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Abstract

Robust Visual Recognition with Locally Adaptive Regression Kernels

by

Hae Jong Seo

Visual recognition concerns identifying objects in an image or actions in a video. Re-

cent progress in network, storage, and computational power makes visual recognition

algorithms practical in such applications as surveillance, medical image analysis, vi-

sual image search, and more. Although current learning-based frameworks achieve

state of the art performance on the existing benchmark databases, they are often slow

in training phase and require a large number of training examples. However, a single

image can be the only example available in such applications as automatic passport

control at airports and image retrieval from the Web. As such, developing a sophisti-

cated descriptor is a key to visual recognition from a single (or a few) examples.

In this work, we propose to use a novel descriptor, locally adaptive regression

kernels (LARK). LARKs have several advantageous properties: (i) LARK is robust to il-

lumination variations, local deformation, and presence of data uncertainty, (ii) LARKs

capture local geometry exceedingly well by taking advantage of geodesic distance over

the Euclidean distance, and (iii) LARKs can be computed from multi-dimensional data.

Thus, they are applicable to a wide variety of problems, such as generic object detec-

tion, action recognition, saliency detection, and more. We also develop a real-time de-

tection framework by efficiently computing LARKs. The comprehensive experimental

results presented in each chapter will show the superiority of the LARKs over other

descriptors.
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Chapter 1

Introduction

Abstract – We address the visual recognition problem which concerns identifying ob-

jects in image and actions in video. In order to overcome disadvantages of the popular

learning-based recognition paradigm, we introduce a sophisticated descriptor, locally

adaptive regression kernel (LARK), which measures a pixel level self-similarity based on

geodesic distance. LARKs in 2-D (3-D) capture local (space-time) geometric structures

exceedingly well, thus they are useful for the visual recognition problem.

1.1 Visual Recognition Problem

Today, a huge number of images and videos are available online and the

number is rapidly growing. Thus, visual recognition is a very important component

in many computer vision systems. Areas where such systems are deployed are di-

verse and include such practical applications as surveillance, security, video confer-

ence, video forensics, medical image analysis, human-robot interaction, computational

photography, mobile vision, etc. as shown in Fig. 1.1. These applications are get-
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Figure 1.1: There are many practical applications of visual recognition.

ting more popular and pragmatic due to the recent advance in network, storage, and

computational power. Recently, the 2-D object recognition problem (including face,

pedestrian, and vehicle recognition) and the human action recognition problem have

attracted much attention because of the increasing demand for developing real-world

surveillance systems. However, visual recognition is a very difficult problem since ob-

jects can typically appear in completely different context and under different imaging

conditions. Examples of such differences can be wide-ranging, but include differing

view points, occlusion, lighting, and scale, rotation changes as shown in Fig. 1.2. Fur-

thermore, varying speed of actions from person to person can be a challenging factor

in recognizing actions.

For the last few decades, learning-based methods for recognizing visual ob-

jects have made impressive progress. Typically, learning-based approaches involve

generative or discriminative models for each category based on many training exam-

ples. In other words, these methods are mostly parametric, relying on visual object

models, such as constellation [27, 28], template matching [29, 3], bags of words [30, 31],
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2) different illumination,

3) different background

4) action speed
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Figure 1.2: There are many challenging conditions that make visual recognition difficult in
practice.

or shape models [32, 33], etc. For specific object classes, in particular faces, pedestrians

and cars, detectors based on the combination of low-level descriptors combined with

modern machine learning techniques have been shown effective. However, in order to

achieve sufficient accuracy, these systems require a large number of manually labeled

training data, typically hundreds or thousands of example images for each class to be

learned. In general, the training phase is slow, and the training is necessary again when

there is a new example available. Depending on the database, the system may end up

with over-tuning of the parameters. Recently, Caltech 101 [32], Caltech 256 [34], Pascal

VOC [35], and ImageNet [36] databases were introduced and played a pivotal role in

benchmarking classification methods. While 2-D visual object recognition has recently

proved capable of learning a respectably large number of categories (a couple of hun-

dred), 3-D action recognition is still only limited to less than a dozen categories at best

3



Pixel level Patch level Image level

Figure 1.3: LARK descriptors measure a pixel-level self-similarity. We extend this concept
to patch-level similarity for saliency detection in Chapter 2 and image-level similarity for ob-
ject/action detection in Chapter 3.

(6 for KTH [7], 10 for Weizmann dataset [6], and 12 for Hollywood [37] ). Furthermore,

2-D object recognition methods were not directly applicable to 3-D action recognition,

and thus, completely separate approaches have been proposed for the latter. Indeed,

even in terms of evaluation of performance, different criteria and methodologies have

been employed for 2-D and 3-D.

There is a recent trend that better deals with visual recognition with the help

of large database-driven nonparametric approaches [38, 39, 40]. These approaches are

motivated by the realization that there is today a wealth of annotated image data avail-

able online. Instead of training sophisticated parametric models, these methods try to

reduce the inference problem to matching a query to an existing set of annotated im-

ages. For example, these approaches can be very useful for such applications as image

retrieval from the web where a single query image is compared with every gallery

image in the annotated database, posing an image-to-image matching problem. More

generally, by taking into account a set of images which represent intra-class variations,

more robust recognition can be achieved. Such sets may consist of observations ac-

quired from a video sequence or by multiple still shots. In other words, classifying

4



a novel set of images into one of the training classes can be achieved through set-

to-image or set-to-set matching. As a successful example of set-to-image matching,

Boiman et al. [41] showed that a rather simple nearest-neighbor (NN) based image

classifier in the space of the local image descriptors is efficient and even outperforms

the leading learning-based image classifiers such as SVM-KNN [42], pyramid match

kernel (PMK) [43, 31]. Action recognition methods such as those in [21, 22, 44, 45]

which aim at recognizing actions based solely on one query support these ideas as

well. In fact, companies such as Viewdle1 and Videosurf2 are currently providing a

video search engine based on rather simple versions of such ideas.

1.2 Contributions

In this thesis, we propose a robust visual recognition system from a single (or

a few) examples using a novel descriptor, locally adaptive regression kernels (LARK) [46].

LARK basically measures a pixel-level similarity in a local window. We extend the con-

cept of pixel-level similarity used for LARK to patch-level similarity and image-level

similarity (see Fig. 1.3) to build a nonparametric detection framework. The proposed

framework requires minimal assumptions with the least number of training examples.

With LARKs, we can learn a wide variety of objects from relatively few examples and

recognize them in real time. A key intuition behind the success of the proposed system

with LARKs3 is that we consistently use the data-adaptive kernel density estimation

idea from LARK descriptor computation to nonparametric detection framework (see

1http://www.viewdle.com
2http://www.videosurf.com
3The comprehensive experimental results in each chapter will demonstrate superiority of the LARKs

over other descriptors in our nonparametric detection framework.
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Appendix A for more detail.) In the rest of this introductory chapter, we describe key

ideas, properties of LARK and provide comparison to other state of the art descriptors.

We develop applications for image and video in the following chapters. Specifically,

this thesis is structured as follows:

◃ Chapter 2 - Saliency Detection [47, 48]

In this chapter, we propose a novel nonparametric saliency detection with excel-

lent results in both static (2-D) and space-time (3-D) based on patch-level similar-

ity.

◃ Chapter 3 - Generic Object and Action Detection [49, 50, 51, 45]

Extending the knowledge of the patch-level similarity to image-level similarity,

we introduce a unified, generic object and action detection framework, which

produces state of the art performance.

◃ Chapter 4 - Real-time Robot Vision with Scalable LARK descriptors [52]

In this chapter, we develop a real-time visual recognition system by speeding

up the computation of LARK and employing coarse-to-fine pyramid search in

conjunction with hierarchical clustering of multiple examples. The system can

learn a wide variety of objects using relatively few examples and recognize them

in real time.

◃ Chapter 5 - Other Applications [53, 54]

There are two more applications where LARKs are successfully applied to; 1)

automatic change detection and 2) face verification.

Finally, in Chapter 6, we conclude the thesis and discuss possible topics for future

research.
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Self-similarity [Shechtman and Iran ‘07] (patchwise)

Figure 1.4: Difference between Euclidean distance and geodesic distance (the shortest path
along the manifold) in 1-D signal.

1.3 Locally Adaptive Regression Kernels (LARK)

1.3.1 LARK in 2-D

LARK effectively and efficiently captures local geometric structure by taking

advantage of self-similarity based on gradients. In order to measure the similarity of

two pixels, in general, we can naturally consider both the spatial distance (∆x) and the

gray level distance (∆z) (See Fig. 1.4.) The most simple way to incorporate the two

∆’s is the Euclidean distance between points. However, a much more effective way

to combine the two ∆’s is to define a “signal-induced" distance [55] which basically

stands for a distance between the points measured along the shortest path on the signal

manifold (a.k.a. the geodesic distance).

Suppose that we consider the parameterized image surface S(x1, x2) = {x1, x2

, z(x1, x2)}, embedded in the Euclidean space R3 as shown in Fig. 1.5: x1, x2 are spatial
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Figure 1.5: The geodesic distance in 2-D surface can be computed as squared arclength (d s2 =
d x2

1 +d x2
2 +d z2).

coordinates. The differential arclength on the surface is given by d s2 = d x2
1 +d x2

2 +d z2.

Applying the chain rule, we have

d z(x1, x2) = ∂z

∂x1
d x1 + ∂z

∂x2
d x2 = zx1 d x1 + zx2 d x2, (1.1)

where zx1 , zx2 are first derivatives along x1, x2 respectively. Plugging d z(x1, x2) into the

arclength definition, we have

d s2 = d x2
1 +d x2

2 +d z2,

= d x2
1 +d x2

2 + (zx1 d x1+zx2 d x2)2,

= [d x1 d x2]

 z2
x1
+1 zx1 zx2

zx1 zx2 z2
x2
+1


 d x1

d x2

 ,

= ∆x⊤C∆x+∆x⊤∆x, (1.2)

where ∆x = [d x1,d x2]⊤, and C is the local gradient covariance matrix (a.k.a. structure

tensor).

We measure this arclength between a center pixel and surrounding pixels in

a local window (see Fig. 1.6.)4 The effect of ∆x⊤∆x in the local small window is trivial

4In a particular example of computing LARK of size 5× 5 shown in Fig. 1.6, ∆x13 is [0,0]T since x13
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Figure 1.6: How to compute LARK (5 × 5) values centered at x13. First of all, geodesic distance
(middle) between x13 and surrounding pixels are computed and transformed to a similarity
(right). The darker blue colors are, the smaller distances are (middle). The red color means
higher similarity whereas blue color represents smaller similarity (right).

and data-independent, thus we only consider d̂ s
2 ≈∆x⊤C∆x.

We define LARK as a self-similarity between a center and its surroundings as

follows:

K (Cl ,∆xl ) = exp(−d̂ s
2

) = exp
{−∆x⊤l Cl∆xl

}
, (1.3)

where l∈[1, · · ·,P ], P is the total number of samples in a local analysis window around a

sample position at the pixel of interest x.

In theory, Cl is based on gradients (zx1 , zx2 ) at one pixel. However, this Cl is

unstable and prone to noise components in the data. Therefore, we use a collection of

first derivatives of the visual signal zl , which contain the values of a patch Ωl of pixels

centered at position l , along spatial (x1, x2) axes. Then, the matrix Cl ∈ R(2×2) can be

is the center pixel. C13 is an average 2×2 covariance matrix computed from the patch Ω13 of size 5×5

centered at x13.
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Figure 1.7: Examples of geodesic distance, LARK, and normalized LARK. We show these in
non-overlapping patches of a face image for a graphical purpose.

written as follows:

Cl =
∑

m∈Ωl

 z2
x1

(m) zx1 (m)zx2 (m)

zx1 (m)zx2 (m) z2
x2

(m)

 . (1.4)

This can be interpreted as averaging geodesic distances in a patch to obtain a robust

estimation even in the presence of noise and other perturbations.

Another key aspect of LARK lies in the fact that we implicitly smooth the

image surface so that the local geodesic distance can be computed in a stable way.

Specifically, we perform eigen-decomposition on the (“average") covariance matrix Cl

as follows:

Cl =λ1u⊤
1 u1 +λ2u⊤

2 u2 = s1s2(
s1

s2
u⊤

1 u1 + s2

s1
u⊤

2 u2), (1.5)

where λ1,λ2 are eigenvalues, u1,u2 are eigenvectors, and s1 =
√

λ1, s2 =
√

λ2 are singular

values.

Singular values s1, s2 are regularized to avoid numerical instabilities, while

10



both eigenvectors remain the same. Namely,

Cr eg
l = (s1s2 +ϵ)α(

s1 +τ

s2 +τ
u⊤

1 u1 + s2 +τ

s1 +τ
u⊤

2 u2), (1.6)

where ϵ,τ,α are set to 10−7,1,0.5 respectively, and they are fixed throughout the thesis.

This5 can be thought of as a non-linear mapping of the eigenvalues in order to turn

the structure tensor into a proper Riemannian metric [56]. Fig. 1.6 describes how to

compute LARK descriptors of size 5×5. We compute LARKs densely from an image

and LARKs are normalized6 to a unit norm vector (k) as shown in Fig. 1.7.

Invariance Property of LARK Normalized LARKs are robust to illumination changes

and the presence of noise as shown in Fig. 1.8. We also conducted an experiment in or-

der to study the invariance properties of LARK under simple spatial transformations

as similarly done in [57]. Specifically, we generated a dataset of 16x16 image patches

from a large collection of natural images under different translations and rotations.

We assume that descriptors computed from each patch are locally invariant if they do

not change significantly under small transformations of the input. We compare the

mean squared error (MSE) between the descriptor of the reference patch and the de-

scriptor of the transformed version, averaged over 100 image patches. Fig. 1.9 shows

comparisons of LARK against SIFT, SIFT with no invariance, IPSD, and IPSD with no

invariance [57] (learned invariant features) under horizontal shift with 25 degree rota-

tion and only horizontal shift. We observe that the normalized MSE of LARK changes

more gradually than the MSE produced by other methods as the shift increases in both

5The intuition behind τ is to keep the shape of the kernel circular in flat areas (s1 ≈ s2 ≈ 0), and elongate
it near edge areas (s1 ≫ s2) while the scaling parameter (s1s2 +ϵ)α is to result in large footprints in the flat
(smooth) and smaller ones in the textured areas. The particular form of regularization is not critical in the
sense that other non-linear mapping of the eigenvalues can be used as in [56].

6We can think of the normalized version of LARK as probability density in a local neighborhood.
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Figure 1.8: Robustness of LARK to illumination changes and the presence of white Gaussian
noise (WGN).

cases.

LARKs Are Visual Geometric Units LARKs are closely related to visual geometric

units that can serve as a key for visual perception. As shown in Fig. 1.10, detailed in-

spection of Close’s paintings7 reveals a multiplicity of simple, but evocative geometric

units, which at a distance convey a surprisingly accurate rendition of the subject. In

fact, these paintings by Chuck Close go beyond art and lead to important questions

regarding visual perception. Recently, Pelli [58], a psychologist and neuroscientist at

New York University, identified a critical size of the geometric units in Close’s works

7The contemporary American artist Chuck Close (1940 -) is well known for his block portraits of faces
that are composed of non-overlapping local geometric forms.
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Figure 1.9: Mean squared error (MSE) comparison between descriptors computed from a patch
and its transformed version. Left: the transformed patch is horizontally shifted. Right: the
transformed patch is first rotated by 25 degrees and then horizontally shifted. The curves are
an average over 100 patches from natural images. LARK appears to be more invariant to these
transformations than others.

necessary for the image to take on an overall structure rather than to appear as an ab-

straction. Here, the point is that the size and type of the geometric units determine their

power to convey globally perceived shapes [58, 59, 60]. In this thesis, we investigate

the effect of LARK size and discriminativity of LARKs.

1.3.2 LARK in 3-D

Now, we introduce the time axis to the data model so that xl = [x1, x2, t ]T
l : x1

and x2 are the spatial coordinates, and t is the temporal coordinate. Similar to the 2-D

case, the covariance matrix Cl ∈R(3×3) can be written as follows:

Cl =
∑

m∈Ωl


z2

x1
(m) zx1 (m)zx2 (m) zx1 (m)zt (m)

zx1 (m)zx2 (m) z2
x2

(m) zx2 (m)zt (m)

zx1 (m)zt (m) zx2 (m)zt (m) z2
t (m)

 , (1.7)
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Figure 1.10: LARKs are similar to geometric units that artist Chuck Close employs for his block
portraits. Top: LARKs computed from a bike image, Bottom: A self-portrait by Chuck Close,
which consists of many geometric units.

where Ωl is a cube instead of a patch. This enables us to obtain a robust estimation of

Cl even in the presence of noise and other perturbations. Then, as similarly done in the

2-D case, we perform eigen-decomposition on the (“average") covariance matrix Cl as

follows:

Cl =λ1u⊤
1 u1 +λ2u⊤

2 u2 +λ3u⊤
3 u3 = s1s2s3(

s1

s2s3
u⊤

1 u1 + s2

s1s3
u⊤

2 u2 + s3

s1s2
u⊤

3 u3), (1.8)

Singular values s1, s2, s3 are regularized to avoid numerical instabilities, while both

eigenvectors remain the same as follows:

Cr eg
l = (s1s2s3 +ϵ)α(

s1 +τ

s2s3 +τ
u⊤

1 u1 + s2 +τ

s1s3 +τ
u⊤

2 u2 + s3 +τ

s1s2 +τ
u⊤

3 u3), (1.9)

where ϵ,τ,α are same as those in the 2-D case.
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Space-time gradient vector field

3x3 local covariance matrices

Figure 1.11: Graphical description of how 3-D LARK values centered at voxel of interest x38

are computed in a space-time edge region. Note that each voxel location has its own Cl ∈ R3×3

computed from the space-time gradient vector field within a local space-time window.

Figure 1.12: Examples of 3-D LARKs capturing 3-D local underlying geometric structure in
various regions. In order to compute 3-D LARKs, 5 frames (frame 13 to frame 17) were used.
3-D LARKs are shown upsampled for illustration only.
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In the 3-D case, orientation information captured in 3-D LARK contains the

motion information implicitly [61]. It is worth noting that a significant strength of us-

ing this implicit framework (as opposed to the direct use of estimated motion vectors)

is the flexibility it provides in terms of smoothly and adaptively changing descriptors.

This flexibility allows the accommodation of even complex motions, so long as their

magnitudes are not excessively large8. Fig. 1.12 shows examples of 3-D LARK cap-

turing 3-D local underlying geometric structure in various space-time regions. The

values of the kernel K in (1.3) are based on the covariance matrices Cl along with their

space-time locations xl . Intuitively, Cl ’s computed from the local analysis cube Ωl are

similar to one another in the motion-free region (see Fig. 1.12 [1]). On the other hand,

in the region where motion exists (see Fig. 1.12 [2,3,4,5]), the kernel size and shape

depend on both Cl and its space-time location xl in the local space-time window. Thus,

if the pixel of interest (center pixel of kernel) is located in space-time edge region, high

values in the kernel are yielded along the space-time edge region whereas the rest of

kernel values are near zero. Fig 1.13 shows that 3-D LARKs are effective at capturing

local space-time geometry individually, and global space-time geometry collectively.

1.3.3 Comparison to Other Descriptors

LARK is related to, but more general than bilateral kernels (BL) [1], non-local

means kernels (NLM) [2], and local self-similarity (SSIM) [11]. LARK can be distin-

guished from BL, NLM, and SSIM in many useful ways which we explain below.

8When the magnitude of the motions is large (relative to the support of the LARKs, specifically,) a
basic form of coarse but explicit motion compensation will become necessary. We refer the reader to [61]
for more detail.
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3D -LARKs

Figure 1.13: 3-D LARKs computed from a hand-waving action and a bending action are shown.
For graphical description, we only computed 3-D LARKs at non-overlapping 5× 5× 5 cubes,
even though we compute 3-D LARKs densely in practice.

Bilateral Kernels (BL) were originally developed for edge-preserving smoothing [1]

and has been shown to be effective in tone-mapping [62] in computer graphics. BL is

defined as follows:

K (yl , y,xl ,x) = exp

{
−∥yl − y∥2

h2
r

− ∥xl −x∥2

h2
s

}
, (1.10)

where yl is a pixel value at xl near x, hr and hs are global smoothing parameters

for photometric and spatial distances respectively. BL captures underlying geomet-

17



Image BL NLM LARK HOG

Figure 1.14: Comparison of BL [1], NLM [2], LARK, and HOG [3] computed in non-
overlapping patches. This figure is better illustrated in color.

ric structures by separately computing radiometric and spatial similarities between a

center pixel and its surroundings based on Euclidean distance. Since it is based on

a direct similarity, the resulting geometric structure is not very informative and quite

sensitive to noise and variation in illumination. This idea was generalized to measur-

ing similarity between (not necessarily local) patches, in non-local means (NLM) [2].

Non-local Means Kernels (NLM) is defined as a weighted Gaussian kernel:

K (yl ,y,xl ,x) = exp

{
−∥yl −y∥2

h2
r

− ∥xl −x∥2

h2
s

}
, (1.11)

where yl is a patch of pixels centered at xl , hr and hs are global smoothing parame-

ters. Since NLM makes use of a patch instead of a pixel for similarity, it can capture

more sophisticated geometric structure than BL. However NLM tends to fail in cap-

turing accurate geometric shape in object boundaries. It is worth noting that NLM is

still based on gray values and Euclidean distance. On the other hand, LARK utilizes

a stable estimate of gradients covariance matrices which allow it to be robust in the

presence of noise and certain illumination changes. Fig. 1.14 clearly demonstrates that

LARK captures geometric structure in a more stable way than BL and NLM do.

18



Local Self-similarity Kernel (SSIM) Shechtman and Irani [11] proposed the so-called

local self-similarity kernel for object detection. The SSIM kernel is defined as:

K (yl ,y) = exp

{
− ∥yl −y∥2

max(vnoi se , v)

}
, (1.12)

where vnoi se is a constant that stands for photometric variations (in color, illumination

or due to noise), and v is the maximal variance of the difference of all patches within a

very small neighborhood of x.

As shown in equations (1.11) and (1.12), NLM and SSIM share similar forms.

However SSIM is designed in a more sophisticated way than NLM because SSIM uses

color patches, and log-polar representation which accounts for local affine deforma-

tions. Up to now, we have analyzed a relationship between LARK and other descrip-

tors such as BL,NLM, and SSIM. Now we briefly discuss a relationship between LARK

and histogram of gradients descriptors.

Relation to Histogram of Gradients Descriptor For the past few years, histogram

of gradients based descriptors computed from interest points have become ubiquitous

as local image descriptors. With the advent of SIFT [18], many researchers have de-

veloped such variants as PCA-SIFT [63], GLOH (Gradient Location and Orientation

Histogram) [19], shape context [20], HOG [3] etc. We refer the reader to [19] for a

comprehensive study on local image descriptors.

HOG and SIFT use histogram representation of quantized gradient orienta-

tions. It is interesting to note that 3-D LARKs9 seem related to “HOG3D" introduced in

[65]. However, our method is quite different in that our descriptors capture voxel rela-

tionships based on the locally measured distance between voxels using a natural signal
9HoG [3] and HoF [64] are also related to our 2-D LARKs (x1 − x2 axes) and 2-D LARKs (either x1 − t

axes or x2 − t axes).
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BL (bilateral filter)

NLM (Non-local mean)

SSIM (self-similarity)

SIFT (Scale Invariant Feature Transform)

HOG (Histogram of Oriented Gradients)

GradientsSelf-similarity

LARK

Geodesic distance

Euclidean 

distance
Histogram

Gray level
quantization

HOG 3D / HOF(Histogram of Flow)

Figure 1.15: LARK shares self-similarity with BL, NLM, SSIM while sharing gradients with SIFT
and its variants. However, LARK is the only one descriptor based on the geodesic distance.

induced metric, whereas HOG3D mostly makes use of the histogram of quantized lo-

cal space-time gradients. We believe that quantization of oriented gradients, while

useful in reducing computational complexity, can lead to a significant degradation in

discriminative power of descriptors. This effect is particularly severe in the case where

there is only a single positive example available without any prior information, which

we will explain in Chapters II and III. Superior performance of LARKs in 2-D and 3-D

over BL, NLM, SSIM, SIFT, HOG, and HOG3D is also demonstrated in Chapters II and

III. The Discussion above is summarized in Fig. 1.15.

Summary – In this chapter, we introduced LARK descriptors for visual recognition

and noted some invariance properties of LARKs. LARKs are distinguished from other

state of the art descriptors in the sense that LARK is based on the geodesic distance

derived from the regularized covariance matrices. Since LARKs capture local geomet-

ric structure exceedingly well, we use LARKs to solve saliency detection problem in
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Chapter 2. The concept of pixel-level similarity in LARKs is then extended to patch-

level similarity, which leads to a nonparametric saliency detection framework without

any prior information. Superiority of LARKs in 2-D and 3-D over other descriptors in

saliency detection will be presented later in Chapter 2.
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Chapter 2

Saliency Detection

Abstract – We present a novel, unified framework for both static and space-time

saliency detection [47, 48]. The proposed method is a bottom-up approach with LARK

descriptors extracted from the given image (or a video). Visual saliency is computed

using the said “self-resemblance" measure derived from the concept of patch-level sim-

ilarity. The framework results in a saliency map where each pixel (or voxel) indicates

the statistical likelihood of saliency of a center patch given its surrounding patches. As

a similarity measure, matrix cosine similarity (a generalization of cosine similarity) is

employed. State of the art performance is demonstrated on commonly used human

eye fixation data (static scenes [8] and dynamic scenes [66]) and some psychological

patterns.

2.1 Introduction

The human visual system has a remarkable ability to automatically attend

to only salient locations in static and dynamic scenes [67, 68, 69]. This ability en-
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ables us to allocate limited perceptual and cognitive resources on task-relevant visual

input. In machine vision system, a flood of visual information fed into the system

needs to be efficiently scanned in advance for relevance. In this chapter, we pro-

pose a computational model for selective visual attention, otherwise known as visual

saliency. In recent years, visual saliency detection has been of great research interest

[8, 4, 70, 5, 71, 39, 72, 73, 74, 75, 76]. Analysis of visual attention has benefited a wide

range of applications such as object detection, action detection, video summarization

[77], image quality assessment [78, 79] and more. There are two types of computa-

tional models for saliency according to what the model is driven by: a bottom-up

saliency [8, 4, 5, 71, 72, 73, 75, 76] and a top-down saliency [70, 39, 74]. As opposed

to bottom-up saliency algorithms that are fast and driven by low-level features, top-

down saliency algorithms are slower and task-driven. In general, the plausibility of

bottom-up saliency models is examined in terms of predicting eye movement data

made by human observers in a task designed to minimize the role of top-down factors.

Although some progress has been made by parametric saliency models [4, 71, 72, 39]

in predicting fixation patterns and visual search, there is significant room to further

improve the accuracy.

In this chapter, we develop a nonparametric bottom-up visual saliency method

which exhibits state of the art performance. The problem of interest can be described

as follow: Given an image or a video, we are interested in accurately detecting salient

objects or actions from the data without any background knowledge. To accomplish

this task, we propose to use, as features, LARK descriptors in 2-D and 3-D which cap-

ture local data structure exceedingly well. Our approach is motivated by a probabilistic

framework, which is based on a nonparametric estimate of the likelihood of saliency.
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As we describe below, this boils down to the local calculation of a “self-resemblance"

map, which measures the similarity of a patch (feature matrix) at a pixel of interest to

its neighboring patches (feature matrices).

Previous work Itti et al. [71] introduced a saliency model which was biologically in-

spired. Specifically, they proposed to use a set of feature maps from three complemen-

tary channels as intensity, color, and orientation. The normalized feature maps from

each channel were then linearly combined to generate the overall saliency map. Even

though this model has been successful in predicting human fixations, it is somewhat

ad-hoc in that there is no objective function to be optimized and many parameters must

be tuned by hand. With the proliferation of eye-tracking data, a number of researchers

have recently attempted to address the question of what attracts human visual atten-

tion by being more mathematically and statistically precise [8, 4, 80, 70, 66, 72, 76].

Bruce and Tsotsos [8] modeled bottom-up saliency as the maximum informa-

tion sampled from an image. More specifically, saliency is computed as Shannon’s

self-information − log p(K), where K is a local visual feature (i.e., derived from indepen-

dent component analysis (ICA) performed on a large sample of small RGB patches in

the image.) The probability density function is estimated based on a Gaussian kernel

density estimate in a neural circuit.

Gao et al. [4, 80, 70] proposed a unified framework for top-down and bottom-

up saliency as a classification problem with the objective being the minimization of

classification error. They first applied this framework to object detection [70] in which

a set of features are selected such that a class of interest is best discriminated from all

other classes, and saliency is then defined as the weighted sum of features that are

salient for that class. In [4], they defined bottom-up saliency using the idea that pixel
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locations are salient if they are distinguished from their surroundings. They used dif-

ference of Gaussians (DoG) filters and Gabor filters, measuring the saliency of a point

as the Kullback-Leibler (KL) divergence between the histogram of filter responses at

the point and the histogram of filter responses in the surrounding region. Mahade-

van and Vasconcelos [81] applied this bottom-up saliency to background subtraction

in highly dynamic scenes.

Oliva and Torralba [82, 39] proposed a Bayesian framework for the task of vi-

sual search (i.e., whether a target is present or not.) They modeled bottom-up saliency

as 1
p(K|KG ) where KG represents a global feature that summarizes the appearance of the

scene, and approximated this conditional probability density function by fitting to a

multivariate exponential distribution. Zhang et al. [72] also proposed saliency detec-

tion using natural statistics (SUN) based on a similar Bayesian framework to estimate

the probability of a target at every location. They also claimed that their saliency mea-

sure emerges from the use of Shannon’s self-information under certain assumptions.

They used ICA features as similarly done in [8], but their method differs from [8] in

that natural image statistics were applied to determine the density function of ICA

featuers. Itti and Baldi [66] proposed so-called “Bayesian Surprise" and extended it to

the video case [10]. They measured KL-divergence between a prior distribution and

posterior distribution as a measure of saliency.

For saliency detection in video, Marat et al. [75] proposed a space-time saliency

detection algorithm inspired by the human visual system. They fused a static saliency

map and a dynamic saliency map to generate the space-time saliency map. Gao et

al. [4] adopted a dynamic texture model using a Kalman filter in order to capture

the motion patterns even in the case when the scene is itself dynamic. Zhang et al.
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[73] extended their SUN framework to a dynamic scene by introducing temporal filter

(Difference of Exponential:DoE) and fitting a generalized Gaussian distribution to the

estimated distribution for each filter response.

Most of the methods [4, 71, 82, 73] based on Gabor or DoG filter responses

require many design parameters such as the number of filters, type of filters, choice of

the nonlinearities, and a proper normalization scheme. These methods tend to empha-

size textured areas as being salient regardless of their context. In order to deal with

these problems, [8, 72] adopted non-linear features that model complex cells or neu-

rons in higher levels of the visual system. Kienzle et al. [83] further proposed to learn

a visual saliency model directly from human eyetracking data using a support vector

machine (SVM).

Different from traditional image statistical models, a spectral residual ap-

proach based on the Fourier transform was recently proposed by Hou and Zhang

[5]. The spectral residual approach does not rely on parameters and detects saliency

rapidly. In this approach, the difference between the log spectrum of an image and

its smoothed version is the spectral residual of the image. However, Guo and Zhang

[84] claimed that what plays an important role for saliency detection is not spectral

residual, but the image’s phase spectrum. Recently, Hou and Zhang [76] proposed a

dynamic visual attention model by setting up an objective function to maximize the

entropy of the sampled visual features based on the incremental coding length.

Overview of the Proposed Approach Our contributions to the saliency detection

task are three-fold. First we propose to use LARKs as features which, fundamentally

differ from conventional filter responses, but capture the underlying local structure of

the data exceedingly well, even in the presence of significant distortions. Second, in-
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Figure 2.1: Illustration of difference between Gao el al. [4]’s approach and our approach about
a center-surround definition.

stead of using parametric models, we propose to use a nonparametric kernel density

estimation for such features, which results in a saliency map constructed from a local

self-resemblance measure, indicating likelihood of saliency. Lastly, we provide a sim-

ple, but powerful unified framework for both static and space-time saliency detection.

These contributions, which we will highlight at the end of this section, are evaluated

in Section 2.3 in terms of predicting human eye fixation data in both commonly used

image [8] and video [66] datasets.

As similarly done in Gao et al. [4], we measure saliency at a pixel in terms of

how much it stands out from its surroundings. To formalize saliency at each pixel, we

let the binary random variable yi denote whether a pixel position xi = [x1, x2]⊤i is salient

or not as follows:

yi =
{ 1, if xi is salient,

0, otherwise,
(2.1)

where i = 1, · · · , M , and M is the total number of pixels in the image. Motivated by the

approach in [72, 82], we define saliency at pixel position xi as a posterior probability
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Pr (yi = 1|k) as follows:

Si = Pr (yi = 1|k), (2.2)

where the feature matrix, ki = [k1
i , · · · ,kL

i ] at pixel of interest xi (what we call a center

feature) contains a set of (normalized) LARK feature vectors (ki ) in a local neighbor-

hood where L is the number of features in that neighborhood (Note that if L = 1, we

use a single feature vector. Using a feature matrix consisting of a set of feature vectors

provides more discriminative power than using a single feature vector as also pointed

out in [14, 85].) In turn, the larger collection of features k = [k1, · · · ,kN ] is a matrix con-

taining features not only from the center, but also a surrounding region (what we call

a center+surround region; See Fig. 2.1.) N is the number of feature matrices in the

center+surround region. Using Bayes’ theorem, Equation (2.2) can be written as

Si = Pr (yi = 1|k) = p(k|yi = 1)Pr (yi = 1)

p(k)
. (2.3)

By assuming1 that 1) a-priori, every pixel is considered to be equally likely to be salient;

and 2) p(k) are uniform over features, the saliency we defined boils down to the con-

ditional probability density p(k|yi = 1).

Since we do not know the conditional probability density p(k|yi = 1), we need

to estimate it. Gao et al. [4] and Zhang et al. [72] fit the marginal density of local

feature vectors p(k) to a generalized Gaussian distribution. However, in this chapter,

we approximate the conditional density function p(k|yi = 1) based on nonparametric

kernel density estimation which will be explained in detail in Section 2.2.

Before we begin a more detailed description, it is worthwhile to highlight

some aspects of our proposed framework. While the state-of-the art methods [8, 4, 66,
1Tavakoli et al. [86] proposed to approximate p(k) by estimating p(k|yi = 1) and p(k|yi = 0) separately

while they learned Pr (yi = 1) from a training set.

28



Image

LARKs Self-Resemblance

Saliency map
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3D LARKs
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(b)

Figure 2.2: Graphical overview of saliency detection system (a) static saliency detection (b)
space-time saliency detection. Note that the saliency measure Si is identical for both static and
space-time saliency detection except that 3-D LARKs and cubes are employed for space-time
saliency detection.

72] are related to our method, their approaches fundamentally differ from ours in the

following respects: 1) While they use Gabor filters, DoG filters, or ICA to derive fea-

tures, we propose to use LARKs which are highly nonlinear but stable in the presence

of uncertainty in the data [46]. In addition, normalized local steering kernels provide

a certain invariance as shown in Fig. 1.8 and Fig. 2.14; 2) As opposed to [4, 72] which

model marginal densities of band-pass features as a generalized Gaussian distribution,

we estimate the conditional probability density p(k|yi = 1) using nonparametric kernel

density estimation (see Fig. 2.3); 3) While Itti and Baldi [66] computed, as a measure

of saliency, KL-divergence between a prior and a posterior distribution, we explicitly
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estimate the likelihood function directly using nonparametric kernel density estima-

tion; 4) Our space-time saliency detection method does not require explicit motion

estimation; 5) The proposed unified framework can handle both static and space-time

saliency detection. Fig. 2.2 shows an overview of our proposed framework for saliency

detection.

To summarize the operation of the overall algorithm, we first compute the

normalized LARKs (space-time LARKs) from the given image (video) and vectorize

them as k’s. Then, we identify features ki centered at a pixel of interest xi , and a set of

feature matrices k j in a center+surrounding region and compute the self-resemblance

measure as shown in equations (2.7) and (2.8). The final saliency map is given as a

density map as shown in Fig 2.2. In the next section, we provide further technical

details about the steps outlined above. In Section 2.3, we demonstrate the performance

of the system with experimental results.

2.2 Saliency by Local Self-Resemblance

As we alluded to in Section 2.1, saliency at a pixel xi is measured using the

conditional density of the feature matrix at that position: Si = p(k|yi = 1). Hence, the

task at hand is to estimate p(k|yi = 1) over i = 1, · · · , M . In general, the Parzen den-

sity estimator is a simple and generally accurate non-parametric density estimation

method [87]. However, in higher dimensions and with an expected long-tail distribu-

tion, the Parzen density estimator with an isotropic kernel is not the most appropriate

tool [88, 89, 90].

LARK features tend to generically come from long-tailed distributions [49],

and as such, they do not form clusters in the feature space. When we estimate a prob-
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Figure 2.3: Example of saliency computation in natural gray-scale image. The estimated prob-
ability density p̂(K|yi = 1) at the point 1 (0.12) is much higher than ones (0.043) and (0.04) at the
point 3 and point 4, which depicts that the point 1 is more salient than point 3 and point 4.
Note that red values in saliency map represent higher saliency, while blue values mean lower
saliency.

ability density at a particular feature point, for instance ki = [k1
i , · · · ,kL

i ] (where L is the

number of vectorized LARKs (k’s) employed in the feature matrix), the isotropic kernel

centered on that feature point will spread its density mass equally along all the feature

space directions, thus giving too much emphasis to irrelevant regions of space and too

little along the manifold. Earlier studies [88, 89, 90] also pointed out this problem. This

motivates us to use a locally data-adaptive kernel density estimator. We define the condi-

tional probability density p(k|yi = 1) at xi as a center value of a normalized adaptive

kernel (weight function) G(·) computed in the center+surround region as follows:
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Si = p̂(k|yi = 1) = Gi (ki −ki )∑N
j=1 Gi (ki −k j )

, (2.4)

Inspired by earlier works such as [91, 92, 93, 49] that have shown the effectiveness of

correlation-based similarity, the kernel function Gi in Equation (2.4) can be defined by

using the concept of matrix cosine similarity [49] as follows:

Gi (ki −k j ) = exp

(−||ki −k j ||2F
2σ2

)
= exp

(−1+ρ(ki ,k j )

σ2

)
, j = 1, · · · , N , (2.5)

where ki = 1
∥ki ∥F

[
k1

i , · · · ,kL
i

]
and k j = 1

∥k j ∥F

[
k1

j , · · · ,kL
j

]
, || · ||F is the Frobenious norm, and

σ is a parameter (This parameter is set to 0.07 and fixed for all the experiments.) con-

trolling the fall-off of weights. Here, ρ(ki ,k j ) is the “Matrix Cosine Similarity (MCS)"

between two feature matrices ki ,k j and is defined as the Frobenius inner product be-

tween two normalized matrices (ρ(ki ,k j ) =< ki ,k j >F= trace
(

k⊤
i k j

∥ki ∥F ∥k j ∥F

)
∈ [−1,1].) This

matrix cosine similarity2 can be rewritten as a weighted sum of the vector cosine sim-

ilarities [91, 92, 93] ρ(ki ,k j ) between each pair of corresponding feature vectors (i.e.,

columns) in ki ,k j as follows:

ρ(ki ,k j )=
L∑

ℓ=1

kℓ
i
⊤

kℓ
j

∥ki∥F ∥k j∥F
=

L∑
ℓ=1

ρ(kℓ
i ,kℓ

j)
∥kℓ

i ∥∥kℓ
j ∥

∥ki∥F ∥k j∥F
. (2.6)

The weights are represented as the product of ∥kℓ
i ∥

∥ki ∥F
and

∥kℓ
j ∥

∥k j ∥F
which indicate the rela-

tive importance of each feature in the feature sets ki ,k j . This measure not only gener-

alizes the cosine similarity, but also overcomes the disadvantages of the conventional

Euclidean distance which is sensitive to outliers (This measure can be efficiently com-

puted by column-stacking the matrices ki ,k j and simply computing the cosine similar-

ity between two long column vectors.) By inserting Equation (2.5) into Equation (2.4),

2We refer the reader to Section 3.2.2 for more detail
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Figure 2.4: As an example of saliency detection in a color image (in this case, CIE L*a*b*), we
show how saliency is computed using matrix cosine similarity.

Si can be rewritten as follows:

Si = 1∑N
j=1 exp

(−1+ρ(ki ,k j )
σ2

) . (2.7)

Fig. 2.3 describes what normalized kernel functions Gi look like in various

regions of a natural image. As shown in Fig. 2.3, at xi (that is, Si = p̂(k|yi = 1)) can

be explained by the peak value of the normalized weight function Gi which contains

contributions from all the surrounding feature matrices. In other words, p̂(k|yi = 1)

reveals how salient ki is given all the features k j ’s in a neighborhood.
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Figure 2.5: Comparisons between (1) Simple normalized summation and (2) The use of matrix
cosine similarity without any fusion in three different color spaces. Simple normalized sum-
mation method tends to be dominated by a particular chrominance information. It is clearly
shown that using matrix cosine similarity provides consistent results than the simple normal-
ized summation fusion method.

Handling Color Images Up to now, we only dealt with saliency detection in a grayscale

image. If we have color input data, we need an approach to integrate saliency infor-

mation from all color channels. To avoid some drawbacks of earlier methods [71, 94],

we do not combine saliency maps from each color channel linearly and directly. In-

stead we utilize the idea of matrix cosine similarity. More specifically, we first identify

feature matrices from each color channel c1,c2,c3 as kc1
i ,kc2

i ,kc3

i as shown in Fig. 2.4. By

collecting them as a larger matrix Ki = [kc1
i ,kc2

i ,kc3

i ], we can apply matrix cosine similar-

ity between Ki and K j . Then, the saliency map from color channels can be analogously

defined as follows:

Si = p̂(K|yi = 1) = 1∑N
j=1 exp

(−1+ρ(Ki ,K j )
σ2

) . (2.8)

In order to verify that this idea allows us to achieve a consistent result and leads us

to a better performance than using fusion methods, we have compared three different

color spaces; namely opponent color channels [95], CIE L*a*b* [49, 11] channels, and I
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R-G B-Y channels [72]3.

Fig. 2.5 compares saliency maps using simple normalized summation of saliency

maps from different channels as compared to using matrix cosine similarity. It is clearly

seen that using matrix cosine similarity provides consistent results regardless of color

spaces and helps to avoid some drawbacks of fusion-based methods. To summarize,

the overall pseudo-code for the algorithm is given in Algorithm 1.

Algorithm 1 Visual Saliency Detection Algorithm
I : input image or video, P : size of LARK or 3-D LARK window, h : a global smoothing parameter for LARK, L :

number of LARK or 3-D LARK used in the feature matrix, N : size of a center+surrounding region for computing

self-resemblance, σ : a parameter controlling fall-off of weights for computing self-resemblance.

Stage1 : Compute Features

if I is an image then

Compute the normalized LARK Ki and vectorize it to ki , where i = 1, · · · , M .

else

Compute the normalized 3-D LARK Ki and vectorize it to ki , where i = 1, · · · , M .

end if

Stage2 : Compute Self-Resemblance

for i = 1, · · · , M do

if I is a grayscale image (or video) then

Identify feature matrices ki ,k j in a local neighborhood.

Si = 1∑N
j=1 exp

( −1+ρ(ki ,k j )

σ2

)
else

Identify feature matrices Ki = [k
c1
i

,k
c3
i

,k
c3
i

] and K j = [k
c1
j

,k
c3
j

,k
c3
j

]

in a local neighborhood from three color channels.

Si = 1∑N
j=1 exp

( −1+ρ(Ki ,K j )

σ2

)
end if

end for

Output : Saliency map Si , i = 1, · · · , M

3Opponent color space has proven to be superior to RGB, HSV, normalized RGB, and more in the task
of object and scene recognition [95]. [11] and [49] showed that CIE L*a*b* performs well in the task of
object detection.
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2.3 Experimental Results

In this section, we demonstrate the performance of the proposed method with

comprehensive experiments in terms of 1) interest region detection; 2) prediction of

human fixation data; and 3) performance on psychological patterns. Comparison is

made with other state of the art methods both quantitatively and qualitatively.

2.3.1 Interest Region Detection

2.3.1.1 Detecting Proto-objects in Images

In order to efficiently compute the saliency map, we downsample an image

I to an appropriate coarse scale4 (64× 64). We then compute LARK of size 3 × 3 as

features and generate feature matrices ki in a 5 × 5 local neighborhood. The number of

LARK used in the feature matrix ki is set to 9. For all the experiments, the smoothing

parameter h for computing LARK was set to 1 and the fall-off parameter σ for com-

puting self-resemblance was set to 0.07. We obtained an overall saliency map by using

CIE L*a*b* color space throughout all the experiments. A typical run time takes about

1 second at scale (64×64) on an Intel Pentium 4, 2.66 GHz core 2 PC with 2 GB RAM.

From the point of view of object detection, saliency maps can explicitly repre-

sent proto-objects. We use the idea of non-parametric significance testing to detect

4Changing the scale leads to a different result in the saliency map. Assume that we use a 3×3 LARK
and 5×5 local analysis window for k. If the visual search is performed at a fine scale, finer detail will be
captured as salient whereas at a coarser scale, larger objects will be considered to be salient. As expected,
computing saliency map at a finer scale takes longer. In fact, we have tried to combine saliency maps
from multi-scale, but this idea did not improve performance even at the expense of time-complexity. This
brings up an interesting question worth considering for future research; namely; what is the optimal reso-
lution for saliency detection? Clearly, higher resolution images do not imply better saliency maps. Recent
publication [96] by Judd et al. reveals that working with fixations on images of mid-level resolutions
(16−64 pixels) could be perceptually adequate and computationally attractive.
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Figure 2.6: Some examples of proto-objects detection in face images.

Figure 2.7: Some examples of proto-objects detection in natural scene images [5]
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proto-objects. Namely, we compute an empirical PDF from all the saliency values

and set a threshold so as to achieve, for instance, a 95 % significance level in decid-

ing whether the given saliency values are in the extreme (right) tails of the empirical

PDF. The approach is based on the assumption that in the image, a salient object is a rel-

atively rare object and thus results in values which are in the tails of the distribution of

saliency values. After making a binary object map by thresholding the saliency map, a

morphological filter is applied. More specifically, we dilate the binary object map with

a disk shape of size 5× 5. Proto-objects are extracted from corresponding locations

of the original image. Multiple objects can be extracted sequentially. Fig. 2.6 shows

that the proposed method works well in detecting proto-objects in the images5 which

contain a group of people in a complicated cluttered background. In order to quan-

titatively evaluate the performance of our method in terms of finding proto-objects,

we also tested our method on Hou and Zhang’s dataset [5]. This dataset contains 62

natural scene images and binary ground truth images (G ) labeled by 4 naive human

subjects. Fig. 2.7 also illustrates that our method accurately detects salient objects in

natural scenes [5]. For the sake of completeness, we compute the Hit Rate (HR) and the

False Alarm Rate (FAR) as follows:

HR = E(
∏

l
G l

i ×Oi ), (2.9)

F AR = E(
∏

l
(1−G l

i )×Oi ), (2.10)

where O is a proto-objects map, l is the image index.

From Table. 2.1, we observe that our method overall outperforms Hou and

Zhang’s method 6 [5] and Itti’s method 7 [71].

5Downloadable from http://www.facedetection.com/facedetection/datasets.htm

6Downloadable from http://bcmi.sjtu.edu.cn/~houxiaodi/

7Downloadable from http://www.saliencytoolbox.net/
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Table 2.1: Performance comparison of the methods on finding proto-objects in Hou and
Zhang’s dataset [5]. We compare HR and FAR of three methods at a fixed FAR and a fixed
HR respectively. Our method overall outperforms others.

Our method Hou and Zhang [5] Itti et al [71]
HR 0.5933 0.4309 0.2482

Fixed FAR 0.1433 0.1433 0.1433
Fixed HR 0.5076 0.5076 0.5076

FAR 0.1048 0.1688 0.2931

2.3.1.2 Detecting Actions in Videos

The goal of action recognition is to classify a given action query into one of

several pre-specified categories. Here, a query video may include a complex back-

ground which deteriorates recognition accuracy. In order to deal with this problem, it

is necessary to have a procedure which automatically segments from the query video

a small cube that only contains a valid action. Space-time saliency can provide such a

mechanism. In order to compute the space-time saliency map, we only use the illumi-

nation channel because color information does not play a vital role in detecting motion

saliency. We downsample each frame of input video I to a coarse spatial scale (64×64)

in order to reduce the time-complexity (we do not downsample the video in the time

domain.) We then compute 3-D LARK of size 3 × 3 × 3 as features and generate feature

matrices ki in a (3 × 3 × 7) local space-time neighborhood. The number of 3-D LARK

used in the feature matrix ki is set to 1 for time efficiency. The procedure for detecting

space-time proto-objects and the rest of parameters remain the same as in the 2-D case.

A typical run of space-time saliency detection takes about 52 seconds on 50 frames of

a video at spatial scale (64×64) on an Intel Pentium 4, 2.66 GHz core 2 PC with 2 GB
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(a) Weizmann dataset [6]

(b) KTH dataset [7]

Figure 2.8: Some examples of detecting salient human actions in the video (a) the Weizmann
dataset [6] and (b) the KTH dataset [7].

RAM.

Fig. 2.8 shows that the proposed space-time saliency detection method suc-

cessfully detects only salient human actions in both the Weizmann dataset [6] and the

KTH dataset [7]. Our method is also robust to the presence of fast camera zoom in and
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Figure 2.9: Space-time saliency detection even in the presence of fast camera zoom-in. Note
that a man is performing a boxing action while a camera zoom is activated.

out as shown in Fig. 2.9 where a man is performing a boxing action while a camera

zoom is activated.

2.3.2 Predicting Human Visual Fixation Data

2.3.2.1 Static Images

In this section, we used an image database and its corresponding fixation

data collected by Bruce and Tsotsos [8] as a benchmark for quantitative performance
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Table 2.2: Prediction of human eye fixations when viewing color images. SE means standard
errors.

Model KL (SE) ROC (SE)
Itti et al. [71] 0.1130 (0.0011) 0.6146 (0.0008)

Bruce and Tsotsos [8] 0.2029 (0.0017) 0.6727 (0.0008)
Gao et al. [4] 0.1535 (0.0016) 0.6395 (0.0007)

Zhang et al. [72] 0.2097 (0.0016) 0.6570 (0.0008)
Hou and Zhang [5] 0.2511 (0.0019) 0.6823 (0.0007)
Our method (HOG) 0.1533 (0.0015) 0.4427 (0.0006)
Our method (SIFT) 0.0857 (0.0009) 0.5548 (0.0007)
Our method (NLM) 0.2174 (0.002) 0.6376 (0.0008)

Our method (BL) 0.2286 (0.0019) 0.651 (0.0007)
Our method (SSIM) 0.2337 (0.0021) 0.6474 (0.0008)
Our method (LARK) 0.2779 (0.002) 0.6896 (0.0007)

analysis and comparison. This dataset contains eye fixation records from 20 subjects

for a total of 120 images of size 681 × 511. The parameter settings are the same as

explained in Section 2.3.1. Some visual results of our model are compared with state of

the art methods in Figs. 2.10 and 2.11. As opposed to Bruce’s method [8] which is quite

sensitive to textured regions, and SUN [72] which is somewhat better in this respect,

the proposed method is much less sensitive to background texture.

To compare the methods quantitatively, we computed the area under receiver

operating characteristic (ROC) curve, and KL-divergence by following the experimen-

tal protocol of [72].

In [72], Zhang et al. pointed out that the dataset collected by Bruce [8] is

center-biased and the methods by Itti et al. [71], Bruce et al. [8] and Gao et al. [4] are

all corrupted by edge effects which resulted in relatively higher performance than they

should have (See Fig. 2.12.). We compare our model against Itti et al.8 [71], Bruce and

8Downloadable from http://ilab.usc.edu/toolkit/home.shtml
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Figure 2.10: Examples of saliency maps with comparison to the state of the art methods. Hu-
man fixation density maps are derived from human eye fixation data and are shown right
below the original images. Visually, our method outperforms other state of the art methods.

Tsotsos9 [8], Gao et al. [4], and SUN10 [72]. For the evaluation of the algorithm, we

used the same procedure as in [72]. More specifically, we first compute true positives

9Downloadable from http://web.me.com/john.tsotsos/VisualAttention/ST_and_Saliency.html

10Downloadable from http://www.roboticinsect.net/index.htm
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Figure 2.11: Examples of saliency maps with comparison to the state of the art methods. Hu-
man fixation density maps are derived from human eye fixation data and are shown right
below the original images. Visually, our method outperforms other state of the art methods.

from the saliency maps based on the human eye fixation points. In order to calculate

false positives from the saliency maps, we use the human fixation points from other

images by permuting the order of images. This permutation of images is repeated 100
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Figure 2.12: Comparison of average saliency maps on human fixation data by Bruce and Tsot-
sos [8]. Averages were taken across the saliency maps for a total of 120 color images.

times. Each time, we compute KL-divergence between the histograms of true positives

and false positives and average them over 100 trials. When it comes to calculating

the area under the ROC curve, we compute detection rates and false alarm rates by

thresholding histograms of true positives and false positives at each stage of shuffling.

The final ROC area is the average value over 100 permutations. The mean and the

standard errors are also reported in Table 2.2. As we alluded to earlier, we also com-

pare the superiority of LARKs to other descriptors described in Chap. 1. We replaced

LARKs with other descriptors (HOG11, SIFT12, NLM, BL13, and SSIM14) in the pro-

posed saliency detection framework while remaining the rest of the step same. Our

model outperforms all the other state of the art methods, and LARKs perform better

than all the other descriptors in terms of both KL-divergence and ROC area.

• As we alluded to in Section 1.3 earlier, our LARK features are robust to the

presence of noise and changes in brightness and contrast. Fig. 2.14 well demonstrates

11http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
12http://people.csail.mit.edu/ceilu/ECCV2008
13For NLM and BL, we used our own Matlab implementation
14http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity
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Figure 2.13: Performance comparison on human fixation data by Bruce and Tsotsos [8] with
respect to the choice of 1) N : size of cneter+surrouding region for computing self-resemblance
2) P : size of LARK; and 3) L: number of LARK used in the feature matrix. Run time on one
image is shown on top of each bar.

that the self-resemblance maps based on LARK features are not influenced by various

distortions such as white-color noise, contrast change, and brightness change.

• We further examined how the performance of the proposed method is af-

fected by the choice of parameters such as 1) N : size of center+surrouding region for

computing self-resemblance 2) P : size of LARK; and 3) L: number of LARK used in the

feature matrix. As shown in Fig. 2.13, it turns out that as we increase N , the overall per-

formance is improved while increasing P and L rather deteriorates the performance.

Overall, the best performance was achieved with the choice of P = 9 = (3× 3),L = 9 =
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Figure 2.14: Our saliency model is largely unaffected by various distortions such as white-color
noise, brightness change, and contrast change.

(3×3), and N = 49 = (7×7) at the expense of increased runtime.

It is important to note that while the LARK size (P) and the number of LARK

(L) determine a feature dimension, the surrounding size (N) affects how many sur-

rounding feature matrices would be compared with the center feature matrix. We do

not wish to increase feature dimensions unnecessarily. Instead, we keep the surround-

ing size large enough so that we could get a reasonable self-resemblance value.

2.3.2.2 Response to Psychological Pattern

We also tested our method on psychological patterns. Psychological patterns

are widely used in attention experiments not only to explore the mechanism of visual

search, but also to test effectiveness of saliency maps [9, 97]. As shown in Fig. 2.15,

whereas SUN [72] and Bruce’s method [8] failed to capture perceptual differences in

most cases, Gao’s method [4] and Spectral Residual [5] tend to capture perceptual orga-

nization rather better. Overall, however, the proposed saliency algorithm outperforms

other methods in all cases including closure pattern (see Fig. 2.15 a) and texture segre-

gation (see Fig. 2.15 b) which seem to be very difficult even for humans to distinguish.
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(a)

(b)

Figure 2.15: Examples of Saliency map on psychological patterns. (a) images are from [5] (b)
images are from [4].

The proposed method also predicts search asymmetry [9]. As shown in Fig.

2.16, it is evident that our method mimics the human tendency of finding a Q (or a plus)
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Figure 2.16: Top: The task of finding a Q among Os is easier than finding an O among Qs.
Bottom: The task of finding a plus among dashes is easier than finding a dash among plus.
This effect demonstrates a specific example of search asymmetry discussed in [9].

among Os (or dashes) to be easier than finding an O (or a dash) among Qs (pluses).
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2.3.2.3 Dynamic Scenes

In this section, we quantitatively evaluate our space-time saliency algorithm

on the human fixation video data from Itti et al. [10]. This dataset consists of a total

of 520 human eye-tracking data traces recorded from 8 distinct subjects watching 50

different videos (TV programs, outdoors, test stimuli, and video games: about 25 min-

utes of total playtime). Each video has a resolution of size 640 × 480. Eye movement

data was collected using an ISCAN RK-464 eye-tracker. For evaluation, two hundred

(four subjects × fifty video clips) eye movement traces were used (see [10] for more de-

tails.) As similarly done earlier, we computed the area under ROC curve, and the KL-

divergence. We compare our model against Bayesian Surprise [71] and SUNDAy [73].

Note that human eye movement data collected by Itti et al. [10] is also center-biased,

and Bayesian Surprise [10] is corrupted by edge effects which resulted in relatively

higher performance than it should have.

For the evaluation of the algorithm, we first compute true positives from the

saliency maps based on the human eye movement fixation points. In order to calcu-

late false positives from the saliency maps, we use the human fixation points from

frames of other videos by permuting the order of video. This permutation of images

is repeated 10 times. Each time, we compute KL-divergence between the histograms

of true positives and false positives and average them over 10 trials. When it comes

to calculating the area under the ROC curve, we compute detection rates and false

alarm rates by thresholding histograms of true positives and false positives at each

time of shuffling. The mean ROC area and the mean KL-divergence are reported in

Table 2.3. Some visual results of our model are shown in Fig. 2.17. Our model outper-

forms Bayseian Surprise and SUNDAy in terms of both KL-divergence and ROC area.
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Table 2.3: Prediction of human eye fixations when viewing videos [10].

Model KL(SE) ROC(SE)
Bayesian Surprise [10] 0.034 0.581

SUNDAy [73] 0.041 0.582
Our method 0.262(0.0085) 0.589(0.0031)

It seems at first surprising that our KL-divergence value is much higher than Bayesian

Surprise[10] and SUNDAy[73] while there is a rather smaller difference between ROC

areas. However, this phenomenon can be explained as follows. While the range of

ROC area is limited from 0 to 1, the range of KL-divergence is from 0 to ∞. The KL-

divergence is asymptotically related to the probability of detection and false alarm rate,

and provides an upper bound on the detection performance [98, 99]. Namely, as the

number of samples increases, P f (1−Pd ) → exp(−αJ ), where α is a constant and J is

KL-divergence. Even though there is a large difference between KL-divergence values,

the difference in ROC area can be relatively small.

Our model is simple, but very fast and powerful. In terms of time complexity,

a typical run time takes about 8 minutes (Zhang et al. [73] reported that their method

runs in Matlab on a video of about 500 frames in minutes on a Pentium 4, 3.8 GHz dual

core PC with 1 GB RAM.) on a video of size of 640 × 480 with about 500 frames while

Bayesian Surprise requires hours because there are 432,000 distributions that must be

updated with each frame.
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2.3.3 Discussion

In the previous section, we have provided comprehensive experimental re-

sults which show that our method consistently outperforms other state-of-the art meth-

ods. We estimate saliency by using non-parametric density estimation, while other

competing methods [71, 39, 4, 72] focused on fitting the conditional probability density

function to a parametric distribution. In other words, we do not assume a distribu-

tional form or model for the data. As such, we call our method non-parametric. Even

though we have a few parameters such as h,σ, and λ, these parameters are mostly set

and fixed for all the experiments.

Our model is somewhat similar to Gao et al. [4] in the sense that a center-

surround notion is used to compute saliency. One of the most important factors which

makes the proposed method more effective is the use of LARKs as features. LARKs

can capture local geometric structure exceedingly well even in the presence of signal

uncertainty. In addition, unlike standard fusion methods which linearly and directly

combine saliency maps computed from each color channel, we used the matrix co-

sine similarity to combine information from three color spaces. Our comprehensive

experimental results indicate that the self-resemblance measure derived from a locally

data-adaptive kernel density estimator is much more effective and simpler than other

existing methods and does not require any training. Although our method is built en-

tirely on computational principles, the resulting model structure exhibits considerable

agreement with fixation behavior of the human visual system. With very good fea-

tures like LARKs, the center-surround model is arguably an effective computational

model of how the human visual system works. The proposed saliency detection based

on the patch-level similarity can effectively reduce search space for object detection in
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Chapter 3.

Summary – In this chapter, we have proposed a unified framework for both static

and space-time saliency detection algorithm by employing 2-D and 3-D LARKs; and

by using a nonparametric kernel density estimation based on Matrix Cosine Similar-

ity (MCS). The proposed method can automatically detect salient objects in the given

image and salient moving objects in videos. The proposed method is practically ap-

pealing because it is nonparametric, fast, and robust to uncertainty in the data. Experi-

ments on challenging sets of real-world human fixation data (both images and videos)

demonstrated that the proposed saliency detection method achieves a high degree of

accuracy and improves upon state of the art methods. Due to its robustness to noise

and other systemic perturbations, we also expect the present framework to be quite ef-

fective in other applications such as image quality assessment, background subtraction

in dynamic scene, and video summarization. In the next chapter, we extend the con-

cept of patch-level similarity within one image to image (video)-level similarity across

images (videos) for object (action) detection.
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Figure 2.17: Some results on the video dataset [10] (a) video clips (b) space-time saliency map
(c) a frame from (a) (d) a frame superimposed with corresponding saliency map from (b).
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Chapter 3

Generic Object and Action Detection

Abstract – In this chapter, we introduce image (video)-level similarity to find matches

between a query and a target. The proposed detection method is a unified framework

that can deal with both objects and actions, and operates using a single query; does not

require prior knowledge about objects (actions) being sought; and does not require any

pre-processing step or segmentation of a target. As similarly done in saliency detection

in Chapter 2, LARK descriptors in 2-D and 3-D are used to reliably capture local geo-

metric structure. By employing Matrix Cosine Similarity (MCS), the proposed method

yields a scalar resemblance map, indicating the likelihood of similarity between the

query and all patches (cubes) in the target image (video). Our method detects the

presence and location of objects (actions) similar to the given query through nonpara-

metric significance tests. We provide optimality properties of the algorithm using a

naive-Bayes framework. High performance is demonstrated on several challenging

datasets, indicating successful detection of objects (actions) in diverse contexts and un-

der different imaging conditions.
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3.1 Introduction

Visual recognition (identifying objects/actions) is the main goal of this the-

sis as we alluded to in Chapter 1. According to the literature [100], visual recogni-

tion can also be divided into two parts: category recognition (classification) and detec-

tion/localization. The goal of object (action) detection is to separate objects (actions)

of interest from the background in a target image (video) while object (action) classi-

fication is to classify a given object (action) into one of the pre-specified categories. In

this chapter, we focus on solving object/action detection problems based on the concept

of image-level similarity. Before we describe our proposed method, we briefly review

related works.

3.1.1 Related Works

Object Detection Object detection is a critical part in many applications such as im-

age retrieval, scene understanding, and surveillance system; however it is still an open

problem because the intra-class variation makes a generic detection very complicated,

requiring various types of pre-processing steps. In the current literature, a popu-

lar object detection paradigm is probabilistic constellation [27] or parts-and-shape mod-

els [32] that represent not only the statistics of individual parts, but also their spatial

layout. These are based on learning-based classifiers, that require an intensive learn-

ing/training phase of the classifier parameters and thus are called parametric methods.

For the purpose of localization, a sliding window scheme is usually used by taking the

peak confidence values as an indication of the presence of an objet in a given region.

Recently, [101] proposed an efficient sub-window search method based on branch and

bound scheme and attained a huge speed-up. To make a real-time object detection sys-
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tem1 while achieving high detection rates, methods combining classifiers in a cascade

[29, 102] have also been proposed. In PASCAL 2009 object detection challenge [35],

Felzenszwalb et al. [28] gained state of the art object detection performance based on

mixtures of multi-scale deformable part models relying on HOG [3] and latent SVM

for discriminative training.

Action Detection In the literature of action detection, the term “action" refers to a

simple motion pattern as performed by a single subject, and represents mostly a phys-

ical human body motion. Recent approaches can be categorized on the basis of action

representation; namely, appearance-based representation [103, 104], shape-based rep-

resentation [105, 6], optical-flow-based representation [106, 107], interest-point-based

representation [7, 108, 109, 110], and volume-based representation [111, 21, 112, 113,

22]. We refer the interested reader to [114] and references therein for a good summary.

As examples of the interest-point-based approach, Niebles et al. [115] consid-

ered videos as spatiotemporal bag-of-words by extracting space-time interest points

and clustering the features, and then used a probabilistic Latent Semantic Analysis

(pLSA) model to localize and categorize human actions. Yuan et al. [116] also used

spatiotemporal features as proposed by [109]. They extended the naive Bayes nearest

neighbor classifier [41], which was developed for object recognition, to action recogni-

tion. By modifying the efficient searching method based on branch-and-bound [101]

for the 3-D case, they provided a very fast action detection method. However, the per-

formance of these methods can degrade due to 1) the lack of enough training samples;

2) misdetections and occlusions of the interest points since they ignore global space-

time information.
1We refer the reader to Chapter 4 for how we realize a real-time object detection system.

57



Figure 3.1: Object and action detection problem (a) Given a query image (video) Q, we wish to
detect/localize objects (actions) of interest in a target image (video) T . T is divided into a set of
overlapping patches (cubes) (b) LARKs (3-D LARKs) capture the local (space-time) geometric
structure of underlying data.

Shechtman and Irani [21] employed a three dimensional correlation scheme

for action detection. They focused on subvolume matching in order to find similar

motion between the two space-time volumes, which can be computationally heavy. Ke

et al. [112] presented an approach which uses boosting on 3-D Haar-type features in-

spired by similar features in 2-D object detection [29]. While these features are very

efficient to compute, many examples are required to train an action detector in or-

der to achieve good performance. They further proposed a part-based shape and flow

matching framework [117] and showed good action detection performance in crowded

videos. Ning et al. [22] proposed a system to search for human actions using a coarse-
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to-fine approach with a five-layer hierarchical space-time model. These volumetric

methods do not require background subtraction, motion estimation, or complex mod-

els of body configuration and kinematics. They tolerate modest variations in appear-

ance, scale, rotation, and movement.

3.1.2 Overview of the Proposed Method

In this chapter, we propose to use LARKs in 2-D and 3-D for the problem of

localizing objects (actions) of interest given a query and a target. Referring to Fig. 3.1,

by denoting the target (T ), and the query (Q), we compute a dense set of LARKs (3-D

LARKs) from each. These densely computed descriptors are highly informative, but

taken together tend to be over-complete (redundant). Therefore, we derive features by

applying dimensionality reduction (namely PCA) to these resulting arrays, in order to

retain only the salient characteristics of the LARKs.

Generally, T is bigger than the query Q. Hence, we divide the target T into a

set of overlapping patches (cubes for video) which are the same size as Q and assign

a class to each patch (cube) (Ti ). The feature vectors which belong to a patch (cube)

are thought of as training examples in the corresponding class. The feature collections

from Q and Ti form feature matrices FQ and FTi . We compare the feature matrices

FTi and FQ from i th patch (cube) of T and Q to look for matches (image/video-level

similarity). Inspired in part by the many studies [92, 118, 93] which took advantage of

cosine similarity over the conventional Euclidean distance, we employ Matrix Cosine

Similarity (MCS) as a similarity measure which generalizes the vector cosine similarity

[119, 120]. We illustrate the optimality properties of the proposed approach using a

naive Bayes framework, which leads to the use of the MCS measure in Appendix A.
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Figure 3.2: Object and action detection system overview (There are broadly three stages.)

In order to deal with the case where the target may not include any objects (actions) of

interest or when there are more than one object (action) in the target, we also adopt the

idea of a significance test.
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For action detection, it is generally assumed that the query video is smaller

than target video. However, this is not true in practice and a query video may indeed

include a complex background which degrades recognition accuracy. In order to deal

with this problem, it is necessary to have a procedure which automatically segments

from the query video a small cube that only contains a valid human action. For this,

we employ space-time saliency detection [48], also described in Chapter 2. This idea

not only allows us to extend the proposed detection framework to action category clas-

sification, but also improve both detection and classification accuracy by automatically

removing irrelevant background from the query video.

Fig. 5.1 shows an overview of our proposed framework. The first stage con-

sists of computing the normalized LARKs KQ ,KT and obtaining the salient feature ma-

trices FQ ,FT . In the second stage, we compare the feature matrices FTi and FQ using

the MCS. The final output is given after a sequence of significance tests, followed by

non-maxima suppression [12].

3.2 Unified Training-free Detection Framework

3.2.1 Feature Representation in Image and Video

As shown in Fig. 3.1, at a position xi , we use a normalized LARK as a local

feature to represent inherent local geometry. Many studies [41, 121, 122] have shown

that densely computed local image features give better results in classification tasks

than key-point based local image features such as SIFT [18] which are designed for

mainly invariance and compact coding. According to these studies, the distribution

of the local image feature both in natural images as well as images of a specific object
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Figure 3.3: LARKs follow a power-law distribution. (a) Some example images (Shechtman’s
object dataset [11]) where LARKs were computed. (b) Plots of the bin density of LARKs and
their corresponding low-dimensional features.

class follows a power-law (i.e., a long-tail) distribution [41, 121, 122]. In other words,

the features are scattered out in a high dimensional feature space, and thus there ba-

sically exists no dense cluster in the feature space. In order to illustrate and verify

that the normalized LARKs also satisfy this property as described in [11, 41] and fol-

low a power-law distribution, we computed an empirical bin density (100 bins) of the

normalized LARKs (using a total of 31,319 LARKs) densely computed from 60 images

(from Shechtman’s general object dataset [11]) using the K-means clustering method.

(See Fig. 3.3 for an example.) The same principle applies to 3-D LARKs2.

Boiman et al. [41] observed that while an ensemble of local features with

little discriminative power can together offer a significant discriminative power, both

quantization and informative feature selection on a long-tail distribution can lead to

2We computed an empirical bin density (100 bins) of the normalized 3-D LARKs (using a total of 50,000

3-D LARKs) extracted from 90 videos of the Weizmann action dataset [6].

62



a precipitous drop in performance. Therefore, instead of any quantization and infor-

mative feature selection, we focus on reducing the dimension of densely computed

LARKs using PCA to enhance the discriminative power and reduce computational

complexity. It is worth noting that this approach was also taken by Ke et al. in [63]

where PCA was applied to SIFT features, leading to enhanced performance. Ali and

Shah [107] also applied PCA to derive salient kinematic features from optical flow in

the action recognition task. This idea results in a new feature representation with a

moderate dimension which inherits the desirable discriminative attributes of LARK.

The distribution of the resulting features sitting on the low dimensional manifold also

tends to follow a power-law distribution as shown in Fig. 3.3 (b) and this attribute of

the features will be utilized in applying a nearest-neighbor approximation in the theo-

retical formulation in Appendix A. In order to organize KQ and KT , which are densely

computed from Q and T , let KQ ,KT denote matrices whose columns are vectors kQ ,kT ,

which are column-stacked (rasterized) versions of KQ ,KT respectively:

KQ = [k1
Q , · · · ,kn

Q ] ∈RP×n ,

KT = [k1
T , · · · ,knT

T ] ∈RP×nT , (3.1)

where P is the dimension of LARK, and n and nT are the total number of LARKs in Q

and T respectively.

As described in Fig. 5.1, the next step is to apply PCA3 to KQ for dimensional-

ity reduction and to retain only its salient characteristics. Applying PCA to KQ we can

retain the first (largest) d principal components4 which form the columns of a matrix

3It is worth noting that the use of the PCA here may not be critical in the sense that any unsupervised
subspace learning method such as Kernel PCA, LLE [123], LPP [124] CDA [93], CPCA [92], and CEA [92]
can be used.

4Typically, d is selected to be a small integer such as 3 or 4 so that 80 to 90% of the “information" in the
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Figure 3.4: Face and car examples (a) : AQ learned from a collection of LARKs KQ , (b): Feature
row vectors of FQ from query Q, (c) : Feature row vectors FT from target image T . Eigenvectors
and feature vectors were reshaped into image and up-scaled for illustration purposes.

AQ ∈ RP×d . Next, the lower dimensional features are computed by projecting KQ and

KT onto AQ :

FQ = [f1
Q , · · · , fn

Q ] = A⊤
Q KQ ∈Rd×n ,

FT = [f1
T , · · · , fnT

T ] = A⊤
Q KT ∈Rd×nT .

(3.2)

Figs. 5.6 and 3.5 illustrate the principal components in AQ and shows what the features

FQ ,FT look like for some examples such as face and walking action.

LARKs would be retained. (i.e.,
∑d

i=1 λi∑P
i=1 λi

≥ 0.8 (to 0.9) where λi are the eigenvalues.)
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Figure 3.5: Examples of top 3 principal components in AQ for walking action. Note that these
eigenvectors reveal geometric characteristic of queries in both space and time domain, and
thus they are totally different from linear 3-D Gabor filters. Feature row vectors of FQ and FT

are computed from query Q and target T respectively. Eigenvectors and feature vectors were
transformed to volume and upscaled for illustration purposes.

3.2.2 Resemblance Map

The next step in the proposed framework is to generate a resemblance map

(RM)5 based on the measurement of a distance between the computed features FQ ,FTi

(a chunk of FT ). Earlier works such as [92, 91, 93] have shown that correlation based

metrics outperforms the conventional Euclidean and Mahalanobis distances for the

classification and subspace learning tasks. Motivated by the effectiveness of correlation-

based similarity measure, we explore the idea behind Matrix Cosine Similarity in this

section. In general, “correlation" indicates the strength and direction of a linear rela-

5We use resemblance volume (RV) for action detection.
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tionship between two random variables. But the idea of correlation is quite malleable.

Indeed, according to Rodgers et al. [120], there are at least thirteen distinct ways to look

at correlation! However, we are interested in two main types of correlation: Pearson’s

correlation coefficient which is the familiar standard correlation coefficient, and the co-

sine similarity (so-called non-Pearson-compliant). Note that the cosine similarity coin-

cides with the Pearson’s correlation when each vector is centered to have zero-mean. In

several earlier papers including [119, 125], it has been shown that the Pearson correla-

tion is less discriminating than the cosine similarity due to the fact that centered values

are less informative than the original values, and the computation of centered values is

sensitive to zero or small values in the vectors. Since the discriminative power is criti-

cal in our detection framework, we focus on the cosine similarity. The cosine similarity

is defined as the inner product between two normalized vectors as follows:

ρ(fQ , fTi ) =< fQ
∥fQ∥2

,
fTi

∥fTi ∥2
>= fQ

⊤fTi

∥fQ∥2∥fTi ∥2
= cosθi ∈ [−1,1], (3.3)

where fQ , fTi ∈ Rd are column vectors. The cosine similarity measure therefore focuses

only on the angle (phase) information while discarding the scale information.

If we deal with the features FQ ,FTi which consist of a set of vectors, MCS can

be defined as a natural generalization using the “Frobenius inner product" between

two normalized matrices as follows6:

ρ(FQ ,FTi ) =< FQ ,FTi >F= trace

(
F⊤

Q FTi

∥FQ∥F ∥FTi ∥F

)
∈[−1,1], (3.4)

where, FQ=
[ f1

Q

∥FQ∥F
, · · · ,

fn
Q

∥FQ∥F

]
and FTi=

[ f1
Ti

∥FTi ∥F
, · · · ,

fn
Ti

∥FTi ∥F

]
.

This generalization is also known as “vector correlation" in the statistics lit-

erature [126]. Fu et al. [92] also used a generalized cosine similarity tensor case for

6Note that we introduced MCS in Chapter 2.
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subspace learning, and showed performance improvement in the task of image clas-

sification. Returning to our definition, if we look at Equation (3.4) carefully, we note

that one can rewrite it as a weighted average of the cosine similarities ρ(fQ , fTi ) between

each pair of corresponding feature vectors (i.e., columns) in FQ ,FTi as follows:

ρ(FQ ,FTi ) =
n∑

ℓ=1

fℓQ
⊤

fℓTi

∥FQ∥F ∥FTi ∥F
=

n∑
ℓ=1

ρ(fℓQ , fℓTi
)

∥fℓQ∥∥fℓTi
∥

∥FQ∥F∥FTi ∥F
. (3.5)

The weights are represented as the product of
∥fℓQ∥
∥FQ∥F

and
∥fℓTi

∥
∥FTi ∥F

which indicate the rela-

tive importance of each feature in the feature sets FQ ,FTi . We see here an advantage of

the MCS in that it takes care of the strength and angle similarity of vectors at the same

time. Hence, this measure not only generalizes the vector cosine similarity, but also

overcomes the disadvantages of the conventional Euclidean distance which is sensitive

to outliers. We compute ρ(FQ ,FTi ) over all the target patches to generate resemblance

map (RM)7.

In Appendix 3A, we further generalize the cosine similarity to a “Canonical

Cosine Similarity" which is a corresponding version of the canonical correlation anal-

ysis (CCA) [127] for the vector data case where we have a set of features separately

computed from multiple sources (for instance, color image (YCbCr or CIE L*a*b*) or a

sequence of images). In a similar vain as Boiman et al. [41], we show in Appendix A

that a particular version of optimal naive-Bayes decision rule can actually lead to the

7This can be efficiently implemented by column-stacking the matrices FQ ,FTi and simply computing
the cosine similarity between two long column vectors.

ρi ≡ ρ(FQ ,FTi ) =
n∑

ℓ=1

fℓQ
⊤

fℓTi

∥FQ∥F ∥FTi ∥F
=

n,d∑
ℓ=1, j=1

f
(ℓ, j )

Q f
(ℓ, j )
Ti√∑n,d

ℓ=1, j=1 | f
(ℓ, j )

Q |2
√∑n,d

ℓ=1, j=1 | f
(ℓ, j )
Ti

|2
,

= ρ(colstack(FQ ),colstack(FTi )) ∈ [−1,1], (3.6)

where f
(ℓ, j )

Q , f
(ℓ, j )
Ti

are elements in ℓth vector fℓQ and fℓTi
respectively, and colstack(·) means an operator

which column-stacks (rasterizes) a matrix.
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Figure 3.6: (a) Resemblance map (RM) which consists of |ρi | (b) Resemblance map (RM) which
consists of f (ρi ). Note that Q and T are the same examples shown in Fig 3.1.

use of MCS measure.

Each pixel value of RM indicates the likelihood of similarity between the Q

and T . When it comes to interpreting the value of correlation, it is noted in [128, 129]

that ρ2
i ∈ [0,1] describes the proportion of variance in common between the two feature

sets as opposed to ρi which indicates a linear relationship between two feature matrices

FQ ,FTi . At this point, we can use ρi directly as a measure of resemblance between

the two feature sets. However, the shared variance interpretation of ρ2
i has several

advantages. In particular, as for the final test statistic comprising the values in the

resemblance map, we use the proportion of shared variance (ρ2
i ) to that of the “residual"

variance (1−ρ2
i ). More specifically, RM is computed using the mapping function f as

follows:

RM : f (ρi ) = ρ2
i

1−ρ2
i

. (3.7)

In Fig. 3.6, examples of RM based on |ρi | and f (ρi ) are presented. Red color represents

higher resemblance. As is apparent from these typical results, qualitatively, the resem-

blance map generated from f (ρi ) provides better contrast and dynamic range in the
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Figure 3.7: Comparison of empirical PDF between ρ and ρ2

1−ρ2 .

result ( f (ρi ) ∈ [0,∞]). More importantly, from a quantitative point of view, we note that

f (ρi ) is essentially the Lawley-Hotelling Trace statistic [127, 130], which is used as an

efficient test statistic for detecting correlation between two data sets. Furthermore, it is

worth noting that historically, this statistic has been suggested in the pattern recogni-

tion literature as an effective means of measuring the separability of two data clusters

(e.g. [131].)

3.2.3 Significance Test

If the task is to find the most similar patch (cube) Ti to the query Q in the

target, one can choose the patch (cube) which results in the largest value in the RM

(RV) (i.e., max f (ρi )) among all the patches (cubes), no matter how large or small the

value is in the range of [0,∞]. This, however, is not wise because there may not be

any object (action) of interest present in the target. We are therefore interested in two
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Figure 3.8: (a) Query (b) Target with detection (c) Two significance tests (d) Non-maxima sup-
pression [12].

types of significance tests. The first is an overall test to decide whether there is any

sufficiently similar object (action) present in the target at all. If the answer is yes, we

would then want to know how many objects (actions) of interest are present in the

target and where they are. Therefore, we need two thresholds: an overall threshold τo

and a threshold τ to detect the possibly multiple similar objects (actions) present in the

target.

In a typical scenario, we set the overall threshold τo to be, for instance, 0.96

which is about 50% of variance in common (i.e., ρ2 = 0.49). In other words, if the max-

imal f (ρi ) is just above 0.96, we decide that there exists at least one object (action) of

interest. The next step is to choose τ based on the properties of f (ρi ). When it comes
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to choosing the τ, there is need to be more careful. If we have a basic knowledge of

the underlying distribution of f (ρi ), then we can make predictions about how this par-

ticular statistic will behave, and thus it is relatively easy to choose a threshold which

will indicate whether the pair of features from the two images are sufficiently similar.

But, in practice, we do not have a very good way to model the distribution of f (ρi ).

Therefore, instead of assuming a type of underlying distribution, we employ the idea

of nonparametric testing. We compute an empirical PDF from all the given samples

of f (ρi ) and we set τ so as to achieve, for instance, a 99 % confidence level in decid-

ing whether the given values are in the extreme (right) tails of the distribution8. This

approach is based on the assumption that in the target, most of patches (cubes) do not

contain the object (actions) of interest, and therefore, the few matches will result in

values which are in the tails of the distributions of f (ρi ). This is also known as control-

ling the False Discovery Rate (FDR) [132]. We refer the reader to Appendix B for more

details.

After the two significance tests with τo ,τ are performed, we employ the idea

of non-maxima suppression [12] for the final detection. We take the region with the

highest f (ρi ) value and eliminate the possibility that any other object (action) is de-

tected within some radius9 of the center of that region again. This enables us to avoid

multiple false detections of nearby objects (actions) already detected. Then we iterate

this process until the local maximum value falls below the threshold τ. Fig. 3.8 shows

the graphical illustration of significance tests and the non-maxima suppression idea.

8Yet another justification for using f (ρi ) instead of ρi is the observation that the empirical PDF of ρi

is itself heavy-tailed, making the detection of rare events more difficult. The use of f (ρi ) instead tends to
alleviate this problem (see Fig. 3.7.)

9The size of this “exclusion" region will depend on the application at hand and the characteristics of
the query.
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Algorithm 2 Pseudo-code for the non-parametric object and action detection algorithm
Q : Query, T : Target, τo : Overall threshold, α : Confidence level, P : Size of LARK (3-D LARK) window.

Stage1 : Feature representation

1) Construct KQ ,KT (a collection of normalized LARK associated with Q,T )

2) Apply PCA to KQ and obtain projection space AQ from its top d eigenvectors.

3) Project KQ and KT onto AQ to construct FQ and FT .

Stage2 : Compute Matrix Cosine Similarity

for every target patch (cube) Ti , where i ∈ [0, · · · , M −1] do

ρi =<
FQ

∥FQ∥F
,

FTi
∥FTi

∥F
>F and compute (RM) : f (ρi ) = ρ2

i
1−ρ2

i
.

end for

Then, find max f (ρi ).

Stage3 : Significance tests and Non-maxima suppression

1) If max f (ρi)>τo , go to the next test. Otherwise, there is no object of interest in T .

2) Threshold RM by τ which is set to achieve 99 % confidence level (α = 0.99) from the empirical PDF of f (ρi ).

3) Apply non-maxima suppression to RM (RV) until the local maximum value is below τ.

To summarize, the overall pseudo-code for the algorithm is given in Algorithm 2.

3.3 Experimental Results

3.3.1 Object Detection

In this section, we demonstrate the object detection performance of the pro-

posed method with comprehensive experiments on four datasets; namely, the UIUC

car dataset [13], MIT-CMU face dataset [17], a subset of the Bao face dataset10 and Cal-

tech face dataset11, and Shechtman’s general object dataset [11]. The proposed algo-

rithm provides a series of bounding boxes around objects of interest using the criterion

described in [13]. More specifically, if the detected region by the proposed method lies

10http://www.facedetection.com/facedetection/datasets.htm
11http://www.vision.caltech.edu/html-files/archive.html
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Figure 3.9: (a) Examples of correct detections on the UIUC single-scale car test set [13]. (b) Ex-
amples of correct detections on the UIUC multi-scale car test set. Confidence level α was set to
0.99 and RM only above the threshold τ corresponding to α is embedded in test images. Bound-
ing boxes are drawn at the correct locations. In case of a multiple detection, a red bounding
box indicates higher resemblance to query than a blue bounding box.

within an ellipse of a certain size centered around the ground truth, we evaluate it as a

correct detection. Otherwise, it is counted as a false positive. Eventually, we compute

Precision and Recall defined as

Recall = T P

nP
, Precision = T P

T P +F P
, (3.8)

where, T P is the number of true positives, F P is the number of false positives, nP is

the total number of positives in dataset, and 1−Precision = F P
T P+F P .

Experimental results on each dataset will be presented as recall versus (1-

precision) curve and detection equal-error rate12 in the following sections.

73



Table 3.1: Detection equal-error rates on the UIUC single-scale car test set [13]

The proposed Query Query Query Query Query Agarwal et al. Wu and Nevatia Mutch and Lowe
method w/o PCA 1 2 3 4 5 [13] (1) [14] [16]

detection rates 79.29 % 88.12 % 81.11 % 80.41 % 87.11 % 77.08 % 97.5 % 99.94 %

The proposed Query Query Query Query Query Agarwal et al. Kapoor and Winn Lampert et al.
method 1 2 3 4 5 [13] (2) [15] [101]

detection rates 85.26 % 87.27 % 87.13 % 80.57 % 86.73 % 76.72 % 94.0 % 98.5 %

Figure 3.10: (a) Recall versus 1-Precision curves of the proposed method (b) Recall versus 1-
Precision curves of the proposed method without PCA on the UIUC single-scale car test set
[13] using 5 different query images.

3.3.1.1 Car detection

The UIUC car dataset [13] consists of learning and test sets. The learning set

contains 550 positive (car) images and 500 negative (non-car) images. The test set is

divided into two parts: 170 gray-scale images containing 200 side views of cars with

12Note that detection equal-error rate is a detection (recall) rate when a recall rate is the same as the
precision rate.
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Table 3.2: Detection equal-error rates on the UIUC multi-scale car test set [13]

The proposed Query Query Query Query Query Agarwal et al. Mutch Kapoor Lampert
method 1 2 3 4 5 [13] and Lowe [16] and Winn [15] et al. [101]

Detection 75.47 77.66 70.21 75.00 74.22 43.77 ∼ 44.00 90.6 93.5 98.6
rates % % % % % % % % %

size of 100×40, and 108 gray-scale images containing 139 cars at various sizes with a

ratio between the largest and smallest car of about 2.5. Since our method is training-

free, we use only one query image at a time from the 550 positive examples.

Single-scale test set We compute LARK of size 9×9 as descriptors, as a consequence,

every pixel in Q and T yields an 81-dimensional local descriptor KQ and KT respec-

tively. The smoothing parameter h for computing LARKs was set to 2.1. We end up

with FQ ,FT by reducing dimensionality from 81 to d = 4 and then, we obtain RM by

computing the MCS measure between FQ ,FTi . The threshold τ for each test example

was determined by the confidence level α = 0.99. Fig. 3.9 (a) shows the output of

the proposed method on single-scale test images. We conducted an experiment by

computing RM without performing PCA in order to verify that the use of dimension-

ality reduction step (PCA) plays an important role in extracting only salient features

and improving the performance. We also repeated these experiments by changing the

query image and computing precision and recall. In Fig. 3.10, recall-precision curves

represent a performance comparison between the proposed method and the proposed

method without PCA using 5 different query images. We can clearly see that the per-

formance of our system is not terribly affected by a choice of the query images, but

is quite consistent. Furthermore, PCA consistently contributes to a performance im-

provement. The detection equal-error rates comparison is provided in Table 3.1 as
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Figure 3.11: Comparison of Recall versus 1-Precision curves between the proposed method
and state-of-the-art methods [13, 14, 15] on the UIUC single-scale test set [13].

well.

To show the overall performance of the purposed method on five different

query images, we summed up T P and F P over the entire experiment, then computed

recall and precision at various steps of the threshold value τ according to the confi-

dence level α. Note that, to the best of our knowledge, there are no other training-free

methods evaluated on the UIUC dataset [13], and thus, comparison is only made with

state-of-the-art training-based methods. The proposed method which is training-free

performs favorably against state-of-the-art training-based methods [13, 14, 15] which

use extensive training as shown in Fig. 3.11.
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Figure 3.12: (a) Recall versus 1-Precisions curve using 5 different query images (b) Comparison
of Recall versus 1-Precision curves between the proposed method and state-of-the art methods
[15, 16, 13] on the UIUC multi-scale test set [13].

Multi-scale test set We construct a multi-scale pyramid of the target image T : 5

scales with scale factors 0.4, 0.6, 0.8, 1, and 1.2 as explained in Section 3A. More specif-

ically, we reduce the target image size by steps of 20% up to 40% of the original size

and upscale the target image by 20% so that we can deal with both cases of either the

size of objects in the target images being bigger or smaller than the query. The rest of

the process is similar to the single-scale case. Fig. 3.12 (b) shows examples of correct

detections using τ corresponding to α= 0.99.

The overall performance improvement of the proposed method (using 5 dif-

ferent query images) over Agarwal et al. [13] is even greater (over 30%) on the multi-

scale test set as shown in Table 3.2 and Fig. 3.12. As for the interpretation of the perfor-

mance on the UIUC car dataset (both single-scale and multi-scale cases), our methods

show performance that is not far from the state-of-the-art training-based methods, ex-
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Figure 3.13: Detection Results on the MIT-CMU multi-scale test set [17]. α was set to 0.99.
Hand-drawn faces on the white board were also detected using a real face query image.

cept that it requires no training at all.

3.3.1.2 Face detection

We showed the performance of the proposed method in the presence of mod-

erate scale variation (a ratio between the largest and smallest object of about 2.5) in

the previous section. In this section, we further evaluate our method on more general

scenario where the scale ratio between the largest and smallest is over 10 and large

rotations of objects may exist. Therefore, a test set is chosen from a subset of the MIT-
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Figure 3.14: Detection Results on the MIT-CMU multi-scale test set [17]. α was set to 0.99.
Among 57 faces present, we detected 54 faces at a correct location with 4 false alarms.

CMU face dataset [17]. The test set is composed of 43 gray-scale images13 containing

149 frontal faces at various sizes and 20 gray-scale images 14 containing 30 faces with

various rotations. A query face image of size 35×36 was employed as shown in Fig.

13The 43 images (from http://vasc.ri.cmu.edu/idb/html/face/index.html) are listed as follows: aerosmith-

double.gif, blues-double.gif, original2.gif, audrey1.gif, audrey2.gif, baseball.gif, cfb.gif, cnn1714.gif, cnn2020.gif,

cnn2600.gif, crimson.gif, ew-courtney-david.gif, gpripe.gif, hendrix2.gif, henry.gif, john.coltrane.gif, kaari1.gif,

kaari2.gif, kaari-stef.gif, knex0.gif, lacrosse.gif, married.gif, police.gif, sarah4.gif, sarah_live_2.gif, tammy.gif, tori-

crucify.gif, tori-entweekly.gif, tp.gif, voyager2.gif, class57.gif, trek-trio.gif, albert.gif, madaboutyou.gif, frisbee.gif,

me.gif, speed.gif, ysato.gif, wxm.gif, torrance.gif, mona-lisa.gif, karen-and-rob.gif, and Germany.gif.
14The 20 images (from http://vasc.ri.cmu.edu/idb/html/face/index.html) are listed as follows: 3.gif, 217.gif,

221.gif, af2206b.gif, am4945a.gif, am5528a.gif, am6227a.gif, bm5205a.gif, bm6290a.gif, boerli01.gif, cast1.gif, dole2.gif,

jprc.gif, pict_6.gif, pict_28.gif, sbCelSte.gif, siggi.gif, tf5189a.gif, tf5581a.gif, and tm6109a.gif
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Figure 3.15: Detection Results on the MIT-CMU multi-rotation test set [17]. α was set to 0.99.

3.13, and images for a rotation experiment were resized so that faces are about the same

size as the query face. Such parameters as the smoothing parameter (h), LARK size (P),

confidence level (α) remain same as the ones used in the UIUC car test sets. However,

we increased scale steps for the multi-scale pyramid up to 29, and rotation steps were

set to 24 (i.e., rotate the query image by 15 degrees) to achieve an accurate rotation

estimation (see Appendix 3A for more detail.) Fig. 3.13, Fig. 3.14, and Fig. 3.15 show

that the proposed method is capable of detecting and localizing faces at distinct scale

and rotation angle even in the presence of large variations in scale and rotation. We

repeated the experiment by changing the query image. Fig. 3.16 shows Recall versus

1-Precision curves and (for the sake of completeness) corresponding receiver operating
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Figure 3.16: Left: Precision-Recall curves, Right: ROC curves on the MIT-CMU test set [17]
using 2 different query images. Note that detection rate Pd and false alarm rate P f are defined
as T P

nP (= r ecal l ) and F P
F P+T N respectively, where T N is the number of true negatives.

characteristic (ROC) curves with respect to two different queries. Note that, in the ROC

curve, detection rate Pd and false alarm rate P f are defined as T P
nP (= r ecal l ) and F P

F P+T N

respectively, where T N is the number of true negatives. As seen in Fig. 3.16, the per-

formance of our method on this test set is consistent with the results in the UIUC car

test sets. More specifically, the performance of the proposed method is little affected

by the choice of similar query images and is quite stable.

We also compare LARK with other descriptors explained in Chapter 1 when

used within this framework. A test set is chosen from the Bao face dataset15, Cal-

tech face dataset16, and group photos from Google search. The test set is composed

of 72 images containing 266 frontal faces at various sizes. As shown in Fig. 3.17, in

this experiment, we only use a single query which is a female face image of size 60 ×

60 while the test set contains faces with occlusion, different gender, ethnic group, in

different lighting condition and faces in different context such as hand drawn faces,

15http://www.facedetection.com/facedetection/datasets.htm
16http://www.vision.caltech.edu/html-files/archive.html
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Figure 3.17: Object detection results by using LARK. Note that a single query of female face
led to high detection performance on the challenging dataset.

sculpture faces. We compute LARK, NLM, BL 17, SSIM18, SIFT19, HOG20 densely from

the query and the target. Then we plug in these descriptors into the object detection

framework. To compare detection performance of these six different descriptors, we

show recall versus (1-precision) curves. As seen in Fig. 3.18, the proposed LARK de-

scriptors achieves 0.85 recall rate at 0.9 precision rate and outperforms all the other

17For NLM and BL, we used our own Matlab implementation
18http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity
19http://people.csail.mit.edu/ceilu/ECCV2008
20http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
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Figure 3.18: Recall vs. 1-Precision curves of descriptors on the challenging dataset shown in
Fig. 3.17. LARK outperforms other descriptors.

descriptors. Note that a single query of female face led to high detection performance

on this challenging dataset.

Fig. 3.19 illustrates the computational cost of descriptors. LARK descriptors

have a higher computational cost than other descriptors. Despite somewhat higher

computational cost we pay, our process for computing LARK descriptors is stable, yet

showing rather high specificity at the same time, resulting in overall very good per-

formance. In Chapter 4, we illustrate how to speed up the computation of LARK for

real-time object detection while maintaining detection accuracy.

3.3.1.3 General object detection

We have shown the performance of the proposed method on data sets com-

posed of gray-scale images which contain specific objects such as car and face. In this
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Figure 3.19: Comparison of computational cost among descriptors. Due to the robust estima-
tion of C, LARK descriptors have a higher computational cost than other descriptors. The size
of query is 60×60 pixels. We introduce how to speed up the computation of LARK in Chapter
4.

section, we have applied our method to a more difficult scenario where general real-

world images containing flowers, hearts, and human poses are considered. Further-

more, rough hand-drawn sketches are used as a query instead of real images. Shechtman

et al.’s general object dataset [11] consists of many challenging pairs of color images

(60 pairs with queries such as flowers, hearts, peace symbols, face, and human poses;

see Fig. 3.3). In order to justify the usefulness of the MCS measure for this dataset and

to further verify the advantage of the “Canonicl Cosine Simialrity" (CCS) defined in

Appendix 3A over the MCS measure, we begin with evaluating the proposed method

on the luminance channel only. In Fig. 3.20, some examples of RM are shown. Fig. 3.21

and Fig. 3.22 show that the proposed method is able to detect and localize reliably.

We further justify the use of LARKs on this dataset by comparing the per-

formance against state-of-the-art local descriptors evaluated in [19] as similarity done

in [11]. We densely computed such local descriptors as gradient location-orientation his-

togram (GLOH) [19], Shape Context [20], and SIFT [18] using the implementation in [19].

By replacing LARKs with these descriptors, but keeping the rest of the steps the same,

we repeated the experiment on this test set. The Precision-Recall curve in Fig. 3.23

verifies that our LARKs have more discriminative power than other local descriptors.
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Figure 3.20: Some examples of detection results with RMs in Shechtman’s object test set [11].
RMs are shown in bottom row.

The proposed method is also evaluated on full CIE L*a*b* data. If we look at recall

rates in the range of 0 ≤ (1-precision) ≤ 0.1 in Fig. 3.23, we can see that full CIE L*a*b*

data provide more information, and thus CCS outperforms the MCS measure as also

observed in [11]. Consistent with these results, Shechtman and Irani [11] also showed

that their local self-similarity descriptor clearly outperformed other state-of-the-art de-

scriptors in their ensemble matching framework. However, the performance figures

they provide are rather incomplete. Namely, they mentioned 86% detection rate with-

out specifying either any precision rates or false alarm rates. Therefore, we claim that

our proposed method is more general and practical than the training-free detection

method in [11] .
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Figure 3.21: Left: hand-drawn sketch query (human poses) Right: targets and examples of
correction detections/ localizations in Shechtman’s object test set [11]. α was set to 0.98.

Discussion The CCS has shown to be more effective than MCS when vector-valued

images are available though this requires further study. Challenging sets of real-world

object experiments have demonstrated that the proposed approach achieves a high de-

tection accuracy of objects of interest even in completely different context and under

different imaging conditions. Unlike other state-of-the-art learning-based detection

methods, the proposed framework operates using a single example of an image of in-

terest to find similar matches; does not require any prior knowledge (learning) about

objects being sought; and does not require any segmentation or pre-processing step

of the target image. Since the proposed method is designed with detection accuracy
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Figure 3.22: Query: hearts, hand-drawn face, peace symbol and flower. Some targets and
examples of correction detections/ localizations in Shechtman’s object test set [11] are shown.
Some false positives appeared in a girl’s T-shirt and candle. α was set to 0.98.

as a high priority, extension of the method to a large-scale dataset requires a signifi-

cant improvement of the computational complexity of the proposed method. Toward

this end, we could benefit from an efficient searching method (coarse-to-fine search)21

and/or a fast nearest neighbor search method (e.g., vantage point tree [133]). Recently,

large database-driven approaches [38, 39] have shown potential for nonparametric de-

tection. For instance, [39] showed that with a database of 80 million images, even sim-

ple matching based on the sum of squared differences (SSD) can provide semantically

meaningful classification performance for 32×32 images. Thus, we could use a fast

indexing techniques such as spatial pyramid matching (SPM) [31] or GIST matching

[82] in order to reduce the search space and rapidly, and accurately, limit the number

21In Chapter 4, we realize a real-time object and action detection system based on coarse-to-fine pyra-
mid search in conjunction with hierarchical clustering.
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Figure 3.23: Left: Comparison of Recall versus 1-Precision curves between luminance channel
only and CIE L*a*b* channel on the Shechtman’s test set [11]. It is clearly shown that such
descriptors as SIFT [18], GLOH [19], Shape Context [20] turn out to be inferior to LARKs in
terms of discriminative power. Right: Comparison of ROC curves. Note that detection rate Pd

and false alarm rate P f are defined as T P
nP (= r ecal l ) and F P

F P+T N respectively, where T N is the
number of true negatives.

of candidate images. Subsequently, we can apply the proposed method for more accu-

rate detection. Additionally, for the proposed method to be feasible for scalable image

retrieval, we may adopt the idea of encoding the features as proposed in [134, 135]. In

Chapter 5, we will show that the proposed method can be also applied to other chal-

lenging problems such as face verification and automatic change detection in medical

imaging applications.

In the following section, we demonstrate the action detection performance

of the proposed method with comprehensive experiments on four action datasets:

namely, the general action dataset [21], the drinking dataset, [23], the Weizmann ac-

tion dataset [6], and the KTH action dataset [7]. The general action dataset and the

drinking dataset are used to evaluate detection performance of the proposed method,

while the Weizmann action dataset and the KTH action dataset are employed for action

categorization. Comparison is made with state-of-the-art methods that have reported

their results on these datasets.
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Figure 3.24: Examples of general action dataset [21]: 1) a turning query and ballet video, 2) a
walking query and beach scene video, and 3) a diving query and Olympic swim relay video.

3.3.2 Action Detection

In this section, we show several experimental results on searching with a short

query video clip against a (typically longer and larger) target video. Our method de-

tects the presence and location of actions similar to the given query and provides a

series of bounding cubes with resemblance volume embedded around detected ac-

tions. Note again that no background/foreground segmentation or explicit motion

estimation are required in the proposed method. Our proposed method can also han-

dle modest variations in rotation (up to ±15 degree), and spatial and temporal scale

change (up to ±20%). For larger variations in scale, we use a multi-scale approach as

similarly done in Section 3.3.1.1 and show below that this results in improvement over

the single-scale implementation.

Given Q and T , we spatially blur and downsample both Q and T by a factor
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Figure 3.25: Comparison of resemblance volumes (RV) among 3-D LARK, HOG3D, and 3-D
Gabor for three pairs of videos (Ballet with a turning query, Beach with a walking query, and
Swim with a diving query). HOG3D was computed densely for a fair comparison. Note that
colors in the ground truth volume are used to distinguish individual actions from each other.
This figure is better viewed in color.

of 3 in order to reduce the time-complexity. We then compute 3-D LARK of size 3×3

(space) ×7 (time) as descriptors so that every space-time location in Q and T yields a

63-dimensional local descriptor KQ and KT respectively. The reason why we choose a

larger time axis size than space axis of the cube is that we focus on detecting similar

actions regardless of different appearances. Thus we give a higher priority to tem-

poral evolution information than spatial appearance. We end up with FQ and FT by

further reducing the dimension of descriptors22 to d using PCA. Finally, we obtain a

resemblance volume (RV) by computing the MCS measure between FQ and FT . After

22Note that d = 4 for the walking query whereas d = 7 for the ballet turning and diving queries.
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3D LARK HOG 3D

Figure 3.26: Left: Comparison of Precision-Recall curves between 3-D LARK and HOG3D
for three different actions (walking, ballet turning, and diving) in single-scale implementa-
tion Right: multi-scale comparison. Note that other state-of-the art action detection methods
in [21, 11, 22] did not provide any quantitative performance on these examples. This figure is
better viewed in color.

significance testing by controlling the FDR with a specified α value23 and non-maxima

suppression explained in Section B, the proposed method localizes actions of interest24.

The General Action Dataset [11] This dataset contains three pairs of action query

and target videos. Note that the in all cases, the query video is not from the target

video sequence.

a. The query video contains a single turn of a male dancer (13 frames of 90×110 pix-

els) while the target video (766 frames of 144×192 pixels) includes ballet actions

23In our experiments, α= 0.01 works well.
24The localization is considered to be correct when detected region is 50% overlapped with the ground

truth.
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from a male and a female dancer.

b. The query video contains a very short walking action moving to the left (14

frames of 60× 70 pixels) with a stationary stone wall in the background while

the target video has walking people in a beach scene (456 frames of 180× 360

pixels) with crashing waves in the background.

c. The query video contains a swimmer’s dive into a pool (16 frames of 70× 140

pixels) while the target is an Olympic relay-match video (757 frames of 240×360

pixels) which was severely MPEG compressed.

As we alluded to in Section 2.1, we compare our 3-D LARK with 3-D Gabor filter re-

sponse [136] and HOG3D [65] both qualitatively and quantitatively25. Fig. 3.25 shows

a comparison of resemblance volumes with 3-D LARK, HOG3D, and 3-D Gabor filter

for three datasets. Note that we plugged in HOG3D and 3-D Gabor instead of 3-D

LARK while the rest of the process in the proposed action detection framework re-

mains exactly same. Red value in RVs signifies higher resemblance to the given query

25We set parameters for HOG3D and 3-D Gabor filters as follows:

1 HOG3D [65]: A 3-D patch of interest is divided into 3x3x2 space-time cells. The cor-
responding descriptor concatenates oriented gradient (10 orientations) histograms of all
cells and is then normalized. With dense sampling (x1x2-stride: 6 pixels apart and t-
stride:1 pixel apart), the resulting descriptors have 180 dimensions at every sampled po-
sition. We use the executable binary from the authors’ website (downloadable from
http://lear.inrialpes.fr/people/klaser/software_3d_video_descriptor. We set the pa-
rameters for this method to achieve its best performance. These parameters were not the same
as those setting recommended at the website. This is because the recommended settings were not
best suited for the general action dataset. )

2 3-D Gabor [136]: We used 16 of 3-D Gabor filter responses (0, π/4, π/2, 3π/4:
preferred direction of motion) and (1,2,3,4: preferred speed of the filter (in pix-
els per frame)). We use a matlab code from the website (downloadable from
http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborApp.html.)
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Figure 3.27: Comparison of equal error rates between 3-D LARK, HOG3D, and 3-D Gabor filter
for three different actions (walking, ballet turning, and diving).

Figure 3.28: Equal error rates with respect to different parameter settings on three datasets
where equal error rate means a recall rate when a recall rate is the same as the precision rate.

actions while blue means lower resemblance. 3-D LARKs provide the most consistent

results with the ground truth. We observe that RVs with 3-D LARKs reveal most rele-

vant actions with a few false positives whereas HOG3D results in many false positives

and 3-D Gabor filter misses most actions. Actions in target videos vary in scale. This

can be better dealt with multi-scale approach as described below.
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Multiscale Action Detection We construct a multi-scale pyramid of the target feature

volume FT . We resize the target feature volume size by steps of 10 %, so that a relatively

fine quantization of spatial scales are taken into account. By using 5 scale factors from

0.9 ∼ 1.3, we obtain five resemblance volumes. These resemblance volumes represent

the likelihood functions p( f (ρi )|Si ) where Si is the scale at xi . However the sizes of the

respective resemblance volumes are naturally different. Therefore, we simply rescale

all the resemblance volumes by voxel replication so that they match the dimensions of

the original target volume. Next, the maximum likelihood estimate of the scale at each

position is arrived at by comparing the rescaled resemblance volumes as follows26:

Ŝi = argmax
Si

p(RV|Si ). (3.9)

Action detection methods [21, 11, 22] which also tested on this dataset only presented

qualitative results with either empirically chosen threshold values or no description

about how the threshold values are determined. On the other hand, the threshold val-

ues are automatically chosen in our algorithm by controlling the FDR with respect to

the specified α (see Appendix B). Unlike [21, 11, 22], we provide the precision-recall

curves in Fig. 3.26 for quantitative evaluation. For these experiments, we used the

entire frames while [21, 11, 22] used a part of video frames. The detection result of

the proposed method on this video outperforms those in [21, 22] and compares favor-

ably to that in [11] in terms of visual detection accuracy. As shown in Figs. 3.26, 3.27

and expected from qualitative comparison in Fig. 3.25, 3-D LARK clearly outperforms

HOG3D and 3-D Gabor.
26By RV we mean a collection of RV indexed by i at each position.
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Figure 3.29: The drinking dataset [23]: Top: a query video chosen from the episode “No prob-
lem". Bottom: Some target video samples from the episode “Cousin?" and “Delirium".

Effect of Parameters We examined how the performance of the proposed method is

affected by the choice of parameters P (the size of 3-D LARK) and h (the smoothing

parameter). Fig. 3.28 illustrates equal error rates for 3-D LARKs in single-scale imple-

mentation. As shown in Fig. 3.28, the overall performance of the proposed method

changes gracefully with the particular choice of parameter h and P . It appears that

best performance can be achieved with the fixed choice of P = 3 × 3 × 7 and h = 2.3

across three video dataset.

The Drinking Action Dataset [23] In this section, we further evaluate our method

on more challenging scenarios such as real movie scenes. The drinking action dataset

comprises a total of 36,000 frames from two episodes of the movie “Coffee and Cigarette".
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The dataset includes 37 drinking actions from the episodes “Cousins?" and “Delirium".

Fig. 3.29 illustrates how drinking actions in target video samples largely vary in scales

and view-points as well as the background clutter. Furthermore, there are abrupt scene

changes, and the size and appearance of cups also vary. We chose one drinking action

(55 frames of 107×101 pixels) as a query (see Fig. 3.29) from the episode called “No

problem". Thus, there is no overlap between the query and the target videos. We take

the multiscale approach in temporal axis as well as in spatial axis because temporal

extents of drinking actions in the test set vary from 30 to 200 frames with the mean

length of 70 frames. More specifically, we used 9 spatial scales from 0.7 ∼ 1.5 and 6

temporal scales from 0.8 ∼ 1.3. As explained in Appendix 3.3.2, we take a maximum

value across all scales at each voxel and end up with one RV. In order to deal with vari-

ations in view points, we used mirror-reflected version of the query as well. By voting

the higher score among values from two RVs at every space-time location, we arrive

at one RV which includes correct locations of drinking action. The performance of our

method on this testset in comparison to Laptev’s methods [23] is illustrated in Fig. 3.30

in terms of precision-recall curves and average precision (AP) values. Note that Laptev

1, 2, and 3 are based on discrete AdaBoost using 106 positive examples for training. As

discussed in [23], Laptev 1 uses HOF with additional keyframe priming while Laptev

2 and 3 use HOG3D. Even though we use a single frontal view query, the proposed

method performs favorably with Laptev 1 and 2. Twenty strongest detections (sorted

in decreasing order of resemblance volume score) with the proposed method are illus-

trated in Fig. 3.31. In spite of a substantial variation in subject appearance, motion,

surrounding scenes, view points and scales, and also abrupt scene change in the video,

the proposed method retrieved most of actions at the correct locations. We expect that

96



Figure 3.30: Precision-Recall curves comparison between the proposed method and three ac-
tion detection methods by [23]. The proposed method performs favorably with Laptev 1 and 2
even though there is a single query video used. The average precision (ap) means an average
precision over the entire range of recall. This figure is better viewed in color.

our method might also benefit from keyframe priming as discussed in [23].

3.3.3 Action Category Classification

As opposed to action detection, action category classification aims to classify

a given action query into one of several pre-specified categories. In earlier discussion

on action detection, we assumed that in general the query video is smaller than the

target video. Now we relax this assumption, and thus we need a preprocessing step

which selects a valid human action from the query video. This idea allows us to not

only extend the proposed detection framework to action category classification, but

to also improve both detection and classification accuracy by removing unnecessary
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Figure 3.31: Detection of drinking actions (yellow: true positives, red: false positives) sorted in
the decreasing confidence order by the proposed method. This figure is better viewed in color.

background from the query video.

Once the query video is cropped to a short action clip by using space-time

saliency detection, as described in Chapter 2, the cropped query is searched against

each labeled video in the database, and the value of the resemblance volume (RV)

is viewed as the likelihood of similarity between the query and each labeled video.

Then we classify a given query video as one of the predefined action categories using

a nearest neighbor (NN) classifier.

The Weizmann Action Dataset [6] The Weizmann action dataset contains 10 actions

(bend, jumping jack, jump forward, jump in place, jump sideways, skip, run, walk,
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wave with two hands, and wave with one hand) performed by 9 different subjects.

This dataset contains videos with static cameras and simple background, but it pro-

vides a good testing environment to evaluate the performance of the algorithm when

the number of categories are large compared to the KTH dataset (a total of 6 categories).

We conducted experiments on the Weizmann dataset under various data split setups.

For example, the videos of m subjects are randomly drawn for testing (query) and the

videos of the remaining 9−m subject are labeled for each run where m ∈ [1, · · · ,8]. We

applied the automatic action cropping method introduced in the previous section to

the query video. Then the resulting short action clip is matched against the remaining

labeled videos using the proposed method. We classify each testing video as one of

the 10 action types by 3-NN (nearest neighbor) as similarly done in [22]. The results

are reported as the average of 100 runs. To begin, we achieved a recognition rate of

97.5% for all ten actions in the leave-one-out setting (m = 1). The recognition rate com-

parison is provided in Table 3.3 as well. The proposed method performs favorably

against state-of-the-art methods [115, 137, 138, 139, 107, 140, 141, 65]. We observe that

these results also compare favorably to several state-of-the-art methods even though

our method involves no training phase, and requires no background/foreground seg-

mentation. As an added bonus, our method provides localization of actions as a side

benefit. Fig. 3.32 (left) shows the confusion matrix for our method.

Next, we provide further results using 1-NN and 2-NN in comparison to 3-

NN in Fig. 3.32 (right) with respect to various split setups. The recognition rates are

quite stable regardless of the split used.

The KTH Action Dataset [7] In order to further quantify the performance of our al-

gorithm, we also conducted experiments on the KTH dataset. The KTH action dataset
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Table 3.3: Comparison of average recognition rate on the Weizmann dataset [6]

Our approach 1-NN 2-NN 3-NN

Recognition rate 84.7% 92.5% 97.5%

Method Junejo et al. [137] Liu et al. [138] Klaser et al. [65]

Recognition rate 95.33% 90% 84.3%

Method Niebles et al. [115] Fathi and Mori [142] Zhang et al. [141]

Recognition rate 90% 100% 92.89%

Method Jhuang et al. [139] Batra et al. [140] Bregonzio et al. [85]

Recognition rate 98.8% 92% 96.6%

Method Ali et al. [107] Sun et al. [143] Schindler and van Gool [144]

Recogniton rate 95.75% 97.8% 100%

Figure 3.32: Left: Confusion matrix on the Weizmann dataset for the leave-one-out setting,
Right: Average recognition rate according to various data split setups. (Weizmann dataset)

contains six types of human actions (boxing, hand waving, hand clapping, walking,

jogging, and running), performed repeatedly by 25 subjects in 4 different scenarios:

outdoors (c1), outdoors with camera zoom (c2), outdoors with different clothes (c3),

and indoors (c4). This dataset seems more challenging than the Weizmann dataset
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because there are large variations in human body shape, view angles, scales, and ap-

pearance. We also evaluate our method on the KTH dataset under various split setups.

First, we use the same setup as in [7], i.e., 8 people for training27 and 9 for testing for

each run. The recognition rates are reported as the average of 100 runs for this setup.

We were able to achieve a recognition rate of 95.1% on these six actions. Fig. 3.33 (left)

shows the average confusion matrix across all scenarios for this setup. The recognition

rate comparison with competing methods is provided in Table 3.4 as well. Our method

outperforms all the other state-of-the-art methods and is fully automatic. We further

tried other data-split setups as similarly done in the previous section. The videos of m

subjects are randomly drawn for testing (query) and the videos of the remaining sub-

ject 25−m are labeled for each run, where m ∈ [1, · · · ,24]. As shown in Fig. 3.33 (right),

it is consistent with the results on the Weizmann dataset that the recognition rates are

quite stable regardless of the split used as similarly stated in [145].

Table 3.4: Comparison of average recognition rate on the KTH dataset

Our approach 1-NN 2-NN 3-NN

Recognition rate 82.7% 91% 95.1%

Method Kim et al. [113] Ning et al. [22] Klaser et al. [65]

Recognition rate 95.33% 92.31% (3-NN) 91.4%

Method Laptev et al. [64] Niebles et al. [115] Liu and Shah [145]

Recognition rate 91.8% 81.5% 94.2%

Method Dollar et al. [146] Wong et al. [147] Rapantzikos et al. [148]

Recogniton rate 81.17% 84% 88.3%

Method Ali et al. [107] Sun et al. [143] Schindler and van Gool [144]

Recogniton rate 87.7% 94% 92.7%

27We use the term “training" here to be consistent with notation used in the literature even though our
method does not require training mechanisms.
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Figure 3.33: Left: Confusion matrix on the KTH dataset for the 8 training/ 9 testing setup,
Right: Average recognition rate according to different data split setup. (KTH dataset)

Discussion It is important to note that our features computed using the PCA process

are a function of the input query video, and therefore are adapted to each changing

query. As such, one would expect them to serve better in identifying actions that are

similar to the given query in a way that is more accurate than would a generic basis.

Indeed, the tradeoff between having a fixed basis for all input queries and a basis

that is extracted from each query manifests itself as a tradeoff between stability and

specificity. Despite the higher computational cost we pay, our process for extraction

of features appear to be stable, yet showing rather high specificity at the same time,

resulting in overall very good performance.

Our system is designed with recognition accuracy as a high priority. A typical

run of the action detection system implemented in Matlab takes a little over 1 minute

on a target video T (50 frames of 144×192 pixels, Intel Pentium CPU 2.66 Ghz machine)

using a query Q (13 frames of 90×110). Most of the run-time is taken up by the compu-
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tation of MCS (about 9 seconds, and 16.5 seconds for the computation of 3-D LARKs

from Q and T respectively, which needs to be computed only once.) There are many

factors that affect the precise timing of the calculations, such as query size, complexity

of the video, and 3-D LARK size. We can speed up the proposed method by applying

coarse-to-fine search [149] as done in Chapter 4. Even though our method is stable

in the presence of moderate amount of camera motion, our system can benefit from

camera stabilization methods as done in [150, 151] in case of large camera movements.

In the Weizmann dataset and the KTH dataset, target videos contain only one

type of action. However, a target video may contain multiple actions in practice. In

this case, simple nearest neighbor classifiers can possibly fail. Therefore, we might

benefit from contextual information to increase accuracy of action recognition systems

as similarly done in [152]. In fact, there is a broad agreement in the computer vision

community about the valuable role that context plays in any image understanding task

[153, 154].

Summary – In this chapter, we have proposed a unified framework for both object

and action detection by employing LARKs and MCS. The proposed method can auto-

matically detect in the target the presence, the number, as well as location of similar

objects (actions) to the given single query. To deal with more general scenarios, ac-

counting for large variations in scale and rotation, we further proposed multiscale and

multirotation approaches. Experiments on challenging sets of real-world object and

action data have demonstrated that the proposed approach achieves a high detection

accuracy in varied contexts and under different imaging conditions. However, due to

the heavy computational complexity, it is difficult for the proposed method to be ex-

tended to real-time applications. In the next chapter, we introduce how to speed-up

103



the computation of LARK and realize a real-time object and action detection system by

employing coarse-to-fine pyramid search in conjunction with a tree-structure.
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3A Handling Variations

Although our detection framework can handle modest scale and rotation vari-

ations by adopting a sliding window scheme, robustness to larger scale and rotation

changes (for instance above ±20% in scale, 30 degrees in rotation) are desirable. Fur-

thermore, the use of color images as input should be also considered from a practical

point of view. In this section, the approach described in the previous sections for de-

tecting objects at a single scale is extended to detect objects at different scales28 and at

different orientations in an image. In addition, we deal with a color image by defining

and using “Canonical Cosine Similarity".

Multi-Scale approach In order to cope with large scale variations, we construct a

multi-scale pyramid of the target T . This is a non-standard pyramid as we reduce the

target size by steps of 10 ∼ 15%, so that a relatively fine quantization of scales are taken

into account. Fig. 3.34 (a) shows the block diagram of the multi-scale approach. The

first step is to construct the multi-scale pyramid T 0,T 1, · · · ,T S where S is the coarsest

scale of the pyramid. As shown in Fig. 3.34 (a), FQ ,FT 0 ,FT 1 ,FT 2 (S = 2) are obtained by

projecting KQ and KT 0 ,KT 1 ,KT 2 onto the principal subspace defined by AQ as follows:

FQ = A⊤
Q KQ , FT 0 = A⊤

Q KT 0 ,

FT 1 = A⊤
Q KT 1 , FT 2 = A⊤

Q KT 2 . (3.10)

28Note that multi-scale approach of saliency detection in Chapter 2 did not improve overall perfor-
mance while multi-scale approach of object detection is effective. This is in part due to the fact that we
rescale a center patch (which corresponds to a query in object detection) and surrounding patches at the
same time, while we only rescale target images without changing the size of query image. Another reason
is that we use LARKs of size 3×3 in saliency detection whereas 7×7 LARKs are employed in conjunction
with PCA in object detection.
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LARKs Matrix Cosine Similarity

Scale Estimation

Resemblance Map

Resemblance Map

Rotation Estimation

Matrix Cosine SimilarityLARKs

Figure 3.34: Block diagrams of (a) multi-scale object detection system and (b) multi-rotation
object detection system.

We obtain three resemblance maps RM0,RM1,RM2 by computing f (ρi ) = ρ2
i

1−ρ2
i
. These

resemblance maps represent the likelihood functions p( f (ρi )|Si ) where Si is the scale

at i th point. However the sizes of the respective resemblance maps RM0,RM1,RM2 are

naturally different. Therefore, we simply upscale all the resemblance maps by pixel

replication so that they match the dimensions of the finest scale map RM0. Next, the

maximum likelihood estimate of the scale at each position is arrived at by comparing
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the upscaled resemblance maps as follows29:

Ŝi = argmax
Si

p(RM|Si ). (3.11)

Multi-Rotation approach In order to cope with large rotations, we take a similar

approach and generate rotated images (this time of the query Q) in roughly 30 de-

gree steps. As seen in Fig. 3.34 (b), FQ0 ,FQ1 , · · · ,FQ11 and FT are obtained by projecting

KQ0 , · · · ,KQ11 and KT onto the principal subspace defined by AQ0 , · · · ,AQ11 . After com-

puting f (ρi ) = ρ2
i

1−ρ2
i

from 12 pairs by employing the sliding window scheme, we obtain

twelve resemblance maps RM0, · · · ,RM11. We compute the maximum likelihood esti-

mate of the best matching pattern accounting for rotation as follows:

R̂i = argmax
Ri

p(RM|Ri ). (3.12)

Canonical Cosine Similarity Now, we define Canonical Cosine Similarity (CCS) to

extend the proposed framework with a single gray-scale query image to vector-valued

images. In particular, suppose at each pixel, the image has q values. As per the earlier

discussion (Section 3.2.2), we generate q feature sets Fℓ
Q ,Fℓ

Ti
(ℓ= [1, · · · , q]) by projecting

Kℓ
Q ,Kℓ

Ti
onto the subspaces Aℓ

Q respectively and form the overall feature set as follows:

FI=[colstack(F1
I ), · · ·,colstack(Fq

I )]∈R(d×n)×q , I ∈{
Q,Fi

}
. (3.13)

The key idea is to find the vectors uQ and uTi which maximally correlate two data sets

(FQ ,FTi ).

vI =FI uI =uI1 colstack(F1
I )+·· ·+uIq colstack(Fq

I )∈R(d×n), (3.14)

where uQ=[uQ1 , · · · ,uQq ]⊤∈Rq and uTi=[uT1 , · · · ,uTq ]⊤∈Rq .

29By RM we mean a collection of RM indexed by i at each position.
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Then, the objective function we are maximizing is the cosine similarity be-

tween vQ and vTi as follows

ρ = max
uQ ,uTi

v⊤Q vTi

∥vQ∥∥vTi ∥
= max

uQ ,uTi

u⊤
Q F⊤

Q FTi uTi

∥FQ uQ∥∥FTi uTi ∥
,

such that ∥FQ uQ∥ = ∥FTi uTi ∥ = 1, (3.15)

where uQ and uTi are called canonical variates and ρ is the canonical cosine similarity.

The above is inspired by canonical correlation analysis (CCA) [127].

The Lagrangian objective function to the minimization problem in Equation

(3.15) is

f (λQ ,λT ,uQ ,uTi) = u⊤
Q F⊤

Q FTi uTi−
λQ

2
(u⊤

Q F⊤
Q FQ uQ−1)−λTi

2
(u⊤

Ti
F⊤

Ti
FTi uTi−1). (3.16)

Taking derivatives with respect to uQ and uTi , we obtain

∂ f

∂uQ
= F⊤

Q FTi uTi −λQ (F⊤
Q FQ uQ ) = 0, (3.17)

∂ f

∂uTi

= F⊤
Ti

FQ uQ −λTi (F⊤
Ti

FTi uTi ) = 0. (3.18)

We pre-multiply u⊤
Ti

to Equation (3.18) and also pre-multiply u⊤
Q to Equation (3.17). By

subtracting these two equations, we have

u⊤
Q F⊤

Q FTi uTi−λQ (u⊤
Q F⊤

Q FQ uQ)−u⊤
Ti

F⊤
Ti

FQ uQ−λTi (u⊤
Ti

F⊤
Ti

FTi uTi)=0, (3.19)

where (u⊤
Q F⊤

Q FTi uTi )⊤ = u⊤
Ti

F⊤
Ti

FQ uQ is a scalar. Enforcing the constraints (u⊤
Q F⊤

Q FQ uQ )⊤=

(u⊤
Ti

F⊤
Ti

FTi uTi )⊤=1, we are led to the conclusion that λQ=λTi . We define ρ=λQ=λTi . As-

suming F⊤
Ti

FTi is invertible from Equation (3.18),

uTi =
(F⊤

Ti
FTi )−1FTi FQ uQ

ρ
, (3.20)
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and so plugging in Equation (3.17), we have

(F⊤
Q FTi )(F⊤

Ti
FTi )−1(FTi FQ )uQ

ρ
= ρ(F⊤

Q FQ )uQ . (3.21)

Assuming F⊤
Q FQ is also invertible, we are left with

(F⊤
Q FQ )−1(F⊤

Q FTi )(F⊤
Ti

FTi )−1(F⊤
Ti

FQ )uQ = ρ2uQ . (3.22)

Similarly, we have

(F⊤
Ti

FTi )−1(FT
Ti

FQ )(F⊤
Q FQ )−1(F⊤

Q FTi )uTi = ρ2uTi . (3.23)

The canonical cosine similarity ρ and canonical variates uQ ,uTi can be obtained by solv-

ing the above coupled eigenvalue problems. The positive square root of eigenvalues

ρ2 is the “Canonical Cosine Similarity". If FQ ,FTi are each composed of a single vector

(colstack(FQ ),colstack(FTi )), the above equations reduce to
(colstack(FQ )⊤colstack(FTi ))2

∥colstack(FQ )∥2∥colstack(FTi )∥2 = ρ2

which is just the squared cosine similarity defined earlier in Section 3.2.2.

Now, we take a closer look at the particular case of color images where q = 3.

A natural question here is whether we can gain more if we use the color information

instead of using only the luminance channel as we have so far. The answer to this

question is positive. There exist many color spaces such as RGB, YCbCr, CIE L*a*b*

etc. We observe that CIE L*a*b color model provides the most discriminative informa-

tion among all as also observed by Shechtman and Irani [11]. We define the respective

RM30 as the summation of mapping function f (ρi (ℓ)) of CCS ρi (ℓ) between a set of fea-

tures which are calculated from each channel (ℓ= 1, · · · , q), where
∑dc

ℓ=1
ρ2

i (ℓ)

1−ρ2
i (ℓ)

) (dc is the

30Again as mentioned earlier, note that
∑dc
ℓ=1

ρ2
i (ℓ)

1−ρ2
i (ℓ)

is analogous to the Lawley-Hotelling trace test

statistic
∑ ρ2

1−ρ2 which is used in the significance test of canonical variates in canonical correlation analysis

[127, 130].
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number of canonical cosine similarity values ρi (ℓ) greater than zero). Also illustrated

in Section 3.3, the color approach based on CCS not only provides better discriminative

power, but also gives more accurate localization results than the luminance channel

only does.
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Chapter 4

Real-time Robot Vision with Scalable

LARK Descriptors

Abstract – Although LARKs are flexible enough to recognize a wide spectrum of

objects, humans and actions with high accuracy, they have not been applied to a real-

time application due to their heavy computational complexity. In this chapter, we aim

at developing a real-time detection system with (scalable) LARKs that will support

human-robot interaction (HRI). To allow interaction, it must run in real time and only

need a few examples to learn with. In this chapter, given these requirements, we find

an efficient method to compute LARKs in real time. We then construct a feature pyra-

mid that allows for rapid coarse-to-fine object search. Finally, we employ tree-based

hierarchical feature clustering so that recognition time grows slower than linear with

the number of objects/examples learned, thus achieving our aims.
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4.1 Introduction

In the last decade, we have witnessed substantial progress in the problem of

object detection/classification. One popular paradigm for visual object classification

is based on histogram of gradients descriptors such as SIFT and its variants such as

HOG, SURF, etc., computed from an image either at interest points or densely. The

image is then represented as a histogram of codewords generated by applying vector

quantization to a collection of descriptors. The resulting histogram is used as an in-

put to a standard classifier, for example, a support vector machine (SVM). While these

approaches often provide acceptable accuracy for object categorization tasks, most of

these approaches are not appropriate for interactive object recognition from few exam-

ples because general classifiers are often learned off-line and when a new instance is

added, classifiers often must be trained from scratch using many training examples for

each category in order to cope with intra-class variations.

For effective human-robot interaction, recognition of many objects should run

in real time. The generic object detection framework with LARKs described in Chapter

3 achieved high detection accuracy on challenging datasets (including face, car, and on

various generic objects) using a single example even in the presence of variations in

scale, rotation, local deformation, and illumination. In our case, for a robot detecting

man-made rigid objects and their view based pose, we need to use several examples

per object but we hope to keep this at a minimum. We take advantage of LARKs which

are highly discriminative and tolerant to viewpoint changes so that only a few views

are sufficient for learning a new object, person or action. LARK is a good candidate

for our needs, but it is computationally complex and thus too slow for real-time object

detection. In this chapter, we develop a sped-up version of LARK.
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Figure 4.1: Left: Robots are increasingly working with humans (HRI). For HRI we desire quick
learning from few examples followed by recognition and pose in real time. Right: The pro-
posed detection system can reliably detect textured objects in cluttered backgrounds in real-
time from just a few learned examples.

Related Works Earlier approaches such as [155] used the Chamfer distance between

example and input image contours. However, contours are sensitive to the presence

of blur, noise, and illumination changes. Even though a recent approach [156] based

on a Hough-style voting scheme with a non-rigid shape matching on the contour im-

age achieved very good classification results. It is not applicable to real-time object

detection due to heavy computational cost.

The method proposed in [33] tried to overcome the limitations of using con-

tours by considering a two level histogram of image gradients descriptors which pro-

vide invariance to local transformations. Recently, [57] proposed learning locally-

invariant features through topographic filter maps. The discriminative power of these
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invariant types of features heavily relies on a large training set making learning quite

slow and one-shot learning impractical.

[135] proposed CHoG descriptors by compressing gradient histograms with

a tree structure. However, CHoG was only tested for a descriptor matching task. A

new binarized gradient example matching method, dominant orientation examples

(DOT) [24] achieved very fast detection. DOT is designed to be tolerant to small im-

age transformations (small shifts and rotations). However, this representation tends to

have many false positives in highly textured areas as it is based directly on the image

gradients. Since DOT has limited invariance, it requires many examples to learn an

object and so is not suited to one-shot learning.

Recently, [143] proposed a depth-encoded Hough voting detection scheme in

order to localize objects and estimate their pose. They incorporate depth information

into the process of learning distributions of image patches. The requirement of 3-D

training information along with a heavy computational cost keeps this method from

real-time detection.

In this chapter, we generalize and build on [49] to derive a fast generic object

detection system that can scale to multiple objects and run in real-time. We also uti-

lize the saliency detection of [48] (also described in Chapter 2) with these improved

LARKs to allow us to rapidly focus on regions of the visual scene that are most likely to

contain objects. While the baseline saliency detection method was quite slow, saliency

detection based on our new LARK feature can compute saliency maps at 60 frames per

second on a core two 2GHz desktop for 640×480 images.

Contributions The contributions in this chapter serve to make LARK practical for

fast learning, real time, scalable object and human action recognition. We first develop
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Figure 4.2: Integral image representation. The summation over a local window Ωl of size 5×5

reduces down to 2 addition and 2 subtractions.

an efficient method to speed up the computation of LARKs. By using salient region

detection based on the faster version of LARK, we reduce search space. We then de-

velop a coarse-to-fine pyramid approach to allow for rapid object search and combine it

with a tree based structure for sharing multiple examples. Search time of the resulting

approach grows slower than linear (logarithmic on average) in learning multiple ob-

jects. Our algorithm uses only a few examples to learn each object allowing for quick,

online learning. In training, examples are automatically added as they are needed.

We demonstrate accurate detection performance of LARK on a standard datasets [19]

and show the utility of LARK for robotic object recognition and action recognition in

cluttered backgrounds. In the following section, we introduce how to accelerate the

computation of LARKs.
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Input

Figure 4.3: Cr eg
l is computed in a grid of 5 pixels and upsampled to the original scale by using

lanczos interpolation over 8 × 8 neighborhood. Due to redundancy of Ωl , resulting LARKs
between down-scale interpolated Cr eg

l and the full-scale Cr eg
l computed at the original scale

make little difference, but gives 16× speedup.

4.2 LARK speed-up

Integral Image: In order to efficiently compute “average" Cl in Equation (1.4), we

employ the idea of integral images [29] to the components of Cl : z2
x1

, zx1 zx2 , z2
x2

respec-

tively. Then summation over a local window Ωl of size 5×5 reduces down to 2 addition

and 2 subtractions as shown in Fig. 4.2.
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Avoid Eigenvalue decomposition: Eigenvalues and eigenvectors of the covariance

matrix in Equation (1.5) can be efficiently computed in closed form:

λ1,2 = (C11 +C22)±
√

(C11 −C22)2 +4C12C21

2
,

u1 = [cosθ, sinθ]⊤, u2 = [−sinθ,cosθ]⊤, (4.1)

where u1,u2 are eigenvectors, θ = tan−1(−C11+C21−λ1
C22+C12−λ1

), and λ1,λ2 are eigenvalues. This

provides 4 × speedup.

Interpolation of Cr eg
l : While having a stable estimation of Cr eg

l is crucial, most com-

putation is consumed in calculating Cl . We take advantage of redundancy of local

patch Ωl . Instead of computing Cr eg
l at every pixel, we interpolate Cr eg

l after comput-

ing them in a grid of 5 pixels which in turn results in 10 × speed-up (see Fig. 4.3.)

Note that we use the Lanczos interpolation over 8× 8 pixel neighborhood (OpenCV

implementation1.)

4.3 Detection speed-up

Salient Region Filter The generic object detection method [49] (also described in

Chapter 3) relies on a sliding window scheme which is computationally expensive and

in not scalable to large images. In this chapter, we employ saliency detection2 to re-

duce the sliding window search spaces. We obtain a saliency map by measuring MCS

between a collection of (a faster version of) LARKs in a center patch vs. surrounding

patches as described in Chapter 2.

1http://opencv.willowgarage.com/documentation/cpp/index.html.
2The fact that both saliency detection and object detection share the idea of data-adaptive kernel den-

sity estimation naturally leads us to use saliency detection to reduce search space as a pre-processing.
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Figure 4.4: Saliency detection results. Images are divided into 10×10 blocks. We test each block
to see if they are salient or not. Black blocks are regions which are not salient.

Figure 4.5: examples are automatically registered to the system by applying a chessboard de-
tection and selecting 3-D box around the object. Each example is registered with its mask and
pose. We used OpenCV’s select3dobj function for these processes.

We divide the saliency map into 10 × 10 blocks, and then compute average

values from each block. We declare a block as salient if its score is greater than a fixed

threshold (= 0.3). As shown by the masked regions in Fig. 4.4, this can result in signifi-

cant computational savings by allowing us to skip searching in non-salient blocks.
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Figure 4.6: By constructing a tree structure of examples and a pyramid of LARK feature images,
we can perform efficient a coarse-to-fine search in order to accurately localize an object with its
view based pose. This figure is better viewed in color.

Automatic Training In order to register multiple examples that represent varying

appearance/pose of man-made rigid objects with respect to camera view points, we

use a chessboard detection method. The detected chessboard defines a ground plane

coordinate system where the user draws a box around and object and adjusts the box

height to cover the object. The process is as follows. The user draws a 3-D box around

the object of interest. Once the first example is registered with its mask and pose,

multi-scale object detection described in Chapter 3 is performed to the 3-D bounding

box in the following frames and new examples are added if the MCS score between the

registered examples and the candidate3 falls below 0.4 (see Fig. 4.5.) This is repeated

until we reach to a maximum number of examples (20∼30).

Pyramid Search and Clustering of examples We perform PCA on the collections of

LARKs from the all the registered examples in order to construct a common subspace

per object category. This differs from Chapter 3 where only one example is used and

3We can also use a pan-tilt table to gather examples from multiple viewpoints as shown in Fig 4.1.
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Figure 4.7: The tree based approach grows slower than linear. The use of pyramid search and
tree-structured examples results in 10 × speedup on average detection time over 188 frames.

each example possesses its own PCA subspace4. We employ a coarse-to-fine search

in conjunction with a hierarchical clustering of examples. By constructing a feature

pyramid of PCA reduced LARK features and starting search at the coarsest level with

a few examples, we find candidate sub-blocks (yellow blocks in Fig. 4.6 Left) which are

likely to have objects inside. Indices of these blocks are propagated to the higher level

(level 1) and refined (green blocks) with a search using a larger number of examples.

This process is repeated until we reach to the finest level (level 2) of the pyramid and

detect the object’s location (red block) and its pose. In our implementation, we use

two levels for both feature pyramid and a hierarchy of example clusters as shown in

Fig. 4.6. This allows for scaling since recognition time grows slower than linear with

increasing number of objects/examples (see Fig. 4.7).

4This idea also is applied to face verification problem in Chapter 5. We refer the reader to Chapter 5
for more detail.
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Figure 4.8: Matching score comparisons on the Graffiti and Wall Oxford datasets [24]. Left:
Matching scores for Graffiti in terms of viewpoint angles. Right: Matching scores for Wall in
terms of viewpoint angles. LARK outperforms the other approaches.

4.4 Experiments

4.4.1 Detection Accuracy

In order to study detection accuracy of the proposed method, we conducted

experiments on the Oxford Graffiti dataset and the Wall dataset [19] to find out match-

ing regions between two images as similarly done in [24]. We randomly selected 100

patches from the first image and synthesized 5 different example patches by scaling

and rotating the first image of the dataset for changes in viewpoint angle.

The matching score is defined as a ratio of the number of correct matches to

the smaller number of regions detected in one image following [19]. It is considered

to be correctly matched if the overlap of two regions is smaller than 40%. In Fig. 4.8,

we compare our result with HOG and other patch rectification approaches (Leopar,

Panter, Gepard)[24] which appear to perform better than affine region detectors pro-

posed in [19]. Note that other methods5 used many more examples (around a couple

5Note that DOT [24] also achieves 100 % on both dataset, but requires a couple of hundred examples.
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Figure 4.9: Detection of different objects such as face, speaker, chair and mini-robot at about
8 fps in a cluttered background. The color of bounding boxes represents object’s rough view
angle (or rough pose).

of hundred) than our 5 examples. LARK clearly outperforms the other approaches by

achieving 100% matching rate on the Graffiti image set. For the Wall image set, LARK

also gets 100% while HOG performs worse for large viewpoint changes.

4.4.2 Real-time Recognition

Real-time Object Recognition LARK can detect generic objects such as face, speaker,

chair, and mini-robot as shown in Fig. 4.9. In case of face, speaker, and chair, we used

three different examples corresponding to center, left, right shown by the red, blue,

and green boxes respectively. For mini-robot, we collected 12 examples by using chess-

board detection as described in section 4.3. The proposed detection system provides

a single object’s location and rough pose at 8 frames per second on a core two 2GHz

desktop for 640×480 images. The system can also detect multiple objects simultane-
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Figure 4.10: Detection of 10 different objects with partial clear plastic covers in multiple view
points. 1st row: drain stopper, party straw, party parasol, and toy scissors, 2nd row: clog-x,
cards, 4 medals, 3rd row: baking cups, avocado slicer, two knives.

ously as shown in Fig. 4.10. In this case, recognition was accurate and stable over 20

degrees of table pan and 10 degrees of tilt. In another test, we took 20 common office

items such as mugs, plastic cups, stapler, mouse, CD cases etc, and learned an average

of 11 examples for each one. Each example seemed to be robust to ±20% scale change

and to ±25 degrees of rotation. Data covered the span of typical robot viewpoints.

We tested each object with a 6 second “look around" with the object in cluttered desk

scenes such as in Fig. 4.9. Since the robot tracks objects, we defined any solid half

second of recognition as a confirmed recognition. In this case, all objects were reliably

recognized. We thus have further indication that LARK can learn a wide variety of

objects using relatively few examples and recognize them in real time.
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Figure 4.11: Space-time saliency detection and 4 different action recognition: sit-down, waving,
boxing, and getting-closer. Recognition is done at about 10 fps in a cluttered background. While
most actions were detected and recognized correctly over 20 times, some of waving actions (6)
were missed due to a threshold that was set to ensure that all actions are correctly classified as
well.

Real-time Action Recognition The extension of fast LARK to action recognition is

straightforward. By applying space-time saliency detection with fast 3-D LARK of size

3×3(space)×5(t i me), we significantly reduce the search space for actions of interest

in real-time. Fig. 4.11 shows that fast 3-D LARK can reliably detect actions such as sit-

down, waving, boxing, and getting-closer at about 10 fps in a cluttered background.

Over 20 examples of each action, recognition worked completely for all but waving

where it worked 70 percent of the time. This is further indication of the flexibility of

LARK while maintaining real time recognition speeds.

Summary – In this chapter, we have taken advantage of the discriminative but view-

point tolerant properties of LARKs and made them practical for robotic vision systems

by speeding them up to run in real time. We have also designed their recognition time

to scale slower than linear (logarithmic on average) with increasing numbers of ob-

jects. This scaling was done by adopting a coarse-to-fine search in conjunction with a

tree structure of examples. LARK learns coarse pose (according to how many views the
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user wants to learn), runs in real time and works across face, object and action recog-

nition and scales well with increasing numbers of learned items thus making LARK a

promising feature to use in robot vision systems. In the next chapter, we further exam-

ine the efficacy of LARKs in two more visual recognition applications: face verification

and automatic change detection.
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Chapter 5

Other Applications of LARKs

Abstract – In Chapters 2 and 3, we have shown that LARKs are very useful for such

applications as saliency detection and object/action detection that are core problems

in visual recognition. In this chapter, we successfully apply LARKs to two more appli-

cations: 1) automatic change detection and 2) face verification. Comprehensive exper-

iments demonstrate that the proposed methods yield state of the art results.

5.1 Automatic Change Detection

5.1.1 Introduction

The automatic analysis of subtle change between images of the same subject

over time is a very important component in a large number of applications in diverse

disciplines. Areas where such analyses are deployed include computer-aided diagno-

sis (CAD), video surveillance, and remote sensing, to mention just a few. In particular,

change detection in medical diagnosis may be applicable to a broad range of diseases

including cancers, Multiple Sclerosis, Alzheimer’s and more. In general, a change de-
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tection method consists of three stages: 1) geometric registration of images, 2) inten-

sity adjustments, and 3) image comparison to identify changes. We refer the interested

reader to [157] and references therein for a good summary.

The generic problem of interest addressed in this section focuses on the third

component and can be briefly described as follows: We are given a set of brain Mag-

netic Resonance Imaging (MRI) scans of the same subject acquired over time, and we

are interested in identifying pixels which are “significantly" different between the two

MRI scans. Even in the absence of registration errors, estimating diagnostically signif-

icant changes is still challenging due to such factors as signal nonuniformity or pres-

ence of noise. A variety of MRI artifacts also introduce a wide range of confound-

ing factors, making standard change detection methods unreliable. In order to deal

with these problems, multispectral MRI scans were employed for the purpose of le-

sion detection by many researchers. For example, there are at least five different MRI

modalities including T1 weighed, inversion recovery (IR), proton-density-weighted

(PD), T2-weighted, and fluid attenuation inversion recovery (FLAIR). For statistical

change detection in multispectral MRI scans, Bosc et al. [158] used the Generalized

Likelihood Ratio Test (GLRT) followed by nonlinear joint histogram normalization.

However, their approach tends to fail when noise is non-stationary. Patriarche et al.

[159] also used multispectral MRI scans to detect progression of brain tumors. Recently,

Rousseau et al. [160] proposed an a contrario approach to detect Multiple Sclerosis in

multispectral MRI scans. However, in the majority of clinical situations, only one type

of anatomical MRI scan is collected, since the acquisition of multispectral MRI scans

is more time consuming and costly. Longer scanning times are further not feasible in

many patients due to the severity of their conditions.
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Compute

LARKs

Step 1 Step 2 Step 3

Figure 5.1: System overview of automatic change detection. (There are three steps.)

Very recently, Pecot et al. [161] introduced a change detection framework

based on the so-called “patch-based Markov models" in image sequence analysis. Their

method is to detect pixels with meaningful change for several frames by first construct-

ing a difference image while our method directly computes LARKs from the reference

image and the target image. The proposed method has an advantage over their method

in that the calculation of LARKs is stable even in the presence of uncertainty in the data

and is not sensitive to relatively large variations in illumination as described in Chap-

ter 1. To summarize the operation of the overall algorithm, given the reference image

and the target image, we first calculate LARKs from both the reference image and the

registered target image at all pixel locations. Comparison between LARKs computed

from two images is carried out using the vector cosine similarity measure. This step

produces a “dissimilarity map" showing the likelihood of dissimilarity between the

reference and target images. The final output is given after a significance test. (See Fig.
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Figure 5.2: Examples of LARK in various regions. Note that LARKs computed from various
regions look alike except for regions 7 and 8 where small lesions exist in the target.

5.1 for a graphical overview.)

In the next section, we provide further details about the various steps outlined

above. In Section 5.1.3, we demonstrate the performance of the system with some

experimental results.

5.1.2 Technical Details

Assume that we are given a target MRI scan T and that we have a reference

MRI scan R. The first step in the proposed algorithm is to calculate the LARKs Ki

measuring the relationship between a center pixel and its neighboring pixels, at each

pixel from both R and T . Fig. 5.2 shows some examples of LARK in various regions
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of both the reference and the target. Note that LARKs computed from various regions

in both reference and target look essentially identical except for regions 7 and 8 where

small lesions exist.

At each pixel xi , we arrive at an array of P numbers by column-stacking (ras-

terizing) Ki as ki
I (I ∈ {R,T }) as done in Chapters 2 and 3. The next step in the algorithm

is the measurement of a “distance" between the computed features, ki
R and ki

T . As we

alluded to earlier in Chapters 2 and 3, correlation based metrics perform better than

the conventional Euclidean and Mahalanobis distances for classification and learning

tasks. We employ vector cosine similarity as a similarity measure as follows:

ρ(ki
R ,ki

T )=< ki
R

∥ki
T ∥

,
ki

R

∥ki
T ∥

>= ki
R
′
ki

T

∥ki
R∥∥ki

T ∥
=cosθi , (5.1)

where cosθi ∈ [−1,1]. The cosine similarity measure therefore focuses only on the angle

(phase) information while discarding the scale information. As for the final test statis-

tic comprising the values in the dissimilarity map, we use the proportion of “residual"

variance (1−ρ2
i ) to the shared variance ρ2

i , as similarly done in Chapter 3. More specif-

ically, the test statistic at each point in the image is computed. And the dissimilarity

map (DM) is generated at each point as follows:

DM : f (ρi ) = 1−ρ2
i

ρ2
i

. (5.2)

From a quantitative point of view, we note that f (ρi ) is essentially the inverse of the

Lawley-Hotelling trace statistic [127], which is used as an efficient test statistic for de-

tecting correlation between two data sets.

In order to detect salient and significant changes using the DM, we need a

threshold τ. If we have a basic knowledge of the underlying distribution of f (ρi ), then
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Figure 5.3: Coronal view: detected lesion on the simulated image. We used the parameters
P = 25,h = 1.0,τ= 0.99. Note that absolute difference image can not identify lesions at all while
the proposed method detected simulated lesions stably. Note that images are better illustrated
in color.

we can make predictions about how this particular statistic will behave, and thus it is

relatively easy to choose a threshold which will indicate whether the pair of features

from the two images are sufficiently dissimilar. But, in practice, we do not have a

very good way to model the distribution of f (ρi ). Therefore, instead of assuming a

type of underlying distribution, we employ the idea of nonparametric testing1. We

compute an empirical PDF from the values of f (ρi ) across the image and we set τ so as

to achieve, for instance, a 99 % confidence level in deciding whether a given value is in

the extreme (right) tail of the distribution. This approach is based on the assumption

1Namely, we control the false discovery rate (FDR) [132]. We refer the reader to Appendix B for more
details.
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Figure 5.4: Sagittal view. We used the same parameters P = 25,h = 1.0,τ= 0.99.

that in the target image, most of pixels are not involved with significant change, and

therefore, the few outliers will result in values which are in the tail of the distributions

of f (ρi ).

5.1.3 Experimental Results

In order to validate the proposed method quantitatively, we simulated lesions

in normal brain MRI slices (sagittal, coronal, and axial views). These simulated lesions

were generated using a 3-D region of interests (ROI) creation tool provided in MRI-

cro2. Exact sizes and locations of irregular shapes of simulated lesions were stored

and treated as the ground truth. In order to cover a variety of lesions, we constructed

2http://www.sph.sc.edu/comd/rorden/mricro.html
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Figure 5.5: Axial view. We used the same parameters P = 25,h = 1.0,τ= 0.99.

a total of 168 (14 ROIs in different sizes × 3 different views × 4 intensity reduction

of 0%,20%,40%, and 60%, respectively) target slices by following the procedure as in

[162]. Besides, we further made the intensity range of targets (T) different from the

reference (R). We compute LARKs of size 5×5 as descriptors from both R and T . As

a consequence, each pixel in R and T yields a 25-dimensional local descriptor respec-

tively3. By performing significance test on the resulting dissimilarity map with confi-

dence level τ = 0.99, we detected regions with anomalous and statistically significant

changes. Figs. 5.3, 5.4, and 5.5 illustrate three examples of the detected results at the

simulated lesions with 20 % intensity reduction (i.e., degree of lesion transparency).

3Performance of our change detection system is not particularly sensitive to the choice of LARK size
because Cl plays a role in automatically determining the shape and size of kernels.

133



As an overall measure of performance4, we were able to achieve sensitivity= 0.877,

specificity=0.998, and similarity index (SI)=0.879.

Rousseau et al. [160] evaluated their method on simulated lesion images and

reported their SI value around 0.75. Shen et al. [162] tested their lesion detection

method based on segmentation to lesions generated from MRIcro 5 and reported their

SI values on the simulated target slices with 20%,40%, and 60% intensity reduction as

0.867, 0.879, and 0.724 respectively. Our method which obtained an average of 0.879

for SI performs comparably with the method in [162] and outperforms the method in

[160] even though [160] used multispectral MR images6.

5.2 Face Verification

5.2.1 Introduction

Face recognition has been of great research interest [163, 164, 165, 166, 167,

168, 169, 133, 170] in recent years. Face recognition is mainly divided into two tasks:

1) face identification and 2) face verification. The goal of face identification is to place

a given test face into one of several predefined sets in a database, whereas face veri-

fication is to determine if two face images belong to the same person. In general, the

face verification task is more difficult than face identification because a global thresh-

old is required to make a decision. There are also many papers on face detection such

4sensitivity =
Ag t

∩
Ad t

Ag t
, specificity = (I−Ag t )

∩
(I−Ad t )

I−Ag t
, SI = 2× Ag t

∩
Ad t

Ag t
∪

Ad t
, where Ag t represents the

ground truth, which is regions with true lesions (i.e., simulated lesions in this chapter). Ad t

represents detected lesions. I refers to the whole image.
5http://www.sph.sc.edu/comd/rorden/mricro.html
6As pointed out in [160], it is difficult to provide a fair comparison among automatic change detection

algorithms due to the fact that there is no gold standard and codes of state-of-the art methods are not
publicly unavailable.
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Figure 5.6: Example faces from Labeled Faces in the Wild (LFW) [25]: faces belonging to the
same person may look very different from each other due to the large variation caused by
different poses, light conditions, facial expressions, and etc.

as [29, 17] and [171], which is considered as a pre-processing step for face recognition.

According to the face recognition grand challenge (FRGC) [172], face identifi-

cation rates under well-constrained environments have been saturated (almost perfect

with a small false alarm rate.) Nevertheless, face recognition in uncontrolled settings

is still an open problem due to the large variations caused by different poses, light-

ing conditions, facial expression, occlusions, misalignments, etc. With the advent of

a standard benchmark dataset “Labeled Faces in the Wild (LFW) [25]", the face ver-

ification problem in unconstrained settings has recently attracted much research ef-
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fort [165, 173, 174, 133, 170]. This challenging dataset contains a collection of annotated

faces captured from news articles, and exhibits all the variations mentioned above.

There are three evaluation protocols for this dataset: 1) the image unrestricted training

setting, 2) the image restricted training setting, and 3) the unsupervised (no training)

setting.

In this section, we address the face verification problem in uncontrolled envi-

ronments (on LFW dataset and FRGC dataset). The main task is to decide whether the

images of two faces belong to the same individual. Among three evaluation settings

for LFW dataset, we focus on the last two (the unsupervised and the image restricted

training) which are more realistic in practice. In Chapter 3, we have tackled the generic

object detection problem by employing LARKs in conjunction with MCS measure. This

combination has led to state of the art detection performance from a single query, and

without any further training. In fact, face detection is in nature very similar to face

verification in the sense that both are binary classification problems and require two

major components: 1) a face representation and 2) a similarity measure. In this section,

we provide some insights into how the face detection method in [49] can be extended

to face verification.

Recently, face representations based on local image descriptors such as local

binary pattern (LBP) and its variants [175, 165] and histogram of gradient descriptors

(SIFT [18] and HOG [3]) have been proven to be effective for face verification. These

descriptors encode local geometric structures by using either a quantized version of

local gray level patterns or quantized codes of the image gradients. In this section, we

propose to use LARKs which provide much more rich and detailed information than

other local descriptors [3, 18, 11]. After reducing the dimension of LARK by perform-
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ing PCA, we apply a logistic function to the result. The role of the logistic function here

is to make LARK become more or less binarized by stretching values to extreme ends.

We demonstrate that the use of MCS, combined with our feature representation results

in the best performance in unsupervised settings of LFW benchmark.

For the image restricted setting, we employ one-shot similarity (OSS) mea-

sure [26] based on linear discriminative analysis (LDA). The OSS with the proposed

feature representation achieves state of the art performance as a single descriptor and

obtains results comparable with [26] when jointly used with other descriptors (with

many fewer distances: 14 (ours) vs. 30 [26]). A block diagram of the proposed face

verification system is given in Fig. 5.7.

Related Work A texture descriptor called local binary patterns (LBP) [175] has been

shown to be effective for face recognition. Ever since LBP was introduced, such vari-

ants of LBP as three-patch LBP (TPLBP), and four-patch LBP (FPLBP) have been pro-

posed by Wolf et al. [165]. These descriptors were combined with the one-shot sim-

ilarity (OSS) [173] measure motivated by the growing body of “One-Shot Learning"

techniques [176]. Wolf et al. [173] also applied the OSS in the framework of support

vector machine (SVM) [131] by modifying the OSS to a conditional positive definite

kernel. The OSS was extended to two-shot similarity (TSS) in [177]. In [165, 173, 26],

it has been further shown that combining multiple descriptors and multiple measures

can boost the overall verification performance.

Guillaumin et al. [168] proposed two methods called 1) logistic discriminant

metric learning and 2) marginalized k-nearest neighbor. They focused on finding a

metric based on learning the Mahalanobis distance. Independently from [165, 173],

they also showed that combination of descriptors and metrics improves upon using
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Figure 5.7: Block diagram of face verification system. The system mainly consists of two stages:
feature representation and similarity measure.

only one metric and one descriptor.

Hua and Akbarzadeh [174] recently proposed an elastic and partial matching

metric which robustly measures distance between two sets of descriptors by using a

nonparametric significance test. In their work, they revealed that a simple difference

of Gaussian (DoG) filtering on face images works better than the more often utilized

photometric rectification methods (such as self-quotient image [178]) in handling light-

ing variations.

Motivated by the observation that humans perform very well on the LFW

dataset, Kumar et al. [133] proposed two classifiers called “attribute” and “simile” clas-

sifiers for face verification. While the attribute classifiers are binary classifiers trained

to recognize the presence or absence of visual aspects such as gender, race, age, and

hair color, simile classifiers are binary classifiers trained to recognize the similarity of
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faces. This method achieved state of the art performance (85.29% verification rates on

the LFW dataset), but requires a combination of many (more than 70) classifiers.

Distinguished from aforementioned works, Cao et al. [170] introduced a learning-

based encoding method based on unsupervised learning techniques such as k-means,

kd-tree, and random projection tree [179]. In [170], they focused on learning uniform

descriptors from a collection of histogram-based low-level descriptors. They claimed

that the uniformity of features is important when L2 or L1 distances are used as sim-

ilarity metrics. By using multiple learning-based descriptors from nine fiducial areas

and pose-adaptive matching, they have achieved a verification rate of 84.45% on the

LFW dataset.

While all the works [165, 173, 133, 170, 174] above evaluated their methods

in the image restricted training setting, Ruiz-del-solar et al. [180] carried out a com-

prehensive study of existing image matching methods such as LBP matching, Gabor-

Borda count, and SIFT matching in the unsupervised setting (without any training).

They empirically compared these methods by changing the image crop size, parame-

ter settings of descriptors, and image block size.

In our earlier generic object detection work described in Chapter 3, after em-

ploying principal component analysis (PCA), LARKs were transformed to compact

feature vectors. MCS between two matrices composed of resulting sets of feature vec-

tors, F(i ) = [f1, · · · , fn](i ),F( j ) = [f1, · · · , fn]( j ) was defined as:

ρ(F(i ),F( j )) =
n∑

ℓ=1

f(i )
ℓ

⊤
f( j )
ℓ

∥F(i )∥∥F( j )∥,

=
n∑

ℓ=1
ρ(f(i )

ℓ
, f( j )
ℓ

)︸ ︷︷ ︸
vector cosine

∥f(i )
ℓ
∥∥f( j )

ℓ
∥

∥F(i )∥∥F( j )∥︸ ︷︷ ︸
relative weights

, (5.3)

where n is the number of features. This MCS is a weighted sum of the vector cosine
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similarities of local features fℓ. Robustness to local deformation, presence of noise,

and occlusion is implicitly attained by the relative weights which play a key role in

finding interest points in the face image (see Fig. 5.9). This is particularly useful for face

detection where the goal is to separate faces from the background in a given image. In

order for this framework to be extended to face verification, the role of the relative

weights should be adjusted accordingly, as we will describe in Section 5.2.2.

Our contributions to the face verification task are three-fold. First, we employ

LARK which robustly captures local geometric structures. This LARK in conjunction

with PCA provides a very compact face representation, desirable for real-time appli-

cations. Second, we extend face detection to face verification by introducing a binary-

like face representation. The proposed representation along with both MCS and OSS

achieves the best performance on the unsupervised and image restricted settings as a

single descriptor. Lastly, we show that a very simple idea (namely the addition of a

mirror image of a query) remarkably boosts the overall performance7.

5.2.2 Technical Details

As we alluded to earlier in Chapter 3, densely computed LARKs from images

are highly informative, but taken together are be over-complete (redundant). There-

fore, we derive features by applying dimensionality reduction (namely PCA) to K,

in order to retain only the salient characteristics of the LARKs. Applying PCA to K

we can retain the top d principal components which form the columns of a matrix

V = [v1, · · · ,vd ] ∈ RP×d . Since we focus on finding stable (but less specific) bases which

can represent basic characteristics of general faces, we used LARKs collected from 120

7This is a computational strategy that takes advantage of the fact that objects in our world frequently
present mirror-symmetric views [181]
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Normalized LARK from 120 faces

PCA
Top 8 eigenvectors (descending order) (90% of energy)

Figure 5.8: A collection of normalized LARK descriptors are very informative, but contains a
redundant information as well. PCA is applied to not only reduce the dimensionality of LARK,
but also to retain only the salient characteristics of the LARKs. After applying PCA to LARKs
of size 7×7 collected from 120 face images, we obtained 8 eigenvectors corresponding to the
top 8 eigenvalues which preserve 90 % of energy.

face images to learn an overall, fixed, PCA basis for faces whereas the goal of the ob-

ject detection system described in Chapter 3 was to find similar images to a particular

query, thus PCA bases were learned from only one image. (see Fig. 5.8.)

For the fixed PCA basis, d is selected to be a small integer such as 7 or 8 so

that 80 to 90% of the information in the LARKs would be retained. (i.e.,
∑d

i=1 λi∑P
i=1 λi

≥ 0.8)

where λi are the eigenvalues.) Next, the lower dimensional features are computed by
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Figure 5.9: ||f||: magnitude of f reveals interest points in the face images.

projecting K onto V as follow:

F = [f1, · · · , fn] = V⊤K ∈Rd×n . (5.4)

The use of the PCA here is not critical in the sense that any unsupervised subspace

learning method such as Kernel PCA, LLE [123], LPP [124] CDA [93], CEA [92], kd-

tree, and random projection tree [179] can be used.

Denoting F as the feature representation, we measure the similarity score by

MCS between two images. As shown in Fig. 5.9, ||f|| reveals interest points (e.g., eyes,

mouth, hairs, jaws, etc.) in the face images. If the task is to detect faces from back-

ground, focusing on interest points would be helpful for robustness to occlusion, mis-

alignment, pose, and local deformation. Even though these properties are also impor-

tant for face verification, relying too much on these relative weights tends to weaken

the ability to discriminate between two faces. In order to alleviate this problem, we
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Figure 5.10: We employ a logistic function 1
1+exp(−cF) − 0.5 in order to make binary-like

representation.

need to make these weights relatively spread out (somewhat uniform). This can be re-

alized by applying a nonlinear mapping to features F. Specifically, we apply a logistic

function element-by-element8 to the feature matrices F as follows:

G = 1

1+exp(−cF)
−0.5. (5.5)

The role of this logistic function is to make the features (F) become more or less binary-

like by stretching values to extreme ends (-0.5,0.5). As shown in Fig. 5.10, histograms

of G have two peaks around (-0.5,0.5) whereas histograms of F are centered around

8This nonlinear mapping plays a role in making features sparse [57].
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0. After applying the logistic function, the dominance of large relative weights in F

is removed and discriminative power of G compared to F is increased as shown in

Fig. 5.11. This idea is somewhat related to [170] in which the uniformity of histogram-

based feature values is considered important, and [26] in which the Hellinger distance

outperforms L2 distance. That is, ensuring that feature values stay in a small range

enhances the discriminative power of any distance measure.

As defined in (5.3), the MCS between two matrices G(i ) = [g1, · · · ,gn](i ),G( j ) =

[g1, · · · ,gn]( j ) is as follows:

ρ(G(i ),G( j )) =
n∑

ℓ=1
ρ(g(i )

ℓ
,g( j )

ℓ
)︸ ︷︷ ︸

cosine similarity

∥g(i )
ℓ
∥∥g( j )

ℓ
∥

∥G(i )∥F ∥G( j )∥F︸ ︷︷ ︸
relative weights

. (5.6)

This ρ(G(i ),G( j )) can be efficiently implemented by column-stacking the matrices G(i ),G( j )

and simply computing the cosine similarity between two long column vectors as fol-

lows:

ρ(i , j ) = ρ(colstack(G(i )),colstack(G( j ))) ∈ [−1,1], (5.7)

where colstack(·) means an operator which column-stacks (rasterizes) a matrix.

The MCS measure computed on G provides robustness to many small defor-

mations, but tends to fail when there are large variations due to out-of-plane rotation,

which is common in the LFW dataset. To deal with off-frontal (out-of-plane rotated)

faces, we use a very simple (but novel) idea of additionally using mirror-reflect version

of G (see Fig. 5.12.) We take a maximum value between the two resulting MCS scores

as a final MCS score9.

MCS(i , j ) = max(ρ(G(i ),G( j )),ρ(G
(i )

,G( j ))), (5.8)
9Interestingly, we found that this simple idea has not been utilized before, but remarkably boosts the

overall performance.
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Figure 5.11: MCS scores for a matched pair and a mismatched pair. Top-Left: MCS by using

F 1) ρ(f(i )
ℓ

, f( j )
ℓ

), 2)
∥f(i )

ℓ
∥∥f( j )

ℓ
∥

∥F(i )∥∥F( j )∥ , 3) ρ(f(i )
ℓ

, f( j )
ℓ

)
∥f(i )

ℓ
∥∥f( j )

ℓ
∥

∥F(i )∥∥F( j )∥ , Bottom-Left: MCS by using G, 1) ρ(g(i )
ℓ

,g( j )
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where G is a mirror-reflect version10 of G.

5.2.3 Experimental Results

Up to now, we have described the proposed face representation for the face

verification task. In this section, we demonstrate the performance of the proposed

method with comprehensive experiments on the challenging labeled faces in the wild

(LFW) [164] dataset.

10G is not computed from mirror-reflected face images, but is the reflected version of G. This helps us
compute LARK features just once.
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max  

: mirror of 

MCS score

Figure 5.12: MCS score between face images (i) and (j) is a maximum score of two MCS scores
computed between G( j ) and G(i ), and G

(i )
: mirror-reflect version of G(i ) respectively.

5.2.3.1 Labeled Faces in the Wild (LFW) Dataset

The LFW database [164] consists of 13,233 face images of 5,749 different per-

sons, obtained from news articles on the web. The images in the LFW database have

a very large degree of variability in the facial expression, age, race, pose, occlusion,

and illumination conditions (see Fig. 5.6). The task is to determine if a pair of face

images belong to the same individual or not. We test on the “View 2" which includes

3,000 matched pairs and 3,000 mismatched pairs. The data are equally divided into 10

sets. The final verification performance is reported as the mean recognition rate and

standard error about the mean over 10-fold cross-validation.

We also provide the receiver operating characteristic (ROC) curves for the

sake of completeness. The true positive rate (TPR), the false positive rate (FPR), and
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the verification rate (VR) are defined as follows:

TPR = ♯ correctly accepted matched pairs

♯ total matched pairs
, (5.9)

FPR = ♯ incorrectly accepted mismatched pairs

♯ total mismatch pairs
, (5.10)

VR = ♯ correctly classified pairs

♯ total pairs
. (5.11)

We compute the TPR and FPR by changing the threshold values to draw the ROC

curves and report the best VR across the ROC curves.

As mentioned earlier, there are three evaluation settings : 1) the image unre-

stricted training setting, 2) the image restricted training setting, and 3) the unsuper-

vised setting. The unsupervised setting is the most difficult one among these because

there are no training examples available. On the other hand, the other two settings

allow us to utilize available image pair information in the training set. The image un-

restricted setting further provides the identity information of each pair. The official

LFW website11 provides all the state of the art results on the three settings.

In this section, we only focus on the two most challenging settings: the un-

supervised setting and the image restricted setting, because these scenarios are more

realistic in practice. We use the aligned version of the LFW dataset available from the

website12. The images were cropped to a size of 184×97 so that images include more

or less faces only13.

Unsupervised Setting In this section, we examine the efficacy of the proposed method

in the unsupervised setting where we do not use any training examples. We compute

11http://vis-www.cs.umass.edu/lfw/results.html
12http://www.openu.ac.il/home/hassner/data/lfwa/
13A slight difference in crop size makes no difference for the overall performance. For example, con-

sider 184×97 vs. 186×94. More detailed discussion about the choice of image crop size in LFW dataset
can be found in [180].
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LARKs (K) of size 7 × 7 densely from each face image. We end up with features G by re-

ducing dimensionality from 49 to 8 and employing a logistic function with c = 80 (per-

formance converges as we increase c value (see Fig. 5.11)). The MCS score described

in Fig. 5.12 is computed from each of 6,000 pairs. [180] conducted comprehensive ex-

periments to find the best combination among various state of the art descriptors (i.e.,

LBP, PCALBP, Gabor jets, and SIFT) and similarity measures (i.e, histogram intersec-

tion, Chi-square, Borda count, and Euclidean distance). They reported that LBP with

Chi-square achieves the best performance (69.45% VR). We computed TPR and FPR by

changing the threshold to draw a ROC curve. The proposed method achieves (72.23%

VR) and outperforms previous state of the art methods reported in the LFW website

as shown in Fig. 5.13. Even before employing the logistic function, the proposed ap-

proach outperforms state of the art methods. We can see in Fig. 5.14 that the higher

parameter c is, the better performance is. It clearly shows that binary-like features G

are superior to the direct use of F for face verification task. We observe that there is no

further improvement above c = 80. We also analyzed the effect of using mirror-reflect

version of G. This simple idea14 led to a nontrivial improvement (1 ∼ 2%) which is more

pronounced in the range of smaller c.

Image Restricted Setting In this section, we deal with the case where there are train-

ing image pairs available. More specifically, in the training set, it is known whether

an image pair belongs to the same person or not, while identity information is not

used at all. We employ one-shot similarity (OSS) [26] based on linear discriminative

analysis (LDA). We briefly review OSS and explain how we use the proposed feature

14Faces are generally not symmetric. Face asymmetry has been studied in [182]. Their results supported
previous work in Psychology that facial asymmetry contributes to human identification. This also justifies
the idea of mirror-reflection that improves overall performance.
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Figure 5.13: ROC curves and VR computed from 10 folds of View 2 (the unsupervised setting).
The proposed method performs the best among all.

representation in the OSS framework.

5.2.3.2 One Shot Similarity (OSS)

The key idea behind the OSS is to use negative examples. Suppose that there

are two classes (positive (+) and negative (-)) and we have many negative examples

while there is only one positive example. In binary LDA case, the goal is to find out a

projection direction w which maximizes the Raleigh quotient:

ŵ = argmax
w

w⊤SB w

w⊤SW w
, (5.12)
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Figure 5.14: Verification rates as a function of the parameter c in the proposed representation
with comparison to state of the art methods in the unsupervised setting of the LFW dataset
(view 2). Adding mirror-reflect improves the overall performance (1 ∼ 2%).

where SB is the “between-class scatter matrix" and SW is the “within-class scatter ma-

trix." The definitions of the scatter matrices are as follows:

SB = (m+−m−)(m+−m−)⊤,

SW = S++S−,

Sk = ∑
k

(Gk −mk )(Gk −mk )⊤,

where k ∈ {+,−} and m+,m− are mean sample vectors of the positive class and the neg-

ative class respectively. It can be shown [131] that this maximization leads to a gener-

alized eigenvalue problem:

SB w =λSW w. (5.13)

This problem can be solved very easily because SB w is always in the direction of (m+−

m−). Since there is only one positive example, that is, S+ = 0, the within-class scatter
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Table 5.1: Test set, Negative set, and Training sets in 10-fold validation (view 2)

Fold 1 2 3 4 5 6 7 8 9 10

Test set 3∼10 1, 4∼10 1,2, 5∼10 1∼3, 6∼10 1∼4, 7∼10 1∼5, 8∼10 1∼6, 9∼10 1∼7, 10 1∼8 2∼9
Negative set 2 3 4 5 6 7 8 9 10 1

Train set 1 2 3 4 5 6 7 8 9 10

matrix boils down to S− which can be precalculated. w can be computed as follow:

w ∝ S−1
W (m+−m−) = S−1

− (m+−m−). (5.14)

The benefit of using LDA is that the training step consists mainly of a vector difference

followed by a matrix multiplication.

Fig. 5.15 describes how an OSS score between a pair of images (i) and (j) is

computed as given in [26]. As negative examples, we used 1,200 faces which are not

included in the test image pairs. First, by learning model 1 between (j) and negative

set (N) and classifying (i) based on model 1, we obtain a score 1. Then we switch the

role of (i) and (j) and learn model 2 and classify (j) on model 2 in order to get a score

2. The final score is an average of these two scores. We used the Matlab code available

from the website15.

One Shot Similarity (OSS) with the Proposed Representation We use the same pa-

rameters for binary-like face representation as the ones explaned in Section 5.2.3.1. By

using the mirror-reflect version of G(i ),G( j ), we construct 4 models instead of 2 mod-

els and obtain three scores instead of a single score (see Fig. 5.16). We treat these

three scores as a single vector and feed these vectors into a support vector machine

15http://www.openu.ac.il/home/hassner/projects/Ossk/
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Figure 5.15: The original OSS score between two images (i,j) is an average of two scores from
model 1 and model 2. We use a negative set composed of 1,200 faces which are exclusive to the
test image pairs.

Table 5.2: Mean verification rates (10-fold) on the LFW dataset (view 2). sqrt means√
descriptors which is Hellinger distance and Mirror means that mirror-reflect version is added.

Descriptors L2 distance L2 + sqrt MCS MCS + sqrt OSS OSS+ sqrt

LBP 67.86% 68.53% 67.98% 68.18% 74.48% 74.41%

LBP (Mirror) 68.33% 69.08% 71.0% 67.61% 75.65% 76.05%

TPLBP 68.28% 68.78% 68.35% 67.76% 74.7% 74.58%

TPLBP (Mirror) 68.98% 69.38% 71.66% 68.6% 77.08% 76.1%

SIFT 71.01% 71.05% 70.65% 70.96% 73.13% 76.4%

SIFT (Mirror) 71.3% 71.08% 71.26% 71.3% 73.2% 78.2%

L2 distance L2 + logistic(c=80) MCS MCS + logistic(c=80) OSS OSS+ logistic(c=80)

Ours 65.81% 70.98% 68.25% 71.08% 75.81% 76.45%

Ours (Mirror) 66.28% 73.23% 71.26% 73.3% 76.38% 78.9%

(SVM) [131]. As shown in Table 5.1, we use (1 set) as a negative set, train the support

vector machine (SVM) with 4,800 (8 sets) OSS scores, and test 600 OSS scores (1 set).

We compare our feature representation with state of the art descriptors such
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Figure 5.16: We have 4 models that are learned from G(i ), G( j ), G
(i )

, G
( j )

respectively. In this
case, the OSS score is not a scalar, but a vector of three elements.

Table 5.3: Mean verification rate (10-fold) comparison between [26] and our best result. TSS
means the two shot similarity [26]. Numbers mean the number of descriptors used.

Method L2 L2 + sqrt TSS TSS + sqrt OSS OSS + sqrt

Wolf et al. [26] LBP, Gabor LBP, Gabor LBP, Gabor LBP, Gabor LBP, Gabor, LBP, Gabor
(30) FPLBP, TPLBP FPLBP, TPLBP FPLBP, TPLBP FPLBP, TPLBP FPLBP, TPLBP FPLBP, TPLBP

85.13 ±0.37% SIFT (5) SIFT (5) SIFT (5) SIFT (5) SIFT (5) SIFT (5)

Method L2 distance L2 + logistic(c=80) MCS MCS + logistic(c=80) OSS OSS+ logistic(c=80)

Ours (14) TPLBP (3) TPLBP (3) LBP, TPLBP LBP, TPLBP
85.10 ±0.59% (0) (0) SIFT, pcaLARK SIFT, pcaLARK SIFT, pcaLARK (4) SIFT, pcaLARK (4)

as TPLBP16, LBP17, and SIFT18. The parameters of all descriptors were copied from [26].

We used either the descriptor vectors or their square roots (i.e., the Hellinger distance)

16http://www.openu.ac.il/home/hassner/projects/Patchlbp/
17http://www.ee.oulu.fi/research/imag/texture/download/lbp.m
18http://people.csail.mit.edu/ceilu/ECCV2008
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Figure 5.17: ROC curves and VR averaged over 10 folds of View 2. We achieve state of the arts
performance with the much less number of distances than 30 distances in [26].

for other descriptors. L2 distance and MCS were also shown in Tables 5.2 and 5.3 for a

comparison.

Consistent with the unsupervised setting in Fig. 5.14, the use of mirror-reflect

lead to 1 ∼ 3% improvement to all descriptors as described in Table 5.2. As we can see

from Table 5.2, the proposed representation (c = 80) outperforms all the other (single)

descriptors when used with OSS. Consistent with the results in the previous section

(unsupervised setting), addition of mirror-reflect boosts the overall performance as

well. Wolf et al. [26] reported that they achieve 85.13% with a total of 30 distances, but

we are able to get the same performance with only 14 distances (vectors).

Discussion State of the art descriptors such as LBP, TPLBP, and SIFT use preprocess-

ing steps as suggested in [26]. Accordingly, we applied a noise-removal filter (Matlab’s
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wiener2 function) to the cropped images and saturated 1% of values at the low and

high intensities for these descriptors. After computing descriptors from preprocessed

images, descriptors were normalized to unit length. Then, these values are truncated

at 0.2 and once again normalized to unit length. On the other hand, the proposed

LARK descriptor does not require any preprocessing steps and is directly normalized

to a unit vector19.

The MCS (0.01 sec per pair) and OSS (0.37 sec per pair: Matlab implementa-

tion on Intel Pentium CPU 2.66 GHz machine) in conjunction with the proposed fea-

tures is computationally efficient. Since the proposed method is based on a fixed set of

bases, the extension of this methods to a large-scale face dataset would be straightfor-

ward. To this end, we could benefit from an efficient searching method (coarse-to-fine

search) and/or a fast nearest neighbor search method (e.g., vantage point tree [133]

and kernelized locality-sensitive hashing [183].)

Summary –

In this chapter, we have proposed 1) a simple, but effective statistical change

detection framework to detect meaningful changes between two MRI images, 2) a

novel binary-like representation for the face verification task. The proposed change

detection framework in Section 5.1 is general enough as to be extendable to 3-D for

other applications such as tumor detection in serial MRI scans using analogous 3-D

LARKs [61]. Due to its robustness to noise and other systemic perturbations, we also

19We acknowledge that recognition rates of LBP, TPLBP, and SIFT in Table 5.2 do not coincide with ones
in [26]. This slight difference may come from the image crop size, the sizes of the blocks, and how they
are distributed within the crop size. However, we believe that the results shown in Table 5.2 in the same
image crop size are a fair comparison because we followed the optimal parameter settings the authors
reported.
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expect the present framework to be quite effective in other imaging modalities such

as CT, PET, etc. In Section 5.2, we developed a binary-like representation by apply-

ing PCA to LARK to develop a fixed basis, followed by a logistic function in order to

make LARK as compact as possible and adapted to face verification. Experiments on

the LFW dataset demonstrated that the proposed method yields state of the art results.

We expect that face detection and verifications problems can be dealt with in a uni-

fied framework. In the following chapter, we conclude this thesis with some future

directions.
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Chapter 6

Conclusion and Future works

6.1 Summary of Contributions

In this thesis, we studied the effectiveness of LARKs in visual recognition and

applied the proposed nonparametric detection framework to a wide variety of prob-

lems such as saliency detection, object/action recognition, automatic change detection,

and face verification. The experimental results on challenging data demonstrated that

the proposed framework outperforms state of the art methods.

◃ Chapter 1 – We reviewed visual recognition problems and illustrated LARK de-

scriptors that have desirable invariance properties. LARKs (3-D LARKs) capture

local (space-time) geometric structure exceedingly well by taking advantage of

the pixel-level similarity in a local patch (cube). LARKs are distinguished from

other state of the art descriptors in the sense that LARK is based on the geodesic

distance derived from the regularized covariance matrices. The concept of pixel-

level similarity in LARKs can be extended to patch (cube)-level similarity by com-

paring a collection of LARKs (3-D LARKs) in a patch (cube) within an image.
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◃ Chapter 2 – The patch-level similarity by employing a nonparametric kernel den-

sity estimation based on 2-D/3-D LARKs and MCS led us to a unified frame-

work for both static and space-time saliency detection. The proposed saliency

detection method can automatically detect salient objects in the given image and

salient moving objects in videos. Experiments on challenging sets of real-world

human fixation data (both images and videos) demonstrated that the proposed

saliency detection method achieves a high degree of accuracy and improves upon

state of the art methods. We have tried to combine saliency maps from multi-

scale, but this idea did not improve performance even at the expense of time-

complexity. This brings up an interesting question worth considering for future

research; namely; what is the optimal resolution for saliency detection? Clearly,

higher resolution images do not imply better saliency maps.

◃ Chapter 3 – We extended the concept of patch-level similarity within one image

to image (video)-level similarity across images (videos) for object (action) detec-

tion task. The image (video)-level similarity by employing LARKs and MCS in

a naive Bayes framework led us to a unified framework for both object and ac-

tion detection algorithm. The proposed method can automatically detect in the

target the presence, the number, as well as location of similar objects (actions) to

the given single query. To deal with more general scenarios, accounting for large

variations in scale and rotation, we further proposed multiscale and multirota-

tion approach. Challenging sets of real-world object and action experiments have

demonstrated that the proposed approach achieves a high detection accuracy in

completely different context and under different imaging conditions.

◃ Chapter 4 – In order to make the training-free detection system run in real-time,
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we described how to speed-up the computation of LARKs while maintaining

the discriminative but viewpoint tolerant properties of LARKs. By adopting a

coarse-to-fine search in conjunction with a tree structure of examples, the recog-

nition time of the proposed system grows logarithmically on average. The sped-

up LARKs can learn coarse pose (according to how many views the user wants

to learn), run in real time and work across face, object and action. This makes

LARK a promising feature to be used in robot vision systems. Experiments on

real-time object and action recognition showed that our proposed method runs

in a real-time with high detection accuracy.

◃ Chapter 5 – In order to further examine the efficacy of LARKs in visual recog-

nition, we tackled two more problems: face verification and automatic change

detection. We proposed 1) an effective statistical change detection framework

to detect meaningful changes between two MRI images, 2) a binary-like repre-

sentation for the face verification task. Experiments on the challenging datasets

demonstrated that the proposed methods with LARKs yield state of the art re-

sults in both face verification and automatic change detection.

6.2 Future Directions

The future directions we discuss below are mainly categorized into (i) how to

solve a large scale image classification problem with LARKs, (ii) how to extend the pro-

posed detection framework to classification, and (iii) joint restoration and recognition

from degraded examples.
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6.2.1 Image Classification with LARKs

As we alluded to in Chapter 3, image classification is distinguished from ob-

ject detection in the sense that the goal of image classification is to classify a given

object into one of the pre-specified categories while object detection is to separate ob-

jects of interest from the background in a target image. Recently SVMs using spatial

pyramid matching (SPM) kernel and SIFT have been highly successful in image classi-

fication. Despite its popularity, quantization used in both SIFT and K-means clustering

is known to lead to severe degradation of discriminative power. The use of nonlinear

SVMs with the expense of heavy complexity somewhat did “undo” the quantization

damage. However, these nonlinear SVMs have a complexity O(N 2 ∼ N 3) in training

and O(N ) in testing, where N is the training size, implying that it is nontrivial to scale-

up the algorithms to handle more than thousands of training images. Yang et al. [184]

developed an efficient SPM method which works well with linear SVM by generaliz-

ing vector quantization to sparse coding and applying it to SIFT along with multi-scale

max pooling. This approach remarkably reduces the complexity of SVMs to O(N ) in

training and a constant in testing.

In this section, we test LARK in the image classification framework [184] by

replacing SIFT with LARK as shown in Fig. 6.1. In the following image categorization

experiment, we find that, in terms of classification accuracy, the linear SPM with the

sparse coding of LARK descriptors leads to state-of-the-art performance on Caltech-

101 dataset [32].

Preliminary Results on The Caltech-101 Dataset The Caltech-101 dataset [32] con-

tains 101 classes (including animals, vehicles, flowers, etc.) with high shape variability.

160



Figure 6.1: Schematic comparison of the original nonlinear SPM with our proposed linear SPM
based on sparse coding of LARK descriptors. The underlying spatial pooling function for non-
linear SPM is averaging (leading to a histogram), while the spatial pooling function in sparse
coding SPM is max pooling (which is not a histogram anymore).

Table 6.1: Classification rate (%) comparison on the Caltech-101 Dataset.

Algorithms 5 10 15 20 25 30
Zhang et al. [72] 46.6 55.8 59.1 62.0 − 66.20

Lazebnik [31] − − 56.40 − − 64.60

Boiman [41] − − 65.00 − − 70.40

Griffin [185] 44.2 54.5 59.0 63.3 65.8 67.60

Gemert [186] − − − − − 64.16

Wang et al. [187] 51.15 59.77 65.43 67.74 70.16 73.44

Sparse coding SPM (LARK) 52.16±0.87 62.27±0.56 66.45±0.34 68.79±0.45 71.35±0.19 73.56±0.23

The number of images per category varies from 31 to 800. Most images are medium

resolution , i.e. about 300×300 pixels. We followed the common experiment setup for

Caltech-101, training on 5, 10, · · · , 30 images per category and testing on the rest (no

more than 50 testing images per class). The LARK descriptors extracted from 13×13

pixel patches were densely sampled from each image on a grid with stepsize 6 pixels.
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The images were all preprocessed into gray scale. To train the codebooks1, we used the

sparse coding scheme, and fixed the codebook size as 1,024. We repeated the experi-

mental process by 10 times with different random selected training and testing images

to obtain reliable results. The average of per-class recognition rates were recorded for

each run. And we report our final results by the mean recognition rates over 10 runs.

Detailed comparison results are shown in Table 6.1. As shown, our LARK descriptors

with the sparse coding scheme outperforms the nonlinear SPM [31] by a large margin

(about 11 percent for 15 training and 9 percent for 30 training per category) and a recent

method by Wang et al. [187].

Direction Recently, a NEC-UIUC team won the first place in Large Scale Visual Recog-

nition Challenge 2010 (ImageNet [188]). They focused on 1) fast descriptor coding

based on local coordinate coding (LCC) [187], and 2) large-scale SVM classification.

The LCC is basically the sparse coding with a locality constraint, and large-scale SVM

is realized via average stochastic gradient descent [189]. We believe that LARK can

efficiently be employed in the same framework for larger scale databases such as Ima-

geNet [36] and Pascal VOC [35, 190]. Also we expect that the use of 3-D LARKs in this

framework can lead to state of the art action classification results on the challenging

action datasets such as HOLLYWOOD2 [152] and UCF50 dataset2.

6.2.2 Extension of The Proposed Detection Framework to Classification

In this section, we approach classification problem differently from the ones

described in the previous section, by extending object and action detection with LARK

1For training the linear classifiers, we used the implementation of SVM [184].
2http://www.cs.ucf.edu/~kreddy/Datasets.html
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Figure 6.2: The feature matrices FQ for the query and F(i ,i ), · · · ,F(M ,i ) for all the labeled images
are extracted.

in 2-D and 3-D to a nonparametric classification framework. As we alluded to before,

the goal of visual object category classification is to place a given a query into one of say,

M , pre-specified classes, each class containing L labeled visual objects, as shown in Fig.

6.2 (left). As we did in the object detection task in Chapter 3, we can compute LARK

descriptors densely from the query and each labeled images. Subsequently, feature

matrices FQ for the query, and F(1,i ), · · · ,F(M ,i ), for all the labeled images are constructed

(see Fig. 6.2 (right).) Here, the task at hand is to decide which class (c) the features FQ

from a query image Q are most likely to have come from. More formally, the M-ary

hypothesis test of interest is shown in Table 6.2.

H1: Q belongs to class 1 ⇔ FQ comes from class 1(F1) ,
H2: Q belongs to class 2 ⇔ FQ comes from class 2 (F2),

...
...

HM : Q belongs to class M ⇔ FQ comes from class M (FM ).

Table 6.2: M-ary hypotheses for image classification
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Assuming that the prior probabilities P (Hc ) are equal, then the maximum

a posterior (MAP) decision rule boils down to the M-ary maximum likelihood (ML)

decision rule as similarity done in Appendix A.

Ĥc = argmax
c

P (Hc |FQ ) = argmax
c

p(FQ |Hc ). (6.1)

We estimate the PDF p(FQ |Hc ) using a kernel density estimation method, which results

in an empirical Bayes approach where the estimate p̂(FQ |Hc ) is defined as a weighted

sum of kernels centered at the features fc which belong to the hypothesis Hc . More

specifically,

p̂(FQ |Hc )=
∑L

i=1

∑
j∈ΩI (c,i )

G (i , j )(fℓQ − f j
(c,i ),xℓQ −x j

(c,i ))∑
ℓ∈ΩQ

∑L
i=1

∑
j∈ΩI (c,i )

G (i , j )(fℓQ − f j
(c,i ),xℓQ −x j

(c ,i ))
, ℓ ∈ΩQ , j ∈ΩI (c,i ) (6.2)

where G (i , j ) is a locally data adaptive kernel function, ΩQ is the query image domain

consisiting of |ΩQ | pixels, ΩI (c ,i ) is the i th labeled image in class c, consisting of |ΩI (c ,i )|

pixels; and xℓQ ,x j
(c ,i ) are column vectors denoting spatial coordinates of the correspond-

ing features fℓQ and f j
(c,i ).

To proceed forward, we can make the simplifying assumption that f1
Q , f2

Q , · · · , f
|ΩQ |
Q ,

thought of as a random variable, are essentially independent, and identically dis-

tributed, given the hypothesis Hc . The decision rule can then be rewritten as:

Ĥc = argmax
c

log p̂(FQ |Hc ) = argmax
c

log p̂(f1
Q, · · · , f

|ΩQ |
Q |Hc )

= argmax
c

|ΩQ |∑
ℓ=1

log p̂(fℓQ |Hc ). (6.3)

The apparent consequence now is that we need to estimate each local individ-

ual probability density p̂(fℓQ |Hc ) separately:

p̂(fℓQ |Hc )= 1

β′
L∑

i=1

∑
j∈ΩI (c,i )

G (i , j )(fℓQ − f j
(c ,i ),xℓQ −x j

(c,i )), ℓ= 1, · · · , |ΩQ |, (6.4)
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where β′ is a normalization factor. Given the apparent strength of the information

contained in LARKs3, we can consider using a single (spatially and photometrically

nearest) neighbor for the approximation. Using a separable (“bilateral") kernel yields:

p̂(fℓQ |Hc) ≈ exp

(
− 1

2σ2
r

dist(fℓQ , fNc (ℓ))

)
exp

(
− 1

2σ2
s

dist(xℓQ ,xNc(ℓ)
)
, (6.5)

where σr ,σs are parameters controlling the fall-off of weights in photometric and spa-

tial domains, respectively. Nc (ℓ) is the nearest neighbor of fℓQ in the class c, and dist(fℓQ , fNc (ℓ)) =

|| fℓQ
||FQ || − fNc (ℓ)

||FNc || ||
2 (where FNc = [fNc (1), · · · , fNc (|ΩQ |)].) The decision rule then becomes

Ĥc = argmax
c

|ΩQ |∑
ℓ=1

log p̂(fℓQ |Hc )

⇒ argmax
c

|ΩQ |∑
ℓ=1

− 1

2σ2
r

( ∥fℓQ∥2

∥FQ∥2
F

+∥fNc (ℓ)∥2

∥FNc∥2
F

−
2ρ(fℓQ , fNc (ℓ))∥fℓQ∥∥fNc (ℓ)∥

∥FQ∥F ∥Fc∥F

)
− 1

2σ2
s
∥xℓQ −xNc (ℓ)∥2,

= argmax
c

1

σ2
r
< FQ

∥FQ∥F
,

FNc

∥FNc∥F
>F︸ ︷︷ ︸

Geometric nearness

− 1

2σ2
s
||xℓQ −xNc (ℓ)||2︸ ︷︷ ︸
Spatial nearness

. (6.6)

The first term above measure the “geometric" similarity of the query features to the

nearest feature in each class, and the second term measures the spatial separation be-

tween the locations of these respective features. As such, this approach will provide a

very natural and robust way of comparing the likeness of a query to appropriately and

automatically selected elements of several classes of objects. The class which shows

the largest overall similarity is the one to which the query will be matched. It is impor-

tant to note that this approach also allows for the online updating of the labeled class

examples. That is to say, if the query is assigned to a given class c∗ with high empirical

likelihood, then this example can be included as a new labeled instance of this class.

3 Since LARKs lie on manifolds of relatively low co-dimension, and the statistical distribution of such
features tends to be heavy-tailed, it is generally sufficient to use a very small number of labeled features
in class c to get a reasonable estimate of the conditional density p̂(fℓQ |Hc ).
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As such , the class will now contain one more instance, which will then make it easier

to identify subsequent queries as belonging to this class or not. This approach can be

efficiently realized by using approximate-r-nearest-neighbors algorithm [191] and KD-

tree implementation of [192], thus can be scaled to larger scale classification tasks as

well.

6.2.3 Joint Classification and Restoration

Frequently, visual object recognition problems are approached under the as-

sumptions that images and videos are “clean". While the trend towards exemplar-

based methods is clearly established, the utility of such methods suffers when the im-

ages are corrupted or disturbed. Indeed, performance suffers, often catastrophically, in

the presence of degraded images and videos. Most learning-based recognition systems

heavily rely on low-level features extracted from an interest point detector. While pop-

ular interest point detectors such as Harris-affine detector [19], Hessian-affine detector

[19], or Maximally Extreme Stable Region detector [193] are known to be robust in the

presence of moderate amount of white Gaussian noise and blur, they are not designed

for most other type of degradation. Essentially all existing interest point detectors fail

to detect region of interest in the presence of severe degradation caused by various

common conditions such as non-stationary blur, snow or rain, air turbulence, and etc.,

as shown in Fig. 6.3 and Fig. 6.4. As a consequence, recognition systems become un-

reliable and useless in the presence of severe degradation of data, which occurs often

in real-world applications. In order to deal with these problems, we might preprocess

degraded data (denoising, deblurring, dehazing, or removal of snow) before attempt-

ing object recognition. However, preprocessing of degraded data without taking into
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Figure 6.3: State of the arts interest point detectors such as Harris-affine detector, Hessian-
affine detector, and MSER do not work well in the presence of stochastically severe degradation
(WGN and blur). It is apparent that most existing object recognition systems based on these
detectors can not perform well with the degraded test data unobserved before.

account what we try to recognize might further distort the process, and thus is at best
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Figure 6.4: State of the arts interest point detectors such as Harris-affine detector, Hessian-
affine detector, and MSER do not work well in the presence of systemically severe degradation
(underwater, fog, or snow). It is apparent that most existing object recognition systems based
on these detectors can not perform well with the degraded test data unobserved before.

suboptimal4. As a concrete example, the performance of face recognition deteriorates

when the query faces are of lower resolution than face images in the database. The clas-

sical approaches to matching a low resolution face to a high resolution gallery (namely,

upsampling the query, or downsampling the gallery images) have been shown to be

quite ineffective in practice because of undesirable distortions [195].

Here, we propose a setting in which we can unify these problems and deal

with restoration and recognition simultaneously. To begin, let us first consider the

object detection problem, where a “clean" query image is given, but where the target

image is degraded. Formally, given a query Q, and a noisy target image T̃ , we wish

4If we know that snow or rain result in degradation in advance, we can benefit from a method [194]
that can detect snow or raindrop.
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to not only identify objects within T̃ that are similar to Q, but also estimate “clean"

version of these objects, producing a (at least partially) restored target image T̂ . So

the task at hand is to both detect relevant regions in the given target, and to restore

these relevant regions. Our nonparametric approach provides a way to do just that.

An object function that can lead us to this solution can be formulated as follows:

argmax
i ,t

ρ(FQ ,FTi )︸ ︷︷ ︸
Detection

−α
n∑

ℓ=1
(qℓ− tℓ)⊤Wℓ

Q (qℓ− tℓ)︸ ︷︷ ︸
Resotration

, (6.7)

where α is a regularization parameter; qℓ is the vector representation of patches from

the query image, and tℓ is a candidate patch from the target image T̃ , centered at xℓ.

Finally, the matrix WQ contains weights reflecting the level of similarity between qℓ

and tℓ detected from the features. More simply put, the intuition behind the above

formulation is this: When we detect a part of the target that matches the query (first

term in the cost), we have identified a whole collection of corresponding patches in

the regions from the query and the target. This correspondence can be used (the sec-

ond term in the cost) to restore the noisy patches, using “similar" patches from both

the query, and the target, in a fashion not dissimilar to the popular non-local means

paradigm. In the standard patch-based processing approach, the similar patches pro-

vided by the matching query. Naturally, the degree of similarity will determine the

relative weights given to these patches; and this is measured using the matrix WQ .

The second term in the cost function above can use weights from different patch-based

approaches for restoration such as NLM, the more effective nonparametric methods

described in [46, 196, 61], or the guided filtering [124]. Motivated by [197], [198, 199]

recently proposed iterative guided filtering framework and achieved state of the art

guided restoration (e.g., flash/no-flash denoising/deblurring) results. We expect that
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the technique by [198, 199] can be useful for the second term in the cost function as

well.

Next let us consider the more common scenario, where the query image Q̃ is

degraded but labeled images in the database are “clean". In a manner similar to what

we proposed above, we can consider the following objective function:

argmax
c,q

1

σ2
r
ρ(FQ ,FNc )− 1

2σ2
s

|ΩQ |∑
ℓ=1

||xℓQ −xNc (ℓ)||2︸ ︷︷ ︸
Classification

−α
n∑

ℓ=1
(qℓ− tNc (ℓ))⊤WNc (ℓ)(qℓ− tNc (ℓ))︸ ︷︷ ︸

Restoration

(6.8)

Analogous to the earlier formulation, the first term in the above objective

function classifies the given query into a particular class objects, while the second term

uses all the similar patches now available in this class to effect restoration of the noisy

query which can also use [2, 46, 198] or other related patch-based approaches. Natu-

rally, the next reasonable intellectual step would be to consider the joint recognition

and restoration problems when both the query and the target are degraded. This is

certainly within the purview of the line of work we propose, though presumably its

solution is best sought in light of the above open problems.
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Appendix A

Justification by Naive Bayes Framework

In this section, we show that the naive-Bayes approach in a multiple hypoth-

esis testing framework leads to the Matrix Cosine Similarity-based decision rule. It is

worth noting that this idea is partly motivated by [41] and [118] who derived optimal

Bayes decision rule based on Euclidean distance and the whitened cosine similarity

respectively for the image classification task.

As described in Chapter 3, the target T is divided into a set of overlapping

patches and a class is assigned to each patch. Our task at hand is to figure out which

class (i ) the features from Q are most likely to have come from. Since we do not know

the class-conditional pdf (p(FQ |cl ass)) of the normalized features extracted from Q, we

set out to estimate it using a kernel density estimation method [87]. Once we have

these estimates, we will show that the maximum likelihood (ML) decision rule boils

down to computing and thresholding Matrix Cosine Similarity, which can be efficiently

implemented using a nearest neighbor formulation.

By associating each patch (Ti ) of the target image with a hypothesis, we now

have the case where we wish to discriminate between M hypotheses (H0, · · · ,HM−1) as
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Figure A.1: The estimated conditional density p̂(FQ |H i ) is a sum of kernels (weight functions)
centered at the features fTi in Ti which belongs to the hypothesis H i . In the Density Estimate
Map, red value means a high conditional probability density p̂(fQ |H i ) while blue value repre-
sents a low conditional probability density p̂(fQ |H i ) .

follows:

H0: Q is similar to T0 ⇔ FQ comes from class 0 (FT0 ) ,
H1: Q is similar to T1 ⇔ FQ comes from class 1 (FT1 ),

...
...

HM−1: Q is similar to TM−1 ⇔ FQ comes from class M −1 (FTM−1 ).

Table A.1: M-array hypotheses for detection problem.

The task at hand is to find the most likely hypothesis (or a correct class) given the query
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Figure A.2: The estimated conditional probability densities p̂(FQ |H i ) using n samples and 1

sample are shown in the middle and the scores on right side means
∑n

ℓ=1 log p̂(f
ℓ

Q |H i ). The
higher this score is, the more likely FQ comes from class i (FTi ).

image Q. It is a well known fact [131, 200] that maximizing a posteriori probability

P (H i |FQ ) minimizes Bayes risk (or the average classification error.) Assuming that the

prior probabilities P (H i ) are equal, then the maximum a posterior (MAP) decision rule

boils down to the M-ary maximum likelihood (ML) decision rule.

Ĥ i = argmax
i

P (H i |FQ ) = argmax
i

p(FQ |H i ). (A.1)

Since we do not know the conditional probability density function p(FQ |H i ) of features

FQ given the features FTi of the target patch Ti , we need to estimate it using a kernel

density estimation method, which results in the naive or empirical Bayes approach.
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A.0.4 Locally Data-adaptive Kernel Density Estimation

The Parzen density estimator is a simple and generally accurate non-parametric

density estimation method [87]. However, if the true conditional density that we want

to model is close to a “non-linear" lower dimensional manifold embedded in the higher

dimensional feature space, Parzen density estimator with an isotropic kernel is not the

most appropriate method [90, 89, 88]. As explained earlier, the features FQ ,FTi tend

to generically come from long-tailed distributions, and as such, there are generally no

tight clusters in the feature space. When we estimate a probability density at a partic-

ular point, for instance f
ℓ

Q , the isotropic kernel centered on that point will spread its

density mass equally along all the feature space directions, thus giving too much em-

phasis to irrelevant regions of space and too little along the manifold. Earlier studies

[90, 89, 88] also pointed out this problem. This motivates us to use a locally data-adaptive

version of the kernel density estimator.

The estimated conditional density p̂(FQ |H i ) is defined as a sum of kernels

(weight functions) centered at the features fTi in Ti which belong to the hypothesis H i .

More specifically,

p̂(FQ |H i )=
∑n

j=1 G j (f
ℓ

Q − f
j
Ti

,xℓQ −x j
Ti

)∑
ℓ∈ΩQ

∑n
j=1G

j (f
ℓ

Q − f
j
Ti

,xℓQ −x j
Ti

)
, ℓ ∈ΩQ , (A.2)

where G j is a locally data adaptive kernel function, ΩQ is the query image domain

consisting of |ΩQ | pixels and xℓQ ,x j
Ti

are column vectors denoting spatial coordinates

of corresponding features f
ℓ

Q and f
j
Ti

. A simple and intuitive choice of the G j is to

consider two terms for penalizing the spatial distance between the point of interest

and its neighbors, and the radiometric “distance" between the corresponding features
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f
ℓ

Q and f
j
Ti

. More specifically, the kernel function is defined as follows:

G j = G j
r (f

ℓ

Q − f
j
Ti

)K j
s (xℓQ −x j

Ti
),

= exp

−dist(f
ℓ

Q , f
j
Ti

)

2σ2
r

exp

−||xℓQ −xj
Ti
||2

2σ2
s

, ℓ∈ΩQ , (A.3)

where we define dist(f
ℓ

Q , f
j
Ti

) = ∥ fℓQ
∥FQ∥F

− f j
Ti

∥FTi ∥F
∥2, and σr ,σs are parameters controlling the

fall-off of weights in radiometric and spatial domains.

Inserting equation (A.3) into equation (A.2), the estimated conditional density

p̂(FQ |H i ) becomes

p̂(FQ |H i )=1

β

n∑
j=1

exp

−dist(f
ℓ

Q , f
j
Ti

)

2σ2
r

−
||xℓQ −x j

Ti
||2

2σ2
s

, (A.4)

where β=∑
ℓ∈ΩQ

∑n
j=1 G j (f

ℓ

Q − f
j
Ti

,xℓQ −x j
Ti

) is a normalization factor. Fig.A.1 depicts how

the conditional density function p̂(FQ |H i ) is estimated, given Q and Ti .

In principle, all n features should be employed to obtain an accurate den-

sity estimation. However, this is too computationally time-consuming. Hence, as we

describe next, we use an efficient approximation of this locally data-adaptive kernel

density estimator.

A.0.5 Approximation of Locally Data-adaptive Kernel Density Estimate

Assuming that f
1
Q , f

2
Q , · · · , f

n
Q are i.i.d. given hypothesis H i , the ML decision

rule can be rewritten by taking the log probability of the ML decision rule (A.1) as:

Ĥ i = argmax
i

log p̂(FQ |H i ) = argmax
i

log p̂(f
1
Q, · · · , f

n
Q |H i )

= argmax
i

n∑
ℓ=1

log p̂(f
ℓ

Q |H i ). (A.5)
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What we do next is to estimate each local individual probability density p̂(f
ℓ

Q |H i ) sep-

arately:

p̂(f
ℓ

Q |H i )= 1

β′
n∑

j=1
G j (f

ℓ

Q − f
j
Ti

,xℓQ −x j
Ti

), ℓ= 1, · · · ,n, (A.6)

where β′ =∑n
ℓ=1

∑n
j=1 G j (f

ℓ

Q − f
j
Ti

,xℓQ −x j
Ti

) is a normalization factor. As nicely motivated

in [41] and discussed in Chapter 3, since the distribution of the features on the low-

dimensional manifold tends to follow a power-law (i.e., long-tail or heavy-tail), it

should be sufficient to use just a few features in Ti to get a reasonable estimate of the

conditional density p̂(f
ℓ

Q |H i ). Therefore, we consider using a single (spatially nearest)

neighbor for the approximation, which yields:

p̂(f
ℓ

Q |H i) ≈ exp

(
− 1

2σ2
r

dist(f
ℓ

Q , f
ℓ

Ti
)

)
, ℓ= 1, · · · ,n,

= exp

−(
∥fℓQ∥2

∥FQ∥2
F
+ ∥fℓTi

∥2

∥FTi ∥2
F
− 2ρ(fℓQ ,fℓTi

)∥fℓQ∥∥fℓTi
∥

∥FQ∥F ∥FTi ∥F
)

2σ2
r

. (A.7)

The approximate version of density estimator using one sample is compared to p̂(FQ |H i )

estimated using all n samples in Fig. A.2. Qualitatively, we observe that the resulting

estimates are quite similar. More precisely, consistent with [41], we have verified that

the use of the approximation takes little away from the performance of the overall

algorithm, which is discussed in Section 3.2.1. Since log p̂(f
ℓ

Q |H i ) is approximately pro-
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portional to −(
∥fℓQ∥2

∥FQ∥2
F
+ ∥fℓTi

∥2

∥FTi ∥2
F
−2ρ(fℓQ , fℓTi

)
∥fℓQ∥∥fℓTi

∥
∥FQ∥F ∥FTi ∥F

), the ML decision rule becomes

Ĥ i = argmax
i

n∑
ℓ=1

log p̂(f
ℓ

Q |H i )

⇒ argmax
i

n∑
ℓ=1

−
( ∥fℓQ∥2

∥FQ∥2
F

+
∥fℓTi

∥2

∥FTi ∥2
F

−
2ρ(fℓQ , fℓTi

)∥fℓQ∥∥fℓTi
∥

∥FQ∥F ∥FTi ∥F

)
,

= argmax
i

(−2+2
n∑

ℓ=1

fℓQ
T

fℓTi

∥FQ∥F ∥FTi ∥F
),

= argmax
i

n∑
ℓ=1

fℓQ
T

fℓTi

∥FQ∥F ∥FTi∥F
=argmax

i
< FQ

∥FQ∥F
,

FTi

∥FTi∥F
>F . (A.8)

We can clearly see that the ML decision rule in Equation (A.8) boils down to the

computation of the Matrix Cosine Similarity, due to the relationship < FQ

∥FQ∥F
,

FTi
∥FTi ∥F

>F≈
2+∑n

ℓ=1log p̂(f
ℓ

Q |Hi )
2 . While the assumptions leading to the above conclusions may seem

somewhat restrictive, in practice they appear to hold true, and they do provide a

framework in which the proposed detection algorithm can be considered optimal in

the naive Bayes sense.
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Appendix B

Controlling The False Discovery Rate

We associate each voxel ( f (ρi )) of the RM with a null hypothesis up to M

hypotheses (H0, · · · ,HM−1) as:

H0: T0 is not similar to the given query Q ⇔ f (ρ0) < τ ,
H1: T1 is not similar to the given query Q ⇔ f (ρ1) < τ,

...
...

...
HM−1: TM−1 is not similar to the given query Q ⇔ f (ρM−1) < τ.

Table B.1: M-ary null hypotheses.

where τ is a threshold for detection. Suppose that there are m0 true null hypotheses

among the M test hypotheses. Let R denote the number of hypotheses rejected. This

observable random variable R can be decomposed as V + S, where V is the number

of incorrectly rejected null hypotheses and S is the number of correctly rejected null

hypotheses. The proportion of errors committed by falsely rejecting null hypotheses
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can be viewed through V
R . Let U be the unobservable random quotient,

U =
{ V

R if R > 0,

0 otherwise.
(B.1)

The false discovery rate (FDR) is defined as E(U ), the expected error rate. The Benjamini-

Hochberg procedure proposed in [132] controls the FDR at a desired level α, while

maximizing E(R). Let {p0, p1, · · · , pM−1} denote the p-values corresponding to the test

statistics { f (ρ0), f (ρ1), · · · , f (ρM−1)} and p(0) ≤ p(1) ≤ ·· · ≤ p(M−1) denote the ordered p-

values corresponding to the hypotheses {H(0),H(1), · · · ,H(M−1)}. By definition, pi =

1−PH i where PH i is the cumulative distribution function of resemblance volume un-

der the null hypothesis H i . The FDR-controlling procedure is easily implemented. For

the M pixels being tested, the general procedure is as follows:

1. Select a desired FDR bound α between 0 and 1. This is the maximum FDR that

we are willing to tolerate on average.

2. Order the p values from the smallest to largest:

p(0) ≤ p(1) ≤ ·· · ≤ p(M−1)

Let f (ρ(i )) be the voxel corresponding to p(i ).

3. Let γ be the largest i for which

p(i ) ≤ i
M α.

4. Identify the threshold τ corresponding to p(γ) and declare that the pixels of RM

which is above τ contain similar actions to the given query Q.
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