

3
[
∂p(f, δ)

∂δ

]3

[p(f, δ)]2

∣∣∣∣∣∣∣∣∣
δ=0

df = 0,

∂4J

∂δ4

∣∣∣∣∣
δ=0

=
∫

D

8
∂p(f, δ)

∂δ

∂3p(f, δ)
∂δ3

+ 6

[
∂2p(f, δ)

∂δ2

]3

p(f, δ)

−
18

[
∂p(f, δ)

∂δ

]2 ∂2p(f, δ)
∂δ2

[p(f, δ)]2
+

8
[
∂p(f, δ)

∂δ

]4

[p(f, δ)]3

∣∣∣∣∣∣∣∣∣
δ=0

df,

=
∫

D

6

[
∂2p(f, δ)

∂δ2

]2

p(f, δ)

∣∣∣∣∣∣∣∣∣∣∣
δ=0

df.

As a result, we can write (G.11) as

J(δ) ≈ δ4

4

∫

D

[
∂2p(f, δ)

∂δ2

]2

p(f, δ)

∣∣∣∣∣∣∣∣∣∣∣
δ=0

df. (G.12)

On the other hand, we observe that

∂2I(δ)
∂δ2

∣∣∣∣∣
δ=0

= − ∂2

∂δ2

∫

D
∂2 ln p(f, δ)

∂δ2
p(f, δ)

∣∣∣∣∣
δ=0

df

=
∂2

∂δ2

∫

D

[
∂ ln p(f, δ)

∂δ

]2

p(f, δ)

∣∣∣∣∣∣∣∣∣
δ=0

df
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=
∫

D

2
∂p(f, δ)

∂δ

∂3p(f, δ)
∂δ3

+ 2

[
∂2p(f, δ)

∂δ2

]3

p(f, δ)

−
5

[
∂p(f, δ)

∂δ

]2 ∂2p(f, δ)
∂δ2

[p(f, δ)]2
+

2
[
∂p(f, δ)

∂δ

]4

[p(f, δ)]3

∣∣∣∣∣∣∣∣∣
δ=0

df

=
∫

D

2

[
∂2p(f, δ)

∂δ2

]2

p(f, δ)

∣∣∣∣∣∣∣∣∣∣∣
δ=0

df.

Therefore,

J(δ) ≈ δ4

8
∂2I(δ)
∂δ2

∣∣∣∣∣
δ=0

=
δ4

16
tr

[
∂2

∂δ2

([
R1 + σ2I

]−1 ∂R1

∂δ

)2
∣∣∣∣∣
δ=0

]

=
δ4

16
tr

[
2

(
∂R
∂δ

)2

+
∂2R
∂δ2

R +
∂2R
∂δ2

R

∣∣∣∣∣
δ=0

]
,

where

R =
[
R1 + σ2I

]−1 ∂R1

∂δ

∂R
∂δ

= −
([

R1 + σ2I
]−1 ∂R1

∂δ

)2

+
[
R1 + σ2I

]−1 ∂2R1

∂δ2

∂2R
∂δ2

= 2
([

R1 + σ2I
]−1 ∂R1

∂δ

)3

− 2
[
R1 + σ2I

]−1 ∂R1

∂δ

[
R1 + σ2I

]−1 ∂2R1

∂δ2

−
[
R1 + σ2I

]−1 ∂2R1

∂δ2

[
R1 + σ2I

]−1 ∂R1

∂δ
+

[
R1 + σ2I

]−1 ∂3R1

∂δ3

Finally, since

∂iR1

∂δi

∣∣∣∣∣
δ=0

= 0 i = 1, 3,
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we will have

J(δ) =
δ4

8
tr




([
R1 + σ2I

]−1 ∂2R1

∂δ2

∣∣∣∣∣
δ=0

)2

 . (G.13)

As we see from (G.13) and (G.13), the divergence for this case is also related to the

second derivative of the Fisher information matrix evaluated at δ = 0.
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Appendix H

Derivation of ∆Q and ∆P

H.1 Derivation of ∆Q and ∆P)

Computing ∆Q and ∆P requires the following

∆E0(h) = fs

∫ +∞

−∞

∫ +∞

−∞
h(x, y)∆h(x, y)dxdy

∆E10(h) = fs

∫ +∞

−∞

∫ +∞

−∞
∂h(x, y)

∂x

∂∆h(x, y)
∂x

dxdy

= fs

∫ +∞

−∞

[
lim

∂h(x, y)
∂x

∆h(x, y)
∣∣∣∣
x→+∞

x→−∞
−

∫ +∞

−∞
∂2h(x, y)

∂x2
∆h(x, y)dx

]
dy

= −fs

∫ +∞

−∞

∫ +∞

−∞
∂2h(x, y)

∂x2
∆h(x, y)dxdy

∆E01(h) = fs

∫ +∞

−∞

∫ +∞

−∞
∂h(x, y)

∂y

∂∆h(x, y)
∂y

dxdy

= −fs

∫ +∞

−∞

∫ +∞

−∞
∂2h(x, y)

∂y2
∆h(x, y)dxdy

∆E20(h) = fs

∫ +∞

−∞

∫ +∞

−∞
∂2h(x, y)

∂x2

∂2∆h(x, y)
∂x2

dxdy

= fs

∫ +∞

−∞


 lim

∂2h(x, y)
∂x2

∂∆h(x, y)
∂x

∣∣∣∣∣
x→+∞

x→−∞
−

∫ +∞

−∞
∂3h(x, y)

∂x3

∂∆h(x, y)
∂x

dx


 dy

= fs

∫ +∞

−∞


− lim

∂3h(x, y)
∂x3

∆h(x, y)

∣∣∣∣∣
x→+∞

x→−∞
+

∫ +∞

−∞
∂4h(x, y)

∂x4
∆h(x, y)dx


 dy
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= fs

∫ +∞

−∞

∫ +∞

−∞
∂4h(x, y)

∂x4
∆h(x, y)dxdy

∆E02(h) = fs

∫ +∞

−∞

∫ +∞

−∞
∂2h(x, y)

∂y2

∂2∆h(x, y)
∂y2

dxdy

= fs

∫ +∞

−∞

∫ +∞

−∞
∂4h(x, y)

∂y4
∆h(x, y)dxdy

∆E11(h) = fs

∫ +∞

−∞

∫ +∞

−∞
∂2h(x, y)

∂x∂y

∂2∆h(x, y)
∂x∂y

dxdy

= fs

∫ +∞

−∞

∫ +∞

−∞
∂4h(x, y)
∂x2∂y2

∆h(x, y)dxdy

where we assume that

lim h(x, y) = lim
∂i+jh(x, y)

∂xi∂yj
= 0

as x or y → ±∞. Therefore

∆P =




∆E0 0 0 −∆E10 −∆E01 0

0 ∆E10 0 0 0 0

0 0 ∆E01 0 0 0

−∆E10 0 0 ∆E20 ∆E11 0

−∆E01 0 0 ∆E11 ∆E02 0

0 0 0 0 0 ∆E11




(H.1)
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and

∆Q =




0 0 0 0 0 0

0 ∆E10 0 0 0 0

0 0 ∆E01 0 0 0

0 0 0 ∆

(
E20 − E2

10

E0

)
∆

(
E11 − E10E01

E0

)
0

0 0 0 ∆
(

E11 − E10E01

E0

)
∆

(
E02 − E2

01

E0

)
0

0 0 0 0 0 ∆E11




(H.2)

where

∆

(
E20 − E2

10

E0

)
= ∆E20 − 2

E10

E0
∆E10 +

E2
10

E2
0

∆E0

= fs

∫ +∞

−∞

∫ +∞

−∞

[
h40(x, y)− 2

E10

E0
h20(x, y) +

E2
10

E2
0

h(x, y)

]
∆h(x, y)dxdy

∆
(

E11 − E10E01

E0

)
= ∆E11 − E01

E0
∆E10 − E10

E0
∆E01 +

E10E01

E2
0

∆E0

= fs

∫ +∞

−∞

∫ +∞

−∞

[
h22(x, y)− E01

E0
h20(x, y)− E10

E0
h02(x, y) +

E10E01

E2
0

h(x, y)
]

×∆h(x, y)dxdy

∆

(
E02 − E2

01

E0

)
= ∆E02 − 2

E01

E0
∆E01 +

E2
01

E2
0

∆E0

= fs

∫ +∞

−∞

∫ +∞

−∞

[
h04(x, y)− 2

E01

E0
h02(x, y) +

E2
01

E2
0

h(x, y)

]
∆h(x, y)dxdy
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Appendix I

Computing the Energy Terms

I.1 Computing the Energy Terms

In this appendix, we explain the general process for the approximate compu-

tation of the energy terms. We will utilize the following identities for the calculation:

L∑

k=0

xk =
1− xL+1

1− x
(I.1)

L∑

k=0

kpxk =
p∑

m=1

xm ∂m

∂xm

(
1− xL+1

1− x

)
(I.2)

∑

k

kp+1 sin (xk) cos (xk) =
1
2

∂

∂x

∑

k

kp sin2 (xk) (I.3)

Instead of showing all the calculations, for the sake of brevity we discuss, as an example,

the calculation of the term hT
0 h0:

hT
0 h0 = 4

(N−1)/2∑

k=−(N−1)/2

sin2
(

2πfc

fs
k

)

=
(N−1)/2∑

k=−(N−1)/2

−
[
exp

(
j
2πfc

fs
k

)
− exp

(
−j

2πfc

fs
k

)]2
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=
(N−1)/2∑

k=−(N−1)/2

2− exp
(

j
4πfc

fs
k

)
− exp

(
−j

4πfc

fs
k

)

= 2N − 2
1− exp

(
j 2πfc

fs
(N + 1)

)

1− exp
(
j 4πfc

fs

) − 2
1− exp

(
−j 2πfc

fs
(N + 1)

)

1− exp
(
−j 4πfc

fs

) + 2

= 2N + 2− 2
1− cos

(
4πfc

fs

)
+ cos

(
2πfc

fs
(N − 1)

)
− cos

(
2πfc

fs
(N + 1)

)

1− cos
(

4πfc

fs

)

= 2N − 2
sin

(
2πfc

fs
N

)

sin
(

2πfc

fs

)

︸ ︷︷ ︸
C

(I.4)

Since sin(x) ≥ 1−
∣∣∣ 2
πx− 1

∣∣∣ for 0 ≤ x ≤ π, and 2πfc

fs
< π, by upper and lower bounding

the numerator and the denominator of |C|, respectively, we have

|C| = 2

∣∣∣∣∣∣
sin

(
2πfc

fs
N

)

sin
(

2πfc

fs

)
∣∣∣∣∣∣
≤ 2

sin
(

2πfc

fs

) ≤ 2

1−
∣∣∣4fc

fs
− 1

∣∣∣
(I.5)

Thus for the range of ε ≤ 2fc

fs
≤ 1− ε (representing the range of fs from just above the

Nyquist rate (2fc) to 1/ε times the Nyquist rate), we will have |C| < 1/ε and therefore

for ε < 5
N

hT
0 h0 ≈ 2N (I.6)

A similar approach can be followed to compute other energy terms.
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