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ABSTRACT
This thesis develops a real-time failure monitoring system for small permanent-magnet
synchronous motors. Although its focus is on thermally-related failures, the approach
taken here is more general. The failure monitoring system has three major applica-
tions. Firstly, it can be used to test a motor as it is manufactured to ensure that
the motor functions properly. Secondly, it can be used to monitor the operation of
a motor so as to prevent, predict, and detect failures. Thirdly, since the monitoring
system involves estimation of the temperature-varying parameters of a motor, it can
also be used simultaneously as an integral part of an adaptive controller for the motor.
To effect the real-time failure monitoring system, the thermally-varying parame-
ters in the electromechanical model of the motor are identified, and their temperature
dependencies are calibrated. In this way, through measurements of electrical line vari-
ables, the thermally-dependent parameters can be estimated and hence estimates of
temperature rises in the motor can be obtained. In addition, a dynamic model for the
thermal behavior of the motor is developed; its inputs are the sources of heat loss in
the motor, and its outputs are estimates of temperature rises in the windings and the
case of the motor. The electrically estimated temperature rises are then combined
with the thermally estimated temperature rises in a closed-loop stable observer that
is a Kalman filter. Experimental evidence indicates that this observer can follow the
average winding temperature to within 2°C. Finally, by an appropriate modification
to the Kalman gain, the observer structure is tuned to make use of the geometric
properties of the innovations for the purpose of failure detection. To accomplish
this, the innovations are monitored and compared against appropriate thresholds to
indicate failures.

Thesis Advisor: Jeffrey H. Lang
Associate Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Overview

The advent of low-cost digital electronics has resulted in the ability to inexpensively
and quickly perform complex data processing. As a result, it is now possible to collect
an extended sequence of measurements from a motor and process them in real-time to
monitor the condition of the motor. In general, a variety of sensors can be used to col-
lect measurements from an electric motor for the purpose of failure monitoring. It is
apparent then that the failure monitoring system should be capable of extracting, in a
consistent manner, the evidence of many possible failures {from measurements of many
physically different sensors. The failure monitoring system here does so by combining
physical models of the motor with the estimation of the temperature-dependent pa-
rameters of these models. Variations of the states and parameters from their norms
will be used to detect thermally-related failures. Furthermore, it is conceivable that
failures can be prevented by avoiding stressful motor operation indicated by these
variations.’

We have chosen motor voltages, currents, and shaft position measurements as
our sensed variables. Using an electromechanical model of the permanent-magnet
synchronous motor, it is possible in turn to estimate the winding resistance and
magnet strength in the motor from a sequence of these sensed variables. Since the
temperature dependencies of the winding resistance and magnet strength can be
accurately characterized, it is possible to estiinate at least average temperatures inside
the motor. As these temperatures are observed to rise dangerously high, winding
insulation and magnet failures can be prevented by reducing the currents in the

motor. If this is unacceptable, the operator can at least be notified of the possibility
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of failure. Further, the thermal stress on the windings can be integrated over time to
predict long-term damage to the winding insulation and the probability of insulation
failure.

We will consider two important directions in our failure monitoring system. The
first involves thermal modeling. The winding and magnet temperatures are interde-
pendent, and this dependence can be modeled. Their variations in time are driven
by losses in the motor, for example in the windings and laminations. This dissipation
can also be modeled. Together, this new information constitutes a thermal model of
the motor that can be used to improve the temperature estimates based on measured
electrical variables. These estimates can be further improved with measurements of
motor internal, or case, temperatures. Indirect thermal measurements taken from
electrical variables, and estimates of the temperatures taken from the thermal model
are two fundamentally different methods which can be combined to produce a sin-
gle estimate. It is the thermal model that dictates how this combination must take
place. This emphasizes the need for physical models in failure monitoring. The sec-
ond direction involves consistency checking and failure detection. In estimating motor
temperatures, it may become apparent that the cumulative measurements and esti-
mated temperatures are not physically self-consistent. For example, the estimation of
temperatures using the electromechanical and thermal models independently might
yvield very different temperatures. This could be a sign of a failure in the motor or
the sensors. Such consistency checking forms the basis {for failure detection.

Figure 1.1 outlines the basic approach to thermal estimation and failure detection
employed in this thesis. The temperature rises in the motor are estimated by two
independent methods. The first method makes use of the electromechanical properties
of the motor, while the second relies on the thermal properties of the motor. Since we
do not have direct access to measurements of the temperature of the windings and the
magnet, the estimation of parameters that change with these teraperatures provides
a way of indirectly sensing these temperatures. So as illustrated in Figure 1.1, if
we consider the thermal system, the estimation of the winding resistance R and the
measurement of the case temperatures is effectively equivalent to sensing the outputs
of this plant. To be more specific, the motor is electromechanically excited so as to
make available the currents 7, the voltages v, and the speed w. These measured values
are then combined to estimate the thermally-varying parameters R and K. These
parameters are then converted to temperatures. These temperatures, combined with

the direct sensing of the motor case temperature, provide the measurements of the
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outputs of the thermal system. On the other hand, the thermal model is a model
of this physical dynamic system in the absence of failures. The current and speed
also drive the thermal model which produces estimates of the desired temperature
rises Tp and T¢. By comparing the electrically estimated temperature rises and
the thermally estimated temperature rises, innovations are obtained that are used
to drive a closed-loop observer. Failure detection is then performed by choosing an
appropriate observer gain to exploit the geometric contents of the innovations in-the

presence of a failure.

1.2 Background and Thesis Layout

Monitoring the condition of a motor is of interest for several reasons. Firstly, in the
manufacturing process, a monitoring system can be used to assure compliance with
standards of operational quality. Secondly, an online failure monitoring system can
be used to prevent stressful operation, and guard against or detect the failure that
may occur as a result. Much work has been done on detecting mechanically induced
failures in electric motors. For instance, [4] has investigated the possibility of detecting
broken rotor bars in induction motors through the use of various sensors. There has
also been ¢o. -« i« rork done on monitoring the thermal conditions under which
a motor is operating [30]. However, such research efforts have either concentrated on
static thermal models for motors or have not used the dynamic information formally
to detect and/or prevent failures. The use of a dynamic thermal model along with
parameter estimation techniques, as presented in this thesis, is a novel approach that
constitutes a significant contribution to the area of failure monitoring for motors in
general.

In Chapter 2, a detailed model of the electromechanical dynamics of a permanent-
magnet synchronous motor are presented. Several sources including [19] can be refer-
enced for a more detailed account of how this model is derived. In this same chapter,
several techniques will be presented for estimating the values of temperature depen-
dent parameters through the use of the electromechanical model. The paraineter
estimation is done through a least-squares error formulation as described in [35]. The
remainder of the thesis is organized as indicated in Figure 1.1. Each chapter which
follows addresses one or more of the blocks in the figure on a theoretical basis. A
final chapter presents experiments which demonstrate the operation of the complete

failure monitoring system.
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Figure 1.1: Overview of the observer/detector system
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In Chapter 3, a dynamic thermal model of the motor is developed by way of
identifying the parameters in a time-varying model that relates the sources of heat-
loss to temperature rises in the motor. This model uses the temperature dependence
of the winding resistance and the magnet constant as described in {28, 27] and [1]. The
model is validated by assvring that it complies with physically imposed constraints,
such as exponential stability [10, 41], and theoretically imposed constraints that are
implied by these, [31, 32]. '

Chapter 4 undertakes the problem of designing stable, optimal observers for the
thermal system using a Kalman filter, [17, 8, 16, 23]. A novel approach is presented
for obtaining identity observers for a class of time-varying systems that display linear
and time-invariant error dynamics.

In Chapter 5 a geometrically motivated technique introduced in [13] is employed
to solve the failure detection problem. It is shown that failure detection in the thermal
system can be effectively used to prevent/detect physical breakdowns in the motor.
Some extensions to sampled-data systems of the concepts in [13] are arrived at. Al-
though many techniques for failure detection have been investigated, as summarized
in [40, 11], the approach taken in our work was concentrated on the geometrically
inspired one since it provides a simple detection law, and is also implemented rather
trivially, given an underlying observer structure.

Chapter 6 contains the results of experiments that illustrate the effectiveness and
limitations of the failure detection techniques studied in this thesis, as applied to the
failure detection problem in permanent-magnet synchronous motors. It is demon-
strated that the proposed detection system is capable of indicating a cooling failure
due to insulation. It is also shown that in the absence of failures, the observer struc-
ture is capable of tracking temperature rises in the windings to within 2°C, and the
temperature rises on the surface of the motor to within 0.5°C.

Chapter 7 contains the conclusions arrived at in this thesis. This chapter also
presents a summary of the work done in this thesis and provides some recommenda-
tions for future work on the topic of failure monitoring for motors.

In Appendix A some theoretical results are presented to support assertions made
throughout the rest of the thesis. Appendix B contains listings of the computer
simulations in MATLAB referred to in Chapters 3, 4, and 5. This appendix also
contains listings of assembly code used to control the data acquisition system referred

to in Chapter 6.
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Chapter 2

Electromechanical Modeling and

Parameter Estimation

2.1 Introduction

In this chapter we introduce the electromechanical model for the experimental motor,
and develop an effective way to estimate thermally dependent paramneters on the basis
of this model. The electromechanical model is for a permanent-magnet synchronous
motor with magnets mounted on the rotor, and phases connected in a delta config-
uration. The electromechanical model of the motor, initially developed in the stator
frame, is simplified by a transformation that removes the nonlinearities due to the
parameter dependencies on the rotor position. This transformation, known widely as
the Blondel-Park transformation [22], [19], expresses the electromechanical equations
of the model in the rotor frame. For convenience, the thermal estimation problem is
then undertaken in this frame using a steady-state model simplification.

The steady-state electrical model, transformed to the rotor frame is used to esti-
mate two thermally varying parameters R and K, where R is the resistance of the
stator windings, and K is the permanent-magnet constant. The remaining parame-
ters of the electromechanical model of the motor are assumed to be constant. Due to
the nonlinear nature of the electromechanical model, even in the rotor frame, the es-
timation problem is a nonlinear one. Two least-squares error estimation schemes are
developed based on the steady-state electrical model of the motor and their relative
performance is evaluated. This evaluation is done both by way of sensitivity analysis
and direct numerical simulations.

The parameter estimation results presented here have two fundamental uses.
P
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Firstly, these parameters can be integrated into a closed-loop adaptive controller
for the motor. In a realistic setting, the parameters R and /K can change enough
under thermal stress so as to require a control loop to be redesigned. Failure to take
into account these parameter variations may result in inappropriate control action
and hence inadequate operation of the motor. Since these parameters tend to change
slowly relative to the electromechanical dynamics, the parameter estimates can be
computed in the background and fed to the controller in an asynchronous fashion.
“In this way, the controller is updated every several seconds, or minutes, hence yield-
ing optimal performance while keeping the computational complexity of the control
algorithm to a minimum. Secondly, these parameter estimates can be used as in-
dicators of temperature inside the motor. The average temperatures in the magnet
and the windings can be inferred by characterizing the thermal dependence of these
parameters. Since the parameter estimates are obtained by observing only the line
currents, voltages, and speed, the thermal dependence of these parameters provides
a completely non-invasive way of monitoring temperatures inside the motor. One
can alternatc.y construct a dynamic model for the thermal behavior of the motor
and predict these same temperatures. On the basis of comparison of the predicted
temperature and the estimated temperature one can form a basis for failure detection

due to thermal overload.

2.2 Electromechanical Model

The model presented here for the permanent-magnet synchronous motor provides
the basis for the work presented in this thesis. The motor is assumed to have three
balanced phases wound with a single harmonic. These phases are assumed to be
connected in a delta configuration. The mechanical load is assumed to be an inertia
retarded by viscous drag, and the motor and mechanical parameters are assumed to
vary slowly.

Given the assumptions, the dynamics of the permanent-magnet synchronous mo-

tor and its load are given by
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where @, ), and 7 are vectors of the three-phase stator voltages, flux linkages, and
currents, respectively, w and 8 are the rotor velocity and position respectively, 7 is
a disturbance torque, R, L, and M are the stator phase resistance, self inductance
and mutual inductance respectively, & is the permanent-magnet constant, N is the
number of rotor magnet pole pairs, H is the rotor inertia, and B is the coeflicient of
viscous rotor friction. The motor magnets align with the first phase at § = 0, and
positive rotor motion is then in the direction of the second phase.

Note that the currents referred to above are the phase currents. Actual mea-
surements, however, are made only of the line currents in the delta connection. The
transformation between phase currents and line currents is determined by using the
fact that the sum of all line currents is zero; see Figure 2.1. Let the vector containing
the line currents be denoted by I, then the transformation from line to phase currents

is given by

1 0 -1
I=|1 -1 0 [ (2.5)
0 -1 1

The matrix in (2.5) is not invertible, so we can not obtain 7 from I, which is desired

for experimental purposes. To allow inversion, the bottom row of (2.5) is replaced by
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Phase Current
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Y

Figure 2.1: Delta connection in the motor

the assumption that [1 1 1]s=0. This yields

14 1 0 -1
Igl=111 0 |2
0 11

The above relation is now invertible so that ¢ can be obtained from two line-current
measurements. The assumption [1 1 1]tildei=0 is equivalent to assuming a null zero-
sequence current, as discussed below.

In anticipation of delta connection, model 2.1-4 is transformed according to

A= S (2.6)
7 = S (2.7)
i = St (2.8)
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where

V2/3 —/1/6 —/1/6
0

1/2  —4/1/2 (2.9)

VI3 13 173

Here, S is a unitary matrix so that the transformation is power invariant. When the

S =

motor is delta-connected, the zero-sequence voltage is identically zero. This voltage
is the sum of the three original stator phase voltages, and is the third component of 3.
It can be seen that the corresponding zero-sequence flux linkage and current evolve
independently from the other two flux linkages and currents, and that their evolution
is stable so that they too eventually vanish given any nonzero initial conditions. Also,
it can be seen that the zero-sequence current does not contribute to torque. Given
these characteristics of the zero-sequence variables, they can be omitted from 2.6-8,

resulting in the following simplified model

o L+ M + 2P cos(2N8) 2 Psin(2N8) -
h P sin(2N9) L+ M — 2P cos(2N6)

P
3 - | cos(NF)
+\[§I‘_ [ sin(N) } (2.10)

dw 3NPZ_*T sin(2IV8)  —cos(2N6) | .,
dt 2H —cos(2N0) —sin(2N4)
3NK [ . . B 1
57 [ sin(IN@) — cos(N9) ] it — —I-I—w - —ﬁr (2.11)

d\* Soe

r = —-Ri*4+v (2.12)
dé

-7 =@ (2.13)

where v*, A*, and 7* are vectors which include only the first two components of 7, J,
and 7 respectively.
One prominent nonlinearity of the simplified model are the trigonometric func-

tions. These terms can be eliminated using the Blondel-Park transformation

A o= T (2.14)
Vv = :r'lf.r (2.15)
i = Ti* (2.16)
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where

[ cos(N9) Sin(Ne)} (2.17)

—sin(N@) cos(N¥)

Here, T is also a unitary matrix so that it too is a power invariant transformation.

This yields

_di . 0 L, |. .10 ’

@ _ - 2.
Ldt Ri 4+ Nw I, 0 }z lew[ . ] +v (2.18)
dw PN 10 1. KN . B 1

9

= 2.
- w (2.20)
where
L = [L 0 (2.21)
0 I,
Ly = L+M+3P (2.22)
L, = L+M- %P (2.23)
P = -;113 (2.24)
K = /3)2K (2.25)
R = R (2.26)

which is the final form of the model used throughout this thesis. The set of equations
2.18-20 is also referred to here as the model of the motor in the rotor-frame or dg-
frame. The transformation T maps the voltages and currents to the frame of the rotor.
In this way, the dependence on the rotor position is eliminated. In this frame, the
currents and voltages can be thought of as being aligned along the direction parallel
to the magnets (represented by subscript 4) and along the direction orthogonal to the

magnets (represented by the subscript ,). Hence, in the rotor frame we have

i=[d i, | (2.27)
v= [ v | (2.28)
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2.3 Parameter Estimation

In this section, we use the equations describing the electrical dynamics of the motor to
estimate the parameters R and K. These dynamics are described by Equation 2 18.
As we can see, the parameter K also appears in the equation describing the mechanical
dynamics of the motor (2.19). This relation, however, is not suitable for the estimation
of K since the load torque 7 is in general unknown. Hence we concentrate only on
estimation through the electrical equations. The estimation problem is best solved
using data from the steady-state operation of the motor. There are two reasons for
this. Firstly, due to the short response-time of the electrical dynamics, and the typical
operation of the motor, a random sampling of the line voltages and currents most
probably yields the steady-state values of those quantities. Secondly, the computation
of the derivatives on the left-hand-side of Equation 2.18 is both computationally
burdensome and numerically unsound. Computing the time derivative of the variables
from their noisy measurements is bound to accentuate the noise, thereby yielding
poor estimates of the parameters of interest. In contrast, steady-state values of the
currents and voltages in the rotor frame can be directly used to setup a least-squares
estimation problem in a more noise-immune manner. Equation 2.18 in steady-state

operation of the motor can be written as

—Rid + Nquiq +vg = 0 (229)

—Rig — Nwlgig— NKw+v, = 0 (2.30)

These relations can be rewritten to contain the parameters R and &' on one side only.
This yields

Ri; = Nwlgi,+ vq (2.31)
Ri,+ NKw = —NwLgig+v, (2.32)

This set of equation can now be used directly to estimate R and K. Let us rearrange

these relations so that the parameters of interest are placed in a single vector. We

[’:d 0 R] =[ Newbaiq + v ] (2.33)
g Nw

K —Nwljig + Vg
We may now measure the speed, line currents, and line voltages, use these quantities

have that

to find the corresponding values in the dq-frame, and use these values to estimate the
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desired parameters. We present two different approaches to the estimation problem

and discuss their relative performance.

2.3.1 Estimator I : The Use of Both Electrical Equations

With No Prior Information

Having no prior information regarding the values of the parameters of interest, and
given Equations 2.29-30, we may use both equations to incorporate all the information
available to estimate R and K. Assume that n measurements of the speed, and the

currents, and voltages in the dg-framne are available, then we can use Equation 2.33

to write ) _ )
9, O NwiLgig, + vg,
tgq, Nwy —Nw;Lgta, + vq,
g, O R Nw; Lgig, + va,
1y, Nuws [ K ] = | —NwyLgig, + ve, | + noise (2.34)
id, 0 Nw, L4, + vq,
| 1g, Nw, | | —Nw,Latg, + g, |

Note here that noise refers to the collective measurement noise on the right and left
hand sides of Equation 2.33. This noise is actually not completely additive due to the
appearance of multiplicative terms between measured speed and currents. However,
this is ignored.

In more compact notation, Equation 2.34 becomes
A(n)e = B(n)+e (2.35)

where 7 is the 2 x 1 unknown vector of parameters R and K, and with reference
to Equation 2.33, the matrices A and B are defined in the obvious way using the
n available data points. An estimate of ¥ can now be obtained through a linear
least-squares-error estimation problem, the solution to which is easily obtained by
multiplying both sides of 2.35 on the left by the right-inverse of A(n) [37]. Hence,

denoting the estimate by # we have

#(n) = AT (n)B(n) (2.36)
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where the right-inverse of A(n) is given by
AT () = (AT (n)A(n))*A(n)T (2.37)

Note, however, that the matrix A in our estimation problem is not noise-free due to
the multiplicative terms, as is the case in the standard setup for a least-squares error
problem. Hernce, the quantity e in Equation 2.35 is a convenient approximation of
the actual uncertainties. This simplifying assumption allows the application of the
standard least squares error solution given by Equation 2.36, as derived in [37]. This
solution minimizes the norm of the estimation error over all choices of &. In other
words,

#(n) = argmin,||A(n) — 2 B(n)||* = argmin_e”e. (2.38)

Due to the noise in A, however, this estimate can not be assumed to be unbiased, as
is the case in a standard least-squares setup.

If any information is available regarding the relative confidence in the measured
variables, this information may be integrated into the estimation process approxi-
mately using a weighting matrix @. @ may be chosen as a positive definite diagonal
matrix with each diagonal element being the reciprocal of the variance of e. The
solution to the weighted least-squares error problem may be obtained in a similar way

as before. The solution [37] is given by
& = (AT(n)QA(n)) " AT(n)QB(n) (2.39)

This solution minimizes the weighted sum of the squares of the estimation error. i.e.

the quantity eTQe where
€ = A(n)x — B(n) (2.40)

In order for the solution to either problem (weighted or not) to exist, the right-
inverse of A(n) must exist. From the definition of the right-inverse, it is seen that
A*7(n) exists if and only if A(n) has full column rank. This is the case if and only if the
direct current 74 is nonzero in the steady-state operation of the motor. However, since
14 does not contribute to significant torque production in the motor, any desirable
controller for the motor will aim to drive 74 to zero in the steady-state. This further
complicates the estimation problem. As iy approaches zero, the condition number of
the (square) matrix AT(n)A(n) approaches infinity. Thus, small measurement errors

will result in parameter estimates that are unacceptably corrupt.
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We can explore the aforementioned sensitlivity to ¢4 by studying the relative sen-
sitivities of Equation 2.33. Assume that measurements of the currents, voltages, and
the speed are corrupt. We seek to relate the relative sensitivities of the estimates to
those of the measured currents, voltages, and speeds. Define the normalized change
in a scalar variable ® at * = z, as the ratio between a differential perturbation in z
and the reference value z,. More precisely, if we define §. to denote the normalized

change in z, we have

8z, = — |2 2.41
o=l (2.41)

where dr denotes the differential of z. An alternate way to define the sensitivity

function &, is as the diflerential of the natural logarithm of |z|. i.e.

bz, = d(In|2])|e, (2.42)
We seek to find a relationship between the normalized errors in the variables 4, 7,4,
V4, g, and w and those of the parameters R and I. This relationship is obtained

by taking differentials of both sides of 2.33 and normalizing the respective variables.

This gives

‘5R.K = Ai.v,wéi.v‘w (243)
where
r T
k) = | ér 6k |
r R? NLqwR R 0 NLgigR
A(< )y = i idqig ”dic}{ 14vg
nee) K( iR _ _K(ig _ _R _ g K ___K - -2 -
| id( Nwig La) iq(id Nwiq) Noigog Nuww, wiid(quq + Lqt} + Kig)
r T
6(i.v.w) = ] ‘Sid 61'., 61;4 ’qu 5w

where the matrix A is evaluated at a given operating point of the motor. The re-
spective magnitudes of the elements of the matrix A now show how sensitive each
parameler is to measurement noise in the speed or each of the voltage and current
channels. For instance, the magnitudes of the elements of the first column of A show
the relative contribution of the measurement noise in 74 to the error in the estimate of
R. It is then seen thal as iy approaches zero, the contribution of measurement noise
in 74 is the largest source of error in the estimates of the parameters.

By carefully examining the nature of the variables that appear on either side of

2.33, we can see that the there exist multiplicative terms (wig and wiy) on the right
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hand side with both multiplicands containing noise. Hence, the noise characteristics
of the variables that appear in the matrices A(n) and B(n) do not coincide with those
assumed in a standard least-squares error problem; the noise in B(n) is not accurately
modeled as additive noise. In a standard least squares problem, the matrix A{n) is
assumed to be noise free, and the noise in the matrix B(n) is assumed to be additive.
Neither of these conditions holds in our formulation. Thus, we can not generally
expect the proposed estimator for R and K to be unbiased. We will see, through
simulations, that the estimator is in faci biased. In summary, we have identified
two potential problems with the use of the estimator given by (2.36). The first is
the sensitivity of the solution to the size of the current iy and consequently to the
noise associated to it, and the second problem is that the estimator inay be biased.
Simulations were performed to investigate the potential problems with the estimator.
The results of these simulations will be discussed in Section 2.4 where numerical

results are presented.

2.3.2 Estimator II : The Use of Botk tlectrical Equations
And Knowledge of It

In the above formulation, we ignored the fact that there exists prior information on
the values of the parameters being sought. This prior information is in fact obtained
by simply measuring the values of R and K at room temperature. The value of K in
the particular experimental motor under study tends to vary very little with changing
temperature. (It is shown in Chapter 3 that an increase of 55°C in temperature yields
a change of less than 4 percent in K'.) Hence, if one is willing to compromise, it may be
possible to obtain a more reliable estimate of the winding resistance R by considering
the value of K fixed. Of course, it is only natural that the accuracy of this estinate
of R should depend upon how closely the fixed value of K approximates the actual
value of A'. Given a fixed value of K, and the confidence in its accuracy, we can
rewrite 2.31 and 2.32 as

R = NLywi;+v4 (2.44)
B = —NLgwig+v,— NwK (2.45)



Given a set of n measurements of the currents and voltages in the rotor frame, the

estimation problem may now be sel up as

[ iq, ] [ NLgwytg, + vq, |
1g, —NLgwyig, + vgy — Nun K
id; ]VL,;(,:.’giq2 + vq,
i, | R=| —NLjwsig, + vq, — Nwo X | 4 noise (2.46)
ld, Nqu,,iqu + va,
[ Zqn | | —NLgwaid, + vg, — Nw, K |

or more conveniently as before
A(n)z = B(n)+ ¢ (2.47)

As in Estimator I, the estimation problem here again is not a standard least-squares-
error (LSE) problem due to the fact that the matrix A is noisy. However, we simplify
the problem into a standard LSE problem by collecting (approximately) all of the noise
present in the problem intc the noise vector e. We may now solve for the unknown
parameter & by minimizing the weighted square sum of the estimation error. This

solution again is

& = (AT(n)QA(n)) ' AT(n)QB(n) (2.48)

Notice now that in 2.48, the least squares problem is not ill conditioned as a result
of the nearness of 74 to zero. Simulation results presented in the next section show

the performances of the proposed estimators.

2.4 Numerical Results

In this section we present the results of simulations performed to investigate the rel-
ative performances of the estimator structures proposed in Section 2.3. Comparisons
are made between the errors for each estimmator. These comparisons are made on
the basis of ensemble averages of the respective estimator errors where the average is
takeii over 200 runs of simulations. In each run, the same set of noisy data is used
by both estimators to produce values of R and K, while each run uses a different set

of random noise values to produce the data set used by all estimators. A set of 200
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Figure 2.2: Structure of Estimator Simulations

estimator errors are generated for each algorithm, and the average of these results are
compared below. Results are presented below in terms of the number of data points
available (7). This is to illustrate the minimum number of data points necessary to
obtain an estimate which has some desired accuracy.

In the following simulations, a fixed w and r were chosen along with a desired
value for z4. These values were then used to generate ideal values for the line currents
and vollages which were then measured. The line measurements were then corrupted
by gaussian noise and passed through the line-to-phase transformations, the three-to-
two phase transformations, and the Blondel-Park transformations to yield corrupted
values of 14, i4, vq, and v, These values were in turn used to generate the matrices
A(n) and B(n) and hence produce estimates of R and K. Figure 2.2 shows the

structure of these simulations.
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Variance of voltage measurement errors | 0.00004 volts
Variance of current measurement errors | 0.00004 amps
Variance of speed measurement errors 0.00004 rad/sec
Variance of angle measurement errors 0.000004 radians
Winding Resistance (R) 1.7479 ohms
Permanent-Magnet Constant (K') 0.0917 V-sec/rad
Nominal 74 1 amps
iq 3.02 amps
g -22.15 volts
g 100.34 volts
Load Torque 0.636 N-m
Speed 3000 rpm

Table 2.1: Experiment 1

Experiment 1: In the following simmulation, the speed and load torque were kept
constant, and the values in Table 2.1 were used to produce the measurement noises.
Figure 2.3 shows a typical set of data composed of 200 points. Figure 2.4 shows the
estimated values of R along with the actual R for comparison. Figures 2.5 and 2.6
show the estimated values of A and their error.

The performance of Estimator II which includes knowledge of I is clearly superior

in estimating R to that of Estimator I.
Experiment 2: In Figures 2.7-9 we present the results of a simulation that assumes
the parameters in Table 2.2 below. In this experiment, the commanded value of 4 is
reduced to 0.1, i.e. to 10 percent of its value in Experiment 1. We wish to see the
effect of this change on the performance of the estimators.

By comparing the estimated parameter values to those of Experiment 1, we can
see that as a result of reduction of the value of 14, the error of Estimator I suffers an
increase in size. However, the accuracy of Estimator II is not fundamentally affected,
as expected.
Experiment 3: In this experiment we keep the commanded current 74 at 0.1 Amps
but decrease the speed to see whether the accuracy of the estimators are improved or
not. Figures 2.10 to 2.12 illustrate the results. The parameters shown in Table 2.3
were used in this simulation.

Comparing the estimated parameters to those of Experimnent 2 we observe that
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Rhat-R (ohms)

0.6

0.4

Variance of voltage measurement errors | 0.00004 volts
Variance of current measurement errors | 0.00004 amps
Variance of speed measurement errors | 0.00004 rad/sec
Variance of angle measurement errors 0.000004 radians
Winding Resistance (R) 1.7479 ohms
Permanent-Magnet Constant () 0.0917 V-sec/rad
Nominal 7,4 0.1 amps
lq 3.04 amps
vq -23.9 volts
g 92.6 volts
Load Torque 0.636 N-m
Speed 3000 rpm

Table 2.2: Experiment 2
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Figure 2.7: (Experiment 2) Estimator I error in R vs. n
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Rhat-R (ohms)

Variance of voltage measurement errors | 0.00004 volts

Variance of current measurement errors | 0.00004 amps

Variance of speed measurement errors { 0.00004 rad/sec

Variance of angle measurement errors 0.000004 radians

Winding Resistance (R) 1.7479 ohms

Permanent-Magnet Constant (/) 0.0917 V-sec/rad

Nominal 24 0.1 amps

1q 2.6 amps

vq -6.7 volts

Vg 33.6 volts

Load Torque 0.636 N-m

Speed 1000 rpm

Table 2.3: Experiment 3
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Figure 2.10: (Experiment 3) Estimator I error in R vs n
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the magnitudes and biases in the estimation errors for both estimators I and 1I have
reduced. This is somewhat counter-intuilive since one would expect that at higher
speeds the data set may provide richer information for the estimation problem. The
case, however seems to be the opposite. The explanation is that on the right-hand side
of Equation 2.33, there exist the multiplicative terms wz, and wiy. Let the subscript ,
represent a nominal quantity, or equivalently, a perfect measurement. Then, a corrupt

measurement of w and 7, enters the right-hand-side of 2.33 as
(wo + 8w)(iq, + b15) = wolq, + Wobiq + 1g,0w + bwbi, (2.49)

The second, third, and fourth terms on the right-hand-side of 2.49 are noisy but the
dominant noise term is the second term. It is seen that this term is made larger
as the speed is increased. In fact, the noise in this term is amplified linearly with
speed. Hence if the noise variances are kept constant, and the speed is increased, we
should expect the estimation algorithms to perform more poorly. This is the case
observed in Experiments 2 and 3. However, a case can be made for the fact that
one can not decreases the speed to arbitrarily small values and consistently obtain
better results since the conditioning of the estiimation problem will get worse with
decreasing speed. The fact is, one can see through the steady-state equations of the
motor that the critical speed at which the conditioning of the problem would becomne

noticeably problematic is very small.

2.5 Summary

In this chapter we have presented the electromechanical model of the permanent-
magnet synchronous motor in the rotor frame. We have used this model in steady-
state to develop methods of estimating the winding resistance R, and the magnet
strength . We have observed that given a priori knowledge of the parameter I, a
more accurate estimate of the parameter R can be obtained. In light of the fact that
the experimental motor under study in this thesis has hard magnets, i.e. ones whose
strength changes very little under thermal stress, it is feasible to assume that the
value of K is constant and only estimate I by way of Estimator II. In what follows

we will only deal with the problem of estimation of R alene.



Chapter 3

The Thermal Model

3.1 Introduction

In this chapter, we discuss the thermal behavior of the experimental motor. We first
identify those parameters of the electromechanical model of the motor that vary with
temperature. We then calibrate these parameters as thermometers by determining
analytic expressions for their temperature dependencies. The next step is to deter-
mine the sources of heat which give rise to temperature increases within the motor,
consequently aflecting the thermally varying parameters. By measuring the effects of
those heal sources on the parameters, we can trick the input and the output of the
thermal system shown in Figure 3.1. We then use these input-output measurements
to establish a dynamic model for the thermal behavior of the motor.

In the final section of this chapter, we present some ways to confirm the correctness
and accuracy of the thermal model. We also derive thermally-limited torque-speed
curves for the motor using the steady-state version of the thermal model. These

curves assist in determining limits on speed and torque production for the motor

|nputs Outputs
Thermal System -
Heat Sources Temperature
Rises

Figure 3.1: Input-output measurement for the thermal system
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under various thermal conditions.

3.2 Calibration of Parameters

There exist two parameters in the electromechanical model of the motor that are
known to vary with temperature. They are, the resistance of the stator windings
R, and the strength of the permanent magnet, K. The resistivity of copper, from
which the stator windings are constructed, is known to increase with temperature. In
contrast, the strength of most permanent magnets decreases with increasing temper-
ature.

We have limited our study to the thermal dependencies of only these two parame-
ters for the following reasons. Firstly, the only other parameters that might vary with
temperature are the inductances Ly and L,. From experience, we know that these
quantities are very weakly sensitive to changes in temperature and are, therefore, not
very good thermometers. Furthermore, it is extremely diflicult to detect any changes
in these quantities. Secondly, some of the most common failures in sinall permanent-
magnet synchronous motors occur as a result of thermally weakened insulation on
the stator windings, and the thermal demagnetization of the permanent magnets.
Therefore, it is valuable to study R and K as indicators for failure prevention and/or

detection purposes.

3.2.1 The Thermal Dependence of R

Here, we seek to establish a relationship between the average winding resistance, R,
and the aveage temperature, Tj, at or sufficiently nearby the windings. We know
[1] that the resistance of copper increases approximately linearly with temperature
over a large temperature range. Assume that at a reference temperature, T,.s, the

winding resistance equals R,.s. Hence, we have
R(TR) = Rres + C(Tg -~ Tres) (3.1)
where (' is a constant. So for two distict temperatures T;; and T, we have

Ri(T},) = Reeg + C(T}, — Trey) (3.2)
Ry(Tg,) = Rreg + C(Th, — Trey) (3.3)
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We know from [1] that the quantity T{—C—f is known as the temperature coeflicient of a
metal and at T,.; = 20 °C this quantity equals 0.00393 ohms/°C for copper. Noting

this, we divide Equations 3.2 and 3.3, and substitute for T,.; and C' above to obtain

Ry(Th) 2345+ Tf
Ry(Ty,) 2345+ T4,

(3.4)

This expression represents the incremental model of the thermal dependence of the
winding resistances.

Experiments were performed to establish that the average resistance of the wind-
ings is accurately predicted by Equation 3.4. In these experiments, the motor was
placed in an oven and heated to a specific temperature. The winding resistances were
then measured. The experiment was then repeated over a range of temperatures. The
results are shown in Figure 3.2, where the error bars represent the accuracy of the
measured resistance. Note the good agreement between the measured temperatures

and those predicted by Equation 3.4.

3.2.2 The Thermal Dependence of I{

The permanent-magnets used in the experimental motor are Samariun-Cobalt mag-

nets. It is shownin [28, 27] that the strength of such a magnet decreases monotonically
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with temperature. We performed experiments where ' was measured as a function
of the magnet temperature Tj. In these experiments, the motor was again placed
inside an oven and heated to a specific temperature. Then a second motor was used to
spin the experimental motor briefly, and K was measured through the measurement
of its terminal voltage. These experiments confirmed the result in [28, 27] in that the
magnet strength does indeed decrease monotonically. However, it was seen that the
magnet stength does not decrease substantially under thermnal stress. In particular,
we noticed a 4 percent decrease in K over a 55°C increase in temperature as shown
in Figure 3.3. This indicates that we can infer a reliable estimate of T from K only
if we have a very accurate measurement of K.

Despite the insensitivity of K to Ty, we obtained a model for the data relating K
to Tf. At the time when this was done, no exact functional form for this relationship
was available in the literature. Hence, we chose a function that best fit the data and
the monotonicity criterion. Using a simplex algorithin for fitting nonlinear functions,
we obtained the following model
Tk

K(T}) = ol

)" (3.5)

where o = 7.476¢ — 2, and n = 2.973¢ — 2, and T,y is the reference ambient temper-
ature taken to be 20°C. This model proved to be an eflective fit to the data as shown
in Figure 3.3. It is worth noting that taking diflerentials of both sides of 3.5 gives

Ty 1 dK

17 = 1 (3.6)

We can see in Equation 3.6 that since n is small, as T} increases, if there is any
error in the measurement of K, it becomes increasingly” more difficult to infer the
value of T from the measurement of K. In other other words, a small error in
the measurement of A will produce a very large error in the value of T that is
produced through Equation 3.5. This is an inherent property of the samarium-cobalt
permanent magnet over which we have no control. In summary, we have learned that

samarium-cobalt magnets make very poor thermometers.

3.2.3 Direct Thermocouple Measurements

Given the difficulty in mneasuring Tj through I, we sought a third temperature sen-

sor for the experimental motor. A thermocouple that measures the temperature of
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the surface of the motor was introduced as shown in Figure 3.4. A type-K thermo-
couple was electrically insulated and attached to the stand where the experimental
motor is supported. A side view of the motor as shown in Figure 3.5 shows the actual
location of the thermocouple. The thermocouple was then connected to an ampli-
fier which incorporates the appropriate cold-junction compensation and provides an

analog voltage of 1 mV/°C as output. The output of this device was filtered with an

analog low-pass filter for noise suppression.

3.3 Heat Sources

From experience, we know of three major sources of heat within a permanent-magnet
motor while it is in operation. Most obvious is the dissipation caused by currents
in the stator windings. The heat dissipated in the winding is given by 2R, where
i is the winding current and R is the winding resistance. For our purposes, it is
more convenient to express this dissipation in terms of currents in the d-q frame. As

discussed in Chapter 2, the desired expression for the winding dissipation is

Py = (23 + ‘i:)R (3.7)
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Figure 3.4: Thermocouple Measurements

where Py is the winding dissipation, and R is the average resistance of all three phase
windings.

The second source of heat is the power dissipated in the core due to eddy currents.
Assuming linear magnetic properties for the steel in the motor, the power dissipated
due to eddy currents is proportional to w?B? where w denotes the speed of the rotor
in radians per second, and B denotes the magnitude of the magnetic flux density in
the airgap. B is proportional to the airgap flux, which is in turn proportional to the
total flux linkage. Let the quantity A3+ AZ denote the square of the total flux linkage

expressed in the d-q frame. So in the d-q frame we have

Pg o w¥(A} + A2) ' (3.8)
where

Ad = Ldid-{-I{ (39)

A, = L, (3.10)
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and Pg is the dissipation due to eddy currents.
The third source of heat is the combined friction loss in the bearings and hysteresis
loss in the core. In both cases, the heat generated is proportional to the rotor speed,

w. Thus,
PF/H X w (311)

where Pp/g denotes the dissipation due to friction and hysteresis.
Experiments discussed below confirm that Py, Pg, and Pp/g are the only signifi-
cant sources of heat in the experimental motor. Therefore, the thermal system of the

motor has three inputs u,, uz, and us, given by

wy = (i5+i2)R (3.12)
uy = w?(Aj+A2) (3.13)
Uz = w (3.14)

An important observation from the experiments is that the largest source of heat
dissipation is the winding losses. The second largest is the combined hysteresis and
friction losses, and the third is the eddy-current losses. This resull is compatible

with our intuitive sense of these effects. The model that we build should reflect this

property accordingly.

3.4 Dynamic Thermal Model

We wish to obtain a state-space representation for the thermal system with inputs
as described in Section 3.3, and outputs being the temperature rises in the motor.
To do so, we must first choose the quantities which will be the thermal states. In
the interest of simplicity, we develop our state-space model based on temperature
rises within. the motor. Assume that initially, all points in the motor are at the same
reference temperature T,.s. Then at any future point in time, if any of the inputs
u; (1 = 1,2,3) is nonzero, the temperature rises in the motor will be denoted by Tr,

Tc(thermocouple), and Tx. Thus,

To = Tes+Tr (3.15)
T: = Toy+Te (3.16)
Ty = Tes+Tx (3.17)
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We should like to designate Tgr, T¢, and Tk as our state variables. Ilowever, as
discussed in Section 3.2, while perforining the experiments to characterize the input-
output map for the thermal system, we were confronted with the difficulty of mea-
suring T accurately. This is because the slightest error in the measurement of K
yields a T, that is far from accurate. Therefore, it is not sensible to include Tk as a
state variables since the input-output map for this variable could not be accurately
characterized. This is to say that the inclusion of Tk as a state variable introduces a
nearly unobservable mode in the model, a situation that is not desirable. It should be
underscored, however, that the difficulty with Tk is dependant on the type of magnet
used in the motor. If a sufficiently thermally sensitive magnet is used in a permanent-
magnet synchronous motor, then it may be possible to charactrize the dynamics of

Tx accurately enough so as to include this temperature as a state variable.

3.4.1 Modeling

By construction, we know that for our purposes, the permanent magnet synchronous
motor is made up of two distinct thermal masses. The first being the stator windings
and the second the collective mass of the core and the magnets. IHence, it seems
appropriate to propose a second order dynamic model for the thermal system. We
denote the vector T = [T¢ Tg| as our state vector, and the vector u = [y up ug)
as our input vector. We measure the state directly so our observation matrix is the

identity. Hence we have:

T = AT+ Bu (3.18)
Y = IT (3.19)
where A and B are 2 x 2 and 2 x 3 matrices, respectively, while I denotes the 2 x 2
identity matrix. In proposing this model, we have assumed that the motor has linear
thermal properties. So that the thermal masses in the motor (rotor, magnet, etc.)
behave as dictated by the thermal properties of the metals that constitute them. This
allows us to draw parallels between our thermal system and passive, linear resistive-
capacitive networks [10].
As discussed in [10], any linear thermal system can be thought of as a linear
RC network with all capacitors sharing a common ground. See Figure 3.7. This
analogy holds if the electrical and thermal capacitance and resistances are taken to

be equivalent quantities. Given this analogy, we wish to characterize the structure of
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Figure 3.7: The electrical equivalent of a second order linear thermal system

the matrices A and B in 3.18. We will first need some definitions and notations.

Notation 1 Following [31], let Z\"") denote the set of all realn xn matrices A = [a;;]
such that a;; <0 forallt # 7, 1 <12,7 <n.

Notation 2 p(Q) denotes the marimum of the moduli of the eigenvalues of Q.

Definition 1 An n X n matric A that can be expressed in the form A = sl — @,
where —Q € Z!™") and p(Q) < s, is called an M — matriz.

We now present a theorem that establishes the relationship between M -matrices and

linear thermal systems.

Theorem 1 Any linear thermal system has a minimal state-space representation

which has a dynamic matriz A, the negative of which is an M-matriz.

Proof: As mentioned before, a linear thermal system can be described by a linear
RC network with all capacitors sharing a common ground. In Thévenin equivalent
formn we can describe this circuit as shown in Figure 3.7. Pick the voltage across

capacitor ('; to be the state variable x;. Then, for each state variable we can write

Tj=a;51%5-1 + 5T + €5401T 54 (3.20)
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where
1
;-1 —_— (3.21)
CiR;-1,;
R+ :IR:NR: -
a;; = —( J LJ”C"J.” JvJ-H) (3.22)
J
1
.. - = 2
ajij+1 C'jRj,j-}-l (3 3)

Let # = [r; @3 ... ©,)', and the output be y = z. Note that the superscript ' denotes

algebraic transposition. We obtain a minimal state-space representation of the form

& = Az+ Bu (3.24)
y =« . (3.25)

By construction, we see that the matrix 4 = (ap,) is an n x n 'tridiagonal matrix
such that ap,; > 0 for all p # ¢. So it follows that —A € Z(™™). We also know
that any linear RC network is necessarily strictly exponentially stable. Hence, all the
eigenvalues of —A are positive real numbers. Therefore, by Definition 1, —A4 is an
M —matrix.

We can also show that we can arrive at the result of Theorem 1 regardless of the

order in which we assign the state variables. In other words, we can assign the state
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variable =; to the voltage across the capacitor C; for any pair of integers (,j) with
1 <4, < n, and still prove Theorem 1. Reordering the state variables corresponds
to the linear tranformation V = PX where P is a permutation matrix. Under this

transformation, the system 3.28 becomes
V = PAP™'V + PBU (3.26)

We can write P as P = [ep, €p, ... €p,] Where €p; = [0...0..1..0])' with the 1 in the pth
location. Then, we can see that PAP’ = [ap,, ]. This shows that the diagonal elements
of A are mapped to diagonal elements of PAP'. i.e. PADI" is a rearrangement of the
elements of A in snch a way that diagonal elewments are swapped with other diagonal
elements and off-diagonal elements with other ofl-diagonal elements. Furthermore,
PAP! is strictly exponentially stable since it has the same eigenvalues as A. Hence,
—PAP' is also an M —matrix.

As for the matrix B in 3.18, we know from experience that all the inputs to the
thermal systemn are “active” in the sense that none of them ever slows down the
heating of the motor, or introduces a cooling effect. So all the elements of the matrix

B must be positive.

3.4.2 Stability

In our experiments we observed that given bounded thermal inputs, the outputs (and
hence the states) remained bounded. This fact is consistent with the structure of
the matrix A as discussed in section 3.4.1. However, a more careful consideration
of Equation 3.18 reveals that the input u is not exogenous. In fact, u is a function
of the states Tr and T¢ since by definition, u; and u, are functions of R and K.
These parameters, being temperature-dependent, vary with the thermal states. So
the question of the stability of the system described by Equations 3.18 and 3.19 is
non-trivial. We are most interested in the stability of our model for thermal inputs
that result from steady-state electromechanical operation of the motor. This is be-
cause so far as the task of failure analysis is concerned, we typically deal with the
electromechanical system in steady-state operation, resulting in constant electrical
inputs to the thermal system. Let us assume that the motor is in electromechanical
steady state. Hence, the quantities i4, 7,, and w are constant. The average resistance
of the stator windings can be written as R = R,.s + § R where R,.; is the resistance

due to the reference temperature and é K is the incremental resistance due to the local
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temperature rise Tr. So we have
R = R,.ef +é6R = R,.ef + BTgR (3.27)

where 6§ R is obtained from taking differentials of both sides of Equation 3.1. Theo-
retically, we should consider the effect of the coupling between the two parameters
R and K and the thermal states. Yet, as we have seen before for our motor, the
effect of Tk on the value of K is extremely small, effectively allowing us to ignore the
dependence of u, on the thermal states. So we consider only the coupling between
the input u; and the state Tg.

The thermal system can be written as
T = AT + Bu,es + B[B(i5+i2)Tr 0 0] (3.28)

where ey = [Rnes(i] +42) 1z us)’. We note that given B = [b;;], the third term of

the right hand side of 3.32 can be written as

B3 +i)Tr

2, - b 0 B(i%+1i2)by, Te
B =32 +)TR| | = dT % =JT
P |- [2 e ) [

Hence, 3.18 can be written as
T = (A+ J(34,1y))T + Btrey (3.29)

For constant currents ¢4 and 4, the above system is linear and time-invariant. Hen<e,

for stability we must have

Tr(A+J) < 0 (3.30)
Det(A+J) > 0 (3.31)

The above conditions translate into

3] ] Tr{A)
(i3+42) < -Gl =g

] ) Det( A _
(Id + zq) < T BDet([a1lb1]) Ly

where a; and b, are the first columns of 4 and B, respectively. So stability is guaran-

(3.32)

teed for (i3 -+i2) <min(ly,l;). Furthermore, we expect 3.29 to be ezponentially stable
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(no oscillatory behavior), in keeping with the RC-network analogy and our intuition

for dissipative thermal systems. To verify this, we must have
(Tr(A+J))? — 4Det(A+J) > 0 (3.33)

It is possible to check that the latier condition is satisfied for any value of (i3 + i2),
as desired. It is also possible to check that for all (¢} + i2) <min(ly,l;), A+ J is
an M —matrix. Note that the above stability condition is only a suflicient condi-
tion. However, it should be mentioned that several simulations showed that stability
is lost if the root-mean-square value of i% + ig exceeds min(ly,l;). This instability

phenomenon is known as a thermal runaway.

3.4.3 Torque-Speed Characterization

It is possible to characterize torque-speed curves for the motor under study from the
thermal model. This is useful because it provides the manufacturer with guidelines
on the limits of safe operation of the motor under various thermal conditions. These
guidelines are, in turn, passed on to the consumer. Let us consider the thermal system

in steady-state. We can write
AT+ Bu=0=T=-A"'Bu=T = Gu (3.34)

Given that we are interested in torque-speed (7-w) relationships, it is only relevant
to study the local temperature rise in the windings, Tg. It is the current in these
windings that produces a desired torque at a specified speed. Furthermore, 7-w curves
obtained by studying the steady-state behavior of Tk give rise to safe operating limits
that prevent the windings from getting too hot, hence avoiding failures due to burned

insulation. So from equation 3.34 we obtain
TR = gle(’l: + ‘Li) + ggzwz(/\ﬁ + A:) + ga3w (3.35)

Without significant loss of generality, we can assume that in electromechanical steady
state, the current i, is kept at zero. This is reasonable since this current does not con-
tribute to torque production at all. It does, however, contribute to heat production,

so it is often driven to zero. An exception is in the case of field weakening control
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[12]. Given this, in electromechanical steady-state we have

iqg = 0

M _  Bw+tr
7 3K
/\d = K

A, = Lgig

Substituting these values in Equation 3.39 yields a quadratic equation in 7 which is

solved in terms of w to give

. | Tr — g22w2 K2 — gyqw
= 31 - B 3.36
m=3h \' gl + g2 L2w? v (3:36)

This equation relates the torque 7 to the speed w while the windings are at a local
temperature of T}, = Tg + T,.s. Note that R and K in the Equation 3.40 are both
evaluated at Tj. This represents a worst-case scenario in the sense that Tk is assumed
to be equal to Tr. In the next section we obtain explicit values for ¢,;, 1 <7 < 3,

and display 7-w curves for various temperatures T}.

3.4.4 Experimental Results

So far, we have only considered a continuous-time model of the thermal system. Yet,
our input-output measurements were made at discrete instances in time. Hence, it is
only natural that we fit a discrete-time model to our data. The discrete-time model
will, in turn, provide us with a continuous-time model as demonstrated below.

We have the system 7' = AT + Bu. The input vector u can be explicitly measured
at discrete instants in time. Since the sampling period of the electrical variables in
u is far smaller than the smallest time-constant of the thermal system, the input u
is effectively piecewise constant. In other words, it is appropriate to represent the
vector u at each discrete point in time by its average value during the preceeding
t, units of time, provided that the sampling time ¢, is sufficiently small. In our
case we know that the sampling interval ¢, is sufficiently small since it is far smaller
than the fastest time-constant of the thermal system. It is well known [7] that the

corresponding discrete-tiime system with a sampling period of ¢, seconds is given by:

T(n+1)=®T(n)+ T'u(n) (3.37)
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where & = e4'e and T' = f{* ¢49doB. Given T and @, we can write 4 = &%) where
the log function is defined by the Taylor series:

=1

log(®) =" (iiji’)i (3.38)

Note that this power series converges if and only if all the eigenvalues of I — &
have magnitude strictly less than 1. By truncating this series we can find a good
approximation to A and therefore compute B from I'. We can write the discrete-time

system as follows

T'(n+ 1) =[T'(n) «'(n)) [ (;’ } (3.39)
We measure T'(n + 1), T(n), and u(n) at 7 + 1 instants in time and obtain
T'(1) [ T'(0) U'(0)

T'(2) 1 vy | e
: . . T

= (3.40)
T'(i +1) l T'(i) U'(3)

or equivalently, P = Q[® I')'. Hence, using an ordinary least squares fit [35] yields

the minimum-square-norm-error solution as

i
[ r } =(Q'Q)'Q'P (3.41)

Experiments were performed in which the motor was allowed to spin at several
speeds with different loads to produced thermal rises. Meanwhile, the currents, the
magnet constant, the winding resistance, and the case temperature were mesured at
discrete instants in time. The above estimation procedure was then used to yield the

following estimates of the desired unknown parameters of the thermal system.

T A7 7.2 1.84 7.27
o — 6.70 .47 x10°%; T = 207 1.84 7T « 10-°
3.45 3.06 870.0 4.48 4.83

_48 117
A= 107%(1 ;
[ 8.6 —14] X 1075(1/sec)
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_ [0.2212‘]—1 0.0022(s(Vrad)?)~! 0.0097rad "~

= x° C107?
1.5781J71  0.0076(s(Vrad)?)-! 0.0055rad"1]

G = 0.8709 0.0070 0.0249
1.6888 0.0099 0.0195

Now given these estimates, we compare the predicted results as given by the estimated
model against the measured data. Figures 3.9 and 3.10 show these results for various
excitations. Furthermore, given the estimated value of G, we can now explicitly find
T — w curves for the motor at various values of T} as shown in Figure 3.11. In Figure
3.9 shows the temperature rises while the experimental (AC) motor was spun using
a DC motor drive at the speed of 230 rpm while the three phases of the AC motor
were tied together. In this experiment, a large torque is being overcome at a slow
speed. All three elements of the input vector u are active in this experiment. Figure
3.9 also shows these same temperatures under no excitation. This is to say that the
motor was stopped and allowed to cool down while this data was taken. Figure 3.10
shows the temperature rises and the subsequent cooling of the motor as a result of
excitation that consisted of spinning the experimental motor with again the same DC
motor, but at a higher speed of 3000 rpm while leaving the three phases of the motor
open. The temperature rises are not as high as in Figure 3.9 due to the fact that in
this experiment, only the bearing friction and some hysteresis loss contribute to the

temperature rises. There are no currents flowing in the motor in this experiment.

3.4.5 Consistency Checks

In this section we wish to validate the thermal model described by Equation 3.18
with parameters as estimated by 3.41. Each of the following observations presents a

fact that supports the accuracy and correctness of our estimated model.

1: Accuracy We can see that the estimated values for the matrices A and B give
rise to a model that closely approximates the data as demonstrated by the graphs
in Figures 3.9 and 3.10. This is perhaps the most important test of the validity of
the model. Note that the typical measurement error in the measurement of Tp was
about 1.4 °C while the measurement error in T¢ was typically about 1 °C. Both of

these standard errors were obtained from the measurement apparatus.
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2: Structural Consistency The eigenvalues of the matrix A4 are —0.0004 and
—0.0015 (1/sec). It is also clear that A € Z(3?). Hence, A is an M-matrix, as
expected. Futhermore, all the elements of the matrix B are strictly positive, a fact

which is consistent with our expectations as discussed in section 3.4.1.

3: Thermal inputs By looking at the estimated matrix B we can see that the
column corresponding to the input u, (the first column) contains the largest elements
of B. Similar observations can be made regarding the other two columns of B,
confirming that the input due to the winding dissipations is the largest source of heat
loss, followed by the frictional eflects and the eddy-current losses respectively. This

is to be expected.

4: Stability limits We know that the stability of the thermal model is guaranteed
for (i3 +12) <min(ly,{;). Given the estimated A and B, we can compute the quantities
l, and I, as l; = 164.36 A2, and I, = 82.66 A2. This insures that the thermal model
will remain stable for (i3 +42) < 82.66 A?. If the model is an accurate representation
of the thermal system, the current of v/82.66 = 9.1 A, should agree with the quantity
provided by the manufacturer in the data sheet as the maximum output current
deliverable by the servo driver to the motor. The data specifiec a maximum current
of 10 A. We have arrived at a figure that is within 10 % of the specification. This

consistency further confirms the validity of our model.

5: Thermal response The estimated value of A gives two eigenvalues. It is seen
that the faster eigenvalue —0.0015(1/sec) corresponds to the state variable Tg. This
fact can be seen by observing that the eigenvector corresponding to s; points approx-
imately in the direction [0 1]°, as shown in Figure 3.12. “This direction corresponds
to the state variable Tp. This is consistent with the fact that the windings have a
relatively small thermal mass as compared to the thermal mass of the core of the
motor. Consequently, the dynamics of Tg should evolve faster than the dynamics of

T¢. Our model reflects this property accordingly.
8: Physical interpretation As one last cross-check, we wish to calculate the time-

constant of the thermal system by considering the motor to be a simple cylinder of

steel, and verifying that this number is close to the time-constant obtained from the
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estimated model. It is well known [10] that the time constant 7 for this object is

_cpVl’

T ha

(3.42)

where for our motor we have

c=.2175 KJ/Kg°C
A = .0395 m?
V"=55%—-4 m?
p=78+6 Kg/m?
h=6.5 W/eC'm?

where ¢ denotes the thermal capacity, A represents the surface area, V denotes the
volume of the cylinder, and p denotes the density of steel. Given these quantities, 7 is
approximately 3650 seconds, or about one hour. The time constant of the estinated
model is approximately 1/0.0004, or 42 minutes. Although the cylinder is a very
rough approximation to the real motor, these two quantities seem to be relatively

close. This confirms that the model is realistic.
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3.4.6 Failure Modeling

It is possible to quantify the eflects of a thermally related failure in terms of param-
eter variations in the thermal model obtained in this chapter. To this end, we will
concentrate our eflorts on two common situations that could lead to a thermal failure.
First, we wish to understand how the dynamics of our model would be affected if there
should arise a situation where the motor would have trouble cooling down while in
operation. A simple, and common, way in which this may take place is if the motor
were to be covered with some material that would obstruct the exchange of thermal
energy with the cooler ambient air. For instance, if the motor happened to be covered
by a blanket, dirt, or some other thermally insulating material. We will demonstrate
that this will affect the dynamic matrix A in form of an additive perturbation. The
second type of common situation that may lead to undesirable operating conditions
is if the ambient temperature in which the motor resides would rise dangerously high.
As far as the thermal model is concerned, this reprenents a bias in the measurement
of the states of the thermal system. Both of the situations described above are com-
mon in applications where small permanent-magnet synchronous motors are used. In
industrial robotic applications such as welding, parts manipulation, and handling of
toxic substances, the ambient temperature within the plant must be controlled so
as to, among other faclors, prevent damage to the robots which are, in many cases,

actuated by permanent-magnet motors.

Cooling Obstruction We performed a series of experiments to determine the ef-
fect of cooling obstruction on the dynamics of the thermal model. It is clear that
while the motor is in electromechanical steady-state operation, the electrical con-
tribution to the heat sources identified in the previous section will remain constant
regardless of whether there is a cooling problem. Hence it is natural to expect that a
cooling obstruction would alter only the parameters in the dynamic matrix A. Our
experiments showed that this eflect can be adequetly modelled by an additive per-
turbation matrix E to the matrix A. Given constant thermal inputs, the dynamics

of the unfailed thermal system can be described by

T = (Ay + J(i4,ig))T + Btres (3.43)
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while the dynamics of the failed sytem can be modelled as
T = (Az + J(i4y1,))T + But,es (3.44)

where A; = A, + E. For convenience, let us drop the subscript ,.; from the input to
the thermal system below. In thermal steady-state, for a constant input u; we can

write the equations 3.44 and 3.45 as

(Al + Ji)Tl + Bll,' =0 (3.45)
(Az + J,‘)Tz + BU-,‘ =10 (3.46)

Subtracting the above two identities we obtain
(A, + J)Ty = (As + )T, (3.47)
or equivalently,
(A + J)Ty = (A, + E + J;)Ty (3.48)

Now we may perform N experiments for distinct inputs u;,...,ux to obtain

T, (T — To) Ay + J3)'
: | E'=
Tyn J (Tin — Ton) (A + N

The matrix E£ may now be estimated as follows using a linear least squares fitting

scheme
E' = (C'QC)C'QY (3.49)
where ) ) ' )
T, (T — Ta) (A1 + )
= : ; Y = :
Ton (Tin — Ton) (Ay + JIn)’

and Q is a diagonal, strictly positive-definite weighting matrix of appropriate dimen-
sion.

Our experiments indicated that if the motor is covered with insulating material,
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the 2x2 matrix E perturbs the elements of the second row of A; the most. The
experiments consisted of first allowing the motor to reach thermal steady-state while
under thermal input. The inputs chosen were speeds of 100 and 200 rpm driven by a
DC motor drive while the three phases of the motor were shorted to each other. After
the motor had reached thermal steady-state, it was covered in 3 inches of styrofoam
and air-cushioned insulation which caused the temperatures in the motor to increase
to new steady-state values which were subsequently recorded. This data was then
used to form the matrices ¢’ and Y. Examples of these transients due to this type
of failure are presented in Chapters 5 and 6. It is important to note that the we
do not seek to characterize the matrix E explicitly on a termn-by-term basis. This is
because firstly, £ may be time-varying. Secondly, so far as geometric failure detection
is concerned, only the structure of F in the sense of the span of its range space is of
interest since geometric detection theory deals with directions in the output space. In
our case, using the aforementioned experiments, we have established that a cooling
obstruction failure is adequately represented by a matrix £ with rank 1, whose range
space is spanned by the unit vector {0 1)’. This is all the information needed to

formulate the detection problem for this failure.

Raised Ambient Temperatures Keeping in mind the RC circuit corresponding
to a linear thermal model, it is clear that a rising ambient temperature is equivalent
to placing a voltage source v{t) “at ground”. This is to say that all the outputs (state
variables) will be biased by an amount proportional to v(¢). Hence this type of failure

is equivalent to having biased sensors, a situation that is modelled in Chapter 5.
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Chapter 4

Thermal Observer: Theory and
Design

4.1 Introduction

Having identified a dynamic model for the thermal behavior of the motor, we can now
proceed toward the design of a complete failure detection system. We accomplish
this by designing an observer for the thermal model, and then tuning this observer
to accentuate the effects of failures. The observer structure presented here is a non-
invasive way of predicting the temperature rises in the motor through observation
of the currents and the speed of the motor. As alluded to in the introduction, this
method makes use of only the thermal characteristics of the motor for the prediction
of temperatures and is hence fundamentally different from the method of observing
temperatures through the estimation of thermally-dependent parameters. Thus, dis-
crepancies in the temperature estimates produced by these two methods can form a
basis for failure detection.

The process of designing the observer is of great importance, independently of
whether a failure detection system is derived from it or not. The fact that the
observation matrix in our plant is the identity matrix makes the design of an observer
somewhat redundant on its own. However, the designs presented in this chapter are
equally applicable to systems whose state vectors are not completely measurable.

The path taken in this thesis is to design a failure detection system by first de-
signing an associated observer, and then deriving the failure detection filter from this
in the simplest possible way. This route was taken in the interest of simplicity of

design and ease of implementation. The continuous-time dynamics of the plant are
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discretized and the observer design problem is undertaken in the discrete-time do-
main. To this end, we will show that given the fact that the time-constants of the
thermal system are on the order of 1 hour, through an appropriate choice of a sam-
pling period, we may assume that the (electrical) inputs to the thermal system are
piecewise-constant between each pair of consecutive samples in time. This will allow
us to deal with a simple, discrete, noulinear, time-varying plant. Given this discrete-
time plant, we propose two different observer structures. The first is an extended
Kalman filter (observer) for the time-varying system and the second relies upon an
approximation that is developed in Appendix A whereby the time-varying plant is
approximated by a time-invariant part and a time-varying part. Then an “optimal”
observer is designed around this approximate plant. The first of these observers is an
optimal filter in the presence of gaussian noise dynamics in the sense of the Kalman
filter in that it provides the minimum-variance estimate of the state of the model.
The latter observer is also optimal, but in the sense that it provides the minimum-
variance estimate of the state of an approximate model. We will compare the relative
performance of these two observers in this chapter and design failure detection filters

based on both of these observers in the next chapter.

4.2 Sampled-Data Dynamics

Recall from the previous chapter that the dynamics of the thermal system are de-

scribed by the following:

T = (A+ J(idyiq))T + Btyes ' (4.1)
y = T (4.2)

We have observed that the above system has very slow time-constants and that it is
by far “low-pass” with respect to variations in the input u. This is to say that the
thermal system is very insensitive to fast changes in its input u. These fast changes
maybe due either to electromechanical load variations or some commanded transients.
However, the system is clearly sensitive to the amplitudes of the input variations, but
responds to them quiet slowly. Hence, it is reasonable to assume that if the sampling
interval ¢g is chosen to be sufficiently small, the input may be adequetly represented
at each sampling time fok by its average value during the previous o units of time.
(i.e. during to(k — 1) <t < tok.)
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We mayv now apply standard discretization techuniques to derive a sampled-data

model of the plant. Given that
u(f) = U, to(k — 1) S t S tok, (4.3)

we have that J(i4,1,) is also piece-wise constant across the same time periods. For

convenience, we denote J(i4,,%, ) by Jr. Hence, the associated sampled-data model

.becomes
Ty = Q. T + T'ruy (44)
b, = C(A+-Ik)'0 (45)
t
r, — / * lA+Ie 4o B (4.6)
0

The above system describes the sampled-data dynamics of the thermal system.

4.3 ‘Exact Optimal’ Design

Given the time-varying nature of the plant described above, and given that the statis-
tics of the noise sources can be characterized, a natural choice for an observer seems to
be the discrete Kalman filter. This approach takes advantage of the fact that we can
assign probability distributions to the various sources of noise. This property is used
to design a filter that provides an estimate of the state of the system in such a way
as to minimize the variance of the estimation error; see Appendix A for details. This
filter has several desirable properties. First, and foremost, it can be shown [8] that if
the measurement and plant noise sources are normally distributed, this filter provides
the best possible unbiased state estimator. Secondly, the recursive structure of this
filter allows for simple implementation and avoids the problem of storage of multi-
ple past measurements which one encounters in deterministic or maximum-likelihood
based approaches. A further important feature of this filter is that it accommodates,
in a natural way, situations where the noise sources may not be stationary random
processes. This is to say when the noise sources have time-varying statistics. As we
will see, this is a situation that we may have to deal with.

To start, let us describe the dynamics of the discrete-time plant with the noise
sources included. We can categorize the noise sources in two major classes. Those

arising from process disturbance in the physical system, and those arising from im-
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perfect measurements. Without loss of generality, we can assume that the statistics
of the temperature measurement errors are stationary. Recall that the states of the
thermal system were measured directly. 1) is measured from a thermocouple attach-
ment, while T4 is measured by estimating the winding resistance R and converting to
temperature via a linear relation. Then, T;{ and T¢ are calculated by subtracting the
ambient temperature from Tj and T¢, respectively. Assuming that the estiinate of R
has stationary statistics (variance), and that the thermocouple perforinance does not
degrade or improve over time, we can adequately model these measurement errors as
normally distributed random variables with constant variances. On the other hand,
the process noise can not be dismissed as having time-invariant statistics. In the pre-
vious chapter we undertook the modeling of the physical system. There, we found,
through a least-squares fitting scheme, a model that approximately represented the
observed behavior of the physical plant. However, we must bare in mind that certain
effects were ignored in the interest of simplicity. For instance, we know that the input
varies as I, the magnet constant, is varied. This quantity is, in turn, a function of
the state variables. Hence the input is coupled to the state through the presence of
K. We conveniently ignored this eflect due to the fact that this coupling was ex-
tremely weak since the variations in K over large temperature increases were very
small. Now, we may absorh this eflect into the process noise as a random variable
with time-varying statistics. Another eflect which was ignored is that of heat flow
through the shaft of the motor due to coupling with a hot object. This situation may
arise in some realistic settings. We choose to absorb this effect as part of the process
disturbance as well.

We can now formulate the stochastic time-varying model of the thermal system

Tey1 = SuTi + Feue + my
Yo = Ti+mn

where m; and n; are normally distributed, uncorrelated random vectors with zero
mean and covariances Qi and S, respectively. Let us denote the estimated state just
before the measurement at sampling instant k by Ty and the updated estimate just
after the measurement by T,j . So the structure of the observer is determined by the
fact that given a prior estimate of the state at time kto denoted by T,:, we seek an
updated estimate, T,f, based on the measurement Y of the state T). This estimate is

sought in a linear, recursive form. Let ef denote the difference between the estimated



state and the observed state. i.e.

ef =T —Th (4.7)

and let P denote the covariance of this estimation error. i.e.

P} = Elef ¢}’ (4.8
P .

where E[.] denotes the expected value of its argument. The Kalman filter minimizes

the trace of the matrix P;'. In Appendix A, we derive the equations that describe this

algorithm. Figure 4.1 depicts the time-evolution of the different quantities involved

in this algorithm. The algorithm is as follows.

Algorithm I

1.

Initialize the error covariance matrix Fy and hence the gain Hy. Also Initialize

the original estimate Ty .

Compute Q.

Update the estimate of the state
T = T + He(Ye = T77)

Update the error covariance matrix

Pt = (I — H)P:(I - He) + H.SH],

. Simulate the observer

Tk_“ = &, Ty + Thuy

Extrapolate the error covariance matrix
P, = O PO, + Qs

Make the measurement

Yit1 = Tieg1 + nka

Compute the new gain

Hyyy = Py (P, + 8)1

Return to step 2 with updated k.
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Figure 4.1: Time-evolution of the filter parameters (taken from [8])

4.4 Appreoximate Suboptimal Design

In this section we propose an observer in which the dynamics of the plant are ap-
proximated by a time-varying part and a time-invariant part. Then the observer
is constructed using this approximate model and a gain is chosen so as to adap-
tively cancel out the time-varying part of the dynaniics. The major advantage of
this approach is that, at the expense of performance, it provides us with an observer
structure for a time-varying nonlinear system such that the error dynamics are linear
and time-invariant. This turns out to be useful in the design of detection filters. We
will also show in Appendix A that based on this approximation, the same technique
can be developed to design locally stable linear time-invariant observers for a general
class of nonlinear time-varying systems.

Consider the t{ime-varying plant described by 4.4. It is shown in Appendix A that

given a sufliciently fast sampling time ¢p, we may make the following approximation.
O ~ et 4 Jito = Bo + Jito (4.9)
An identity observer for the original plant (4.4) yields the error dynamics

ert1 = (81 — Hi)er — my + Hyny (4.10)
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Using the approximation to ®, presented above, we may rewrite this equation as
exr1 = (Po + Jito — Hi)er — my + Hyny (4.11)
Now, we pick the gain Hj so as to cancel the term Jitp {rom the error dynamics. Let
Il = hy + Jieto (4.12)

This gives
€41 = (‘I’o — hk)ek — my -+ (’lk + Jkto)nk (413)

We now wish to choose hy so as to produce an unbiased state estimate with minimum
error variance. The following algorithm describes this process in the context of the
Kalman filter. The details of this algorithin and its optimality will be discussed in

the next section.

Algorithm II

1. Iunitialize the error covariance matrix I'; and hence the gain ho. Also Initialize

the original estimate T} .
2. Compute Q.
3. Compute Si. {See below.)
4. Update the estimate of the state
T = Ty + He(Ye — Ty)
5. Update the error covariance matrix
Pt = (I — hi) P (I — ki)' + hiSkh)
6. Siinulate the observer
Ty = 8Ty + Thug
Extrapolate the error covariance matrix

Pk—-}l = (bkp:@; + Qk

-1

8. Make the measurement

Yes1 = T + 3y



9. Compute the new gain.

hisr = P (B 4 Sk)™! (See below.)

10. Include the cancellation term

Hipr = hiy1 + Jrsrto
11. Return to step 2 with updated k.

Note that in this algorithm, S, = N, SN|.

4.5 Optimality

It is important to consider the relative performmance of the two proposed observer
designs. From a theoretical viewpoint, we can investigate the optimality of each of
these observers. The first observer, as we have discussed, offers an estimnate of the
state of the system described by 4.4 directly, minimizing the variance of observer
error. So given normally distributed noise sources m; and ng, this observer provides
optimal estimates (in the sense of the Kalman filter) of the desired states. Ilowever,
the question of how well the second observer performs under the same disturbances
must be analyzed more carefully.

As we can see, the observation noise in the algorithm of the second observer is
different. This arises from the fact that due to the approximation of ¥, and the
cancellation term, the proposed observer is optimal only in the sense that it produces
a minimum-variance, unbiased estimate of the state of an approximation of 4.4. More
concretely, we have the following claim.

Claim The second observer produces optimal estimates of the states of the following

approximate version of the original plant (4.4) described by

Tyyw = DT + D + mu (414)
Yo = Tie+mnyg (4.15)

where n}, is given by
n,': = (I + h;leto)nk = Neng (4.16)



Proof: It can be seen that an identity observer for the above system with the

“optimal” gain h; gives the error dynamics
€k+1 = (Po — hi)er — my + hynj, (4.17)

Substituting the right hand side of the expression for n} in 4.17 gives exactly 4.13;
verifying the claim. Note that the noise vector n; is comprised of two elements that are
statistically uncorrelated. i.e. The matrix S is diagonal. In contrast, the elements of
the new noise vector n}, are statistically correlated since IV is not necessarily diagonal.
However, given the expression for N; (4.16), we can see that N; is almost diagonal
in the sense that the term hi'Jito is a 2x2 matrix of rank 1 with the first column
identically zero and the second column comprised of elements that are smali relative
to 1. Hence, in the interest of simplicity, we mnay proceed with the assumption that
the noise vector nj has statistically uncorrelated elements. One may interpret the
system 4.14-15 as an approximation of 4.4-5 in that the time-varying part of the
dynamic matrix ®, has been ignored, yet compensated for in (or absorbed into) the
measurement noise.

In comparison, given Gaussian noise, the first design provides a minimum-variance
estimator for the exact plant (4.4) while the second design provides a minimum-
variance estimator for an approximate version of the plant. Hence, we would expect
that the original time-varying design would perform better than the second design

under the same noise conditions. We shall verify this in the next section.

4.6 Numerical Results

In this section we present the results of our simulations of the observers discussed in
the previous sections. We will compare their relative performances under the same
noise characteristics. We will refer to the first observer as Observer I and the second
as Observer II. All of the following simulations were perforied using ¢, = 60 seconds
and the error characleristics shown in Table 4.1, where ¢, denotes the time between
each cycle of the observer.

The {cllowing graphs show the performance of the two observers with the given
parameters. The dotted lines on the observer error graphs define the 99 percent
confidence interval of the error. This is to say that 99 percent of the observer error

due to noise lies within the indicated limits. These values are obtained directly from
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Variance of voltage measurement errors | 0.00004 volts
Variance of current measurement errors | 0.00004 amps
Variance of speed measurement errors | 0.00004 | rad/sec
Variance of angle measurement errors 0.000004 | radians
Variance of the measurement of T¢ 0.1 °oC

Table 4.1: Noise characteristics for the simulations

the Kalman filter equations as +3,/p; where p;; are the diagonal elements of the

observer error covariance matrix P.

Observer I In the following simulated experiment, the speed and torque of the
motor were kept constant. Simulated values for the temperature rises in the motor
were then produced using the given electromechanical operating condition. These
operating conditions (currents, voltages, shaft angle) were corrupted by gaussian noise
before the temperature rises were deduced from them. The ‘mneasurements’ of these
temperature rises were then passed on to the Kalman filter which produced estimmates
of these temperatures. The results were then compared. The initial condition of the
observer is T3 (°C') which is given below while P, denotes the initial guess of the
observer error covariance matrix, and P,, denotes the final value of the observer error

covariance matrix. The elements of P, and P, have units of (°C)2.

P0:[°'5 0 ]
0 0.75

v = 12

P - 0.0479 0.0127
* | 0.0127 0.3772

Observer II This simulated experiment was performed in the sime way as the one

described above. Given the parameters

Py =
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Figure 4.2: (Observer I) States and observer errors

the infinite-horizon error covariance matrix is

| 0.0480 0.014!
1 0.0141 0.3922

It is worth noting the respective values of P’ for the two observers. The first
observer, being the exact Kalman filler, converges to the smaller value of P, as
expected. This fact holds true for all levels of noise, but the margin of difference
between the performance of the two observers widens as the level of noise is increased.
However, the second observer displays excellent tracking behavior as well, even though

it is sub-optimal with respect to the first observer.
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Figure 4.5: (Observer I1) Speed, torque and confidence region

In the next set of graphs, Figures 4.6-9, we introduce steps in the commanded

speed and torque as shown, and observe the response of the system and the observer.

As an illustrative exercise, the variance of the plant noise is taken to be proportional

to the magnitude of the input. Hence, the error covariance matrix responds to the

step changes in the input, reducing the size of the confidence interval, as expected.

This shows that if the statistics of the noises are time-varying, but deterministic, and

if this relation can be accurately modeled, the confidence interval may be adaptively

adjusted. This is a useful feature as we will see in Chapter 5.

Observer I Given the parameters

|

0.5 0
0 0.75
T = [1 2

the infinite-horizon error covariance matrix is

0.0479 0.01
0.0127 0.37
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Figure 4.6: (Observer I) States and observer errors

Observer II Given the parameters

o
T, = [1 2]
the infinite-horizon error covariance matrix is

| 0.0480 0.0141
® ] 0.0141 0.3922
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Figure 4.7: (Observer I) Speed, torque and confidence region
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Chapter 5

Detection Filter: Theory and
Design

5.1 Introduction

Observers provide estimates of the states of a dynamical system based on an input-
output model of the system and measurements of the corresponding quantities. In this
chapter we use an observer to develop a model-based method of predicting tempera-
ture rises inside the motor based on measurements of line currents, speed and shaft
angle. This model-based approach uses the measured electromechanical variables to
generate the inputs to the thermal model of the motor as developed in Chapter 4.
These inputs are then fed into the model and estimates of the temperature rises are
produced in this way. These estimnates are then compared with the estimated tem-
peratures as obtained in Chapter 2. Discrepency between the values obtained from
the two methods forms the basis for failure detection.

The goal of failure detection is to identify any unexpected phenomenon that may
occur within the dynamic system or its associated sensor arrays, and if possible,
indicate precisely what type of failure has occured. In this section we discuss some
basic results of geometric detection theory and apply them the problem of designing
a failure detection filter based on the observers designed in the previous chapter.
In his thesis, Jones [13] developed a design whereby in the absence of failures, the
failure detection system acts as a suboptimal state estimator. A detection system that
provides near-optimal estimates of the states in the absence of failures is important
from an economic viewpoint in that the designer can provide a single compact product

that will estilnate the states of the system in near-optimal fashion, and at the same
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Initial Error

Figure 5.1: Untuned observer: Error decaying to zero.

time, alarm the user of the system against failures within it. As we will see, this
approach leads to a very simple detection law, according to which an error signal due
to a failure may be distinguished from noise.

In general terms, observer-based failure detection, or geometric failure detection,
is based on the notion that it may be possible to tune an observer so that its associated
error dynamics evolve in a given subspace of the output-space. This subspace is found
from a model of the particular failure of interest. If one can establish that a given
failure in the dynamic system will result in the evolution of observer errors only within
a subspace of the output-space (the detection space of the failure), then one can hope
to detect the failure by monitoring the observer error in this subspace. Figures 5.1-3
illustrate this idea.

It is possible that two distinct failures may correspond to two subspaces that are
not disjoint. Hence, if there is an error vector growing away from the origin in the

intersection of these two subspaces, one can declare that at least one, or perhaps
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Figure 5.2: Tuned observer: Error converging to detection space, then decaying to

Z€ro.
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V\
Initial Error

Figure 5.3: Tuned Observer error with failure : Error converging to detection space
but not decaying to zero.
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Initial Error

Figure 5.4: Intersecting detection spaces with failure: Error converging to intersec-
tion, then moving away from zero.
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both of the failures in question have occured. Yet, one can not decide, on the basis
of such error direction alone, which of the two failures has occured; see Figure 5.4.
However, if the dimension of the subspace corresponding to a particular failure is
one, i.e. its detection space is spanned by a single vector, then the difliculty depicted
in Figure 5.4 does not exist. This is to say that if we restrict our work to the
detection of failures with one-dimensional detection spaces, we can detect any one of
such failures unambiguously by using appropriate detection filters. As we will show,
‘under certain circumstances, it may even be possible to detect several distinct failures
simultaneously.

In this thesis, we restrict our attention to simple failures whose detection spaces
are one dimensional, and base our work on that of Jones [13] in which the detection
problem for linear time-invariant systems is solved. In [13] an explicit solution to the
problem is derived in the sense that exact expressions are given for the gain of an
identity observer for a linear time-invariant(LTI) system. This observer is, by con-
struction, capable of detecting a particular set of failures. Furthermore, the detection
problem is solved for stochastic LTI systems as well, and a detailed algorithm is pro-
vided for finding an observer gain that is suboptimal and that also Las the desired
failure detection properties. In our work, we seek to apply these techniques to the
particular problem of failure detection in permanent-magnet synchronous motors. A
specific algorithm is provided for the motor detection problem given discrete samples
of certain outputs of the motor. We establish a Kalman filter as the underlying stable
observer, as discussed in the previous chapter. In each iteration of the observer we
adjust the eigenvectors of the error dynamics to the desired directions. This method is
slightly different than the method presented in [13]. The difference being that in [13]
a static gain is precomputed so as to give an observer that is optimal in the absence of
failures only in certain directions. The techniques in [13] are not directly applicable to
the motor failure detection problem at hand since here we deal with a sampled-data,
nonlinear model for the thermal behavior of the model. Thus, although the concepts
in [13] serve as the basic building blocks for our approach, they have been modified to
accomodate the situation at hand. Some general results regarding the applicability

of these techniques to time-varying systems are presented in appendix A.

85



[/

-
LR 5?5_. RELAAT AR, 7, ORI,
AR S w}%”? :
X
¥ &
2 &
% e
NARRTK AT 33
e
% g
>
. % %
R R 2 $
& PR heitels
AT N ~<<;--:t5ﬁ{:§, X

Figure 5.5: Spring-Mass System
5.2 Detection Theory Basics

5.2.1 Motivation

Perhaps the best way to motivate the basic results of geometric detection theory is by
presenting an example. Let us analyze the case where we are interested in detecting

a failure in the dynamics of an LTI system of the form

* = Az + Bu (5.1)
y = (:':‘L‘ (5-2)

where x is the stat. vector, u is the input vector, and y is the output vector. Systems
where the rank of C is equal to the length of = are referred to in [13] as fully measurable

systems.
As an example, consider a lossless spring-mass system with a forcing function as

shown in Figure 5.5. This system can be modeled by the second order single-input,
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two-output LTI system

z(t) = [ i (1) ] x(t) + [ i ] u(t) (5.3)
y(t) = =(t) (5.4)

where k represents the spring constant, m represents the mass of the object, and u(t)
is the forcing function F. In the above model, the state = is a 2 x 1 vector with
elements x; and z, where z; is the position (the height of the mass relative to ground
reference level), and x, the velocity of the mass. With y = z, this is clearly a fully
measurable system. Now suppose that we are interested in detecting changes in the
spring constantl k perhaps for the purpose of failure detection. A change in the spring
constant from its nominal value of k can be modelled as a bias E(¢) in the dynamic

matrix A of our model. More specifically, we have

0 o0
-] 2 1)

where € is the bias. So, the failed model can be written as

* = (A+ E(t))r + Bu (5.5)
y = Cz (5.6)

with 4, B, and (' as given in the spring-nass system. The above failed model can

be rewritlen as

# = Az + Bu+ E(t)z = Az + Bu + fim(t) (5.7)
Yy = C/,ZD (5.8)

where we have

fi [0 1}
m(t) = e(t)zi(t)

The vector f; is called the event vector of the failure in question and #;(t) is a scalar

function of time.



Now, let us design an identity observer for the unfailed system as follows

& = Aé+ Bu+D(y-79) (5.9)
g = Ci& (5.10)

Defining the observer error to be e = & — =, we obtain the following error dynamics
é=(A-DC)e (5.11)

If the failure in question occurs, the error dynamics then become
é=(A—-DCe+ fimy (5.12)

Let D = [d;;] and suppose that we would like the eigenvalues of the observer to be
at A; and ), respectively. Naturally, we would like to have eigenvalues with negative
real parts to ersure exponential stability. For the purpose of detecting the failure
represented by f;, we also need to pick D so that the matrix A — DC has f; as an
eigenvector. In this way, the effects of the failure represented by f17:(t) is seen only
in the direction of f; in the output space. We can now pick the second eigenvector
of A — DC' to be orthogonal to f;. So we would like to find the gain matrix D such
that

A-DC =WIW! (5.13)

where W is the matrix whose columns are the desired eigenvectors of A — DC and T
is the diagonal matrix of the desired eigenvalues. Note that the second eigenvector of
A — D(C is arbitrarily taken but so as to make 1V invertible. It is convenient to pick
this eigenvector so as to make W an orthogonal transformation.

The solution to 5.13 is easily obtained as

D=(A-WITW1)C'= [ '_i‘ IA ] (5.14)
m A2

Note that if (' is not square and invertible, then 5.13 may not have a solution for
the desired W and X. It it this seemingly small detail that makes algebraic failure
detection a challenging problem. In our work, however, we will focus our discussion

on fully measurable systems. Given D, the observer error, including the failure, can
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be written as
e(t) = vieMt 4 ve*t + fiyu(t) (5.15)

where the v; denote the eigenvectors of A — D(/. We have chosen the eigenvectors

such that v, = f; = [0 1)’ and v, = [1 0]'. So we have
e(t) = fi(eM + m(t)) + vae! (5.16)
In the output space we have
g = Ce(t) = Cfr(eM + 5,(t)) + Cvre*? (5.17)
In the absence of the failure we have that 7,(¢) = 0 and hence we get
Jlim ét)=1[0 0}

However, if the failure occurs, then the observer error does not collipse to the origin,
rather it evolves in the direction of f; with a magnitude given by 7,(¢).

It is clear that the output produced by fy7(¢#) maintains a fixed direction in
the output space. So, if in the steady state operation of the observer we delect
the error growing in the direction of ('f;, we can declare that the strength of the
spring has changed from its nominal value. Even if the failure occurs before the error
reaches the steady state, the error is clearly accentuated in the direction of C'f; so
that the error is not decaying asymptotically to zero in this direction. However, the
failure detection techniques described here assume that a given failure occurs after
the observer error has reached steady-state. By monitoring each component of the
output error &(t), in the steady-state, against a threshold (to be quantified later), the
failure in question can be detected. A failure is declared when the output error vector

crosses the threshold in the direction of f;.

5.2.2 Definitions

In this section we define the basic concepts of geometric detection theory. First, we
need to quantify what is meant by a failurc. Let us denote (possibly time-varying)
biases in the matrices 4, B, (', or u, as failures in the dynamic system described by
5.1-2. Following Jones [13], we will call a bias in A a dynamics failure, a bias in B,

a controller failure, a bias in u a control-element failure, and a bias in (', a sensor
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failure. In specific, a control-element failure is one in which the commanded input is
not the actual input that is received by the system. In other words, it is an actuator
failure. It can be shown [13] that all of theses failures can be categorized into two

classes. The first class is the controller failure model given by

z(t) = A=z(t)+ Bu(t)+ fim(t) (5.18)
y(t) = Cx(t) (5.19)

and the second class is the sensor failure model, given by

z(t) = Ax(t)+ Bu(t) (5.20)
y(t) = Cz(t)+ vimi(t) (5.21)

where v; is the i* vector in the standard orthonormal basis for the state-space. The
manner in which the observer estimates approaches the model can be given for the

unfailed system as

¢ = (A= DCQ)e (5.22)
¢ = Ce (5.23)

In the context of deteciion theory, it is important to define the error € since this
quantity represents the errors that are physically measurable quantities. Note that
for fully measurable systems, the output space coincides with the state-space, and
therefore, € and € evolve in the saine space.

Now with the failure occurring at #*, the error equations corresponding to 5.18-19

and 5.20-21 respectively are

€ = (A - DC)G =+ f1n1 t* S t (524)
€ = C(Ce (5.25)
and
¢ = (A-DCle—-dmy(t) t*°<t (5.26)
€ = Ce+vymy(t) (5.27)

where d; represents the it" column of the observer gain matrix D. So the i*" column of
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D is the event vector associated with any failure of the it"

sensor. Roughly speaking,
subject to some conditions to be discussed later, constraining the error € to lie in the
output direction C f, allows the error to be uniquely associated with the event vector

fi and hence with the failure modelled by fiy,(1).

Definition 2 Detectability: Given the error equations 5.24-25, the failure associated
with the event vector f, is detectable if and only if

o the output generated by fii(f) maintains a fized direction in the output space,

and

e arbitrary, self-conjugate eigenvalues can be specified for A — DC' through appro-

priate choice of D.

For example, in the spring-mass example presented above, the event vector f; is
detectable since both requirements of the above definition are satisfied. Furthemore,
f1 is detectable even if only measurements of the position of the mass are available.

ie. if ¢ =[1 0]. In this case, the gain D is a 2 x 1 column vector D = [d;]. So we

—dy 1
=k _dy 0

m

have

A-D(C =

It is easy to check that given this observation matrix C', the pair (A,C) is observable.
Hence, by the eigenvalue placement theorem [23], arbitrary sell-conjugate eigenvalues
can be assigned to A — DC' through the appropriate choice of D. Also, the output
space is one-dimensional, so the first condition in the definition of detectability is

trivially satisfied. Hence, f; is again detectable.

Definition 3 Detection Equivalence: Let fy and f, be the event vectors associated

with two failures in an LTI system given by 5.1-2. The event vector f, is said to be

detection equivalent to f; if
1. Every Dctection filter for f, is a detectlion filter for f,, and

2. The output error generated by f, is in the same direction as the oulput error

generated by f,.

So clearly, if two event vectors are detection equivalent, then a failure detection system

can not discrimninate between them on the basis of the output error direction alone.
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Definition 4 Dectection Space: The detection space of an event vector fy, is the set

of all vectors that are detection equivalent lo f,.

It is worth noting that in the case of fully mmeasurable systems, the detection space of

an event vector f; is the set of all vectors af; where « is any nonzero real number.

Definition 5 Mutual Delectability: The failures associated with the event vectors f;,
i = 1,...,r, are mutually detectable if they are all detectable via the same detection

filter.

5.2.3 Results

In this section we present some basic results derived in [13] regarding failure detection
in linear time-invariant systems. The main result regarding detectability relates this

concepl to the observability of the dynamic system under scrutiny, and is as follows.

Theorem 2 Detection Theorem: The failure associated with the event vector f, is
delectable if and only if the LTI system 5.1-2 is observable.

This result follows from the fact that the pair (A, C') is observable if and only if the pair
(A — DC, (') is observable. Roughly speaking, the observability of (4,C) will allow
us to arbitrarily assign self-conjugate eigenvalues to A — DC, and the observability of
(A= DC, () allows for the output due to the failure to remain unidirectional. As an
example, we can see that in the spring-mass problem, the pair (A4, C) is observable.
The following is a corrollary of a general result (for arbitrary C') proved in [13].

Theorem 3 Mutual Detectability: If the elements of a set of event veclors {f;} are
lincarly independent, then they are mutually detectable for any fully measurable LTI

system.

Consider that a second failure is to be detected in the spring-mass system. For
instance the appearance of increased damping; whose event vector is also [0 1]'. Then
these two failures are not mutually detectable since their corresponding event vectors
are not linearly independant. For a given n-dimensional fully-measurable system, it
is then easy to see that if we are given a set of r, » < n, mutually detectable event
vectors and a set of desirable, self-conjugate (or more conveniently, negative and real)
eigenvalues for the error dynamics of the observer, then the detection problem is that

of finding a gain D such that the identity
A-DC=WIW-! (5.28)
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is satisfied. In other words, we seek a gain D such that A — DC is diagonalizable
by W, with the prespecified eigenvalues in L. Here, the first » columns of W are the
event vectors f; through f, and the remaining n — r columns are chosen freely, but
to make W invertible. The matrix ¥ is a diagonal matrix of desired eigenvalues J;,
t = 1 to n which are freely assigned. If the rows of A — WIW-! are in the row space

of C, and C has full row rank, the solution is given by
D = (A - WEW-1H)C'(Cc)™? (5.29)

which reduces to

D=(A-WsWw)c! (5.30)

for square C'. This solution appears deceivingly simple due to the fact that C has full
row rank, or in the square case, is invertible. The solution to the general problem is
much more involved and in the interest of keeping focus on our motor failure detection
problem, we choose not to elaborate further upon it. The interested reader may find
thorough treatments of this material at several levels of depth in [13], [39], and [24].

5.3 Failure Detection in Sampled-Data Systems

In this section we show that the results presented in the previous section are di-
rectly applicable to the case of sampled-data systems if certain provisions are sat-
isfied. However, the analytic results of the previous section are only approximate
for sampled-data systems. Ilence, one must make certain simplifying assumptions in
order to put the detection problem for sampled-data systems in tractable form. An
important issue which arises in passing from continuous to discrete models is that
of the corresponding mapping of the event vectors. It is usually advantageous to
model failures in the continuous-time domain since one has a better intuitive handle
on which failures cause what types of perturbations in the system parameters. So it
is important to investigate how a given event vector maps from the continuous-time

model to the corresponding sampled-data model.
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5.3.1 Mapping Failures from the Continuous to the Sampled-
Data Model

Dynamics Failures Consider the LTI dynamic system given by 5.1-2. A failure in

the dynamic matrix A can be iepresented as follows

¢ = (A+EX(t)z + Bu (5.31)
y = C=z (5.32)

As we have mentioned, we shall concentrate our efforts on “simple” failures, i.e. ones
with a single event vector associated to them. These failures have 1-dimensional de-

tection spaces since the range of E is spanned by the single vector f. For convenience,

(4)

let us drop the superscript {*). So we can write

E(t)x(t) = fn(t) (5.33)

where f is the fixed event vector and n is a scalar function of time. Now assume that

both the input u(¢) and the bias matrix E(t) are piecewise constant. i.e.

u(t) = ug, to(k—1)<t<itoh (5.34)
E(t) = Ly, to(k-1)<t<tok (5.35)

where to is the sampling period. Then, the sampled-data representation of the failed

system maybhe written as

fo
Thy1 = €‘A+E*)t°wk+[) e(A+E"”dsBuk (536)

Yy = Cuxy (5.37)

If the size of the perturbation Ej is sufficiently small, and the sampling rate is suf-
ficiently fast, we may use the result proved in the Appendix A to approximate the
quantity e(A*+Ev)to  Given this approximation, the above sampled-data system be-

coles

to
Tipr = (M 4 Epto)as + /0 (e** + Eis)dsBux (5.38)
Y = C':l‘k (539)
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If the sampled-data version of the unfailed system 5.1-2 is

Trs1 = Pap + Tug (5.40)
v = Cum (5.41)

then the failed sampled-data system can be approximately written as

1
Tep1 = Pxp + Tup + toFrxs + it(Z,EkBuk (5.42)
v = Cuay (5.43)

Given that Ej has a 1-dimensional range space spanned by f, the above failed system

can be written as

Pryr = Pap + Tup + f(tons + my) = ®xp + Tus + for (5.44)
w = Cuw (5.45)

where )
fmy = 'éthkBUk (5.46)

Hence, the dynamics failure represented by f7(t) in the continuous-time is mapped,
approximately, to a failure that is represented by fqi in the sampled-data system,
leaving the event vector unchanged.

Controller Failures As we have discussed previously, a controller failure is repre-
p Yy, 1

sented as a bias in the input matrix B in the LTI system described by 5.1-2. Hence,

a controller failure is given as

& = Ax+(B+ EB)(t))u(t) (5.47)
y = Cz - (5.48)

Again, we make the assumptions that both the input and the bias matrix are piecewise-
constant between every consecutive pair of sample points. We also make the assump-
tion that the controller failure is simple so that E(B)(t) has rank 1 for all time. Now

h

suppose that the i'" controller channel has failed, then the only nonzero column of

EB)(t) is the it" column. Hence one can write
E@)(t)yu(t) = &b;(t)ui(t) (5.49)
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where §b;(t) is the i*" column of E®)) and u;(#) is the it" element of u(t). To simplify
matters, let us assume that the event vector éb;(t) is used to indicate a change in the

effectiveness of the control element. Ia this case
8b;(t) = k(t)db; (5.50)

where 6b; is now a fixed event vector, and k(t) is a scalar funclion of time. For
example, k(1) = —1 indicates a control channel that is completely disfunctional.

Given this, we can write the failed system as

& = Ar+ Bu(t)+ h(t)g (5.51)
y = Cz (5.52)

where h(t) = k(t)u;(t), and g = 6b;. The sampled-data model of the failed system

becomes

to
Tpyr = P+ /0 eA*ds(B + E,(CB))uk = ®ap + Tup + G(ro)ghs (5.53)
yp = Cag (5.54)

where

to
Gto) = /0 Ao ds (5.55)

and h; is well defined since both the input and the failure bias matrix E(B) are
piecewise-constant. Hence, the controller failure represented by h(t)g in the continnous-
time has been mapped to the failure represented by hiG(to)g in the sampled-data

{ailed system.

Control Element Failures A failure of the it* control element of the continuous-

time model can be described as

t = Az + B(u(t)+ éu(t)) = Az + Bu + b;du,(t) , (5.56)
y = Cr (5.57)

where b; is the it" column of B, and éu; is the it" clement of §u. Given the same

assumptions as above regarding the input and the simplicity of the failure, we can

96



write the sampled-data failed system

to
rer1 = Py + /0 e ds B{uy + buy) = Bz + Tu(k) + Téu;(k) (5.58)
e = Crx (5.59)

Equivalently, the above system can be rewritten as

Tiyr = Pap + Tup + yibwi(k) (5.60)
Yr = C.’L‘-k (561)

where 4; denotes the it* column of I'. So the control element failure represenied by

b;éui(t) in continuous-time is mapped to the failure represented by yiéu,(k).

Sensor Failures If the it" sensor fails, the continuous-time failed model can be

given as

¢ = Az + Bu (5.62)
y = (C+ ECt)r = Ca + vil(t) (5.63)

where [(t) is the scalar function {(t) = éc¢;(t)x:(t), dci(t) is the only nonzero element of
E©) and v; is the i* vector in the standard oithonormal basis for the n-dimensional

euclidean space. Respectively, the sampled-data failed model is give as

Tre1 = Pap+ Tug (5.64)
Ye = (C’ -+ E;{,C)).”L‘k = C.’l'.k + ’Uilk (565)

Where ;. is the (well-defined) piecewise-constant representation of I(¢). Hence, the
sensor failure represented by v;l(t) is mapped to the sensor failure represented by
v;l in the sampled-data system, leaving the event vector unchanged. The important
assumption that makes the detection problem for sampled-data systems directly solv-
able using the same technique as in the continuous-time case, is the assumption of
piecewise continuity of the input and the failure modes. This assumption allows the
failure to be isolated from the dynamics of the sampled-data sytem and hence treated
as a bias. Without this assumption, the discretization process, given by the variation
of constants formula would yield a system where a failure would appear nonlinearly

in the dynamics. An example is an exponent in the case of a dynamics failure.
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5.4 Detection Filter Design for Stochastic Sys-

tems

In a realistic setting, one can not hope to find an exact model of any physical system,
nor to make exact measurements of the true inputs and outputs of any given physical
system. The major difficulty in failure detection arising from the presence of the
corresponding uncertainties is that in order to have an effective detector, we must
design a scheme that allows us to differentiate between the output error produced
by a failure and that produced by measurement and dynamic uncertainties. To this
end, we must use all the degrees of freedom provided by the deterministic design to
optimize the filter for a dynamic system with stochastic disturbances. It is clear that
one must try to minimize the effects of these disturbances in order to effectively detect
failures. The principal freedom in the design of the deterministic detection system is
the ability to arbitrarily assign eigenvalues to the error dynamics of the underlying

observer. This property is exploited in the stochastic design.

5.4.1 The Base Normal Canonical Form

In order to motivate the design approach and also as another theme of theoretical
interest, we describe the transformations to the base normal canonical form. In this
form, the choice of the gain for the observer, given an LTI plant, is simple. The
algorithms to follow, however, have been stated without reference to this canonical
form so as to emphesize the fact that these algorithms are obtained by incorporating
simple modifications in the underlying observer algorithms. In this discussion, we
maintain focus only on fully measurable systems and define the base normal canonical
form only for these systems. The transformation to this canonical form has the
advantage that it permits the reference model to be decoupled into a set of lower-
dimensional subsystems. Consider the fully measurable, n-dimensional, LTI system
defined by 5.1-2, and its associated identity observer. Assume that we are given a set
of » (r < n) mutually detectable event vectors f; and are asked to design a failure
detection system to detect the corresponding failures. Define two transformations 7'

and T,, as follows.

T = [fl fz....f,- w,+1....wn] (566)
T, = [Cfi CforiC'fr Ctoryq....Cwy) =CT (5.67)
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(5.68)

where w; are chosen to make T invertible. Now define the transformed observer by
. . .
the following relations.

A = TAT (5.69)
B = T'B (5.70)
¢ = T;'CT (5.71)
D = T7'DT, (5.72)

In this domain, the system (A4, B, () is input-output equivalent to (A4, B, T C). So
in the base normal canonical form, the r given event vectors are the first r basis
vectors in the standard orthonormal basis of the new state-space. If we now pick a

gain D such that
A-DC=% (5.73)

where T is a diagonal matrix with the desired eigenvalues as its elements, we would
ensure that the matrix A — D(' has as eigenvectors the standard orthonormal basis
vectors v; for the state space. As we know, the first r of these vectors are the r event
vectors of interest in the base norinal canonical form. Hence, the solution for square

(’ is obtained as

D=(A-3)0-. (5.74)

But now note that according to the definition of C', we have that in the base normal

coordiantes

=1 (5.75)
Hence, a simple solution to the problem is obtained as
D=A-x (5.76)

The gain D can now be recovered by inverting the transformations.
It is easy to show that this solution is the same as one obtained without trans-

torming the reference model to base normal form. We can write

A-DC =T '"AT -T' DT, T;'CT=T(A-DC)T' =% (5.77)
Transfering the T”s to the right hand side of the equation, the problem becomes that
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of finding a D such that
A-DC =TT, (5.78)

Note that if we set T = W, this relation becomes identical to Equation 5.28 where

the problem was posed without reference to the hase normal form.

5.4.2 Theory and Design

At this point, it should be clear that the detection problem for stochastic systems is
directly that of the choice of appropriate eigenvalues for ihe error decay equations
of the underlying observer. The liberty in choosing these eigenvalues is a distinctive
feature that makes geometric detection theory an atiractive approach to the failure
detection problem. We use this flexibility to deal with stochastic settings.
Stochastic sources of noise can be categorized as plant disturbances and measure-
ment errors represented by the random vectors pu(t) and v(t) respectively. These

disturbances enter the model as

* = Az + Bu+ u(t) (5.79)
y = Cz+uv(t) (5.80)

We assume that the two random vectors g and v are uncorrelated, normally dis-
tributed variables with covariance matrices Q(¢) and S(¢) respectively. These distur-

bances, in turn, appear in the observer error dynamics as

é = (A—DC)e+ pu(t)— K(t)v(t) (5.81)
E = Ce+u(t) (5.82)

As discussed in the previous chapter, the Kalman filter structure car be used to
fird an optimal gain which minimizes the expected value of the norm of the observer
error. Given this gain K(t), if a failure represented by f7(¢) occurs, the error equations

become

¢ = (A—=K(t)Ce+ pu(t) — K(t)v(t) + fn(t) (5.83)
e = Ce+v(t) (5.84)

Using the Kalman gain, the matrix A — I{(¢)C may not have the desired eigenvectors

required for the purpose of failure detection, eventhough the observer is optimal. This
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problem can be circumvented, however, by finding a suboptimal observer that has the
desired properties of a detection filter as well.
In Appendix A it is proved that if a time-varying matrix F'(t) has eigenvalues with

negalive real parts for all time, then the system
= WE()IV 'z + v(t) (5.85)

is uniformly, asymptotically stable; where X(¢) is the diagonal matrix of the eigenval-
ues of F'(t), v(t)is a bounded input, and ¥ is an invertible matrix with the desirable
eigenvectors (for failure detection) as its columns. Now let F(¢) denote the dynamic
matrix of the error decay equations 4 — K (#)C, and assume that it has eigenvalues
with negative real parts for all time. Hence, according to the aforementioned theorem,

the new error dynamics given by

é = WI(t)W e+ u(t) — Du(t) (5.86)
e = Ce+ v(t) (5.87)

are uniformly, asymptotically stable since the noise is assumed to be bounded. This
approach provides a suboptimal observer that also possesses the desired failure detec-
tion characteristics. The question of which of the eigenvalues to assign to which of the
eigenvectors is addressed by considering that the failure detection system essentially
works after the error dynamics have come sufliciently close to their steady-state value
of zero. Hence, it is desirable to assign the fastest eigenvalues to the eigenvectors
corresponding to the failure directions of interest. In this way, the effect of the fil-
ter’s initial error dies out quickly in these directions and the corresponding failure are
detected more readily.

It is worth mentioning in passing that through our simulations of the motor fail-
ure detection system, we found that with reasonable noise covariances,-the above
detection-filter/state-observer is very nearly optimal in that the minimum value of
the cost function associated to the optimal observer is raised only by a few percent
as a result of the adjustment of the eigenvectors. This will be illustrated in Section
5.7.

The same analysis can be repeated with minor modifications to include the case
of sampled-data dynamics. In this setting, the statement that the eigenvalues of
A — K(1)C have negalive real parts translates to one where the eigenvalues in the

corresponding sampled-data matrix (¢ — Hp(') have magnitude stricily less than
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one. Given this, the observer algorithms presented in the previous chapter can be
modified slightly to accomodate for the failure detection properties. The reason for
this direct applicability of the method introduced here to the motor problem is the
structure of the thermal model. The model of the thermal system under study is
given by the dynamics matrix A + J{i4,7,) as discussed in Chapter 3. This matrix
is an M-matrix for all values of (i4,%,). Using this property, one can demonstrate
that given stochastic complete observability and stochastic complete controllability,
the Kalman filter is not only uniformly asymptotically stable, but that the error
dynamics satisfy the desired condition of negativity of the real part of the eigenvalues
(or |A;] < 1 for sampled systems). Furthermore, in our case, the eigenvalues of the
error dynamics are, in fact, real for all timme. This discussion is quite theoretically
involved and we shall omit it from our work. The interested reader may find excellent
treatments of the stability problems of the Kalman filter in [17, 16]. For our practical
purposes, we have obscrved that the discrete filter designs developed in Chapter 4
lead, quite conveniently, to error dynamics with eigenvalues which are always real

and have magnitude less than one for all time.

5.5 Algorithms For Sampled-Data Optimal De-

tection Filters

In this seclion we present algorithms based on the ideas presented above for the de-
sign of sampled-data optimal, and suboptimal detection filters for the motor detection
problen.. The algorithms presented here are directly modified versions of the algo-
rithms for the corresponding underlying observers presented in Chapter 4. First, we
present the design based on Algorithm I of Chapter 4. In this approach an identity
observer in the form of a recursive optimal Kalman filter is designed. The modifica-
tions necessary in this case are inserted after the steps where the gain is computed,

as follows.

Algorithm I’

1. Initialize the error covariance matrix Fy and hence the gain Hy. Also Initialize

the original estimate T .

2. Compute Q.
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3. Update the estimate of the state~
T =17 + Ho(Ye = T77)
4. Update the error covariance matrix
Pl = (I — Hy)P; (I — H) + I, SH],
5. Simulate the observer
Ty = 86T + Thun
6. Extrapolate the error covariance matrix
i1 = e O+ O

. Make the measurement

=1

Yer1 = Thyr + iy

8. Compute the new gain
Hiyy = P (P, + S)7!

9. Find the eigenvalues of ®4,.q — Hy,q, verify their negativity, and form Xy,
according to

Sk+] = (Iiag[A(‘I’]\.+1 — _HL-.{.I )]

10. Form the corrected gain with the desired eigenvectors according to

Hyypy = @y — WE W
11. Return to step 2 with updated k.

The quantities referred to in the above algorithm are defined in Algorithm 1 of Chapter
4.

Next, we present the design based on the approximate suboptimal observer de-
sign as described in Algorithm II of Chapter 4. In this algorithm, the time-varying
contribution of the system dynamics to the error equation is cancelled, and then, the

gain is readjusted to have ideal eigenvectors.
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Algorithm ID

1. Initialize the error covariance matrix Py and hence the gain Hy. Also Initialize

the original estimate T} .

2. Compute @y as in Algorithm II.

3. Compute Sy as in Algorithm II.

4. Update the estimate of the state
T =Ty + (Y — 1)

5. Update the error covariance matrix
Pt = (I — H)P: (I — Hy) + H, Sy H],

6. Simulate the observer

Tk—+1 = 'I)kT):- + I‘kuk

-1

. Extrapolate the error covariance matrix
Py =8P 2+ Qy
8. Make the measurement
Yisr = Thgr + njyq
9. Compute the new gain
hisr = Py (Pog + Se)™?
10. Include the cancellation term
gk+1 =hp1 + Jrs1to

11. Find the eigenvalues of ®,,; — Hj,q, verify their negativity, and form Xz,;

according to

Srt1 = diagMPrs1 — Higr)]
12. Form the correcled gain with the desired eigenvectors

Hiyw = Pry1 — WEe W

13. Return to step 2 with updated &.
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Of the two proposed detection filters, one expects the design based on the exact
model of the system (Algorithm I’} to perform better than the latter under identical
noise conditions. This assertion is verified in Section 5.7 where numerical results on
the detection filters are presented. The equations that define the extrapolation and
update of the error covariance matrix are based only on the structure of the Kalman
filter and not on any assumption of optimality. Hence, they can be used to analyze
the filter error covariance for any arbitrary gain. This property is desirable in the
context of the failure detection problem since it provides a simple detection law which
discriminates between stochastic noise and the effect of a failure. We describe this

detection law and soine generalizations to it in the next section.

5.6 The Detection Law

In this section we quantify some concepts regarding the manner in which the effects
of the observer error produced by a failure can be distinguished from those errors
due to noise. One reason why the Kalmman filter design is useful in failure detection
is that the structure produces values of the quantity P during its operation. As we
have seen, this quantity is the covariance matrix of the observer/detector error. The
diagonal elements of this matrix are then the squares of the standard deviations of

the elements of the error vector. More specificallv, we have
P = [pij] (5.88)
where the dependence on k is suppressed for convenience. Hence, we have

where o; is the standard deviation of the it" element &; of the error vector &.
Assuming that the noise in €; behaves as a Gaussian random variable with mean
zero, Figure 5.6 shows the probability distribution function of €. Note that this
probability distribution is in general a function of time. Given this information,
the simplest way to differentiate between stochastic noise and failures is a threshold
criterion. This criterion defines a likelihood error ellipsoid centered at the origin of
RY, where N is the dimension of the error vector & The lengths of the semi-axes
of this ellipoid are determined directly from the filter error covariance matrix. By

observing the behavior of the error vector with respect to this likelihood region, we
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=
Figure 5.6: Probability distribution of &;

may make decisions as to whether a failure has taken place or not. In the absence
of a failure, the filter error lies within this ellipsoid for almost all timne (Figure 5.7).
Unfortunately, the threshold criterion makes a decision regarding the presence of a
failure on the basis of the magnitude of the residuals alone. For example, one may
pick the likelihood region as the 99 percent confidence interval by letting the length of
the it" semi-axis of the ellipsoid to be 3o;. In this way, in the absence of failures, the
error vector remains inside the ellipsoid 99 percent of the time. So upon observing an
error vector that lies outside the ellipse, a failure is immediately declared. This may
prove problematic if the crossing is due to noise that is either not in the 99 percent
likelihood region or that has not been accounted for. Hence, it seems clear that it is
necessary to smooth the data so as to increase the signal to noise ratio and thereby
decrease the probability of false alarms.

There exist several ways to reduce the probability of false alarms, all of which can
be expressed in terms of a symmetric moving window across the residuals produced
by the filter. As shown in Figure 5.8, the height of this window determines the size
of the likelihood ellipse while the width of the window holds the number of data
points that are to be smoothed across tne window. A window is then assigned to
each channel of the filter error (i.e. each element of the vector of residuals), and
threshold crossings are monitored across each channel. A set of threshold crossings

defines a signature that is then associated uniquely (up to detection equivalence)
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Figure 5.8: Moving Window and the Residuals

to a given failure. For example, in the spring-mass example presented before, with
measurements of speed and position, a change in the spring constant is represented
by a failure in the direction [0, 1]’. This correspods to finding a threshold-crossing in
the second channel of the filter and none in the first. Figure 5.9 illustrates this idea

for a general situation.

5.6.1 Choice of Window Height .

The height of the window can be chosen to give a likelihood ellipsoid of any desired
size by letting this length be equal to 2a;0;, where a; is a positive, real number. The
numbers a; need not coincide for different channels, hence the subscript . From a
practical standpoint, a reasonable value for each a; must be chosen so as to make the
detection system sensitive enough to failures, yet not so sensitive as to produce false

alarms. Given Gaussian noise characteristics a reasonable value is given by

a; =3 (5.90)
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Figure 5.9: Detection of failures by monitoring threshold crossings
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For Gaussian noise, a value of 3 for a; gives the 99 percent confidence interval for
the i'" channel. This value was employed in our simulations. The only objective
way to decide on what particular values of a; to use is the knowledge of the type
of error that is being dealt with. The easiest case is clearly that of Gaussian noise.
However, if the noise in the residuals is distributed, say, uniformly, exponentiaily,
or perhaps by a Cauchy distribution, as is the case with corrupt measurements that
contain large spikes, diflerent criteria must be applied to ensure the effectiveness of
the detection system. In these situations, the performance of the Kalman filter itself

may be questionable.

5.6.2 Choice of Window and the Smoothing Filter Width

The choice of the width for the window is dependent on the degree of filtering needed
to ensure the least number of false alarms, while increasing the probability of captur-
ing a failure in the shortest possible time. Depending on the type of noise being dealt
with, severnl possibilities exist for the choice of the smoothing filter. Depending on
the choice of the filter, the length of the window must be picked appropriately. We

briefly elaborate on several filtering methods that may be applied.

Moving Average Given a window of width equal to L, where L is an integer, the
output of this window at instant k is the average of the previous L data points. Let
€, denote the output of this flter at instant k and recall that & is the filter error in
the output space at instant k. Then this filter gives

L-1 -
A

—1=

- (5.91)

€r =
For Gaussian noise, this is the simplest effective way to smooth the data, however,
the appropriate length L (an integer) to be used must be determined by considering
the size of the disturbances involved and also by considering the speed with which the
transient due to the failure settles down. This filter can be immplemented on-line quite
easily and does not present a major computational burden. Variants of this approach

include a weighted moving average, and a moving average with a forgetting factor.

Median Filter Another approach to the smoothing problem is to consider the use

of a median filter. A causal median filter with a window size of L (L and odd integer)
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has an output, €, that is given by
& = MES (Ery) (5.92)

where ML denotes the operator that evaluates the median of a sequence indexed by
the corresponding integers. This filter is well suited for situations where the residuals
contain “spikes” that may not be due to any failure. If a moving average is employed
in such a case, a suffi-iently large spike can cause the average to cross the thresh(;ld,
thereby producing a false alarm. A disturbance of this kind is readily suppressed by
the median operation, hence guarding against false alarms. Although median filters
work best on noise that is distributed according to Cauchy-type distributions, they
represent an attractive alternative that is easily implemented using analog or digital
circuitry, with the major computaional burden being the sorting operation of the

elements in the window.

Trimmed Moving Average This technique represents a compromise between me-
dian filtering and averaging. The output of a trimmed moving average filter with a
window of length L is obtained by taking the elements within the window and sorting
them, discarding the a (even integer) largest and smallest elements of the window,
and then averaging the remaining elements. This filter may be called an a-trimmed
moving average, where « is an adjustable parau.eter. Note that if « = (L — 1)/2,
then the median filter is obtained, and if @ = 0 the moving average is obtained. This
is the most versatile approach, however, for arbitrary a the most computationally
burdensome.

The above methods work well in detecting failures where the event vector moves
away from the origin in a monotonic fashion. However, they tend to suppress valid
failure alarms, if as a result of the failure, the residual vector tends to oscillate sym-
matrically about zero. This is the case in the detection problem for the spring-mass
system discussed previously. In such cases, rather than dealing with the residual in
each channel, one may use the absolute value of the residual and apply the above

techniques by redefining the threshold above zero.

Examples

1. In Figure 5.10 we present an error channel, from the spring-mass problein, and

its associated 99 percent confidence intereval. The confidence interval spans
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Figure 5.10: Error Channel

the region between 0.04 and -0.04. A failure (20 percent increase in spring
constant) has occured at 100 minutes and repaired at 140 minutes. However,
many instances of threshold crossings are observed where no failures exist. In
Figure 5.11 we have shown the filtered versions of the error using a moving
average, and a median filter of window lengths 20 and 40 points respectively.
We can see that the 20-point moving average declares a failure at 108 minutes
while the 20-point median filler declares a failure at 105 minutes, 3 minutes
earlier than the moving average. In contrast, the 40-point moving average fails
to declare a failure at all while the 40-point median filter declares a failure at

120 minutes.

. Figure 5.12 shows a spring failure in the spring-mass system discussed before.

The spring constant increase by 20 percent. The failure occurs at 100 minutes
and the result is that the second error channel shows oscillatory behavior at this
point. Direct filtering of this error signal will most likely suppress the failure,
yet by considering the absolute value of the error signal, a stronger change in
the size of the residual is detected as shown in Figure 5.13, thereby declaring
a failure. Note that when considering the absolute value of the residual in the

particular channel, the confidence intervals must be recomputed. A simple way
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Figure 5.11: Filtered Error

to do this is by setting the new upper bound of the confidence interval to the
height of the old confidence interval, and setting its lower bound to zero. It
should be pointed out that this type of oscillatory behavior as a result of a
failure can never take place in a thermal system such as ours. This is due
to the physical characteristics of the system. Thermal systems are by nature

monotonic whether stable or unstable.

5.7 Numerical Results

In this section we present the results of our simulations of the detection filters dis-
cussed in the previous sections, and we will compare their relative performances under
the same noise characteristics. We will refer to the first filter (Algorithm I’) as Detec-
tion Filter I and the second as Detection Filter II. All of the following simulations were
performed using t, = 60 seconds sampling period and the same error characteristics

as shown in Table 3.1.

Detection Filter I In the graphs to follow, the niotor is operating under constant

load at a constant speed, and at cycle 50 of the operation (i.e. 50x60 seconds = 50
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minutes) a failure occurs in the thermal system. This failure is one in which the motor
is insulated and has difficulty dissipating heat to the ambient environment. Figures
5.14-15 show the performance of the Detection Filter I with the given parameters.
The dotted lines on the filter error graphs define the 99 percent confidence interval
of the error. A failure is then recognized by observing which elements of the error
veclor have remained in their respective confidence regions, and which have not. This
fact will indicate a particular direction in the state-space which corresponds to the
“direction of the event vector associated with the failure of interest. As we have shown
in Chapter 3 (failure identification), this failure can be accurately modelled as a bias
E in the matrix A where E is a 2 x 2 matrix with nonzero elements in the second

row. From our failure identification exercises, we found that a reasonable value for E

p-| °© 0 (5.93)
0.002 0.0015

is

Corrective action is taken at cycle 100 and the filter error begins to return to its

99 percent confidence region. For this simulation we have

05 O 0.0482 0.0127
PD = H Poo =
0 0.75 0.0127 0.3772

T = 12

Comparing the value of P,, for this detector to the value of the same variable for the
underlying Kalman filter, which does not include eigenvector tuning, one can see that
the respective traces of these matrices, which are the minima of the associated cost
functions, differ by only about 1 percent. This shows that adjusting the eigenvectors
of the error equation in the Kalman filter takes little away from the optimality of the

filter in the motor detection problem.

Detection Filter II In the next set of simulations, the performance of the second
detection filter (Algorithm II’) is analyzed. The same initial and operating conditions

were employed in this simulation. Thus,

05 0 0.0483 0.0142
Po = H Poo =
0 0.75 0.6142 0.03922
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¢ = [t 2]

Figures 5.16-17 show the responses of the thermal system and detection filter II to
the commanded inputs. It is worth comparing the respective values of P, for the two
detection filters. The first filter, based on the optimal Kalman filter, converges to a
smaller value of P, as expected. However, the second filter displays excellent tracking
behavior as well, even though it is based on the sub-optimal observer structure.

In the next experiment, we introduce steps in the commanded speed and torque
as shown in Figures 5.18-21, and observe the response of the system and the detection
filters. Again, the same failure as in the previous exercise is introduced at cycle 50 and
corrected at cycle 100. We have chosen the starting times of the steps in speed and
torque to coincide with the time of the occurance of the failure. This is to simulate the
worst-case scenario. Note that since the variance of the plant noise is proportional to
the magnitude of the input, the error covariance matrix responds to the step changes

in the input, reducing the size of the confidence interval, as expected.

Detection Filter I In this experiment, steps in the torque and the speed have been

commanded as seen in Figure . The following show the initial and final values of the
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Figure 5.17: (Detector II) Speed, Torque and Confidence Region

filter error covariance matrix and tle initial value of the thermal state estimate.

0.5 0 0.0482 0.0127
Do = ; P =
0 0.75 0.0127 0.3772

T8 = [1 2]
Detection Filter IT In this experiment, steps in the torque and the speed have

been commanded as seen in Figure 5.21. The following show the initial and final

values of the filter error covariance matrix and the initial value of the thermal state

estimate.
Py = 0.5 0 ; P — 0.0483 0.0142
0 0.75 0.0142 0.3922
T0+ = [1 2]
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5.8 Summary

In this chapter we have presented the basic concepts of geometric railure detection
theory. We have applied these concepts to the problem of detecting thermally related
failures in small permanenet- magnet synchronous motors. Two designs were pre-
sented based on the two observer designs discussed in Chapter 4. It is shown that the
design based on the Kalman filter without the cancellation of time-varying dynamics
‘is the best approach. In Chapter 6, we perform some physical experiments to estab-
lish that the preferred observer design (Algorithm I, Chapter 4) and the preferred
Detection Filter design (Algorithm I’, Chapter 5) work well under actual physical

circumstances.
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Chapter 6

Experimental Results

6.1 Introduction

In this chapter we describe the results of experiments performed to confirm the va-
lidity of the concepts presented in the previous chapters, and also to demonstrate the
success of our proposed failure detection system. Experiments were performed with a
permanent-magnet synchronous motor manufactured by Omron with characteristics
as given in Table 6.1. The experiments included two tests to explore the performance
of Thermal Observer I and the performance of the failute detection system based on
this observer design. The performance of the thermal observer II was not studied
experimentally because the simulations demonstrated its performance to be inferior.

The experiments were perforined under external load torque produced by a direct-
current motor that acted as a brake. Both motors were mounted on an aluminumn
stand and their rotors were coupled together. Figure 6.1 shows the experimental
setup, while Figure 6.2 illustrates the data-acquisition process. The line voltages and
currents, and the shaft angle, along with the thermocouple reading, were sampled
with a sampling period of 3 ms. 100 samples were collected beginning every minute
while the motor was in electromechanical steady-state. The sampling rate was chosen
to be slow since, due to the fact that the thermal time-constants were large, data must
be collected over a long time period. This experimental time period was chosen to be
135 minutes, three times the slowest time constant of the thermal model. However,
the sampling rate was chosen to be fast enough so as to avoid aliasing when sam-
pling the line voltages and currents. The maximum speed of the experimental motor
was 3000 rpm or approximately 300 radians per second. Since the motor has three

phases, the electrical line variables then have a mnaximum frequency of 300x 3 radians

122



Output Power 200 watts
Continuous Torque | 0.636 Nm
Peak Torque 1.908 Nm
Continuous Speed | 3000 rpm
Maximum Speed 4000 rpm
K 0.092 Vs/rad
R (at 24°C) 1.82 ohms
Lq 0.00917 mH
L, 0.0084 mH
N 3 -
P 0.00039 mH
B 5.8e-4 | Nm-rad~!sec
C 1.91e-2 Nm
Weight 2.0 kg

Table 6.1: Physical characteristics of the experimental motor

per second, or 143 Hertz. So the slowest sampling frequency that avoids aliasing is
roughly 290 Hertz. As mentioned above, the sampling frequency used in the exper-
iments was about 330 Ilertz. Thus, aliasing was avoided for all speeds. The data
sets were then used to produce the electrical variables in the dq-frame. As shown
in Figure 6.3, averaging is then performed to produce a single value of the electrical
variables, and the thermocouple readings, to represent the sample taken each minute.
These values are then used to drive the observer/detection filter. As shown in Fig-
ure 6.3, the rotor frame electrical variables are used to compute the inputs to the
thermal observer/detector and also to directly produce electrically based estimates
of the temperature rises in the motor. These estimates are then compared against
those temperature rises estimated by the thermal observer and the residual is used
as feedback to the observer. This residual is compared against appropriately chosen
thresholds for purposes of failure detection.

A VMEBUS Motorola processor was used as the computer. The analog-to-digital
conversion was performed with a 12-bit multichannel, synchronous A/D converter
supplied by Analog Devices. It is important to mention that due to varying propa-
gation delays in the analog input boards that condition the signals received by the
A/D converters, the sampler does not receive the voltages, currents and the shaft
angle in an exactly synchronous fashion. This is an important technical matter that
must be studied carefully. If these signals are not received synchronously by the

A/D converter, the Blondel-Park Transformations produce rotor frame variables that
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Figure 6.1: The Experimental Setup

are incorrect. We carefully measured the respective delays in these channels and

compensated for them accordingly.

6.2 Characterization of the DC Load

In order to carry out accurate experiments, it is important to characterize the load
torque produced by the DC-motor shown in Figure 6.1. A simple model for a DC-
motor in steady-state can be described as an RL circuit with a voltage source that
is linearly dependent on the speed, as shown in Figure 6.4. A series of stand-still
tests and steady-state measurements were performed and the parameters shown in
the circuit of Figure 6.4 were identified as shown in Table 6.2.

Figure 6.5 shows the short-circuit current versus the speed for the DC-motor in
question. The slope of these measurements is the ratio %ﬁf. Next, the open circuit
voltage of the DC-motor as a function of velocity is shown in Figure 6.6. The slope of
the measurements is K4.. The value of /iy, and that of the ratio %:f yield the value
of Rj.. If 74. denotes the short-circuit current in the DC-motor, then the quantity

Kg4.14. denotes the bearing torque in the motor. The bearing torque was measured
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R4 0.4579 ohms
Ky 0.1028 Vs/rad
Lae 0.082 mH
Bearing Torque (1) | atan~'(%) + yw
a 3.972e-2 Nm

8 6.745 rad/s

v 1.56e-4 Nms

Table 6.2: DC Motor Parameters
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Figure 6.4: Simple Model of DC-Motor in Steady-State

versus the speed, and a nonlinear function was fitted to the data as shown in Figure

6.7. The inductance L, was measured directly using a bridge.

6.3 Observer Performance and Failure Detection

In this section we present three sets of experiments to confirin the results of Chapters
4 and 5 in a realistic situation. In the first two experiments, the performance of
Observer 1 is studied. In the first experiment, the motor is operating at a constant
speed of 1000 rpm with a constant load torque throughout the experiment, while in
the second experiment, the speed of the motor is stepped up from 1500 rpmn after
45 minutes to 2500 rpm, and then stepped back down after another 45 minutes to
the original speed. No failure is introduced in these two experiments. In the third
experiment, the speed is fixed at 2500 rpm and a failure is introduced at 45 minutes,

and the failure is then corrected at 90 minutes

6.3.1 Experiment I

In this experiment, the speed of the motor is controlled at a constant level of 1000 .
rpm while a load torque of 0.39 Nm is applied to the rotor using the DC motor. The
motor is maintained in this condition for 135 minutes while once every minute, 100
samples of the line currents, voltages, thermocouple, and shaft angle are taken and
stored. The corresponding values in the dq-frame are then computed as shown in
Figure 6.3. Figure 6.8 shows the dq-frame voltages and currents versus time into the

experiment.
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Figure 6.9: (Experiment I) Estimated Values of R From Line Measurements

Figure 6.9 shows the estimated values of R from line measurements only, for
every minute. These estimates were obtained by assuming a known constant value of
K = .092V — s/rad since this quantity is eflectively constant for this motor due to the
use of samarium-cobalt magnets in the rotor. Note that all the estimated values are
biased above the value of R at room temperature, which is known to be approximately
1.82. However, we are only interested in the relative rises in the values of R since the
thermal model is constructed in terms of the relative temperature rises in the motor.
Figure 6.10 shows the estimated temperature rise implied by the electrically estimated
values of R after the removal of the bias, while Figure 6.11 compares this estimated
temperature rise to the actual temperature rises. The actual temperature rises were
obtained by interrupting the experiment every 15 minutes and directly measuring R.
The period of interruption was so small relative to the time-constants of the thermal
system that no noticeable thermal transients were introduced as a result of these
interruptions. We observe reasonable agreement within 2 °C between the estimated
and the measured temperature rises in the windings. Next, Figure 6.12 shows the
performance of the optimal observer in tracking the winding and case temperatures.
The initial condition for the observeris T' = [3 5]T, while the initial value of the state
is [0 0]7; i.e. the motor is initially at room temperature.

The process noise covariance matrix, ¢, and the measarement noise covariance

matrix, S, were chosen according the observed noise in the respective quantities, to
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The values for the covariances of the measurement errors in @ were determined by
using the degrees of accuracy provided by the measurement equipment while the
process noise covariances were empirically derived based on our intuition regarding
the size of the unmodeled thermal phenomena in the motor.

From Figure 6.11, we can see that the Kalman filter tracks the (electrically) mea-
sured temperature rises quite accurately. The error dynamics of the filter appear to
converge to near zero in about 2 cycles, or two minutes. Considering the fact that
the slowest time-constant of the thermal system is nearly 40 minutes, this shows ex-
cellent convergence. Note that the filter error shows that it is possible to predict
the temperatures in the windings and the core to an accuracy of about 2 and 0.5
degrees Centigrade, respectively, at the given speed and torque. This can be seen
by observing the 99 percent confidence intervals given by the dotted lines in the two

lower graphs of Figure 6.11.

Experiment II This experiment is similar to Experiment I in that no failures are
present. However, in contrast to the first experiment, in Experiment II, both the
speed and the torque are fixed only for the first 45 minutes at 1500 rpm and 0.18
Nm, respectively. After 45 minutes, they are stepped to 2500 rpm and 0.275 Nm for
another 45 minutes, and then finally stepped back down.to their original values, as
shown in Figure 6.12. The same initial conditions were employed in the observer as in
Experiment I. This experiments was performed to establish the fact that the Kalman
filter still operates well in tracking more complicated transients.

Figure 6.13 illustrates the measured rotor-frame variables versus {ime in min-
utes. These quantities reflect the step changes in the speed and torque appropriately.
Figure 6.14 shows the estimated values of R from line measurements while Figure
6.15 compares the estimated temperature rises from these values to the actual mea-
sured temperature rises obtained by direct measurement of the average line resistance.
Again, good agreement between the two curves is observed. The error bars that ap-

pear in this figure reflect the resolution of the ohm-meter used to measure the line
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Figure 6.14: (Experiment II) Estimated R From Line Measurements

resistances directly. This resolution is 0.01 Ohms, which translates to about 1.4 °C.
Figuze 6.16 illustrates the performance of the Kalman filter in tracking the tem-

perature transients. We can see excellent tracking while it appears that filter noise

ety is somewhat larger between 45 and 90 minutes. This indicates that the variance -

of the noise in the measurement of R is larger at higher speeds. We have already de-
scribed this situation in Chapter 2 where parameter estimation is studied. At higher
speeds, the noise in the measurements of the currents and voltages is amplified in
the estimation problem due to the existence of multiplicative terms between the cur-
rents ig, 74, and the speed w. Hence, an accurate representation of the disturbances
would relate the measurement noise covariance matrix to the operating speed of the
motor, as we have done in simulations in Chapter 4. In the interest of simplicity,
constant values for the process noise covariance matrix ¢ and the measurement noise

covariance matrix S were employed. These values were

5 0.2 0
0 35
[ 0.078 0
Q = 0 0.292.5}

134

¥ .



Estimated(-) and Measured(o) T_R

Degrees C

18 T T T T T T

16 - .

14} .
b ‘n

12 ‘ - -

10+ . . 4

8+ { 4

6| 4 i

4t : .

2+ -

O 1 ! J A 1 1

0 20 40 60 80 100 120 140

Minutes

Figure 6.15: (Experiment II) Estimated(-) and Measured(o) Tr

As a result of the exclusion of the speed dependence of the measurement noise,
several threshold crossings in the error channel erg are observed, which could result in
false alarms. To avoid this problem, a filtered version of the error must be monitored
rather than the error itself, as described in Chapter 5. Figure 6.17 shows the 20-point
median-filtered error er,. This figure shows that there are no failures present in this
experiments, as is the case.

By carefully choosing the noise covariance mairices, we can see from the observer
error covariances that it is again possible to track the temperature of the windings
to within approximately 2 °C and the temperature of the core to within 0.5 °C using

the Kalman filter.

Experiment IIT In this experiment, the speed is maintained at a constant level of
2500 rpm, while the load torque is fixed at 0.27 N-m. After 45 minutes of operation,
the motor is insulated using multiple with 1 inch of styrofoam and 2 inches of air-
cushioned insulaling sheets. This induces a thermal failure whose associated event
vector is the vector [0 1]', as discussed in Chapter 5. We wish to detect this failure
using the techniques described in Chapter 5. '

As before, we first present the dg-frame voltages and currents in Figure 6.18. Fig-
ure 6.19 shows the estimated values of R from these variables. In Figure 6.20 we

present the electrically estimated temperature rises and the actual measured temper-
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Figure 6.18: (Experiment III) Rotor-frame Measured Voltages and Currents

ature rises in the windings. Good agreement is again observed in this set of data.
Figure 6.21 shows the performance of the failure detection filter, Detector 1. The
failure is seen to affect the e, channel rather noticably as it should. However, the
failure appears to also affect the er. channel. Eventhough no threshold crossings are
observed in this channel, the sudden change in the shape of the error due to the failure
must be explained. Theoretically, this error channel is not supposed to be affected at
all under a failure that occurs in the direction [0 1], yet a distinct change in the error
signal is observed. Two explanations are possible. Firstly, the model of the failure in
continuous-time is not perfect. This is to say that the vector [0 1]’ is an approximation
to the actual event vector that describes this failure. Therefore there may be a weak
coupling of the event vector into er.. Secondly, any event vector associated with a
dynamics failure (as is the case here) in continuous-time, is mapped to itself in the
discrete-time, sampled-data model as discussed in Chapter 5. However, this mapping
is only an approximation to what really happens as a result of sampling. Despite
the apparent movement, er, does not cross the 3o lines (99 % confidence interval).
Hence, the failure detection filter works as advertised. At any rate, the only channel
that exhibits a consistent set of points that remain outside the confidence region of
the channel is er,. To be more precise, one can apply a median filter to the error
in this channel, as we have shown in Figure 6.22. The 20-point median filtered error

shows the failure, and it is detected at approximately 65 minutes, 20 minutes after
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Figure 6.21: Performance of the detection filter/state observer during Experiment III

the introduction of the failure. As discussed in Chapter 5, the failure can be detected
earlier (but with less confidence) if the width of the filtering window is reduced. The
median filtering applied to er, is not shown here since no threshold crossings were

observed in this channel.

6.4 Summary

We have shown, through the above experiments, that the average temperature rise in
the motor windings can be estimated within 2 °C by way of estimating the winding
resistance using noninvasive measurements of the line currents, voltages, speed, and
the shaft position of the motor. We have further seen that in the absence of failures,
the temperature rises in the windings and the case can be predicted to within 2
and 0.5 °C respectively, using a dynamic thermal model. Most importantly, we have
shown that in the presence of a thermal cooling failure, the electrically estimated
temperature rises and the thermally estimated temperature rises can be subtracted
to produce residuals that drive the proposed failure detection system. This failure

detection system is shown to have successfully captured an induced insulation failure.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we investigated the problem of monitoring failures in small permanent-
magnet synchronous motors. Detecting a failure of the physical mnakeup of the motor
alter one has occurred has been only a secondary goal in our work. Instead, we have
concentrated on detecting anomalies in those conditions that may cause an actual
failure in the motor. Specifically, we have concentrated on monitoring the behavior
of the thermal dynamnics of the motor since many physical failures in these motors arise
from thermal overload. By developing a model of the thermal behavior of the motor,
we have designed a system that monitors the progress of these thermal dynamics
and declares any anomalies in the development of these dynamics as failures. Thus,
failures of the thermal system are indicative of abnorinal thermal behavior that may
lead to physical breakdown in the motor if appropriate actions are not taken to correct
these anomalies. Hence a failure detection filter for the thermal system of the motor
is in actuality a failure prevention system for the physical parts of the motor that are
aflected by heat. These parts include the stator windings, the permanent-magnets,
and the bearings.

The failure monitoring system developed here combines physical models of the
motor, which include failure mechanisms and symptoms, with the estimation of pa-
rameters within the models. Variations of the parameters are used as means of mea-
suring temperature rises within the motor. These temperature rises are also estimated
independently using a thermal model of the system. Combining these two methods
in a closed-loop observer forms the basis for a thermal observer which guides failure

prevention and detection.
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Invasive methods of measuring temperatures inside a motor are not desirable
since they not only complicate the motors’ manufacturing process, but are, in many
instances, impossible due to the geometry and size of the motor in question. Hence,
alternative ways need to be developed for monitoring these temperatures. Using the
electromechanical model of the motor, as developed in Chapter 2, we have developed
algorithms to estimate the average winding resistance and the magnet strength from
a sequence of voltage, current, and shaft position measurements (Chapter 2). The
temperature dependencies of winding resistances and the magnet strength were then
studied (Chapter 3), and hence average temperatures inside the motor were estimated
noninvasively through a sequence of current, voltage, and position measurements
alone.

As an alternative method of estimating temperatures inside the motor, in Chapter
4, a dynamic thermal model was developed for the experimental motor in question.
This model is general enough that it may be employed for many permanent-magnet
synchronous motors. The model takes into account the major sources of heat-loss
in the motor as inputs, and has the temperature of the windings and that of the
case of the motor as state variables. Given an initial condition, this model produces
estimates of these temperatures given a set measurements of the speed and currents
in the motor alone.

By combining the electrically and thermally estimated parameters in a closed-
loop observer that is a Kalman filter, we have designed an observer that is capable
of tracking the average temperature in the windings to within 2°C. This observer is
also capable of tracking the average temperature of the surface of the motor to within
0.5°C.

Another contribution of this thesis and the intended goal of this thesis was to
combine the above two methods (Chapter 4) for estimating the temperatures inside
the motor and use the difference between the respective estimated temperatures as a
basis for detecting anomalous behavior in the thermal dynamics of the motor (Chapter
5). In Chapter 5, a geometric approach to failure detection was studied based on the
work of Jones [13]. In this approach, residuals are generated by subtracting the
electrically estimated temperatures (state observations) from those produced by the
thermal model (state estimates). These residuals are then used to drive a close-
loop observer which is based on the thermal model of the motor, and which is, by
design, capable of amplifying residuals due to failures and suppressing those due to

stochastic sources such as measurement and process noise. Failures are then detected
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by observing the magnitude of the residuals and the directions in which they develop.

7.2 Conclusions

7.2.1 General Conclusions

Both general conclusions regarding the problem of failure detection for motors and
specific conclusions regarding monitoring thermally related failures in permanent-
magnet motors can be derived from the work presented in this thesis. So far as

general conclusions are concerned, the following categorization is useful.

1. Failure detection systems are classically designed around those components of
a system that are most likely to suffer breakdowns. Philosophically, it seems
reasonable that, if possible, one should also invest in the design of failure pre-
venlion systems that monitor the progress of those factors that are most likely
to cause a failure. Interestingly enough, the design problem is almost identical
to that of a failure detection system, except that an alarm in a failure moni-
toring system serves as an indicator that a physical failure will take place and
that appropriate corrective measures should be employed. In specific, so far as
motors in general are concerned, a detection system built around the thermal
model of the motor may, in fact, be capable of both prevention and detection
of failures induced by thermal overload. The detection systems proposed in
this thesis are capable of detecting “hard” failures such as winding shorts and
opens, demagnetized magnets, and bearing failures. If the speed of the response
of these systems is not acceptably fast for detecting failures after the fact, the
line voltages and currents can be used directly to monitor these failures via

sitnple hypothesis testing techniques.

2. Thermal models provide an eflicient way to monitor the operation of any mo-
tor. Using these models is beneficial not only to the consumer, but also to
the manufacturer in the design process. These models can be used to test a
prototype motor to assure that it is compliant with the manufacturer’s stan-
dards. Steady-state thermal models provide a direct way to produce thermally
dependent torque-speed curves that characterize the limits of safe operation for
a motor. Limits of stability of the thermal model of a motor can also be used
to indicate upper bounds on the magnitudes of the currents and voltages that

the motor is capable of operating under without damage.
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7.2.2 Specific Conclusions

So far as specific conclusions regarding small permanent-magnet motors, and, in spe-
cific, our experimental motor, are concerned, the following points are worth under-

scoring.

1. In Chapter 2 of this thesis, we have established algorithms for estimating the av-
erage winding resistance and the permanent magnet strength. As we have seen,
for small permanent-magnet motors that use hard magnets such as samarium-
cobalt, which are very insensitive to variations in temperature, it is diflicult to
detect thermally significant variation. In this case, it is useful to assume a con-
stant value for the magnet strength, and estimate the winding resistance only.
This improves the accuracy of the estimation process and yields more realistic
temperature values. If a different type of magnet is used or if it is imperative
that both parameters be estimated simultaneously, special care must be taken
to ensure that the estimation problem is not ill-conditioned. This situatior
arises when the motor is under closed-loop control action which tries to drive
the direct axis current (74) to zero. The condition number of the least-squares
problems worsens as the direct-axis current is driven to zero. A possible solution
to this problein may be to inject enough 74, for a short period of time to improve
the condition of the estimation problem, and then drive ¢y back to zero once
sufficient data has been collected to support accurate estimates of the desired
parameters. This approach has the clear disadvantage that the temperatures
in the motor rise as a result of increased 4. However, this eflect can be kept to
a minimum by injecting a sufficiently small 74 only when new estimates of the

parameters are desired.

We have also observed that the estimation problem is more sensitive o noise in
the current channels rather than the voltage channels. This is fortunate since
the voltage channels are usually more noisy than the current channels. However,
special care must be taken so as to minimize the noise in the current channels,
especially if 7; happens to be small. Careful modeling of any delays in the
analog input channels for the currents and voltages must be done since small
delays in these channels can result in severely biased values for the currents
and voltages in the rotor frame. This follows from the fact that the Blondel-
Park transformations will yield correct results only if the sainples of currents,

voltages, and shaft position are taken synchrenocusly.
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The estimation problem worsens at higher speeds as we have shown in Chapter
2 due to the existence of nonlinear terms in the electrical equations of the
motor that involve the currents in the rotor frame, and the speed. Any noise in
the values of 7y and i, is amplified proportionally to the speed of the rotor w.
Hence, if at all possible, the estimation problem should be performmed at lower
speeds. At higher speeds, worse estimates of the parameters of interest can be
expected. Clearly, one does not want to performn the estimation problem using
data from the operation of the motor at very low speeds since this data may not
be sufliciently rich to support an accurate estimate of the parameters of interest.
The optimal situation seems to be one where the speed of the motor is in its
intermediate range (between 1000 and 2000 rpm) while a fairly large load torque
is applied to the rotor. In this case, fairly large quadrature currents are produced

while the speed does not amplify the noise in these currents significantly.

. A thermal model of the motor was constructed constructed in Chapter 4 by
measuring the input-output characteristics of the thermal system. The ther-
mal model was developed in terms of temperature rises rather than absolute
temperatures. This has the advantage that the descriptions of the input to the
system are simpler, and that only relative values of the estimates of R are nec-
essary to identify the model, hence a biased sensor (estimator) is not a problem.
The states of the thermal system were chosen to be the average temperature
rise of the windings and the temperature rise of the case of the motor. The
input-output map for the temperature rises in the magnet was not accurately
measurable due to the insensitivity of the magnet strength to temperature.
Hence, this quantity was not included as a state variable. The outputs of the

plant describing the thermal system were the same as the state variables.

The inputs and the outputs of the thermal system were directly measured in ex-
periments and the plant was identified through a constrained least-squares tech-
nique. The system identification problem was constrained since the dynamics
of the thermal system were known to be described by a stable, non-oscillating
dynamic system. These dynamics would necessary imply that the dynamic
matrix A obtained in the identification process must be an M-Matriz for any
stable operating conditions of the motor. Furtherinore, an additional constraint
must be imposed on the input matrix B since all the inputs (heat sources) have
a positive action on the dynamics of the thermal system. That is, no source

of heat in the motor ever contributes to the cooling of the motor. Using the
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steady-state description of the thermal system, this constraint eflectively trans-
lates to the fact that the matrix —A~'B must have all positive elements. The
identification process here yielded a plant that complied with both of the above
constraints. It is interesting to note that the general form of the thermal model
introduced in this work assumes only knowledge of the values of the average
winding resistance and the magnet constant at a reference temperature which
can be conveniently taken to be the ambient room temperature in which the
motor resides. Using the thermal model developed for the experimental motor,
we determined limits for the safe operation of the motor that agreed closely to
those provided by the manufacturer. The steady-state model of the thermal
system was then used to identify thermally dependent torque-speed curves for
the motor. These assist the manufacturer in determining more realistic limits
for the safe operation of the motor. Finally, the identified thermal model was
cross-checked against several consistency arguments to assure that it is both

realistic and accurate.

. As shown in Chapter 4, to incorporate the measurements of temperatures in
the motor and those obtained from the thermal model, a closed-loop identity
observer was designed using a Kalman filter based on the thermal model. Two
designs were presented for the observer. In the first design, a Kalman filter was
designed to track the stales of the thermal system. In the second approach,
the design was modified so as to adaptively cancel the time-varying nonlinear-
ities from the observer error dynamics. In this way, an identity observer was
designed for the nonlinear thermal system such that the error dynamics were
linear and time-invariant. The performance of these two designs was compared
via simulations and it was established that the first design worked best, as ex-
pected. However, it was noted that the second design is very nearly optimal in
the particular case of the motor under study. These observers served as building

blocks for the failure detection systems to be designed.

. The solution to the failure detection problem, as discussed in Chapter 5, was
obtained using a geometric approach where the output error due to a failure is
forced to move in a fixed direction in the output space by appropriate choice
of gain for the underlying observer. This approach exploits the structure of
the Kalmman filter and provides for a very éilllple detection law for declaring

failures. The advantages of the geometric approach over more stochastically
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oriented ones is the ease of implementation and the ability to isolate failures
rather than declaring that some failure has taken place. A model is constructed
for every failure of interest and then a failure detection system is designed for
each particular failure. It is shown that in some instances, it is possible to detect
several failures simultaneously. By construction, it is seen that the proposed
failure detection scheme is incapable of distinguishing failures whose associated
event vectors lie in the same direction. Ilowever, if the “size” of the two failures
are sufficiently different (i.e. the two failures give rise to errors with significantly
different magnitude in the output space), these failures may be distinguished
on the basis of their associated magnitudes in the output space. In this thesis,

we have not concentrated on this aspect of failure detection.

Two designs were developed for detection filters based on the two observer de-
signs presented in Chapter 4. According to simulations, both performed well
while the detection filler based on the exact optimal Kalman filter displayed
better state tracking in the absence of failures, as expected. Both detection
filter designs were implemented in discrete time using sampled-data models of
the thermal system. The concepts of geometric detection theory were shown
to be applicable to sampled-data systems, given some simplifying assumptions.
Explicit expressions were derived for the mapping of event vectors from a contin-
uous model to the corresponding sampled-data model. These expressions were
used in the implementation of the discrete time detection filters. The problem
of designing detection filters for stochastic systems was shown to be essentially
equivalent to the problem of choosing a gain that would yield desirable error
dynamics, and yet maintain the failure detection properties. A solution was
provided by making use of the eigenvalues providéd by the Kalman filter. It
was noted ihat since the system being observed has dynamics described by an
M-matrix, that the Kalman filter provides error dynamics that are exponentially
stable. Hence, the time-varying error dynamics have real, negative eigenvalues
at each instant in time. This property allowed us to directly use the eigenval-
ues of the error dynamics provided by the gain to assign the eigenvalues of the
detection filter error dynamics. The eigenvectors of the detection filter error
dynamics were chosen to point in the direction of the desired error vectors.
Although this method does not satisfy any optimality conditions, it provides a
time-varying way of assigning eigenvalues for the detection filter, and most im-

portantly in our case, it seems to work well as supported by simulations. Using
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some results presented in Appendix A it can be shown that the detection filter

designed in this way is exponentially stable.

A detection law based on the estimation error covariances generated by the
Kalman filter was established to quantify the way in which failures are to be
declared. This detection law is described in terms of a moving window that
travels forward in time with incoming data points. The window is reclangu-
lar and contains information regarding the confidence region of the estimation
errors in each error channel. The length of the window defines the degree of
smoothing desired on the estimation errors and is inversely proportional to the
probability of declaring a false alarm, while the height of the window describes
the confidence region in which the estimation error should lie in the absence
of failures and it is also inversely proportional to the probability of declaring a
false alarm. Through simulations, the detection law is shown to be an effective

way of deciding whether a failure has occurred or not.

. In Chapter 6, results of physical experiments were presented to show that the
concepts developed in Chapters 2 through 5 are effective in practice. It was
shown that it is possible to estimate the average winding resistance accurately
enough for the purpose of estimaling temperature rises in the windings, using
line current and voltage measurements only. Hence, temperature rises in the
motor can be estimated noninvasively. The estimated values of R are usually
biased so given the parameter estimation methods presented in this thesis, one
can not reliably update a closed-loop controller for the motor using the esti-
mated parameters. However, if the ambient temperature is known accurately,
and is maintained fixed, the bias in these estimates may be removed by con-
verling R into temperature rises, then calibrating these temperature rises to
the ambient temperature, and solving back to find the actual, unbiased values
of R.

The Kalman filter structure designed to track the temperature rises in the motor
is shown to function effectively under both constant operating conditions and
transient hehavior of the thermal dynamics. The failure detection system based
on this observer design is shown to eftectively detect a cooling failure induced in
the motor. It was shown that the average temperature rise in the windings can
be tracked to within 2 °C, while the average temperature rise in the case can be

tracked to within 0.5 °C. Using a 20-point median filtre, the failure detection
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system was shown to successfully detect a cooling failure in the motor within 15
minutes of the start of the failure. This is sufliciently faster than the dynamics
of the failure so that the failure can be declared before serious damage is done

to the motor.

. It is important to underscore the importance of the techniques developed in
this thesis from the viewpoint of safety. The failure detection system not only
serves to prevent and detect physical failares in the motor, but also serves as
an indicator of the safe operating limits of the motor. In addition, the liinits
of stability of the dynamic thermal model indicate the largest currents under
which the motor can operate safely, while the steady-state thermal model yields
temperature dependent torque-speed curves that determine the safe operating

liinits of the motor.
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7.3 Recommendations for Further Research

Several paths exists for further exploration of the concepts studied in this thesis.
The first of these concerns parameter estimation. As we showed in Chapter 2, the
parameter estination problem studied here differs from a standard linear least-squares
error problem in that in our framework, the relation Az = B involves noise in both
matrices A and B. A standard linear least-square error problem assumes noise only in
the matrix B. There exists a technique for dealing with the general case when there
is noise in both A and B. This technique is known as Total Least Squares (TLS) and
is described in [36, 9]. This technique could be potentially used to produced better
estimates of the desired parameters. The method is basically based on the singular
value decomposition of the block matrix [A|B], and is hence numerically eflicient.
However, there is no recursive formulation for this method. Ouly batch estiination
has been studied to this. TLS is a fairly recent discovery, and therefore the statistical
properties of an estimator using this technique have not been characterized. It is,
however, known that in the presence of noise in both 4 and B, TLS works better
than ordinary least squares in solving overdetermined sets of linear equations.

The second recommendation for further work involves more detailed modeling of
the thermal system of the motor. Our model is built upon average temperature rises
in the inotor. Since sensors buried within the core of the motor are not available,
this model does not include phenomena such as not spots in the windings. A more
accurate representation of the thermal system would include such phenomena, leading
to a more detailed model of the thermal behavior of the motor that could, in turn,
serve as a basis for detecting a wider class of thermally induced failures.

The effect of significant changes in the magnet strength K deserves further atten-
tion. This effect couples the inputs to the thermal system to the states in a nonlinear
fashion. Hence, if I is sufficiently sensitive to temperature, contrary to the case
studied here, the eflect of this change on the model can not be ignored.

Insofar as the observer design problem is concerned, the algorithms presented in
this thesis can be modified to include more complicated models of the measurement
process. What we have termed “direct measurement” of the average winding tem-
perature is actually obtained through estimation of the average winding resistance
R. The dynamics of the estimation process may be included in the description of the
output equation that relates the states to the outputs of the thermal system. In our

treatment, this mapping was simply taken to be the identity matrix. The outputs
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and the states were the same. More accurate modeling of the statistical properties of
the noise processes in the measurements and the effect of the dg-transformations on
these also deserve further attention.

The failure detection schemes presented in this thesis may be extended in several
different directions. To begin, a careful treatment of the geometric detection problem
for time-varying systems can be pursued. In light of the fact that powerful statistically
based methods are available for failure detection in these systems [40], the practical
value of developing geometric approaches to the problem remains questionable since
oulput-decoupling for a time-varying system is an extremely complex problem. A
second extension to the ideas presented here maybe a more careful look at the failure
detection problem for sampled-data, and discrete-time systems. The approach in this
work as in [13] has been to study the problem as a corollary of the detection problem
for continuous-time systems. However, it seems reasonable that one may be able to
develop techniques that are specialized to the discrete-time case and provide more
direct and accurate treatment of the problem.

It also appears useful to compile a catalog of all possible failures of a motor
and their associated event vectors. In this way, one can easily decide which are
mutually detectable, and hence the detection filler design problem is considerably
simplified. Given this catalog, an eflicient, comprehensive failure detection system

may be designed to monitor every aspect of the operation of the motor.
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Appendix A

Some Theoretical Results

Some results presented in this appendix rely on facts as presented in [42, 15, 26, 33,

18, 6, 25, 2, 21, 14, 38, 29]. The references are of a general nature and they have not

been specifically cited elsewhere in this thesis.

A.1 Approximation Lemmas

The following lemmas prove the validity of the approxiinations used in Chapter 4 and

5.

Lemma 1 Given an nxn real matrizc A, for sufficiently small perturbations E, and

a sufficiently fast sampling period to, we have:
(A+EMo o gAto 4 By

Proof: We can write

e(‘”E)"’ = I+ (A -+ E)to + O(to)
€At° = 1 + Ato + O(to)

which yields

elA+ENo _ oAto Eto + o(to) — o(to)

Hence, for sufficiently small {o, the result follows asymptotically.
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Lemma 2 The following gives a bound on the above approzimation
lletf + Eto — e 4*EVo|| <[ Elto(1+ MP(to)e™ IEllie|jeAto) (A.3)

where M(ty) = TiZa JJD%‘;M and Q'AQ = ¥ 4 N defincs the Schur decomposition of
Aby Q.

Proof: From the triangle inequality we have:
e + Eto — e4+BMa]| < [lc4+BYo _ At 1 || B (A4)
While from [9, 36] we have
et — eAEYS | < || E[taM?(to)eM (NN e (A.5)

substituting this last relation into (A.4) gives the result immediately.

It is worth noting that the above bound is improved as N becomes closer to the
zero matrix (M(to) — 1), that is, as A is more like a symmetric matrix. This may
mean that this approximation works best when A is symmetric. Figure A.1 shows the
percentage error in the proposed approximation versus the norm of the disturbance
E when E = J,. The range of .Ji shown represents square-sum currents between 0

and 300 amps®. Here, a typical value of ¢, = 60 seconds is used.
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Figure A.1: Percent of norm error in approximation vs. ||J||

A.2 Derivation of Kalman Filter Equations

The equations used in Chapter 4 and Chapter 5 for the Kalman filter implementations
are derived below.

Consider the update equation for the observer
Tt = Ty + He(Ye = T) (A.6)
Given the measurement error ny, this yields the following error update eqﬁal.ion.
er = (I — Hi)er + Hipny (A.7)

Using this equation, we can find the expression for the change in the error covariance

matrix, P, when a measurement is taken. We have

P} = Elef e}’ (A.8)
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Inserting A.7 in this expression and noting that
Elejei} = P,
E[ngny) = S,
Elegne] = 0.

we obtain

P} = (I - H)P-(I - Hi) + H.SH} (A.9)

The criterion for choosing I} is to minimize the variance of the norm of ef at each

k. Hence, the appropriate cost function to be minimized is
C = Ele}'ef] = Trace(Fy)

Differentiating this cost function with respect to the gain H) and equating the result

to zero gives

— 9] — H)P + 2H,S = 0 (A.10)

We can now solve this equation for Hj, obtaining
Hy = P7 (D + 8)™? (A.11)
The covariance extrapolation equations may be derived according to
P, = Elel:-l—le;-;-l] (A.12)
Applying the definition of e, yields
Py = ®P®, + Qs (A.13)
Naturally, between measurements, the observer is simulated forward as

Ty = T3 + Thus (A.14)

A.3 Stable Observers For Time-Varying Systems

The problem of designing a stable observer for time-varying systems is a nontrivial
one. In the results derived below, a novel approach is presented to thedesign of stable
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observers for time-varying systems that lead to time-invariant error dynamics. We
used the approach presented below in Chapter 4 where Observer 1I was designed. This
observer used the technique presented here to cancel the effect of the time-varying
part of the dynamics on the error equations for the thermal observer.

Suppose we wish to design a state observer for the following m-input, l-output

nonlinear dynamic system

& = f(u,t)z + B(t)g(u,t) (A.15)
y(t) = C(t)z(t) (A.16)

where A is an n x n real matrix, {(u,t) is a smooth mapping from R™*! to R™, z is
an n x 1 state vector, B(t) is a smooth {function from the set of real numbers into B,
g(u,t) is a smooth function from R™*? to R?, and C(t) is a smooth function from R
into R!". For example, one may choose to design a time-varying identity observer for

this system. Such an observer takes the form

& = f(u,t)& + B(t)g(u,t) + H(t)(y - §) (A.17)
9(t) = C(t)a(t) (A.18)

Define the observer error to be ¢ = # — #. Hence, this identity observer yields the

following error dynamics
¢ = (f(u,t) — D(t)C(t))e = G(u,t)e (A.19)

In order to obtain error dynamics that converge to zero, we must pick D(¢) such that
(A.19) is strictly stable. Given that (A.19)is a time-varying system, the choice of
D(t) may (and in most cases will) not be trivial. Here, we present an approach that

is useful if the plant (A.15-16) satisfies certain conditions.

Theorem 4 Let Q) denote an open set in the space of all allowable inputs u, and R
the set of positive real numbers representing time. Now pick an n x n real matriz M,
with stable eigenvalues such that for all (u,t) € Q x R, the rows of f(u,t) — M are in
the row-space of C'(t). Then the equation (A.20) can be solved for D with the solution
given by (A.21).

D()C(t) = f(u,t)— M ' (A.20)

D(t) = (f(u,t) — M)C()(C(C (1)) (A.21)
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Proof: The solution is easily obtained by multiplying both sides of (A.20) by the
left-inverse of C(t).

Given this result, if the hypotheses of this theorem hold true, we may pick the
gain D(t) according to (A.21). This choice of gain yields the following error dynamics

for the observer

é = Me (A.22)

This is, by construction, a strictly stable system. Hence we can be assured that
the observer error will decay to zero. Under certain circumstances, given a nonlinear
system of the above type, several values for M may exist that will satisfy the premises
of the theorem, and we may then choose the M that yields the most desirable error

dynamics.

Example Consider the following nonlinear, time-varying dynamic system

i -1 111(t)t'2.sin(t) st uq(¢)
0 —1+4 uy(t)(sin(t)+ cos(t)) ua(t)

y=[0 1.5+ cos(2t) + t?|x

where the inputs are given by

u; = 2cos(bt)
u; = 2e”%sin(3t)

Suppose that we are asked to build an observer with stable error dynamics for the
above system. It is clear that due to the time-varying nature of the system, a stable
observer is not easy to find. We will show that our method provides a simple solution.

Let us write the above system as

t = f(u,t)z+ B(t)u(t) (A.23)
y = C(t)x (A.24)

An identity observer with a possibly time-varying gain D(t) gives rise to the following

error dynamics.

¢ = (fu,t) — D(£)C(t))e (A.25)



We wish to find a gain D(t) such that

fu,t) = D()C(t) = M = ["" 0 ] (A.26)

0 m,

where m; and m, are negative, real numbers. According to our theorem, the above
equation can be solved if the rows of f(w,t) — M are in the row-space of C(t) for all
time. Given that C(t) = [0 1.5 + cos(2t) + t?], we see that we must have

m; = -1= fu . (A.27)

If this is acceptable, we may continue with our design, finding that

_ 1 uyt?sin(t) |
bty = 1.5 + cos(2t) + t2 [ —1 + up(sin(t) + cos(t)) — m, ] (A.28)

-

yields the desired error dynamics as
4

é:[_l 0 ]e (A.29)

0 ms

Figures A.2-8 illustrate the response of the system and the performance of the ob-
server for m; = —1 and the initial conditions shown on Figures A.3-4. In
the remainder of this subsection we seek to identify a class of time-varying gains that
lead to asymptotically stable error dynamics of an identity observer for a time-varying
system.

The following lemma is well known in the literature on time-varying systems

[5, 34].

Lemma 3 The time-varying plant # = A(t)x is asymptotically stable if the symmetric
matriz A(t) + AT(t) is strictly negative definite for all time.

The proof makes straight-forward use of a Lyapunov function to prove stability. Using
the above lemma, the following result characterizes the class of all time-varying gains
that produce identity observers with asymptotically stable error dynamics for a class

of nonlinear systems.

Theorem 5 Consider the time-varying dynamic system given by
r = f(u,t)z+ B(t)u(t) (A.30)
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Figure A.2: The State z; vs Time
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Figure A.3: The State z; and its Estimate 2; vs Thme



0. 2.5 5. ' 7.5 10.

Figure A.4: The State x, and its Estimate #, vs Time

0. ' 5. ' 10. 15. ' 20,

Figure A.5: The Gain d;(1) vs Time
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0. ' 5. ' 10. ' 15. ' 20.
Figure A.6: The Gain dy(t) vs Time

0. ' 12.5 - 25, ' 37.5 ' 50.
Figure A.7: The Output y(1) vs Time
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0. ; 2.5 ' 5. i 7.5 ' 10.
Figure A.8: The Error Dynamics vs Time

¥(t) = C(t)a(t). (A.31)

Assume that the symmetric matriz f(u,t) -+ f(u,t)T is strictly negative-definite for
all time t, and all inputs v € Q*, where N* is sime open subset in the space of all

allowable inpuls to the plant. Then the identity observer

& = f(u,t)& + B(t)u(t) + D(u,t)(y(t) — §(t)) (A.32)
¥(t) = C(t)a(t) (A.33)

gives rise to asymptlotically stable error dynamics if the observer gain D(u,t) satisfies
vTD(u, t)C(t) >0 Vi, Yu e N, Yve R (A.34)

This is to say that the matriz D(u,t)C(t) is positive semidefinite for all time t and

all inputs u in §2*.

Proof: We have

oI D(u,t)C'(t)v >0 Vi, Yuce N, Yve R" (A.35)
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Hence, we can write
vTCT(t)DT (u,t)v > 0 Vi, Yu€e Q*, Vv e R". (A.36)
Therefore we can write
vT(D(u,t)C(t) + CT(¢)DT (u,t))v >0 Vt, Yue Q*, VYve R (A.37)
Now the error dynamics for the identity observer are
¢ = G(u,t)e, (A.38)

where

G(u,t) = f(u,t) — D(u,t)C(1). (A.39)

Using the hypothesis and the relation A.37 it is easy to see that the matrix G(u,t) +
G(u,t)T is negative definite for all time ¢ and all inputs v € Q*. Hence by the Lemma

3, the error dynamics are asymptotically stable and converge to zero, as desired.

A.3.1 A Linear Stable Observer

For the sake of completeness, we present a result regarding the stability of identity
observers for a class of linear systems with nonlinear output functions. The theorem

relies on the result due to Gronwall [5] which is as follows.

Theorem 6 Let f(1) be a positive scalar function defined over the real line. If

OELY | "ef(r)dr  (a,b>0) (A.40)

Then,
f(t) < bet (A.41)

for all real numbers t.
This key result is used to prove the following theorem.

Theorem 7 Given the plant

r = Az + Bu (A.42)
y = Cz+ f(z) (A.43)
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and assuming the following are true
£ (2) = F(#)]| < allz — & (A.44)

and the pair (A,C) is detectable via a gain K such that

le 4K < Me=t, >0, t>0 (A.45)
o

then, the identity observer given by

& = Ai+ Bu (A.47)
7 = Ci+ f(#) (A.48)
yields error dynamics which converge to zero ezponentially at the rate 6 = o —

M| K.

The first condition in the hypothesis is one which states that the function f is to be
Lipschitz. The second condition is a restatement of the observability condition for
the nonlinear system, while the third condition relates the size of the gain matrix K
and the eigenvalues of A — K C to “how Lipschitz” f is. This condition is necessary to
assure the convergence of the error dynamics. The proof of the result makes frequent
use of Schwarz’s inequality and the key point in the proof is the use of Gronwall’s

inequality.

A.4 Stability of Time-Varying Systems

In this section of the appendix, we present some results regarding the stability of
time-varying linear systems. These results prove helpful in solving the geometric
failure detection problem for timne-varying systems as alluded to in Chapter 5. In
particular, they provide the basis necessary to prove that the error dynamics of an
identity observer/detection filter for a time-varying linear system have the origin as

a global, asymptotically stable equilibrium point.
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Theorem 8 Gliven the n-dimensional, {ime-varying dynamic system & = A(t)z, as-

sume that A(t) can be decomposed as
A(t) = WI(@pv-! (A.49)

where W is a constant, invertible matriz, and L(t) is the diagonal matriz of eigenval-
ues of A(t). Then the dynamic system & = A(t)x is exponentially stable if for each
eigenvalue X;(t) of A(t), the following relation holds

/o " Re(Mi(r))dr < —ed(t) (A.50)

where Re(z) denotes the real part of the complex number =, € is a positive real number,
and ¢(t) is a positive, unbounded, real-valued function of t. (i.e. lime.o @(t) = 00)

Proof:  The dynamic system can be rewritten in terms of the state transition

matrix as follows

z(t) = Q(t)z, (A.51)

since E(t) and its integral [§ N(7)dr commute, the state transition matrix (¢) is

given by

Qt) = elo WEDIWdr (A.52)
See [3]. Hence, we have
QDN = flelo Wty (A.53)
_ [ Weap( /:E(r)dr)ﬂ""lu (A.54)
< w(W)leep( [ S(r)ir)) (A.55)

where all the above norms are the Frobenius norm, and #(1V) denotes the condition
number of the matrix W in this norm. Recall that (W) = ||[W|[|[W~!||. Since I is

diagonal, A.45 can be written as

IO < KW lean( [ A(r)dr))? (A.56)
1=0

< n(H")(Z Ie:z'p(/: Re()\;(r))dr)|2)1/2 (A.57)
=0

165



< K,(H’)(Zﬂ: exp(—ed(t)))/? (A.58)

= Vak(W)e ¢ (A.59)

This proves that the dynamics system is exponentially stable. A simpler proof that
leads to a different bound on the norm of the state transition matrix may be obtained
by considering the dynamic system z = X(¢)z where z = W-1z. This dynamic system
‘can now be thought of as a set of n decoupled linear, scalar, time-varying systems.
The stability of each of these scalar systems may then be proved by bounding the
size of their corresponding states using the corollary of Theorem 9.

As a corollary to Theorem 8, we can see the following result

Corollary 1 Given the n-dimensional, time-varying dynamic system ¢ = A(t)z, as-

sume that A(t) can be decomposed as
A(t)=WZ()Ww! (A.60)

where 1V is a constant, invertible matriz, and X(t) is the diagonal matriz of eigen-
values of A(t). Then the dynamic system & = A(t)x is exponentially stable if all
cigenvalue \;(t) of A(t) remain in the open left half of the complex plane for all time.

In this case, the function ¢(t) becomes simply ¢(¢) = ¢.
The following result gives a bound on the total variation of the eigenvalues for a

stable time-varying system.

Theorem 9 If the n-dimensional dynamic system & = A(t)x is stable in the sense

of Lyapunov, then the real-valued function V(t) given by
noopt
V(t) = Y( [ Re(A(r))dr) (A.61)
i=0 Y0

is bounded from above.

Proof: If the given dynamic system is stable in the sense of Lyapunov, then we

have

I < ¢(t) < M (A.62)

where M is a finite, positive real number, and the norm is the Frobenius norm. From

[3] we know that the determinant det(§2(t)) is always positive. Furthermore, [20]
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states

det() < (~|0°)"? (A.63)

We also know (3] that
det(D(t)) = exp | ‘Trace(A(r))dr) (A.64)

Combining relations A.53 and A.54 with the definition of stability, we obtain

t 1 .
exp( /0 Trace(A(r))dr) < —y(t) (A.65)
Since .
Trace(A(t)) = > Re(Xi(t)), (A.66)
i=0
Taking logs of both sides of inequality A.55 we obtain
V(t) = Z‘;(/ﬂt Re(Xi(r))dr) < nlog( "\’}?) (A.67)

which proves the result. A simple corollary of this result is that the scalar system

¥ = a(t)x is stable in the sense of Lyapunov if and only if the function v(t) given by

v(t) = /:a(r)dr (A.68)

is bounded from above.



Appendix B

Listings of Computer Programs

B.1 Matlab Listings

The following programs were written for Matlab to perform a variety of simulations of

the parameter estimation, Kalman filtering, and failure detection in the permanent-

magnet, synchronous motor.

function [olsesti,olsest2,olsest3]=estimator(plt,skip)

h

h
h
h
[/
h
h
[
h
%

[olsest1l,0lsest2,o0lsest3]=estimator(plt,skip)

plt : If plt=1 plots are done. Optional: default=0
skip : Skip Factor
: The Skip Factor ’skip’ will show
: the parameter estimates at every
:’skip-th’ point in time.

This routine simulates the Omron motor in electromechanical
steady-state given desired operating conditions. This

simulation includes the injection of gaussian noise at line
measurements. These noisy measurements are then used to estimate

R and K, the winding resistance and the magnet constant, respectively.
Two estimation schemes are done in parallel. Namely those described in
Chapter 2 of the thesis.

(C) 6/89 Peyman Milanfar.
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rand(’normal’);

if nargin<i; % Set default plotting
plt=0;
end;

i

%Input Operating Conditiomns

w=(pi/30)*3000; Y% The speed
tau=.636; % The torque in N-m
id=1; Y% id in Amps

R=1.7479; % R in ohms

K=.0917; Y% K in V-s/rad
siglsq=4e-5; % The variance of the
sig2sq=4e-5; U, The variance of the
sig3sq=4e-5; Y, The variance of the
sig4sq=4e-6; /) The variance of the
sigl=sqrt(sigisq);
sig2=sqrt(sig2sq);
sig3=sqrt(sig3sq);
sigé=sqrt(sigédsq) ;

%Set Motor Constants.

B=5.8e-4;
C=1.91e-2;
N=3;
P=0.00039;
Lq=0.0084;
Ld=0.00917;

%Begin Simulation of Motor.

ig=(B*w+C+tau)/ (2*N*P*id+N*K) ;
vd=R*id-N*Lq*w*iq;
vq=N*Ld*w*xid+R*iq+N*K+*w;
t=[0:.3:60]; 7 Time steps
theta=3*%w*t;
va=vd*cos(theta)-vq*sin(theta);
vb=vd*sin(theta)+vq*cos(theta);
ia=id*cos(theta)-ig*sin(theta);
ib=id*sin(theta)+ig*cos(theta);

toggle

and Noise Characteristics.

current measurement errors
voltage measurement errors
speed measurement errors
angle measurement errors
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vi=sqrt(2/3)*va;
v2=-sqrt(1/6)*va+sqrt (1/2)*vb;
v3=-8qrt(1/6)*va-sqrt (1/2)*vb;
i1=sqrt(2/3)*ia;
i2=-sqrt(1/6)*ia+sqrt(1/2)*ib;
i3=-sqrt(1/6)*ia-sqrt(1/2)*ib;

% Assign Measurement Noise

vin=vi+sig2*rand(1,length(vl));
v2n=v2+sig2*rand(1,length(v2));
v3n=v3+sig2*rand(1,length(v3));
iin=il+sigi*rand(1,length(il));
i2n=i2+sigi*rand(1,length(i2));
i3n=i3+sigi*rand(1,length(i3));
wn=w*ones(1,length(t))+sig3*rand(1,length(t));
thetan=theta+sig4*rand(1,length(theta));

% Forward Blondel-Park Transformations

van=sqrt(2/3)*vin-sqrt(1/6)*v2n-sqrt(1/6)*v3n;
vbn=sqrt(1/2)*v2n-sqrt(1/2)*v3n;
1an-sqrt(2/3)*11n-sqrt(1/6)*12n-sqrt(1/6)*13n,
ibn=sqrt(1/2)*i2n-=qrt(1/2)*i3n;
vdn=van.*cos(thetan)+vbn.*sin(thetan);
vgn=-van.*sin(thetan)+vbn.*cos(thetan) ;
idn=ian.*cos(thetan)+ibn.*sin(thetan);
ign=-ian.*sin(thetan)+ibn.*cos(thetan);

%Low-Pass Filtering if Needed
VAN AN NS Y AN AN Y YA A A AN A A
%[B,A]l=butter(6,.1); %
%igns=filtfilt(B,A,iqn); %
%idns=filtfilt(B,A,idn); %
%vgns=£filtfilt (B,A,vgn); h
%vdns=£filtfilt (B,A,vdn); %
%wns=filtfilt(B,A,wn); %
VYA A AN AN N A AANA NN N A YA A AN YA A

igns=iqgn;

idns=idn;
vgns=vqn;
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vdns=vdn;
wns=wn;

% Generate A,B Matrices for Estimation

nign=length(iqgn); — % Find length of ign vector
A=zeros(2#*nign,2); % Initialize A, B to zero matrix

BO=zeros(2*niqn,1); % (don’t have to change zero entries)

A(1:2:2*niqn-1,1)=idns’; 7 Assign 1,1 entries of the A sub-blocks
A(2:2:2*nign,1)=iqgns’; % Assign 2,1 entries of the A sub-blocks
A(2:2:2*niqn,2)=3*wns’; J, Assign 2,2 entries of the A sub-blocks

BO(1:2:2*%nigqn-1,1)=3*Lq*wns’.*iqns’+vdns’; % Assign 1,1 entries of B sub-blocks
B0(2:2:2*nign,1)=-3*Ld*wns’.*idns’+vqns’; %Assign 2,1 entries of B sub-blocks

A2(1:2:2%nign-1,1)=idns’;
A2(2:2:2%niqgn,1)=iqns’;

B02(1:2:2%nign-1,1)=3*Lg*wns’.*iqns’+vdns’;
B02(2:2:2%nign,1)=-3*Ld*wns’.*idns’+vqns’-3*uns’*K;

% Estimation Algorithms

olsesti=[];
olsest2=[];

for 1=1:skip:nign;

% Ordinary Least Squares (OLS) estimation algorithms.

D2=A(1:2%1,:)\B0(1:2%1,:);
olsesti=[olsest1,D2]; %Estimator I

171



D23=A2(1:1,:)\B02(1:1);
olsest2=[olsest?2,D22]; %Estimator II
clc
disp([’Percent completed : ’,num2str(100*1/niqn)])
end;

if plt==1,
clg
subplot (221)

plot(olsesti(1,:)-R*ones(olsesti(1,:)));
title(’Estimator I Error in R’);

subplot (222)
plot(olsest1(2,:)-K*ones(olsest1(2,:)));
title(’Estimator I Error in K’);
subplot(223)
plot(olsest2(1,:)-R*ones(olsest2(1,:)));
title(’Estimator II Error in R?’);
subplot (224)
plot(olsest2(2,:)-K*ones(olsest2(2,:)));
title(’Estimator II Error in K’);

pause

clg

plot (olsest3-R*ones(olsest3));
title(’Estimator III Error in R’)

end;
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h 0BSi.m

% This program Simulates the exact Kalman filter used to track

% temperatures in the motor. That is the matrix of estimated temperatures.
% Calls are made to the following routines:

% Motor.m : This programs simulates the Omron motor in
% electromechanical steady-state, and provides noisy
% values of the dq-frame variables.

% bEstim.m: Computes batch Estimates of R and K

[

/)

% These two are essentially the program Estimator.m split apart.
, prog P

wk=(pi/30)*[1000%ones(1,25) 1000*ones(1,25) 1000*ones(1,50) 1000*ones(1,50)];
tauk=[.212*ones(1,50) .212*ones(1,50) .212*ones(1,50)];

%Load seed from it.mat. It is the seed for the random number generator.

rand(’normal’)
rand(’seed’,it)

%0bserver Initial Conditions...

VAN SN AN AN AN A AN AN A S YA
Thatoldo=[1 2];
Tnew0=[0 0];
T=[];
That=[];
%“Load System Dynamics
load Aans
load Bans

/0____......._..-........_-..____..__-_.___....__...._-.._-_....-___.._-......q..__...__.._...-..-_-..__..--

%Inputs to the motor program

AN AN AN AN AN AN YA S A YA A
%Input Definitions

I=eye(2);
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%w:=(pi/30)Speed in RPM
%tau:=Torque in N-m

%id:=id

in Amps

%Tamb:=Ambient T in degrees C

hsigisq:
%sig2sq:
hsig3sq:
%sigésq:

=Variance of the current measurement errors
=Variance of the voltage measurement errors
=Variance ¢f the speed measurement errors
=Variance of the angle measurement errors

%Wt:=[Start time: Time step: End time]

%Input Values

t£=60;
t=[0.01:
id=1;
Tamb=24;

4:tf];

R=(1.8517/258.5)*(Tamb+234.5) ;
K=(8.204e-2) *sqrt (1.5)*(Tamb" (-2.965e-2)) ;
siglsq=0.00004;

sig2sq=0.00004;

sig3sq=0.00004;

sigdsq=0.000004;

sigl=sqrt(sigisq);

sig2=sqrt(sig2sq);

sig3=sqrt(sig3sq);

sigd=sqrt(sigésq);

%Set Motor Constants

WORRBRRRRAIR LRI DA LN

'UZC“)ED
©0
o

1§
N O Wr M

e
o

|
>

Py

o
!

N

.00039;
0.0084;

Ld=0.00917;

YVariance of measurement errors (Tc and Tr)

std=0.1;
std2=1;

beta=1/139.6;
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SSO0=diag([std std2]);
SS=5S0;

AN AA A A A A A YA
%INITIALIZING Gain, Covarianve, count...
VYA A AA S AN A A AR

PP=[.5 0;0 .75]
H=PP*inv (PP+S50) ;

err=[];

m=50;
count=1;

Y=[sqrt(PP(1,1))*3 sqrt(PP(2,2))*3];
ev=[];

total=150;

4Begin loops...
WORALDRDAIANL D

w=wk(1); /Speed
tau=tauk(1); %Torque
motor

bEstim

makeu

[phi,gamma]=c2d (Aans+J,Bans,tf);

vars=((Bans*beta*mean(ui1)*[70 0 0]’));
Q=diag((vars)); YProcess Noise Covariance Matrix

Thatnew=ThatoldO+(Tnew0-Thatold0)*H’;
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PP=(I-H)*PP*(I-H)’+H*SS*H’;
Thatold=Thatnew*phi’+U*gamma’ ;
PP=phi*PP*phi’+Q
Tnew=TnewO*phi’+U*gamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+SS);

T=[TnewO; Tnew] ;

That=[Thatold0;Thatold];

I A A T T A
for i=2:m

w=wk(i);

tau=tauk(i);

motor

bEstim

makeu

[phi,gammal =c2d(Aans+J,Bans,tf);

vars=((Bans*beta*mean(ui1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;
PP=(I-H)*PP*(I-H)’+H*SS*H’;
Thatold=Thatnew*phi’+U*xgamma’;

PP=phi*PP*phi’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’ +Uxgamma’+rand(1,2)*sqrt(Q’);
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H=PP*inv (PP+SS);
T=[T; Tnew];
That=[That; Thatold];

count=count+i;
percent=(count/total)*100

end

T L A

for i=m+1:2*m

w=wk(i);

tau=tauk(i);

motor

bEstim »
makeu

[phi,gamma] =c2d{Aans+J,Bans, tf);

vars=((Bans¥beta*mean(u11)*[70 0 C]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;
PP=(I-H)*PP*(I-H)’+H*SS*H’;
Thatold=Thatnew*phi’+U*gamma’ ;

PP=phi*PP*phi’+Q

Yk=[sqrt(PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’+U*gamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+SS);

T=[T; Tnew];



That=[That;Thatold];

count=count+1;
percent=(count/total)*100

end

YA AN S AN A AN YA AN A NN AN NN NSNS AN YA A A
for i=2%m+1:3*m

w=wk(i);

tau=tauk(i);

motor

bEstim

makeu

[phi,gamma) =c2d(Aans+J,Bans,tf);

vars=((Bans*beta*mean(ui1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;
PP=(I-H)*PP*(I-H)’+H*SS*H’;
Thatold=Thatnew*phi’+U*gamma’ ;

PP=phi*PP*phi’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’ +Usgamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+SS);
T=[T; Tnew];

That=[That; Thatold];
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qount=count+1;
percent=(count/total)*100

end
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% MOTOR.M
% This routine simulates the Omron motor in electromechanical

% steady-state given desired operating conditions. This

h simulation includes the injection of gaussian noise at line

% measurements. These noisy measurements are then used to estimate

h R and K, the winding resistance and the magnet constant, in

h the program bEstim.m.

A (C) 6/89 Peyman Milanfar.

rand(’normal’);
WAL AAY%Begin Simulation of Motor.

ig=(B*w+C+tau) ./ (2*N*P*id+N*K) ;
vd=R*id-N*Lq*w.*iq;
vq=N*Ld*w.*id+R*iq+N*K*w;
theta=3*w.*t;
va=vd.*cos(theta)-vq.*sin(theta);
vb=vd.*sin(theta)+vq.*cos(theta);
ia=id.*cos(theta)-iq.*sin(theta);
ib=id.*sin(theta)+iq.*cos(theta);
vi=sqrt(2/3) *va;
v2=-sqrt(1/6)*va+sqrt (1/2)*vb;
v3=-sqrt (1/6)*va-sqrt(1/2)*vb;
il=sqrt(2/3)*ia;
i2=-sqrt(1/6)*ia+sqrt(1/2)*ib;
i3=-sqrt(1/6)*ia-sqrt(1/2)*ib;

WAALAA ALY Assign Measurement Noise
wn=w.*ones(1,length(t))+sig3*rand(1,length(t));
thetan=theta+sig4*rand(1,length(theta));
vin=vi+sig2*rand(1,length(vi));
v2n=v2+sig2*rand(1,length(v2));
v3n=v3+sig2*rand(1,length(v3));
iln=il+sigli*rand(1,length(il));
i2n=i2+sigi*rand(1,length(i2));
i3n=i3+sigi*rand(1,length(i3));
van=sqrt(2/3)*vin-sqrt(1/6)*v2n-sqrt (1/6)*v3n;
vbn=sqrt (1/2)*v2n-sqrt(1/2) *v3n;
ian=sqrt(2/3)*iln-sqrt(1/6)*i2n-sqrt (1/6)*i3n;
ibn=sqrt(1/2)*i2n-sqrt (1/2)*i3n;

vdn=van.*cos (thetan)+vbn.*sin(thetan);
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vgn=-van.*sin(thetan)+vbn.*cos(thetan);
idn=ian.*cos(thetan)+ibn.*sin(thetan);
ign=-ian.*sin(thetan)+ibn.*cos(thetan);

WAREND ALY
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% obsiLTI.m
% This program is identical to obsl.m except for the fact that
% the matrix J is adaptively canceled from the error dynamics.

wk=(pi/30)*[1000*ones(1,25) 1000*ones(1,25) 1000*ones(1,50) 1000*ones(1 50)]1;
tauk=[.5*ones(1,50) .5*ones(1,50) .5*ones(1,50)];

rand(’normal?’)
rand(’seed’,it)

%0bserver Initial Conditions

AN AR AR AR AN RARA

Thatoldo=[1 2];
Tnew0=[0 0];
T=[1;

That=[];

load Aans
load Bans

%Inputs to the motor program

AR AR AR AR AN AR AN AR AAR AR SRR
%Input Definitions
I=eye(2);

%w=(pi/30)*input (’Enter the speed in RPM: ’);

%tau=input (’Enter the torque in N-m: ’);

%id=input (’Enter id in Amps: ’);

%Tamb=input ('Enter ambient T in degrees C: ’);

%siglsq=input (’Enter the variance of the current measurement errors: ’);
%sig2sq=input (’Enter the variance of the voltage measurement errors: ’);
%sig3sq=input (’Enter the variance of the speed measurement errors: ’);
%sigdsq=input (’Enter the variance of the angle measurement errors: ’);
%t=[Start time: Time step: End time]

%Input Values



t£=60;

t=[0.01:.4:tf];

id=1; Y% The smaller this number, the worse the estimate of R
Tamb=24;

R=(1.8517/258.5)*(Tamb+234.5) ;
K=(8.204e-2)*sqrt (1.5)*(Tamb~(-2.965e-2));
sigisq=0.00004;

sig2s8q=0.00004;

8ig3sq=0.00004;

8igdsq=0.000004;

sigl=sqrt(siglsq);

sig2=sqrt(sig2sq);

sig3=sqrt(sig3sq);

sig4=sqrt(sig4sq);

WANAAAA%%Set Motor Constants.
B=5.8e-4;

C=1.91e-2;

N=3;

P=0.00039;

Lq=0.0084;

Ld=0.00917;

%Inputs to the Estim program
YA AN A AN A AN AN YN Y YA YA YA YA A

%Skip is the skip factor. Parameters are estimated every skipth data point.
skip=1;

%0pt is the option to plot

opt=1;

%P1t is another option to plot

plt=1;



%Inputs to dObsever.m or dFailfilt.m
AN A A AN Y SN A NS A AN YA AN YA
std=0.1;

std2=1;

beta=1/139.6;

SSO=diag([std std2]);

55=550;

‘E=.001*[.2 .15;0 0];

AARIAR AR UAR A
AINITIALIZING THE GAINS----- >
YRR AR AR YRR AR

PP=diag([.5,.75]) %[.0144 .0053;.0053 .0771];
h=PP*inv(PP+SS0) ;

AARARA AR KRR AR

Y=[sqrt(PP(i,1))*3 sqrt(PP(2,2))*3];

total=150;

%Begin loops...
WARARDDRRRAALNY,

err=[1;

m=50;
count=1;
Y=(1;

w=wk(1);
tau=tauk(1);
motor
bEstim
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makeu
H=H+J*tf;

M=(I+inv(H)*J*tf);
SS1=M*S5S0*M’ ;

[phi,gamma] =c2d(Aans+J,Bans,tf);

vars=((Bans*beta*mean(ui1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold0O+(Tnew0-Thatold0)*H’ ;
Pe=(I1-H)*PP*(I-H)’+H*SS1*H’;
Thatold=Thatnew* (phi) ’+U* (gamma) ’;
PP=(phi) *PP* (phi) ’+Q

Tnew=TnewO*phi ’+U*gamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+5S1);

H=H+J»tf;

T=[TnewO; Tnew] ;

That=[Thatold0; Thatold] ;

VA AN AN ANy AN NS Y AN A S YA AR Y AN YA AAA YA Ao
for i=2:m

w=wk(i);

tau=tauk(i);

motor

bEstim

makeu

M=(I+inv(H)*J*tf);
SS1=M*SS0*M’ ;
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[phi,gammal=c2d(Aans+J,Bans,tf);

vars=((Bans*beta*mean(ul1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrtm(SS1’))*H’;
PP=(I-H)*PP*(I-H) '+H*SS1*H’;
Thatold=Thatnew* (phi)’ +U* (gamma)’ ;

PP=(phi) *PP* (phi) *+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’ +U*gamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+SS1);

H=H+J*tf;

T=[T;Tnew];

That=[That; Thatold];

count=count+1;
percent=(count/total)*100

end

VYA AN AN A SN AN AN AN AN A AN AN AN YA SN AN A Yy YA AN
for i=m+1:2xm

w=wk(i);

tau=tauk(i);

motor

bEstim
makeu
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M=(I+inv(H)*J*tf);
SS1=M¢SSO*M’ ; |

[phi,ggmma]=céd(Aans+J,Bans,tf);

vars=((B;ns;beta*mean(uii)*[70 0 0c]));
Q=diag((vars));

Thatnew=Thatold;(Tnew-Thatold+rand(1,2)*sqrtm(SSI‘))*H’;
PP=(I-H)*PP*(I-§)'+H*SS1*H’;
Thatold=Thatnew* (phi)’ +U*(gamma)’ ;

PP=(phi)*PP* (phi) ’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’+U*gamma’+rand(1,2)*sqrt(Q’);
H=PP*inv (PP+SS1);

H=H+J*tf;

T=[T; Tnew];

That={[That;Thatold];

count=count+1;
percent=(count/total)*100

end

WRRRRRRRDAL LD BAARI DDA D ADRIDDRRRA DDA ALRRRADAAND %
for i=2+#m+1:3*m

w=wk(i);

tau=tauk(i);

motor
bEstim



makeu

M=(I+inv(H) *Jxtf);
SS1=M%*550%M’ ;

[phi,gamma) =c2d(Aans+J,3ans,tf);

vars=((Bans*beta*mean(u11)*[70 0 0]°));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrtm(SS1’))*H’;
PP=(I-H)*PP*(I-H) ’+H*SS1*H’;
Thatold=Thatnew* (phi) ’ +U* (gamma) ’ ;

PP=(phi) *PP*(phi) ’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’+U*gamma’+rand(1,2)*sqrt(Q’);

H=PP*inv (PP+5S1) ;
H=H+J*tf;

T=[T;Tnew];
That=[That; Thatold];

count=count+i;
percent=(count/total)*100

end
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% detecti.m

%4 This programs is based on the first observer structure

% and simulates a failure at 50 cycles and a failure

h detection filter that captures it. The main difference
%. between this and the observer code is the

% recomputation of the gain.

wk=(pi/30)*[3000*ones(1,25) 3000*ones(1,25) 1000*ones(1,50) 3000*ones(1,50)];
tauk=[.636*ones(1,50) .212*ones(1,50) .636*ones(1,50)];

rand(’normal’)
rand(’seed’,it)

Thatoldo=[1 2];
Tnew0=[0 0];
T=[];

That=[];

load Aans
load Bans

%Inputs to the motor program

VAN AN A AN YA A AN SN NS AN A A
%Input Definitions
I=eye(2);

%w=(pi/30)*input (’Enter the speed in RPM: ’);

%tau=input (’Enter the torque in N-m: ’);

%id=input (’Enter id in Amps: ’);

%ATamb=input (’Enter ambient T in degrees C: ’);

%sigisq=input (’Enter the variance of the current measurement errors: ’);
%sig2sq=input (’Enter the variance of the voltage measurement errors: *);
%sig3sq=input (’Enter the variance of the speed measurement errors: *);
%sigésq=input (’Enter the variance of the angle measurement errors: ’);
Yt=[Start time: Time step: End time]

%Input Values
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t£=60;

t=[0.01:.4:¢tf];

id=1; J The smaller this number, the worse the estimate of R
Tamb=24;
R=(1.8517/258.5)*(Tamb+234.5) ;
K=(8.204e-2)*sqrt (1.5)*(Tamb"~ (-2.965e-2));
siglsq=0.00004;
-8ig28q=0.00004;
5ig3sq=0.00004;
sig4sq=0.000004;
sigl=sqrt(sigisq);
sig2=sqrt(sig2sq);
sig3=sqrt(sig3sq);
sigd=sqrt(sigdsq);
KhhhAU%N%%Set Motor Constants.
B=5.8e-4;

C=1.91e-2;

N=3;

P=0.00039;

Lq=0.0084;

Ld=0.00917;

%Inputs to the Estim program
YA AN AN A A A AN A A A YA A AN A

%Skip is the skip factor. Parameters are estimated every skipth data point.
skip=1;

%0pt is the option to plot

opt=1;

%P1t is another option to plot

plt=1;



%#Inputs to dObsever.m or dFailfilt.m
YN AN YA Y YA AN AN YA NS YA AN A A
std=0.2;

std2=5;

beta=1/139.6;

SSo=diag(istd std2]);

55=550;

E=.001*[0 0;.2 .15];

YA Y AN YA YA S AN A

%INITIALIZING THE GAINS----- >

YA AN A A AAAAA
%(phi,gammal =c2d (Aans,Bans,tf) ;
PP=diag([.5,.75]) %[.0144 .0053;.0053 .0771];
H=PP*inv (PP+S50) ;

H=phi-diag(eig(phi-H));

AN AN AN AN A A AAA

Y=[sqrt(PP(1,1))*3 sqrt(PP(2,2))*3];

total=150;

%Begin loops...
WRRRRRARAARL LAY,

err=[];

m=50;
count=1;

w=wk(1);
tau=tauk(1);
motor
bEstim
makeu
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[phi,gammal =c2d(Aans+J,Bans,tf) ;

vars=((Bans*beta*mean(ui1)*[70 0 0]'));
Q=diag((vars));

Thatnew=Thatold0+(Tnew0-Thatold0)*H’;
PP=(I-H)*PP*(I-H) '+H*SS*H’;
Thatold=Thatnew#phi’+U*gamma’;
PP=phi*PP*phi’+Q

Tnew=TnewO*phi ’+U*gamma’+rand(1,2)*sqrt (Q’);

H=PP*inv (PP+SS);
H=phi-diag(eig(phi-H));

T=[Tnew0;Tnew] ;
That=[Thatold0;Thatold];
Y AN AN NSNS NN NS NSNS N NS NA NSNS YA A
for i=2:m
=wk(i);
tau=tauk(i);
motor
%bEstim
makeu

[phi,gammal=c2d(Aans+J,Bans,tf);

vars=((Bans*beta*mean(u11)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;

PP=(I-H)*PP*(I-H) '+H*SS*H’;



Thatold=Thatnew*phi’+Uxgamma’;
PP=phi*PP#phi’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’+U*gamma’+rand(1,2)*sqrt(Q’);

H=PP*inv (PP+SS) ;
H=phi-~diag(eig(phi-H));

T=[T;Tnew];

That=[That;Thatold];
count=count+i;
percent=(count/total)*100

clc

end

VA AN AN AN A NSNS AN AN AN AN AN A YA AN AN AN
for i=m+1:2*m

w=wk(i);

tau=tauk(i);

motor

bEstim

makeu
[phi,gammal=c2d(Aans+J,Bans,tf);

[phii,gammai]=c2d(Aans+J+E,Bans,tf);

vars=((Bans*beta*mean(ul1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;

PP=(I-H)*PP*(I-H) ’+H*SS*H’;
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Thatold=Thatnew*phi’+U*gamma’ ;
PP=phi*PP*phi’+Q

Yk=[sqrt (PP(1,1))*3 sqrt{PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phil’+U*gammal’+rand{1,2)*sqrt(Q’);

H=PP*inv (PP+SS) ;
H=phi-diag(eig(phi-H));

T=[T; Tnew];

That=[That; Thatold] ;
count=count+1;
percent=(count/total)*100
clc

end

VYA A A A A A A A A AN A AN A A NN AN NSNS AN AN SN A A A
for i=2%m+1:3*m

w=wk(i);

tau=tauk(i);

motor

bEstim

makeu

[phi,gammal =c2d(Aans+J,Bans,tf) ;

vars=((Bans*beta*mean(ul1)*[70 0 0]’));
Q=diag((vars));

Thatnew=Thatold+(Tnew-Thatold+rand(1,2)*sqrt(SS’))*H’;

PP=(I-H)*PPx*(I-H) +H*SS*H’;
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Thatold=Thatnew*phi’+U*gamma’;
PP=phi*PP*phi’+Q

Yk=[sqrt (PP(1,1))*3 sqrt(PP(2,2))*3];
Y=[Y;Yk];

Tnew=Tnew*phi’+U*gamma’+rand(1,2)*sqrt(Q’);

H=PP*inv (PP+SS);
H=phi-diag(eig(phi-H));

T=[T;Tnew];
That=[That; Thatold];

count=count+1;
percent=(count/total)*100
clc

end

B.2 Assembly Code Listings

The following programs in assembly language provide the data acquisition functions
used to collect the data used in experiments described in Chapter 6.

WProgram to acquire data on 6 channels synchronously. The channels are
%two line currents, two line voltages, one thermocouple, and a shaft
Jiencoder count reading. The motor is commanded to be spinning
%continuously, while 100 data points are acquired at the end of every
%1 minute for the length of .3 seconds at the rate of 3000
Ymicro-seconds. The experiment is run for 135 minutes, after which the
%motor is commanded to turn off. The first program is the assembled
Jmain program. The second is the link program.

#EXAMP .PRN
WRRRLIRAIA

0’000000 5. section O
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0’000000
07000000

0’000008

0’00000C
02000010
0’000014
0’000016
0’00001A
0’°00001C
0’00001E
07000022

0°000024
02000024
07000030
02000036
0’00003C
02000042

07000048
0200004C
02000050
0°000058
02000060
02000068
0’000070
02000072

0’000076

0’00007A

13FC 0080
OOFF8011

3C3C 0000

383C 00i0
3A3C EFFF
5345

0C45 0000
66 F8
5344

0C44 0000
66 EC

41F9’00000000
43F9°00000000
45F9’00000000
47F9’00000000
49F9°’ 00000000
4BF9’00000000

363C 0087
46FC 2300
13FC 00B4
OOFF8007

13FC OOBS8
OO0FF8005

13FC 000B
0JFF8005

13FC 0080
OOFF8011

4E71

0C43 0000
6FO00 0006

4EFA FFF4

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22,
23.
24,

26.
27.
28.
29.
30.

31.

32.

33.

34.
35.
36.
37.
38.
39.

main.prog proc
move.b #$80,$ff8011 ;clear hold,turn mt
move.w #0,d6 ;initialize the counter
move.w #$10,d4 ;allow motor to reach ;i
dlyt: move.w #$efff,d5
dly: subq.w #1,d5
cmpi.w #0,d5
bne dly
subg.w #1,d4
cmpi.w #0,d4
bne dly1t
strt: lea shaft,al ;theta
lea chO,al ;12
lea chi,a2 ;il
lea ch2,a3 ; V2
lea ch3,a4 ;v
lea ch4,ab ; Tc
move.w #135,d3 ;run the system 135 «
move.w #$2300,sr
move.b #$b4,$££8007
move.b #$b8,$££8005
move.b #$0b,$££8005
move.b #$80,$f£8011
loop: nop
cmpi.w #0,d3
ble done
jmp loop
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0’00007E

02000086

0’00008E
0’000092

0°’000096
12000000

17000000
1000004
1000008
1’°00000C
12000010
1000014
1°000018

1000014

12000020

12000028
1°00002E
1°000030
17000032
1000038
1°000034A

1°00003C
12000042
12000044
12000046
12000048

1700004A

12000052

12000058
12000054

13FC 00B4
OOFF8007
13FC 0000
O0FF8011
46FC 2700
4EFA FFFE

0646 0001
0C46 4E20
6F00 0010
0C46 4E84
6F00 OOOE
3C3C 0000
5343

4EF9°’000000DA

33FC 0000
OOFFFO000

3239 OOFFFO000
E359

64 F6

3039 O0OFF8008
E1568

30C0O

3239 OOFFF000
E359

65 F6

E241

32C1

33FC 0001
OOFFF000

3239 OOFFFO000
E359

64 F6

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

75.
76.
7T.

done: move.b
move.b
move.w

here: jmp

#$b4,$££8007
#$0,$££8011

#$2700, sr
here

interrupt.prog proc
section 1

addi.w
cmpi.w
ble

cmpi.w
ble

move.w
subgq.

L]

down: jmp

low: move.w
testl:
rol.w
bcc.b
move.w
rol.w
move.w
test2: move.w
rol.w
bcs.b
asr.w
move.w

move.w

test3: move.w
rol.w

bcec.b

move.w

#1,d6
#20000,d6
down
#20100,d6
low

#0,d6
#1,d3

;update counter
;Compare counter to 1 n

;Compare counter to 1 n
;1f less or equal to tal

cont
#0,$£££000

$£££000,d1
#1,d1
testi
$££8008,d0
#8,d0

do, (a0)+

$£££000,d1
#1,d1
test?2
#1,d41

di, (a1)+

#1,$£££000
$£££000,d1

#1,d1
test3



1°00005C
17000062
1000064
12000066
1000068

1000064

17000072
17000078
1’00007A
1°00007C
17000082
1°000084
1’000086
17000088

1000084

1°000092
17000098
1000094
1700009C
120000A2
1’0000A4
17000046
1°0000A8

1’0000A4A

1’°0000B2
1’0000B8
1’0000BA
1’0000BC
1’0000C2
120000C4
1’0000C6
170000C8

1°0000CA

3239 OOFFF000
E359

65 F6

E241

34C1

33FC 0002
O0FFFO000

3239 OCFFFO000
E3569

64 F6

3239 OOFFF000
E359

65 F6

E241

36C1

33FC 0003
OOFFFO000

3239 OOFFFO000
E359

64 F6

3239 OQCFFFO000
E359

65 F6

E241

38C1

33FC 0004
OOFFF000

3239 OOFFFO000
E359

64 F6

3239 O0FFF000
E359

65 F6

E241

3AC1

13FC 0081
OOFF8011

78.
79.
80.
81.
82.
83.
84.

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

105.
106.
107.
108.
109.
i10.
111.
112,
113.
114.
115.

test4d:

testh:

test6:

testT:

test8:

test9:

testi10:
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move.w
rol.w
bcs.b
asr.w
move.w

move.w

move.w
rol.w
bcc.b
move.w
rol.w
becs.b
asr.w
move.w

move.w

move.w
rol.w
bcc.b
move.w
rol.w
bcs.b
asr.w
move.w

move.w

move.w
rol.w
bcc.b
move.w
rol.w
bes.b
asr.w
move.w

move.b

$£££000,d1
#1,d1
test4d
#1,d1

di, (a2)+

#2,$£££000

$£££000,d1
#1,d1
testh
$£££000,d1
#1,d1
test6
#1,d1

di, (a3)+

#3,$£££000

$£££000,d1
#1,d1
test7
$£££000,d1
#1,d1
test8
#1,d1

di, (ad)+

#4,$£££000

$£££000,d1
#1,d1
test9
$£££000,d1
#1,d1
testio
#1,d1
di,(ab)+

#$81,$££8011



170000D2

1’0000DA

2°000000
27000000
31000000
3000000
4°000000
4000000
52000000
52000000
62000000
6’000000
77000000
72000000

13FC 0080
O0FF8011

4E73

<1D4C0>

<1D4C0>

<1D4C0>

<1D4CO0>

<1Db4C0>

<1D4Co>

116.

117.
118.
119.
120.
121.
122,
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

move.b #$80,8$£ff8011

cont: rte

section 2

shaft: ds 60000
section 3
chO: ds 60000
section 4
chi: ds 60000
section 5
ch2: ds 60000
section 6
ch3: ds 60000
section 7
ch4: ds 60000

*pointer to interrupt routine goes in address 80 }
*yill use link file examp.lnk to place peinter au«

end
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EXAMP .LNK

YIS AN S

* Linker for sampling routine

* Location of program in memory is placed by this program

link examp

org $10000
section O

org $10100
section 1

org $80

dc.w $0001
dc.w $0100

org $11000
section 2

org $1fa60
section 3

org $2e4cO
section 4

org $3cf20
section 5

org $4b980
section 6

org $5a3e0

section 7

end
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