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spheric light (â∞) and transmission map (t̂) are found. Using these es-
timates, direct dehazing is performed on Î, yielding the estimated scene
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Abstract

Single Image Haze and Noise Removal

by

Erik Matlin

One of the central problems in image processing is the restoration of images corrupted

by various types of degradation. Images of outdoor scenes often contain atmospheric

degradation, such as haze and fog, caused by particles in the atmospheric medium

absorbing and scattering light as it travels to the observer. Although this effect may

be desirable from an artistic standpoint, for a variety of reasons (such as computer vi-

sion or sensing algorithms, or even pure curiosity) one may need to restore an image

corrupted by these effects, a process generally referred to as haze removal. Addition-

ally, all images contain some corruption from noise, and if not considered in the haze

removal process, noise can dominate the results.

Accordingly, the task of this thesis is to present an effective method for re-

moving both haze and noise from a single digital image. First is an investigation on

the effect of noise on an existing single image haze estimation method, with denois-

ing proposed as a pre-processing step. Additionally, existing methods for refining the

haze estimation for the purpose of reducing artifacts are reviewed. Next, two different

methods for removing haze and noise are proposed. The first approach is the process

of denoising the image using a state-of-the-art denoising algorithm prior to dehazing.

The second approach involves simultaneously denoising and dehazing using an iter-

ative non-parametric kernel regression based method. Experimental results for both

methods are compared.



Findings show that when the noise level is known a priori, simply denoising

prior to dehazing outperforms the iterative method in terms of mean squared error,

although results are visually comparable. In contrast, when the precise noise level is

not given, and the denoising algorithm must be tuned using an external quality metric,

latent errors from either “under"-denoising or “over"-denoising are amplified in the

dehazing process. In this situation, the iterative approach can yield superior results,

both in terms of mean squared error and subjective visual quality, especially in low

noise cases.
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Chapter 1

Introduction

This chapter introduces the haze removal problem including the imaging

model most widely used, and an overview of previous work.

1.1 Background

Images of outdoor scenes often contain haze, fog, or other types of atmo-

spheric degradation caused by particles in the atmospheric medium absorbing and

scattering light as it travels from the source to the observer. While this effect may be

desirable in an artistic setting, it is sometimes necessary to undo this degradation. For

example, many computer vision algorithms rely on the assumption that the input im-

age is exactly the scene radiance, i.e. there is no disturbance from haze. When this

assumption is violated, algorithmic errors can be catastrophic. One could easily see

how a car navigation system that did not take this effect into account could have dan-

gerous consequences. Accordingly, finding effective methods for haze removal is an

ongoing area of interest in the image processing and computer vision fields.

1



Figure 1.1: Haze Model

A widely used model for haze formation is:

I(x) = R(x)t (x)+a∞(1− t (x)) (1.1)

where x is a pixel location, I is the observed image, R is the underlying scene radiance,

a∞ is the atmospheric light (or airlight), and t is the transmission coefficient. Intu-

itively, the image received by the observer is the convex combination of an attenuated

version of the underlying scene with an additive haze layer, where the atmospheric

light represents the color of the haze (figure 1.1)1. The ultimate goal of haze removal

is to find R, which also requires knowledge of a∞ and t . From this model, it is appar-

ent that haze removal is an under-constrained problem. In a grayscale image, for each

pixel there is only 1 constraint but 3 unknowns; for an RGB color image, there are 3

constraints but 7 unknowns (assuming t is the same for each color channel). Essen-

tially, one must resolve the ambiguous question of whether an object’s color is a result

of it being far away and mixed with haze, or if the object is close to the observer and

simply the correct color.

1For a thorough discussion on the physics of haze, the reader is referred to [1]
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In order to make the problem easier, the atmosphere is generally assumed

to be homogeneous. This has two simplifying consequences: the atmospheric light is

constant throughout the image—meaning it only has to be estimated once, and trans-

mission follows the Beer-Lambert law:

t (x) = exp(−βd(x))

where β is the scattering coefficient of the atmosphere, and d is the scene depth. This

allows recovery of the scaled scene depth if transmission is known and vice-versa.

Once t and a∞ are known, a direct approach finds the underlying scene alge-

braically from equation 1.1:

R̂(x) = I(x)−a∞(1− t (x))

t (x)

= R(x)t (x)+a∞(1− t (x))−a∞(1− t (x))

t (x)

= R(x) (1.2)

Unfortunately, the image model in equation 1.1 is incomplete. All images,

whether they are hazy or not, contain some amount of noise due to measurement (sen-

sor) error. Including this yields a more complete image model for haze formation:

Y(x) = I(x)+n(x)

Y(x) = R(x)t (x)+a∞(1− t (x))+n(x) (1.3)

where the observed image is now Y, and n is the noise contribution, assumed to be

independent and identically distributed (I.I.D.), with zero mean and variance σ2. In

this case, even if we know t and a∞ perfectly, if the scene radiance is then recovered

3



directly, this more complete model shows that the noise term can dominate the results:

R̂(x) = Y(x)−a∞(1− t (x))

t (x)

= R(x)t (x)+a∞(1− t (x))+n(x)−a∞(1− t (x))

t (x)

= R(x)+ n(x)

t (x)
(1.4)

Note that t is in the range of 0 to 1, implying that the noise term is amplified in all cases

except when no haze is present. Even when the amount of noise is small in the original

image, in regions with dense haze, t is very small, making the noise contribution a

significant factor.

1.2 Previous Work

Among current haze removal research, haze estimation methods can be di-

vided into two broad categories of either relying on additional data or using a prior

assumption.

Methods that rely on additional information include: taking multiple images

of the same scene using different degrees of polarization [2, 3], multiple images taken

during different weather conditions [4], and methods that require user supplied depth

information [5] or a 3D model [6]. While these can achieve good results, the extra in-

formation required is often not available, and so a more flexible approach is preferable.

Significant progress in single image haze removal has been made in recent

years. Tan [7] made the observation that a haze-free image has higher contrast than a

hazy image, and was able to obtain good results by maximizing contrast in local re-

gions of the input image. However, the final results obtained by this method are not

4



based on a physical model and are often unnatural looking due to over-saturation. Fat-

tal [8] was able to obtain good results by assuming that transmission and surface shad-

ing are locally uncorrelated. With this assumption, he obtains the transmission map

(a) Original Hazy Image (b) Tan’s Result [7]

(c) Fattal’s Result [8] (d) He et al.’s Result [9]

Figure 1.2: Single image haze removal methods. Tan’s results appear oversaturated,

while both Fattal’s and He et al.’s results are more visually appealing, with the lat-

ter removing more haze. Images come from supplementary material for [9], found at

http://personal.ie.cuhk.edu.hk/˜hkm007/.

5



through independent component analysis. This is a physically reasonable approach,

but this method has trouble with very hazy regions where the different components

are difficult to resolve. Lastly, a simple but powerful approach proposed by He et al.

[9] uses dark pixels in local windows to obtain a coarse estimate of the transmission

map followed by a refinement step using an image matting technique from [10]. Their

method obtains results on par with or exceeding other state-of-the-art algorithms, and

is even successful with very hazy scenes. For a comparison of these three methods, see

figure 1.2.

As illustrated in equation 1.4, noise can be a major problem when restoring

hazy images. The works mentioned above largely avoid the issue, usually by assum-

ing a noise free image or only dehazing images up to a point where noise is negligible.

Existing literature has taken two basic approaches: denoising prior to dehazing, and

denoising during dehazing. Recently, Joshi and Cohen [11] took the first approach, ad-

dressing noise through image fusion. By taking multiple images of the same hazy scene

and using weighted averaging, they obtain a sharp, low noise hazy image that they

then dehaze using a variation on the dark channel method. Schechner and Averbuch

[12] use a polarization based method to estimate haze, and address noise by adding a

local penalty term proportional to the transmission value as a regularization term in

scene radiance recovery. Since the regularization is relatively simple, hazy regions are

essentially blurred while non-hazy regions are left sharp. A more sophisticated variant

on this theme is proposed by Kaftory and Schechner [13], which uses a total variation

method based on Beltrami flow for regularization. This method is able to maintain

sharpness in heavily denoised regions. Although effective, the use of complicated PDE

methods, requiring minimization over the entire image, is a major drawback.
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1.3 Summary of Thesis

This thesis addresses the problem of recovering the underlying scene radi-

ance of a single noisy, hazy image. The main contributions are as follows. First is an

investigation on the effect of noise on an existing single image haze estimation method,

with denoising proposed as a pre-processing step. Next is the proposal of two differ-

ent methods for scene radiance recovery from a single noisy hazy image once estimates

for the haze content have been obtained. The first method is the process of denoising

the image using a state-of-the-art denoising algorithm prior to dehazing. This can be

interpreted as a single image adaptation of [11]. The second method is the process of

simultaneously denoising and dehazing using an iterative non-parametric kernel re-

gression based method. This can be seen both as an adaptation to a single image as

well as a simplification of methods presented in [12] and [13].

1.3.1 Organization

Chapter 2 addresses the first step for restoration: haze estimation. Due to its

simplicity and effectiveness, the dark channel prior serves as the basis for single image

haze estimation in this thesis. First, a brief review of the original method is provided.

Since the addition of noise was not originally considered, we explore its effects and

find that due to the nature of the estimation method, the results are very sensitive to

it. The problem of applying the dark channel prior to the noisy case is addressed by

proposing the application of an existing state-of-the-art denoising method as a pre-

processing step.

Chapter 3 provides a review of two techniques for further refining the trans-

mission map obtained from the dark channel prior. Without the additional refinement
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step, the recovered scene radiance suffers from a halo effect around depth discontinu-

ities. In [9], He et al. proposed a refinement approach adopted from the image matting

literature [10], and while this provides a satisfactory solution, the result involves the

inversion of a very large matrix. In the interests of avoiding this inversion, another

refinement solution is obtained by using the “Guided Image Filter," proposed in [14].

Although this filter provides only an approximate solution to the image matting ap-

proach, it still captures details of the original image and sufficiently suppresses the

halo effect, providing visually satisfying results. Previously, the effect on the trans-

mission map from the addition of noise has not been addressed. We provide a brief

discussion concluding that noise has little effect on this refinement step, and that in

strong noise cases, applying a denoising method prior to refinement gives satisfying

results.

Chapter 4 discusses recovery of the final scene radiance once the haze esti-

mates are obtained. First we present the effect of disregarding noise in the input im-

age, showing that even if noise is weak, it can be significantly amplified in the scene

radiance when haze is strong. Two approaches to remedy this problem are proposed.

The first approach is to denoise the image prior to dehazing, which proves conve-

nient considering that the initial haze estimation already requires this step. The results

are convincing when paired with a state-of-the-art denoising algorithm. The second

approach is an iterative nonparametric method based on kernel regression to simulta-

neously denoise and dehaze. Results of the two approaches are then compared.

Finally, Chapter 5 concludes the thesis with a summary of findings, open

questions, and potential topics for future research.
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Chapter 2

Single Image Haze Estimation

There are several methods for estimating the haze contribution in a single

image. One of the most successful of these methods is known as the dark channel

prior, which is used as the basis for haze estimation in this thesis.

2.1 Dark Channel Prior

The dark channel prior was first introduced by He et al. in [9], and is es-

sentially a localized version of an earlier haze removal method known as dark object

subtraction [15]. The key to this approach is the observation that natural haze-free

outdoor images are generally well textured, and contain a variety of different colored

objects. As a consequence, most patches will contain one or more pixels with very low

intensity in at least one of the color channels. These dark pixels can be attributed to

dark objects, shadows, or objects that are primarily a combination of only one or two of

the RGB color channels. With this observation in mind, one can construct the so called

“dark channel" of an image, which can be expressed mathematically as a minimum
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value operation in patches around the target pixel:

I d ar k (x) = min
c∈{r,g ,b}

(
min

y∈Ω(x)

(
I c (y)

))
(2.1)

where I d ar k (x) represents the ”dark channel" of image I at pixel location x, I c is a color

channel of image I , and y ∈Ω(x) signifies all pixels y in a local patch around x. If applied

to a haze-free image, the above observation yields:

I d ar k (x) → 0

This observation is confirmed in [9] through an analysis of 5,000 images collected from

Flickr.com. He et al. found that, using a 15x15 patch size, “75% of the pixels in the dark

channels have zero values, and the intensity of 90% of the pixels is below 25."

In contrast to a haze-free image, a hazy image contains an additive compo-

nent due to the atmospheric light contribution, and since haze is typically close to

white, this component is present in all color channels. The end effect is that pixels that

would have been close to zero in a haze-free image, now take on a value that is approx-

imately equal to the amount of haze. Consequently, the dark channel of a hazy image

provides a good approximation of the amount of haze throughout the image. Fig. 2.1

shows a comparison between the dark channels of a haze-free image and a hazy image,

confirming this effect.

2.1.1 Atmospheric Light Estimation

The dark channel prior effectively identifies the relative amount of haze in an

image, and thus can aid in estimating the atmospheric light, a∞. In the haziest regions

of the image, transmission tends toward zero, and the atmospheric light contribution

10



(a) Haze-Free Image (b) Haze-Free Image Dark Channel

(c) Hazy Image (d) Hazy Image Dark Channel

Figure 2.1: The dark channel of the haze-free image is mostly zero, while the dark

channel of the hazy image is proportional to the local amount of haze.
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dominates the scene radiance. This is apparent from examining Eq. (1.1):

lim
t (x)→0

I(x) = lim
t (x)→0

R(x)t (x)+a∞(1− t (x))

= a∞

Thus the haziest regions of I contain mostly atmospheric light. The approach adopted

in this thesis, following [9], is estimating a∞ as the brightest intensities in each color

channel chosen from the 0.1% haziest pixels in I, which correspond to the top 0.1%

brightest pixels in the dark channel. This is much different than simply choosing the

brightest pixels from the entire image. If the selection were not limited, the estimate

may come from a bright object in the foreground that contains little haze, and thus little

information about the atmospheric light.

An important consequence of this realization is that patch size plays a signif-

icant role in finding good atmospheric light candidates. While a patch size of 15x15 is

often sufficient for obtaining a good overall haze estimate, regions with bright white

or gray objects larger than the patch size may be detected as hazy, when in fact they

are not. This can lead to significant errors in atmospheric light estimates when pixels

from these false regions are brighter than pixels in the actual hazy regions (Fig. 2.2). To

overcome this problem, the patch size must be sufficiently increased to minimize this

type of error.

2.1.2 Transmission Estimate

Assuming now that a∞ is given, an estimate of the transmission map is ob-

tained by once again applying the dark channel prior. Noting that atmospheric light

and transmission are positive quantities, and that transmission is approximately con-
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stant in a local window (t (y) ≈ t (x) ∀ y ∈Ω(x)), the following is derived in [9]:

I(x)

a∞
= R(x)t (x)

a∞
+ (1− t (x))

min
c∈{r,g ,b}

(
min

y∈Ω(x)

(
I c (y)

ac∞

))
≈ min

c∈{r,g ,b}

(
min

y∈Ω(x)

(
Rc (y)t̂ (x)

ac∞

))
+ (1− t̂ (x))

min
c∈{r,g ,b}

(
min

y∈Ω(x)

(
I c (y)

ac∞

))
≈ 0+ (1− t̂ (x))

t̂ (x) = 1− min
c∈{r,g ,b}

(
min

y∈Ω(x)

(
I c (y)

ac∞

))
(2.2)

where the superscript c signifies a specific color channel, i.e. the red, green, or blue

color channel of the corresponding parameter. Note that a∞ is a vector quantity con-

taining a separate value for each color channel, and so ac∞ is a scalar quantity referring

to one individual value. Since 1− t̂ (x) is constant, it is taken out of the min opera-

tion. Furthermore, since t and ac∞ are both positive, the dark channel prior implies

that minc∈{r,g ,b}

(
miny∈Ω(x)

(
Rc (y)t̂ (x)

ac∞

))
→ 0. Thus, an estimate for the transmission map is

obtained by simply subtracting the dark channel of the normalized image from 1.

According to [16], humans require some presence of haze to perceive depth, a

phenomenon called aerial perspective, and so removing the haze completely can lead

to unnatural, flat looking images. A scaling parameter can be introduced into Eq. (2.2)

to control the amount of remaining haze:

t̂ (x) = 1−w min
c∈{r,g ,b}

(
min

y∈Ω(x)

(
I c (y)

ac∞

))
(2.3)

The scaling parameter, w , takes a value from 0 to 1, corresponding to the amount of

haze left in the image. A typical value to preserve aerial perspective is 0.95. As in the

atmospheric light estimation, patch size is also an important parameter to choose. If

the patch size is too small, the dark channel prior may not be valid, and transmission

will be underestimated, due to bright objects. If the patch size is too large, transmis-
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sion may be overestimated, due to darker pixels in regions no longer local (i.e. at a

closer depth to the observer) to the target pixel. For a 600×400 image, a 15×15 patch

size usually strikes a good balance. Fig. 2.3 shows an example of transmission map

estimates using Eq. (2.3) using w = 0.95, comparing different patch sizes 1.

2.2 Sensitivity to Noise

In the field of statistics, sample minima are well known to be extremely sen-

sitive to noise, and while they may provide good information when the data is clean,

they are inherently unreliable when the data is noisy. Consequently, since the dark

channel relies on sample minima, it is not a robust statistical measure. Fig. 2.4 is an

example of this sensitivity to noise. The dark channel of Fig. 2.3a was computed after

Gaussian noise was added with various standard deviations.

Various approaches can be taken to robustly estimate the dark channel, and

by extension the transmission map, considering the presence of noise. A basic method

from the field of descriptive statistics is to use quantiles, such as the 10th percentile as

an estimate [17]. While this may give more accurate results, a better estimate can be

made. A more sophisticated approach can be taken by using stochastic approximation

[18] to locate local minima, followed by some type of point estimate. However, since

other point estimates are needed (such as for the atmospheric light estimate) and a

pilot estimate of the dehazed image is necessary for later haze removal stages, a still

better approach may be to simply denoise the entire image as a first step. This is the

method employed here, with the specific denoising algorithm being the color version

1The scaling parameter is presented here for the interest of the reader. In subsequent chapters, we set
aside this parameter and let w = 1.
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of BM3D [19] [20]. From the denoised hazy image, the dark channel, atmospheric light,

and transmission map can be estimated.

2.2.1 Denoising with BM3D

An image model typically used for denoising is:

Y(x) = I(x)+n(x) (2.4)

where x is a pixel location, Y is the observed image, I is the clean image, and n is the

noise contribution, which is typically assumed to be independent and identically dis-

tributed, zero-mean Gaussian noise with variance σ2. Therefore the job of a denoising

algorithm is to estimate I given this image model. In the case of haze estimation, this

image estimate allows computation of the dark channel.

BM3D is a state-of-the-art denoising algorithm proposed for grayscale images

by Dabov at al. in [19] and later extended to color images in [20]. While a detailed dis-

cussion on the BM3D algorithm is beyond the scope of this thesis, a brief summary is

necessary. The algorithm works in two major denoising steps: pilot estimate and final

estimate. The pilot estimate of the image is constructed by first grouping similar 2D im-

age patches into 3D arrays—called block matching in [19], followed by “collaborative

hard-thresholding" in a 3D transform domain , typically the Discrete Cosine Trans-

form (DCT), and finally an aggregation step to compute the pilot image by weighted

averaging of all overlapping block-wise estimates. For the final estimate, grouping is

performed once again, but this time from the pilot estimate. Next is a “collaborative

Wiener filtering" step in a 3D transform domain (DCT), using the new groups as an es-

timate for the true image energy spectrum. Finally, another aggregation step computes

the final image estimate.
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The pilot estimate in BM3D serves both to improve the patch grouping per-

formance, as well as provide a better spectrum estimate (as opposed to hard thresh-

olding in the standard image domain) for Wiener filtering. BM3D is currently among

the best performing denoising algorithms, in terms of both mean squared error (MSE)

and subjective image quality. Another advantage to BM3D compared to other denois-

ing algorithms is that it takes only the one tuning parameter: an estimate for the noise

standard deviation.

For color images, a simple constraint is added to the patch grouping step

[20]. Instead of processing each color channel separately, the image is first transformed

from RGB to a luminance-chrominance color space such as YCbCr or YUV. Grouping

is performed only on the luminance channel, and then applied to the chrominance

channels. The rest of the algorithm is performed independently on each channel, still

in the luminance-chrominance space. Finally, the image is converted back to the RGB

color space for display.

An important parameter (in fact the only parameter) needed in using the

BM3D algorithm is an estimate for the noise standard deviation. Although in syn-

thetic examples this parameter can be exactly known, this is not possible for real noisy

images. An effective no-reference method for setting tuning parameters in denoising

algorithms is proposed by Zhu et al. [21], called the Q metric. This metric is based on

the singular values of local gradient matrices computed on anisotropic patches within

the target image. The anisotropic patches are determined from the input noisy image,

and Q is recalculated on the denoising results as the tuning parameter is varied. Zhu

et al. find that the output with the highest Q corresponds well to the output with the

lowest mean squared error. Again using the image from Fig. 2.3a as a source, Fig. 2.5
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shows that, in this case, Q indeed provides a reasonable estimate of the best tuning

parameter.

2.2.2 Dark Channel for Noisy Images

As mentioned previously, to address noise when computing the dark chan-

nel, the image is first denoised using the BM3D algorithm, and then the dark channel

is computed on the denoised image. Fig. 2.6 shows the dark channels of the image

from Fig. 2.3a following denoising after various levels of Gaussian noise were added.

Compare these to the results of Fig. 2.4, when no denoising was performed. Also for

this image example, Fig. 2.7 shows the results of a Monte Carlo simulation compar-

ing the MSE of dark channels computed for a noisy image to the dark channels of a

denoised image for various levels of noise.

As mentioned above, the BM3D algorithm requires an estimate of the noise

standard deviation. However, since this parameter is generally not known, the ques-

tion arises of whether it is better to err on the side of over-estimating or under-estimating

the amount of noise in the image. The result of over-denoising an image is generally

that the image becomes smoother. Since haze is primarily a slowly varying component

in the image, intuitively, one would conclude that it is better to over-estimate the noise,

since a smoother image would not significantly affect the haze content. Fig. 2.8 sup-

ports this hypothesis, showing that, for an image with added Gaussian noise (σn = 0.1),

although the estimates for the dark channel and atmospheric light reach an optimal

point at the exact noise level, these estimates only worsen slightly as the denoising

level increases, but are much worse if the image is “under"-denoised

When using the best Q as a stopping criterion, experiments have shown that
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it generally tends to err on an overestimate of the noise, rather than an underestimate

of the noise. Thus when the noise level is unknown, this method is suitable for haze

estimation.

2.3 Summary

The dark channel prior is a simple but effective tool for estimating the haze

content and atmospheric light. However, complications arise when the image contains

noise. Experiments show that first denoising the image effectively mitigates these dif-

ficulties. Furthermore, experimental evidence suggests that over-estimating the noise

content of the image leads to more accurate haze and atmospheric light estimation

compared to results from under-estimating the noise content.

The next chapter will show that haze removal using the direct result from the

dark channel prior leads to artifacts in the final image, since only a coarse estimate

of the haze is provided. As a result, the transmission map estimate must be further

refined before the scene radiance can be recovered. This refinement process can take

several forms, which we discuss next.
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(a) Atmospheric Light Candidate Pixels (Red), 13x13 Dark Channel

Patch

(b) Atmospheric Light Candidate Pixels (Red), 25x25 Dark Channel

Patch

Figure 2.2: A 13x13 patch size in Fig. 2.2a results in the false detection of the foreground

building as an atmospheric light candidate, leading to an erroneous atmospheric light

estimate. Increasing the patch size to 25x25 remedies the problem, correctly determin-

ing the most distant region as the haziest.
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(a) Input Hazy Image (b) Transmission Calculated using 5x5 Patch

(c) Transmission Calculated using 15x15 Patch (d) Transmission Calculated using 31x31 Patch

Figure 2.3: With a 5x5 patch size, transmission is underestimated in many of the fore-

ground buildings, while a 31x31 patch size leads to overestimated transmission at

depth discontinuities. A 15x15 patch size leads to some underestimation in the fore-

ground buildings, but reduces the over-estimation at depth discontinuities.
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(a) No Added Noise (b) σ= 0.01

(c) σ= 0.05 (d) σ= 0.1

Figure 2.4: The dark channels, using a patch size of 15x15, are computed for the image

from Fig. 2.3a with added white Gaussian noise corresponding to standard deviations

from 0 to 0.1 for an image whose color values are normalized to 1. As can be observed,

the dark channel estimate changes drastically as noise level is increased.
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(a) Image with Added Noise, σ= 0.1

(b) Best MSE, σB M3D = 0.1 (c) Best Q, σB M3D = 0.14

0 0.05 0.1 0.15 0.2 0.25
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
MSE vs. BM3D Tuning Parameter

BM3D Tuning Parameter − Estimated Noise Standard Deviation

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

(d) MSE vs σB M3D
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Figure 2.5: Noise with standard deviation 0.1 was added to image from Fig. 2.3a, and

then removed using BM3D. Results from a 5-trial Monte Carlo simulation show using

the best Q as a stopping parameter leads to a slightly over-smoothed result in this case.
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(a) No Added Noise (b) σ= 0.01

(c) σ= 0.05 (d) σ= 0.1

Figure 2.6: The dark channels, using a patch size of 15x15, are computed for the image

from Fig. 2.3a that was denoised using BM3D after Gaussian noise was added (com-

pare to Fig. 2.4). The BM3D algorithm was given the exact noise variance. Note that

while the dark channels have some variation, the overall result changes very little.
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(b) Dark Channel MSE vs. σn

Figure 2.7: Average Atmospheric Light and Dark Channel MSE vs Noise Standard

Deviation, results of 5 trial Monte Carlo simulation for image from Fig. 2.3a. The BM3D

algorithm was given the exact noise variance. Atmospheric light and dark channel are

significantly improved in denoised image.
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(a) Atmospheric Light MSE vs σB M3D
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(b) Dark Channel MSE vs σB M3D

Figure 2.8: Average Atmospheric Light and Dark Channel MSE vs BM3D Tuning Pa-

rameter, results of 5 trial Monte Carlo simulation for image from Fig. 2.3a with added

Gaussian noise, standard deviation of 0.1
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Chapter 3

Transmission Map Refinement

Assuming for a moment that noise is not present in the hazy image, once the

transmission map, t , and atmospheric light, a∞, are known, the scene radiance can be

solved for directly using Eq. (1.2), which is repeated here for convenience:

R̂(x) = I(x)−a∞(1− t (x))

t (x)

= I(x)−a∞
t (x)

+a∞ (3.1)

where x is a pixel location, I is the input image, R is the scene radiance, a∞ is the at-

mospheric light, and t is the transmission. When using Eq. (3.1), t is typically lower

bounded to a small number, such as 0.1, to avoid instability. Chapter 2 provided a

simple method for estimating the transmission and atmospheric light. However, if the

scene radiance is recovered directly from this transmission estimate, the result con-

tains block artifacts and halos around depth discontinuities, due to the nature of the

estimation method (see Fig. 3.1).

In order to remove these artifacts, it is necessary to further refine the transmis-

sion map. This chapter first provides a review of two existing, related methods that use
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the original hazy image as a guide to refine the transmission map. The first is a result

from Levin et al. [10] originally intended for image matting that was initially adopted

in [9]. The second is a much faster method called the “Guided Image Filter" [14] equiv-

alent to a single Jacobi iteration in solving for the solution from [10]. Although in

[14], the Guided Filter was briefly mentioned as applicable to transmission map refine-

ment, here it is examined more closely for this application, with a direct comparison

to the results using the first approach. Finally, noise in the guide image has not been

previously considered for the application of transmission map refinement, and so this

chapter ends with a discussion of this case.

3.1 Matting Laplacian

Interactive image matting is a problem in which one must separate a fore-

ground object from a given image based on limited user input. For example, one may

wish to separate a person from the surrounding scenery. User input generally involves

the creation of a coarse image mask, called a trimap [10], where white pixels definitely

belong to the foreground object, black pixels definitely belong to the background ob-

ject, and gray pixels can belong to either. The job of an image matting algorithm is

then to refine this coarse image mask, resolving whether the gray pixels belong to the

foreground or background. Formally, the image matting problem can be described by

the following equation:

I(x) = F(x)α(x)+B(x)(1−α(x)) (3.2)

where x is a pixel location, I is the input image, F is the foreground image, B is the

background image, and α is called the alpha matte, describing the opacity of the fore-

26



(a) Input Hazy Image (b) Estimated Transmission Map

(c) Recovered Scene Radiance

Figure 3.1: Recovering the scene radiance using the transmission map obtained di-

rectly from the method presented in Chapter 2 results in undesirable artifacts.

ground. Looking closely, this is exactly the haze formation equation first presented in

Chapter 1, repeated here for convenience:

I(x) = R(x)t (x)+a∞(x)(1− t (x)) (3.3)

where F corresponds to the underlying scene radiance, R, B corresponds to the global

atmospheric light, a∞, and α corresponds to the transmission, t . Furthermore, the

27



coarse transmission map estimated in Chapter 2 can be interpreted as the user-input

trimap in interactive image matting.

In [10], Levin et al. proposed a state-of-the-art, closed-form solution to this

problem. Their solution is based on the assumption that within a small window, pixels

belonging to a single object are a linear mixture of two colors. In other words, these

pixels belong to a line in RGB space. This assumption is supported by Omer and Wer-

man in [22], who found that pixels from the same object form elongated clusters in

RGB space. These clusters can be approximated locally by a linear model. From this

assumption, Levin et. al derive an affinity matrix, L, known as the “Matting Laplacian."

The (i , j ) element of L is defined as:

L(i , j ) = ∑
k|(i , j )∈wk

(
δi j − 1

|wk |
(
1+ (

Ii −µk
)T

(
Σk +

ε

|wk |
U3

)−1 (
Ij −µk

)))
(3.4)

where δi j is the Kronecker delta, µk and Σk are the mean and covariance of the colors

in window wk centered around k, |wk | is the number of pixels in each window, and U3

is a 3x3 identity matrix. ε is a small regularization parameter. The summation is for all

windows shared by pixels i and j in the image I . Note that for an image of size MxN,

L is a symmetric matrix with size MNxMN, and that i and j refer both to a location in

L and to the i th and j th pixels in the vectorized image, I . Since window sizes that are

too large may violate the color line model, the typical size used, and the size used for

all examples shown here, is 3×3.

3.1.1 Transmission Map Refinement

Given the coarse transmission map estimate, the Matting Laplacian is used to

find a refined transmission map by minimizing the following quadratic cost function:

E(t) = tT Lt+λ(t− t̂)T (t− t̂), (3.5)
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where t is the vector form of t , t̂ is the vector form of the coarse transmission estimate,

and λ is a regularization parameter. The solution minimizing Eq. (3.5) is found by

solving for t from the following:

(L+λU )t =λt̂ (3.6)

where U is an identity matrix with the same size as L, and λ is a small value (10−3 to

10−4) so that t is softly constrained by t̂. Although L is dimensionally large (MNxMN),

due to the window constraint on i and j , it is sparse. In MATLAB, this linear system

can be solved using the backslash operator. Iterative methods, such as the conjugate

gradient method or the Jacobi method, can also be used. Fig. 3.2 shows the results of

applying the Matting Laplacian to the results from Fig. 3.1.

3.2 Guided Filter

Much of modern image processing involves some type of locally adaptive im-

age filtering. These filters are typically defined via information from a guidance image,

which is often the target image itself. The filtering process may be done in the vector

domain, where the image is column stacked into a large vector, by first computing a

large matrix that encodes information from the guidance image, and then solving for

the filter output through the minimization of a quadratic cost function involving the

target image. The most relevant example of this process is the refinement of the initial

transmission map through the Matting Laplacian, discussed in the previous section.

Alternatively, the filter kernel can be explicitly built using the guidance image, and

then applied to the target image through a standard linear filtering process in the pixel

domain. A notable example of this is the bilateral filter [23]. In general, the locally
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(a) Estimated Transmission Map (b) Refined Transmission Map

(c) Recovered Scene Radiance from Refined Transmission Map

Figure 3.2: Refining the transmission map using the Matting Laplacian results in a

much smoother recovered scene radiance. For this example, λ= 10−3 and ε= 10−4.

adapted filtering process can be described as a weighted sum [14]:

qi =
∑

j
Wi j (I )p j , (3.7)

where i and j are pixel indexes, q is the result, W is a weight dependent on the guid-

ance image, I , and p is the target (or input) image. For example, the joint bilateral filter
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[24] could be defined in this way with the filtering kernel W j b f as:

W j b f
i j (I ) = 1

Ki
exp

(
−|xi −x j |2

σ2
s

)
exp

(
−|Ii − I j |2

σ2
r

)
, (3.8)

where xi and x j are pixel locations, Ii and I j are pixel intensities, σs and σr adjust

the spatial similarity and range similarity respectively, and Ki is a scaling coefficient

so that
∑

j W j b f
i j (I ) = 1. When I and p are identical, this becomes the original bilateral

filter [23].

The Guided Filter was proposed by He et al. in [14] as a form of translational

variant filtering, and here we present a review of its derivation as well as its appli-

cation to transmission map refinement. Its weights result from the optimization of a

quadratic cost function in a local window around the target pixel. Much like the Mat-

ting Laplacian, the cost function is based on the assumption that in a local window the

pixel intensities or colors can be represented by a linear model. In fact, He et al. show

that their filter is one Jacobi iteration in optimizing Eq. (3.5).

For a grayscale image, the derivation of the Guided Filter relies on a local

linear assumption, which is expressed mathematically as:

qi = ak Ii +bk , ∀ i ∈ wk , (3.9)

where qi is the filter output, Ii is the guidance image, and ak and bk are linear coeffi-

cients assumed constant in window wk . Window sizes are typically defined by their

radius, r , which is the pixel distance from the center pixel to an outer pixel. Since

square windows are used, the total window size is therefore (2r + 1)× (2r + 1). The

linear coefficients are then determined by minimizing the following cost function:

E(ak ,bk ) = ∑
i∈wk

((
ak I +bk −pi

)2 +εa2
k

)
, (3.10)
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where ε is a regularization parameter to prevent ak from being too large. The solution

to Eq. (3.10) is found to be:

ak =
1
|w |

∑
i∈wk

Ii pi −µk p̄k

σ2
k +ε

(3.11a)

bk = p̄k −akµk (3.11b)

where µk and σ2
k are the mean and variance of I in window wk , |w | is the number of

pixels in wk , and p̄k is the mean of p in wk . Since a pixel i belongs to many windows,

the final filter output qi is averaged over all possible windows. So after computing all

filter coefficients in the image, the filter output is:

qi = 1

|w |
∑

k:i∈wk

(ak Ii +bk ) (3.12)

= āi Ii + b̄i (3.13)

He et al. further show that the Guided Filter can be expressed as in Eq. (3.7),

with the kernel weights expressed as:

Wi j (I ) = 1

|w |2
∑

k:(i , j )∈wk

(
1+ (Ii −µk )(I j −µk )

σ2
k +ε

)
. (3.14)

Thus the Guided Filter simply measures the normalized correlation between two pix-

els. Spatial distance is taken into account by the fact that when pixels i and j are close

together, they share more windows compared to when they are far apart.

The advantage to computing the filter output from Eq. (3.12) as opposed to

explicitly computing the filter weights from Eq. (3.14) is that all the summations are

box filters (
∑

i∈wk
fi ), so by applying the Integral Image technique from [25] the output

is calculated in O(N) time, independent on window size. If the filter output is com-

puted from Eq. (3.14), then the calculation time is also proportional to the square of the

window size.
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The Guided Filter is also extended to color guidance images by rewriting

Eq. (3.9) as:

qi = aT
kIi +bk , ∀ i ∈ wk , (3.15)

where Ii is a 3x1 color vector, ak is a 3x1 coefficient vector, and qi and bk are scalars.

The Guided Filter then becomes:

ak = (Σk +εU )−1

(
1

|w |
∑

i∈wk

Iipi −µkp̄k

)
(3.16a)

bk = p̄k −aT
kµk (3.16b)

qi = āT
i Ii + b̄i (3.16c)

where Σk is a 3x3 covariance matrix of the colors in I, U is a 3x3 identity matrix, and

µk is a 3x1 mean vector of the colors in I. In the following section, we observe that

the transmission map can be satisfactorily refined using the Guided Filter with either

a color guidance image or a grayscale guidance image.

3.2.1 Transmission Map Refinement

The Guided Filter provides an approximation (first Jacobi iteration) to the re-

sult obtained from using the Matting Laplacian and solving Eq. (3.6), and reduces the

problem of solving a large linear system of equations to a simple filtering process that

can be computed in O(N) time. The Matting Laplacian typically uses 3x3 windows,

which, although more accurate, tends to slow down the convergence of iterative so-

lutions. He et al. show in [26] that using larger window sizes significantly improves

the rate of convergence, and in most cases the accuracy of the result is close to that of

using a small window size. Consequently, in using the Guided Filter, a large enough

window size can be chosen to obtain a sufficiently refined transmission map without
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(a) r = 2 (5x5 Window) (b) r = 5 (11x11 Window)

(c) r = 15 (31x31 Window) (d) r = 30 (61x61 Window)

Figure 3.3: Refining the transmission map using the Guided Filter with various win-

dow sizes for the image from Fig. 3.1. For this example, ε= 10−2.

the need for iterations. Fig. 3.3 shows a comparison of transmission refinement results

using different window sizes.

We can see in Fig. 3.4 and Fig. 3.5 that the results obtained by the Guided

Filter are not significantly visually different than the results obtained with the Matting

Laplacian. Furthermore for a 600x400 image, using the color Guided Filter decreased

computation time by a factor of 10, while using the grayscale Guided Filter decreased

computation time by a factor of more than 200. A comparison between results using

color and grayscale guidance images shows very little difference between the two ap-
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proaches.

(a) Hazy Image (b) Refined Transmission (ML) (c) Refined Transmission (GF)

(d) Hazy Image (e) Refined Transmission (ML) (f) Refined Transmission (GF)

(g) Hazy Image (h) Refined Transmission (ML) (i) Refined Transmission (GF)

Figure 3.4: Comparison between results of the Matting Laplacian(ML) and Guided

Filter(GF) for various images. Matting Laplacian parameters are ε= 10−4, and λ= 10−3.

Guided Filter parameters are ε= 10−2, and r = 30
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(a) Original Refined Transmission (b) Original Restored Image

(c) GF (color) Refined Transmission (d) GF (color) Restored Image

(e) GF (gray) Refined Transmission (f) GF (gray) Restored Image

Figure 3.5: Comparison Between Results from Matting Laplacian (ε = 10−4,λ = 10−3)

with Results from Guided Filter (ε= 10−2,r = 30)
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3.3 Noisy Examples

Due to their formulations as regularized least squares problems, the Matting

Laplacian and Guided Filter are generally robust to noise in the guide image. Fur-

thermore, most of the actual transmission map estimation is performed using the dark

channel prior (Chapter 2), with the refinement step simply serving to suppress halo

effects, and not significantly alter the transmission values except around depth dis-

continuities. Thus, a low to moderate noise level in the guide image still results in

an acceptably refined transmission map. Note, that only the transmission map refine-

ment step is addressed here. Recovering the final scene radiance requires additional

considerations, and is addressed in the following chapter.

Examples of refining the transmission map from a noisy guide image are seen

in Fig. 3.6 for the Matting Laplacian and Fig. 3.7 for the Guided Filter. These examples

show that the refined transmission maps are not significantly degraded by noisy guide

images, with the refined transmission maps changing very little between noise levels.

One area to note, however, is around the center building. When the noise level is strong

some effects from the noise are observed on closer view. Some visual improvement can

be gained by first using a denoising algorithm, such as BM3D, on the guide image. A

close up view of this visual improvement is shown in Fig. 3.8. Since the initial trans-

mission map estimation requires a denoised image already (see Chapter 2), refinement

using this preprocessed image adds no additional computation.
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3.4 Summary

The initial transmission map estimate obtained using the dark channel prior is

not suitable for direct scene radiance recovery because it results in undesirable artifacts,

such as halos around depth discontinuities. Fortunately, this transmission map can be

further refined to remove these artifacts.

The Matting Laplacian, which was originally derived for image matting, is

based on the color line model, and provides a method to refine the transmission map,

accurately capturing details in the source image. Results are visually satisfying, but

the refinement process involves solving a large linear system, either by inverting a

very large matrix, or using an iterative approach.

The Guided Filter provides an approximate solution to the Matting Laplacian,

while also being much faster to compute. This filter takes advantage of an efficient

method for performing simple box filtering to achieve an algorithm that is computed

in O(N) time. While there are detectable differences between the refined transmission

maps of the Guided Filter and the Matting Laplacian, final scene radiance results are

visually comparable.

Both the Matting Laplacian and Guided Filter are robust to noise in the guide

image; however, when the noise level is too high, artifacts can appear in the refined

transmission map. Pre-filtering the guide image with a denoising algorithm reduces

these artifacts. In the case of using BM3D the final results are visually similar to the

results obtained using the original clean guide image.

This chapter also briefly discussed scene radiance recovery in the noise-free

case. When noise is present in the hazy image, directly recovering the scene radiance

results in significant noise amplification in hazy regions. The next chapter considers
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this problem and presents two methods for scene radiance recovery in the presence of

noise.
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(a) Hazy Image, σ= 0.01 (b) Refined Transmission Map, σ= 0.01

(c) Hazy Image, σ= 0.05 (d) Refined Transmission Map, σ= 0.05

(e) Hazy Image, σ= 0.1 (f) Refined Transmission Map, σ= 0.1

Figure 3.6: Results from refining the transmission map using the Matting Laplacian are

robust to noise in the guide image. For this example, λ = 10−3 and ε = 10−4. Gaussian

noise with standard deviations ranging from 0.01 to 0.1 was added to the hazy image

from Fig. 3.1. The initial estimated transmission map was obtained from the clean

image.
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(a) Hazy Image, σ= 0.01 (b) Refined Transmission Map, σ= 0.01

(c) Hazy Image, σ= 0.05 (d) Refined Transmission Map, σ= 0.05

(e) Hazy Image, σ= 0.1 (f) Refined Transmission Map, σ= 0.1

Figure 3.7: Results from refining the transmission map using the Guided Filter are

robust to noise in the guide image. For this example, ε = 10−2, and r = 30. Gaussian

noise with standard deviations ranging from 0.01 to 0.1 was added to the hazy image

from Fig. 3.1. The initial estimated transmission map was obtained from the clean

image.
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(a) ML, No Denoising (b) GF, No Denoising

(c) ML, BM3D Denoising (d) GF, BM3D Denoising

(e) ML, Clean Guide Image (f) GF, Clean Guide Image

Figure 3.8: When noise is present in the guide image (Gaussian noise, standard devia-

tion = 0.1), both the Matting Laplacian(ML) and Guided Filter(GF) show some artifacts

in this close up view. After denoising the guide image with BM3D, the refinement re-

sults are visually similar to the results of using the original clean guide image. Matting

Laplacian parameters are ε= 10−4, and λ= 10−3. Guided Filter parameters are ε= 10−2,

and r = 30
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Chapter 4

Recovering Scene Radiance

The preceding chapters have discussed estimation of the two components

necessary to recover the scene radiance: the atmospheric light and the transmission

map. For these two cases, noise is simply additive and can be addressed by first pre-

processing the image through a standard denoising algorithm. With these estimated

components in hand, the final step in the dehazing process is to recover the underly-

ing scene radiance. However, unlike the atmospheric light and transmission map, the

noise contribution in the scene radiance is amplified proportionally to the amount of

haze, and so is spatially varying according to the local haze content.

Thus the task of this chapter is to investigate scene radiance recovery in the

presence of noise after estimates for the atmospheric light and transmission map are

obtained 1. First we provide a review of the exact relation of noise to haze content, in-

cluding some experimental results of dehazing a noisy hazy image without denoising.

Next we present two approaches to scene radiance recovery that have not been previ-

1Note that for all examples in this chapter, the Matting Laplacian is used for transmission map refine-
ment with ε= 10−4 and λ= 10−3.

43



ously considered. The first of these is the intuitive approach of treating haze and noise

separately by first pre-processing the hazy image with the BM3D denoising algorithm

followed by dehazing. Surprisingly, this has not been previously discussed in the liter-

ature, although [13] considers a standard denoising algorithm as a post-processing step.

For the second approach we propose a novel iterative non-parametric method based on

kernel regression to simultaneously perform denoising and dehazing. This approach

is inspired as a simplification to the method proposed in [13]. Finally, this chapter con-

cludes with a comparison of the two approaches. We will see that the first approach

of denoising followed by dehazing achieves the best results when the estimated level

of noise is accurate. However, due to the amplification of errors in scene radiance re-

covery, this approach is not robust to errors introduced in the denoising process from

an inaccurate estimation of the noise level. For example, if it is over-estimated in the

original image, the recovered scene radiance can suffer from significant oversmoothing

in regions with dense haze. The kernel regression based approach, however, is more

robust to this effect, and can achieve superior results in such cases, both in terms of

mean squared error and subjective visual quality. In the case that the level of noise is

known, it achieves results visually on par with the first method, although with some-

what higher mean squared error.

4.1 Naive Dehazing

When considering the effects of noise in the scene radiance recovery process,

an important simplifying assumption is that the atmospheric light and transmission

map are perfectly known. Although this is not generally the case, the conclusions

drawn are still valid. Errors in the atmospheric light component will lead to some
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color biasing in the final image, which can be solved by performing white balancing

as a post-processing step. Underestimating the transmission map results in some haze

left in the image, while overestimating the transmission map leads to over-saturation.

These effects can be suppressed by re-performing the dehazing process to remove ad-

ditional haze, and by color post processing to reduce saturation.

With the atmospheric light and transmission map perfectly known, Eq. (1.4)

shows that when directly recovering the scene radiance, the noise contribution is am-

plified by 1/t (x), repeated here for convenience:

Y(x) = I(x)+n(x)

Y(x) = R(x)t (x)+a∞(1− t (x))+n(x) (4.1)

R̂(x) = Y(x)−a∞(1− t (x))

t (x)

= R(x)t (x)+a∞(1− t (x))+n(x)−a∞(1− t (x)))

t (x)

= R(x)+ n(x)

t (x)
(4.2)

where x is a pixel location, R is the underlying scene radiance, R̂ is the estimated scene

radiance, n is the noise contribution (assumed to be I.I.D. with mean 0 and variance

σ2), t is the transmission, and a∞ is the atmospheric light.

Since t is a value between 0 and 1, Eq. (4.2) implies that except in the special

case when haze is absent (t = 1), the noise contribution is amplified when recovering

the scene radiance. Furthermore, in very hazy regions, where t is close to 0, the noise

contribution can dominate the results. This implication is expressed in terms of noise

variance by:

σ2 ∝ 1

t 2(x)
(4.3)
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(a) Synthetic Hazy Image with Added

Noise, σ= 0.01

(b) Synthetic Transmission Map

(c) Original Image (d) Recovered Image

Figure 4.1: In this synthetic example, a small amount of noise is present in the hazy

image (Gaussian, σ= 0.01). However, recovering the scene radiance using the ground

truth transmission map Fig. 4.1b and atmospheric light (a∞ = [1, 1, 1]) results in signif-

icant noise amplification in the hazier regions.
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(a) Original Hazy Image (b) Transmission Map (c) Scene Radiance

(d) Close Up View

Figure 4.2: A close up view of the recovered scene radiance shows that in the most

distant regions of the image (corresponding to the haziest), noise has become a signif-

icant contribution to the image, whereas in the original hazy image, the noise level is

imperceptible. For this example, the transmission map was estimated after first de-

noising Fig. 4.2a with BM3D using the best Q as a stopping parameter. The Matting

Laplacian was used for transmission map refinement with the denoised image serving

as the guide image (ε= 10−4, λ= 10−3).

A synthetic example (Fig. 4.1) with a small amount of added noise, shows that

even when the transmission map and atmospheric light are perfectly known, the recov-

ered scene radiance is significantly degraded by noise in hazy regions. It is remarkable
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that the added noise level is so small that it is imperceptible in the hazy image; yet,

once the image is dehazed, the noise becomes quite apparent. A real example (Fig. 4.2),

shows that this is not simply a synthetic phenomenon. Using the methods outlined in

Chapter 2 and Chapter 3, a convincing transmission map is obtained. Although the

scene radiance is clear and contrast is restored in areas with little to moderate haze, in

more distant regions, where haze is a dominant portion of the original image, there is

significant noise amplification. Thus we have the motivation to suppress noise effects

in the recovery process.

4.2 Denoising and Dehazing Separately

Simply denoising the hazy image as prior to performing the dehazing process

is a natural approach to handling the problem of noise in scene radiance recovery. Prior

to dehazing, we can treat our image model as: Y = I+n, with the task of the denoising

algorithm being only to estimate I, which encapsulates the hazy image. In contrast,

denoising as a post-processing step was considered in [13] using the Non-Local Means

[27] denoising algorithm, with the authors finding that areas of the image contain-

ing little haze suffered from over-smoothing. This will be the case with most stan-

dard denoising algorithms, since they typically treat the noise level as homogeneous

throughout the image, and we know that the noisy scene radiance requires adaptation

to spatially varying noise.

Denoising as a first step is also convenient considering that accurately esti-

mating the atmospheric light and transmission map already requires a denoised im-

age. With this scheme in mind, we will examine some results using BM3D. As dis-

cussed in Chapter 2, BM3D [19] [20] is currently among the best performing denoising
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algorithms, and so should yield results that are about as good as one should expect for

treating noise and haze separately. Returning to the synthetic example, the image in

Fig. 4.1a is first denoised (Fig. 4.3a) using BM3D with the exact noise standard devi-

ation, and then dehazed using the actual transmission map (Fig. 4.1b). The resulting

scene radiance is shown in Fig. 4.3b. Comparing the result to Fig. 4.1d shows a signifi-

cant reduction in the noise level.

(a) Denoised Hazy Image (b) Recovered Scene Radiance

Figure 4.3: The image shown in Fig. 4.1a is first denoised using BM3D with the ex-

act noise standard deviation, and then dehazed using the actual transmission map

(Fig. 4.1b). This process results in significant improvement in the recovered scene ra-

diance.

The actual transmission map and atmospheric light are generally not given,

and so Fig. 4.4 shows a simple block diagram for a more complete dehazing algorithm.

Given a noisy hazy image, it is first denoised using BM3D. From this denoised ver-
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sion of the image, the atmospheric light, transmission map, and scene radiance are

estimated.

Y

BM3D

Denoise

σ̂n

Î b

Estimate a∞

â∞b

Estimate t
t̂

Recover

Scene Radiance

(R)

R̂

Figure 4.4: The noisy hazy image is first denoised using BM3D given the noise stan-

dard deviation, σn . From the denoised image, Î, estimates for the atmospheric light

(â∞) and transmission map (t̂) are found. Using these estimates, direct dehazing is

performed on Î, yielding the estimated scene radiance, R̂

Example results of this process are shown in figure Fig. 4.5 using a real hazy

image. A small amount of noise is added to the original image, and the known noise

standard deviation is given to BM3D for denoising. Comparing the scene radiance

recovered from the denoised image to the scene radiance recovered from the noisy

image, a significant improvement is seen. A Monte Carlo simulation (Fig. 4.6) shows

that the MSE of the final result is much improved for this image over a range of noise

levels for this image.

While BM3D is very effective at denoising when given the true noise stan-

dard deviation, for real noisy hazy images, this parameter is generally unknown. In

addition, the presence of haze makes accurate estimation of the noise variance quite

difficult. A truly complete denoising and dehazing scheme must include a method for
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(a) Hazy Image, σn = 0.01 (b) Hazy Image, Denoised

(c) Scene Radiance Recovered from Fig. 4.5a (d) Scene Radiance Recovered from Fig. 4.5b

(e) Close up of Fig. 4.5c (f) Close up of Fig. 4.5d

Figure 4.5: The hazy image has a small amount of Gaussian noise added. It is de-

noised using BM3D given the exact σn , and the atmospheric light and transmission

map are estimated from this. The scene radiance recovered from the denoised image is

significantly improved in the distant image regions.

51



estimating the BM3D parameter. As discussed in Chapter 2, the Q metric [21] proposed

by Zhu et al. is a suitable stopping criterion. A block diagram for a complete algorithm

incorporating this metric is shown in Fig. 4.7.

As outlined in [21], the anisotropic patch set is estimated from the noisy input

image. This patch set is then used to compute the Q metric to evaluate the relative

quality of the output of BM3D, while the BM3D denoising parameter, an estimate for

the noise standard deviation, σn , is adjusted. The estimated σn that maximizes the Q

metric is used for the final denoised image. This final denoised image is then used for

all subsequent haze removal operations: estimating the atmospheric light, estimating
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Figure 4.6: This 5-trial Monte Carlo Simulation for the image in 4.5 for various levels

of noise, ranging from σn = 0.01 to σn = 0.1, shows that denoising using BM3D prior

to performing any dehazing operations significantly reduces the MSE of the recovered

scene radiance.
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the transmission map, and finally recovering the scene radiance.

Y

BM3D

Denoise

σ̂n

Î

Adjust σ̂n

to Maximize Q

b b

Estimate a∞

â∞b

Estimate t
t̂

Recover

Scene Radiance

(R)

R̂

Figure 4.7: The noisy hazy image is denoised using BM3D while adjusting the esti-

mated noise standard deviation, σn . The Q metric [21] measures the relative quality

of the denoised images as σn is adjusted. The value of σn that maximizes Q is used

for the final denoised image, Î. From this denoised image, Î, the atmospheric light

(â∞) and transmission map (t̂) are estimated. Using these estimates, direct dehazing is

performed on Î, yielding the estimated scene radiance, R̂

In the previous chapters it was noted that when estimating the atmospheric

light and transmission map, it is far better to oversmooth than undersmooth. Since

these parameters generally vary smoothly anyway, the results of estimating them from

an oversmoothed image are similar to that of estimating them from an optimally smoothed

image. However, since these parameters are sensitive to outliers, undersmoothing

generally results in poor estimation. Unfortunately, this property does not hold for

the scene radiance. There are typically well textured and detailed areas throughout

the image that are severely degraded by oversmoothing. In contrast, if one does not

smooth enough, any latent noise is amplified in the scene radiance. The experiment in
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Fig. 4.8 shows this sensitivity for the hazy image from Fig. 4.5a.

As mentioned previously, the Q metric typically offers good performance for

tuning denoising algorithms when the level of noise is unknown, and is on par with

or better than other techniques for this purpose [21]. Unfortunately, the introduction

of haze makes distinguishing between whether an image is noisy or well textured

more ambiguous, due to the attenuation of the scene radiance. This problem is ex-

acerbated in low noise cases, where small quantitative errors in noise estimation may

still result in a large relative difference. A particularly bad example of this is shown

in Fig. 4.8c, where maximizing Q in this case resulted in significant oversmoothing.

One may speculate that since there are many regular structures in the foreground of

this image, BM3D does well in avoiding oversmoothing these regions, which may lead

the Q metric to under-penalize over-estimation of the noise level, thus allowing the

quality of the background to suffer. A less extreme example is shown for a real noisy

hazy image in Fig. 4.9, where the smoothing level appears appropriate for most of the

image, but upon examination of the background we can see some detail has been lost.

So while the Q metric may perform well for a variety of images, we must acknowledge

from these examples that it may not work equally well for every image.

4.3 Iterative Kernel Regression

In this section an iterative, non-parametric method based on kernel regression

is proposed to simultaneously perform denoising and dehazing in order to recover the

scene radiance. First we review both classical kernel regression [28][29] and locally

adaptive kernel regression [30]. Next we propose an adaptation of the kernel regres-

sion model to the problems of both scene radiance estimation and atmospheric light

54



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3 Scene Radiance, MSE vs. Global Smoothing Parameter

Global Smoothing Parameter (h)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

(a) MSE vs σB M3D

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44
Scene Radiance, Q vs. Global Smoothing Parameter

Global Smoothing Parameter (h)

Q
 M

et
ric

(b) Q vs σB M3D

(c) Scene Radiance from optimal (maximized) Q

Figure 4.8: For this experiment the image in Fig. 4.5a is used (σn = 0.01). The MSE of

the final scene radiance is extremely sensitive to the BM3D Tuning Parameter. If Q is

used as a stopping parameter for denoising then the resulting scene radiance (Fig. 4.8c)

is significantly oversmoothed. In this case, the estimated noise variance is σ̂n = 0.13.

Compare this result to that of using the actual noise variance in figure Fig. 4.5d.

estimation. Finally, the problem of selecting an adaptive smoothing parameter is ad-

dressed.
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4.3.1 Review of Kernel Regression

4.3.1.1 Classic Kernel Regression

Classical parametric regression relies on estimating the parameters of a spe-

cific signal model given a set of data [31]. The final model given these estimated pa-

rameters is then used as an estimate of the underlying signal, which can be used for

a variety of problems including upscaling and interpolation. One example commonly

(a) Recovered Scene Radiance (b) Close up, BM3D Recovery (c) Close up, Noisy Recovery

Figure 4.9: Using the real image example from figure Fig. 4.2, the Q metric was used

as a stopping parameter in denoising the image for the purposes of atmospheric light,

transmission map, and scene radiance estimation. In this case, maximizing Q results in

the estimated noise standard deviation: σ̂n = 0.03. The resulting scene radiance appears

oversmoothed. Comparing the close up views of the hazy region for recovery from the

denoised image to recovery from the noisy image reveals that some detail is lost in the

background.
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used is a first-order linear model, which can be described in vector notation by:

y =β0 +β1x+ε (4.4)

where y and x are column vectors of the observed data and their locations, β0 and β1

are parameters to be estimated, and ε is a vector of independent, zero-mean additive

noise. In general, the parameters are often found using least squares. For the first-order

linear example, this is expressed as:

min
β0,β1

∥∥∥∥∥∥∥∥y− [1 x]

β0

β1


∥∥∥∥∥∥∥∥

2

(4.5)

A major limitation of this parametric approach is that the estimated signal is

limited by the choice of global model. If the underlying signal is sufficiently compli-

cated, natural images being a major example, it may be practically impossible to choose

a model that fits all of the data well. Non-parametric methods overcome this limita-

tion by allowing the data to ultimately dictate the structure of the model. In the case of

kernel regression, this is known as a regression function [28]. Kernel regression can be

thought of as locally weighted least squares, where the classic parametric regression

approach is adapted to fit the data locally. More specifically, data at positions near the

point of interest are given higher weights than data at positions far way from the point

of interest. The general data model for kernel regression in 2-D is given by:

yi = z(xi )+εi , ∀ xi ∈ w, i = 1, . . . , N (4.6)

where yi is a noisy measurement at spatial coordinate xi = [x1i , x2i ]T , z( · ) is the un-

specified regression function, εi is zero mean I.I.D. measurement noise, and w is a

window around the point of interest at coordinate x, containing N samples. In general,
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the spatial coordinates may be randomly spaced, but for the sake of simplicity we will

consider only fixed spacing in this thesis.

Although the exact form of z( · ) may remain unspecified, a local Taylor ex-

pansion of this function is given by:

z(xi ) ≈ z(x)+ {∇z(x)}T (xi −x)+ 1

2
(xi −x)T {H z(x)}T (xi −x)+·· ·

≈β0 +βT
1 (xi −x)+βT

2 vech
{
(xi −x)(xi −x)T }+·· · (4.7)

where ∇ is the gradient (2 × 1) operator, H is the Hessian (2 × 2) operator, and vech( · )

is the half-vectorization operator, which lexicographically orders the lower triangular

portion of a symmetric matrix in a vector, i.e.:

vech


a b

b d


=

[
a b d

]T

(4.8)

Therefore for a 2-D image, β0 = z(x), which is the pixel value at the coordinate of inter-

est, and β1 and β2 are vectors of partial derivatives, specifically:

β1 =∇z(x) =
[
∂z(x)

∂x1
,

∂z(x)

∂x2

]T

(4.9)

β2 =
1

2

[
∂2z(x)

∂x2
1

, 2
∂2z(x)

∂x1∂x2
,

∂2z(x)

∂x2
2

]T

(4.10)

Again, in contrast to classical parametric regression, where a global approach

is taken, kernel regression involves a local approach. Whereas in Eq. (4.5), all of the

data was given equal weight, kernel regression assigns higher weights to data near the

point of interest. The least squares formulation of this idea is expressed in the following

optimization problem:

min
{βm }M

m=0

N∑
i=1

[
yi −β0 −βT

1 (xi −x)−βT
2 vech

{
(xi −x)(xi −x)T }− . . .

]2
KHi (xi −x) (4.11)
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and

KHi (u) = 1

det(Hi )
K (H−1

i u) (4.12)

where M is the regression order. K ( · ) is the so-called kernel function that penalizes

pixels according to their distance from the point of interest, and Hi is the smoothing

matrix (2 × 2), controlling the strength of this penalty, with the simplest choice being

Hi = hI, where h is known as the global smoothing parameter. K ( · ) is a radially symmetric

function with a maximum at zero. Although there are “optimal" kernel functions, in

the case of classic kernel regression, it is known that the exact choice plays only a small

role in estimation accuracy [32]. So generally, a kernel function is chosen given other

considerations, such as ease of computation or having convenient properties. In this

thesis a Gaussian function is used.

Smoothing parameter selection, however, does play an important role in es-

timation accuracy, and there are a variety methods described in the literature [32] [28]

[29] for choosing one. Since these methods often involve dependence on unknown

parameters, the smoothing parameter is sometimes chosen empirically such that it sat-

isfies some quality measure, which is the approach taken in this thesis. Intuitively, the

smoothing parameter is generally inversely proportional to the amount of texture in

an image (e.g. a well textured image should have a relatively small h).

Now returning to the estimation problem, it is convenient to reformulate

Eq. (4.11) as a weighted least squares problem in vector notation:

b̂ = argmin
b

( y−Xb )T K ( y−Xb ) (4.13)
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where

y = [
y1, y2, . . . , yN

]T , b = [
β0,βT

1 , . . . ,βT
M

]T (4.14)

K = diag
[
KH1 (x1 −x),KH2 (x2 −x), . . . ,KHN (xN −x)

]
(4.15)

X =



1 (x1 −x)T vechT {
(x1 −x)(x1 −x)T

} · · ·

1 (x2 −x)T vechT {
(x2 −x)(x2 −x)T

} · · ·
...

...
...

...

1 (xN −x)T vechT {
(xN −x)(xN −x)T

} · · ·


(4.16)

with “diag" defining a diagonal matrix. The solution to Eq. (4.13) is:

b̂ = ( XT K X )−1 XT K y (4.17)

and the estimate of the pixel value of interest is therefore:

ẑ(x) = β̂0 = eT
1 b̂ =

N∑
i=1

Wi (K ,Hi , M ,xi −x)yi (4.18)

where eT
1 is a [M ×1] column vector with the first element equal to 1 and the rest equal

to 0. W is called the equivalent kernel [28][30], and

N∑
i=1

Wi ( · ) = 1 (4.19)

Thus the pixel estimate is simply a local linear combination of nearby samples. A 0th

order regression model (M = 0) results in the well known Nadaraya-Watson estimator

[33], for which Eq. (4.18) becomes:

ẑ(x) = β̂0 =
∑N

i=1 KHi (xi −x)yi∑N
i=1 KHi (xi −x)

(4.20)

“Classic" kernel regression always results in a local linear combination of

nearby samples, and so is inherently limited. For highly complex data, such as im-

ages, this property is a significant drawback. This is the motivation behind “steering"
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kernel regression, proposed in [30] and summarized in the following section. The main

idea is that the kernel function should adapt to the local structure of the data, resulting

in a non-linear adaptive filtering operation.

4.3.1.2 Steering Kernel Regression

Takeda et al. proposed steering kernel regression in [30] as a form of data-

adapted kernel regression, in which the shape of the kernel is adapted to the local

structure of the data, i.e. the kernel not only depends on sample locations, but also on

the sample values themselves. More specifically, the smoothing matrix is redefined as:

Hs
i = hC−1/2

i (4.21)

and is called the steering matrix, where h is a global smoothing parameter. The ma-

trix, Ci , is estimated from the covariance matrix of the local gradient vectors. A naive

estimate is obtained by:

Ĉi = GT
i Gi =


∑

i z2
x1

(xi )
∑

i zx1 (xi )zx2 (xi )∑
i zx1 (xi )zx2 (xi )

∑
i z2

x2
(xi )

 (4.22)

with

Gi =


zx1 (x1) zx2 (x1)

...
...

zx1 (xN ) zx2 (xN )

 (4.23)

where zx1 ( · ) and zx2 ( · ) are the first derivatives measured along the x1- and x2-axes,

and N is the number of samples in a local window around the position of interest,

xi . Since this naive estimate can be rank deficient or unstable, Takeda et al. propose

a regularization based on the singular value decomposition of Gi following work in
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[34]. Using the truncated singular value decomposition, the local gradient matrix can

be rewritten as:

Gi = Ui Si VT
i = Ui

s1 0

0 s2

 [v1 v2]T (4.24)

where U and V are orthonormal matrices. The column vector v1 represents the dom-

inant gradient orientation, while v2 represents the dominant “edge" orientation, with

s1 and s2 representing the respective energies of these directions. From this singular

value decomposition, the gradient covariance matrix can thus be expressed as:

Ĉi = s2
1v1vT

1 + s2
2v2vT

2 = s1s2

(
s1

s2
v1vT

1 + s2

s1
v2vT

2

)
(4.25)

From this form, s1s2 is interpreted as an overall scaling parameter, while the ratio s1
s2

is

interpreted as an elongation parameter, e.g. when s1 = s2 the patch is isotropic, whereas

when s1 > s2 the patch has a dominant direction. Instability is reduced by regularizing

Eq. (4.25) as follows:

Ci = γ
(
ρv1vT

1 + 1

ρ
v2vT

2

)
(4.26)

with

ρ = s1 +λ′

s2 +λ′ (4.27)

γ=
(

s1s2 +λ′′

N

)1/2

(4.28)

λ′ restricts the ratio ρ from becoming degenerate, while keeping the kernel circular in

flat areas (s1 ≈ s2 ≈ 0) and elongated near edge areas (s1 À s2). λ′′ dampens the effect of

noise and keeps γ from becoming zero 2. Further intuition behind Eq. (4.28) is to reduce

noise effects while keeping the footprint large in flat areas and small in textured areas

2In this thesis, λ′ is fixed to 0.005, and λ′′ is fixed to 10−7.

62



in order to produce sharp images. This second point follows from the fact that the

singular values are smaller in flat areas where gradients are small and large in textured

areas where gradients are large.

Finally, the so-called locally adaptive regression kernel (LARK) is constructed

from a Gaussian function and expressed as the following:

KHs
i
(xi −x) =

√
det(Ci )

2πh2 exp

(
− (xi −x)T Ci (xi −x)

2h2

)
(4.29)

The expression (xi − x)T Ci (xi − x) essentially encodes the geodesic distance from the

point of interest [35][36]. And so in contrast to classical regression, which penalizes

distance only along spatial coordinates, the kernel in Eq. (4.29) penalizes distance along

a 2-D manifold embedded in 3-D space. Fig. 4.10 shows how the shape of LARK adapts

to the local structure of the image, and are quite robust to noise.

4.3.2 Kernel Regression Model for Haze Removal

In the above discussion, the underlying signal is only corrupted by noise.

However, in the problem of haze removal, the underlying signal is also attenuated ac-

cording to its transmission value. Furthermore, the transmission map must be estimated

from the noisy image. With this in mind, we propose an iterative method based on ker-

nel regression for estimating the scene radiance and transmission map simultaneously.

First, we recall the noisy hazy image model:

Y(x) = R(x)t (x)+a∞(1− t (x))+n(x) (4.30)

In order to simplify some later notation, we rewrite this as:

Y(x) = R(x)t (x)+A(x)+n(x) (4.31)
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where A(x) = a∞(1− t (x)). In contrast to a∞, which is the global atmospheric light, A(x)

can be considered the local atmospheric light, since it describes the atmospheric light

contribution on a per pixel basis. Following the non-parametric kernel regression strat-

(a) Input Image (b) Tiled LARK

(c) Input Image with Added Noise (σ= 0.1) (d) Tiled LARK from Noisy Image

Figure 4.10: An image composed of non-overlapping locally adaptive regression ker-

nels (LARK) shows how they capture the local image structure. Even in the presence

of noise, the kernels maintain their basic structure.
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egy, we can write our estimation problem for each color channel as:

min
Ac ,Rc

∑
xi∈Ω(x)

[
Y c (xi )−Rc (xi )t (xi )− Ac (xi )

]2 KH s
i
(xi −x) (4.32)

where Ω(x) indicates a neighborhood around the coordinate of interest, x, and the su-

perscript, c, indicates a specific color channel of Y, R, or A. KH s
i

indicates the locally

adaptive regression kernel defined above. When considering a color image, the steer-

ing matrices are computed on the luminance channel, and are applied to all color chan-

nels. Note also that t (x) = 1− Ac (x)
ac∞

where again c indicates a specific color channel. For

simplification purposes, we assume that we have already estimated a∞.

Since Eq. (4.32) is a minimization over two unknowns, the strategy is to find

the solution iteratively, by decomposing it into two separate minimization problems,

and alternating between fixing Rc and fixing Ac . Furthermore, we assume a 0th order

regression model:

min
Rc

∑
xi∈Ω(x)

[
Y ′c (xi )− t (xi )Rc (x)

]2 KH s
i
(xi −x) (4.33)

min
Ac

∑
xi∈Ω(x)

[
Y ′′c (xi )−P c (xi )Ac (x)

]2 KH s
i
(xi −x) (4.34)

where Y ′c = Y c−Ac , Y ′′c = Y c−Rc , and P c = 1− 1
ac∞

Rc . Eq. (4.33) and Eq. (4.34) are simple

weighted least-squares problems, and their solutions are:

R̂c (x) =

∑
xi∈Ω(x)

KH s
i
(xi −x)t (xi )Y ′c (xi )∑

xi∈Ω(x)
KH s

i
(xi −x)t (xi )2 (4.35)

Âc (x) =

∑
xi∈Ω(x)

KH s
i
(xi −x)P c (xi )Y ′′c (xi )∑

xi∈Ω(x)
KH s

i
(xi −x)P c (xi )2 (4.36)

So now our estimation problem is reduced to a set of linear filtering operations. Note

that although the filtering operation itself appears linear, since the steering kernels are

computed on the received data, the result is a non-linear filter.
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Figure 4.11: The atmospheric light and transmission map are estimated from the de-

noised input image. These estimates are used to initialize the kernel regression itera-

tions. The kernel regression iterations are performed on the noisy image, alternating

between A and R until either MSE is minimized or Q is maximized for R.

The complete scene radiance estimation procedure is described as follows.

Because Eq. (4.35) and Eq. (4.36) have an interdependence, in that an estimate for one

requires an estimate of the other, the iterations are initialized with the atmospheric

light and transmission map estimated from the BM3D denoised image, as in Sec. 4.2.

For all examples shown in this thesis the locally adaptive kernel described in Eq. (4.29)

is used. Image gradients for the steering kernels are computed via second order clas-

sic kernel regression with a simple Gaussian kernel on a pilot estimate of the scene

radiance, which is from dehazing the denoised image as described in Section Sec. 4.2.

Finally, since the ultimate goal is to estimate the scene radiance, the iterations are per-

formed until the best R̂(x) is found. In synthetic cases, since the ground truth is known,

the best R̂(x) is defined as the one that minimizes MSE; however, when access to the

ground truth is not possible, maximizing the Q metric is used as a stopping criterion.
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A simplified block diagram of the complete process is shown in Fig. 4.11.
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(b) Atmospheric Light MSE, σn = 0.01
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(c) Scene Radiance MSE, σn = 0.05
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(d) Atmospheric Light MSE, σn = 0.05

Figure 4.12: The iterative procedure was performed on the image from Fig. 4.5a. Al-

though the MSE of the local atmospheric light gets worse with each iteration, when

using a sufficiently small smoothing parameter the MSE of the scene radiance is im-

proved with iterations until a minimum is reached. Images are shown in Fig. 4.13

The results in Fig. 4.12 through Fig. 4.15 show the effect of the above proce-

dure using a constant smoothing parameter (h) throughout the image. In the follow-

ing section, to make use of our knowledge that the noise variance in the scene radi-
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(a) Noisy Scene Radiance Estimate (b) 1st Iteration

(c) 2th Iteration (d) 5th Iteration

Figure 4.13: Scene Radiance Estimation for Different Iterations for Fig. 4.5a with σn =

0.01. For this example the global smoothing parameter, h = 0.05.

ance is dependent on the transmission, an adaptive smoothing parameter is proposed.

Fig. 4.12 and Fig. 4.13 show the effect of iterations in recovering the scene radiance. De-

pending on the smoothing parameter, iterations may improve or worsen the MSE of the

final result. When the image is undersmoothed in the first iteration, further iterations

will improve the mean squared error of the estimate until a minimum is reached. In

contrast, if the image is oversmoothed in the first iteration, further iterations will serve

only to worsen the estimate. While it is possible to optimize the smoothing parameter

for a single iteration, by introducing a further iterations we improve the probability

68



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
2

4

6

8

10

12

14
x 10

−4 Scene Radiance, MSE vs. Global Smoothing Parameter

Global Smoothing Parameter (h)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

 

 

2 Iterations

(a) Scene Radiance MSE, σn = 0.01

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62
Scene Radiance, Q vs. Global Smoothing Parameter

Global Smoothing Parameter (h)

Q
 M

et
ric

 

 

2 Iterations

(b) Scene Radiance Q, σn = 0.01
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(c) Scene Radiance MSE, σn = 0.05
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(d) Scene Radiance Q, σn = 0.05

Figure 4.14: For this image(Fig. 4.5a), with a low level of noise (σn = 0.01), Q metric

slightly oversmooths but is visually comparable to the minimum MSE result. When

the noise level is increased (σn = 0.05), the Q metric agrees well with the minimum

MSE.

that the smoothing parameter we choose will yield a good estimate. For a reasonably

sized smoothing parameter, a good estimate is typically found within 2 or 3 iterations,

and so the procedure used in this thesis is to optimize the smoothing parameter for

2 iterations. Since the atmospheric light MSE is only worsened by iterations, limiting
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(a) Noisy Scene Radiance, σn = 0.01 (b) Noisy Scene Radiance, σn = 0.05

(c) Scene Radiance Best MSE, σn = 0.01 (d) Scene Radiance Best MSE, σn = 0.05

(e) Scene Radiance Best Q, σn = 0.01 (f) Scene Radiance Best Q, σn = 0.05

Figure 4.15: Results from using Q as a stopping parameter are visually similar to the

lowest MSE results

the number to 2 should also mitigate any visual artifacts that may be introduced by

too many iterations. Furthermore, we have found that minimizing the MSE over many
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possible combinations of iterations and smoothing parameters does not result in sig-

nificant visual improvement. Fig. 4.14 and Fig. 4.15 show the results of this 2-iteration

optimization strategy. Using the Q metric as a stopping criterion generally results in a

good approximation of the best h. Although in the low noise example this results in a

slightly oversmoothed image, visually the result is similar to the image with the lowest

MSE.

4.3.3 Adaptive Smoothing Parameter

By keeping the smoothing parameter, h, constant the kernel does not take

into account the spatially varying noise variance in the scene radiance estimation. As

such, we propose using a spatially adaptive h to take into account the noise variance

amplification in hazy regions when recovering the scene radiance. In order to properly

adapt h, we must first find the expression for h that minimizes the mean squared error

of the kernel regression estimate. In the case of standard 0th order kernel regression,

using LARK, an approximate expression for the optimal smoothing parameter is:

hopt ≈
 σ2(det(C))5/2

2πN (∂
2z(x)
∂x2

1
C22 −2 ∂2z(x)

∂x1∂x2
C12 + ∂2z(x)

∂x2
2

C11)2

1/6

(4.37)

where N is the number of elements in the local neighborhood, Ci j indicates the i , j th

element in C and z(x) is the underlying regression function (i.e. the noise free image).

For a derivation, see Appendix A. From this expression, we can construct a spatially

adaptive smoothing parameter. Note first that Eq. (4.37) relies on the unknown second

derivatives of the noise free image. Although we can estimate these3, these estimates

may be prone to errors. Furthermore, some image patches may not even have second

3The approach taken in this thesis is to estimate these from the scene radiance recovered directly from
the BM3D denoised image using second order kernel regression with a simple Gaussian kernel.
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derivatives (e.g. a flat image patch), making an estimate for them nonsense. Thus in

practice, we add an additional global smoothing parameter to suppress these errors.

Next we recall from Eq. (4.3) that the noise variance, σ2, is inversely proportional to

the square of the transmission, t 2. We could replace σ2 in Eq. (4.37) directly with σ2

t 2(x) ;

however, since σ2 is generally unknown, it can be absorbed into the global smoothing

parameter. Furthermore since N is a constant, it can also be absorbed into the global

smoothing parameter. And so we arrive finally at an expression for a spatially adaptive

smoothing parameter:

had ap (x) = hg l obal

 (det(C))5/2

2πt (x)2(∂
2z(x)
∂x2

1
C22 −2 ∂2z(x)

∂x1∂x2
C12 + ∂2z(x)

∂x2
2

C11)2

1/6

(4.38)

where hg l obal is the global smoothing parameter. If the 2nd derivatives cannot be reli-

ably estimated, then Eq. (4.38) can be simplified to the following:

had ap (x) = hg l obal

(
1

2πt (x)2

)1/6

(4.39)

Note that the adaptive smoothing parameter is necessary only in the scene radiance

estimation (i.e. Eq. (4.35)). The smoothing parameter for the local atmospheric light

estimation is fixed to hg l obal .

Figures Fig. 4.16 to Fig. 4.19 show the results of using the adaptive smooth-

ing parameter in equation Eq. (4.38). Again for the image from Fig. 4.5a, performing

the kernel regression iterations results in similar behavior to that of using the constant

smoothing parameter (Fig. 4.16 and Fig. 4.17). Although not necessarily optimal in the

minimum MSE sense, typically two iterations provides a good estimate of the scene

radiance. So as in the constant smoothing parameter case, we optimize for the best

hg l obal after two iterations. As before, using the Q metric as a stopping criterion gen-

erally results in a good approximation of the best hg l obal (Fig. 4.18 and Fig. 4.19).
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(c) Scene Radiance MSE, σn = 0.05
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(d) Atmospheric Light MSE, σn = 0.05

Figure 4.16: The qualitative behavior over iterations of the MSE for the scene radi-

ance and local atmospheric light with an adaptive smoothing parameter (Eq. (4.38)) is

similar to that of using a constant smoothing parameter (Fig. 4.14).

4.4 Experimental Results

In the following experiments we compare results of denoising followed by de-

hazing to the iterative method using Q as the only control parameter. Gaussian noise

was added to each image, and the MSE of the results was computed as compared to
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(a) Noisy Scene Radiance Estimate (b) 1st Iteration

(c) 2nd Iteration (d) 5th Iteration

Figure 4.17: Scene Radiance Estimation for Different Iterations with σn = 0.01. This

example uses the adaptive smoothing parameter from Eq. (4.38) with hg l obal = 0.18.

dehazing results on the noise free image. After noise is added, BM3D is used to esti-

mate the hazy image using the Q metric to tune the denoising parameter. From this

denoised image, the atmospheric light and transmission map are estimated. These es-

timates are then used to recover the scene radiance for both methods. For the iterative

method, all three smoothing parameter strategies were tried for the scene radiance es-

timation. As shorthand for the following results, the process of denoising followed be

dehazing is simply referred to as DD. The iterative method is referred to by the type of

smoothing parameter used, with a constant smoothing parameter referred to as hconst ,
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(b) Scene Radiance Q, σn = 0.01
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(c) Scene Radiance MSE, σn = 0.05

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43
Scene Radiance, Q vs. Global Smoothing Parameter

Global Smoothing Parameter (h)

Q
 M

et
ric

 

 

2 Iterations

(d) Scene Radiance Q, σn = 0.05

Figure 4.18: For this image(Fig. 4.5a), using the adaptive smoothing parameter from

Eq. (4.38), maximizing the Q metric tends to oversmooth for a low level of noise. When

the noise level is increased, the Q metric agrees well with the minimum MSE.

Eq. (4.38) is referred to as had ap1, and Eq. (4.39) is referred to as had ap2. Reported MSE

results are averaged over 5 trials.
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4.5 Summary

In this chapter we have discussed estimation of the underlying scene radiance

from a noisy hazy image. Given estimates for the atmospheric light and transmission

map, naively dehazing the image without regard to noise results in significant noise

amplification in regions containing dense haze. Two methods were presented for ad-

dressing noise in this situation. The first of which was the use of a state-of-the-art

denoising algorithm, BM3D, to pre-process the image prior to performing any dehaz-

ing operations. Since the strength of the underlying noise is not usually known, the Q

Metric [21] can be used as a stopping criterion for tuning the algorithm. Although this

method presented convincing results, if the denoising algorithm is not tuned precisely,

the quality of the resulting scene radiance can suffer, sometimes significantly.

An alternative method for scene radiance estimation was based on non-parametric

kernel regression. In this scheme, the scene radiance and local atmospheric light are

alternately estimated over several iterations using a locally adaptive filtering opera-

tion. Furthermore, an adaptive smoothing parameter is proposed to compensate for

the dependence of the noise level on the transmission. To initialize the iterations, pilot

estimates for the atmospheric light and transmission map are required. These are esti-

mated from the BM3D denoised image. Since the atmospheric light and transmission

map are not sensitive to oversmoothing, this scheme serves well even when BM3D

must be tuned using the Q Metric.

Comparing the two methods, the process of denoising followed by dehazing

gives the best results when the exact amount of noise is known. However, when the

noise must be estimated, the iterative procedure outperforms the first method when

the amount of noise is low, and is competitive when the amount of noise is relatively
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high. When the results of processing on a real noisy hazy image are compared, the iter-

ative method appears more visually appealing than denoising followed by dehazing.

In the following chapter, we conclude the thesis and present possibilities for

future work.
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(a) Noisy Scene Radiance, σn = 0.01 (b) Noisy Scene Radiance, σn = 0.05

(c) Scene Radiance Best MSE, σn = 0.01 (d) Scene Radiance Best MSE, σn = 0.05

(e) Scene Radiance Best Q, σn = 0.01 (f) Scene Radiance Best Q, σn = 0.05

Figure 4.19: With the adaptive smoothing parameter (Eq. (4.38)) results from using

the best Q are visually comparable to results from minimizing the MSE, with the low

noise case (σn = 0.01) being slightly oversmoothed, and the higher noise case (σn) being

slightly undersmoothed. In all cases the adaptive smoothing parameter improves the

scene radiance versus the noisy case.
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(a) DD, MSE = 3.8×10−3 (b) hconst , MSE = 2.4×10−3

(c) had ap1, MSE = 2.2×10−3 (d) had ap2, MSE = 2.5×10−3

Figure 4.20: Results for image in Fig. 4.5a with σn = 0.01.
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(a) DD, MSE = 4.8×10−3 (b) hconst , MSE = 5.3×10−3

(c) had ap1, MSE = 4.7×10−3 (d) had ap2, MSE = 4.9×10−3

Figure 4.21: Results for image in Fig. 4.5a with σn = 0.05.
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(a) Hazy Image (Noise Free) (b) Recovered Scene Radiance (Noise Free)

Figure 4.22: Source Image for examples in Fig. 4.23 and Fig. 4.24.
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(a) DD, MSE = 2.9×10−3 (b) hconst , MSE = 2.7×10−3

(c) had ap1, MSE = 2.6×10−3 (d) had ap2, MSE = 2.7×10−3

Figure 4.23: Results for Fig. 4.22a with σn = 0.01.
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(a) DD, MSE = 4.5×10−3 (b) hconst , MSE = 6×10−3

(c) had ap1, MSE = 5.9×10−3 (d) had ap2, MSE = 4.9×10−3

Figure 4.24: Results for Fig. 4.22a with σn = 0.05.
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(a) had ap1 (b) DD (c) Noisy

(d) Close up, had ap1 (e) Close up, DD (f) Close up, Noisy

Figure 4.25: Scene radiance results from the real noisy example from figure Fig. 4.2.

Using the iterative method with had ap1 results in a slightly more detailed image.
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Chapter 5

Conclusion

In this thesis we have addressed the problem of simultaneously removing

haze and noise from a single image, and have made several novel contributions. The

first is the adaptation of an existing technique, the dark channel prior [9], for estimating

haze from a single clean hazy image to the case of a single noisy hazy image. The dark

channel prior proved to be sensitive to noise, and so denoising the input image as a pre-

processing step was proposed. Furthermore, we have directly compared the results of

two existing transmission map refinement methods and considered their applications

in the presence of noise. Both methods were found to be robust to low levels of noise;

however, artifacts became apparent when the noise level was increased. Denoising the

guide image prior to refinement is sufficient to suppress these artifacts, while main-

taining a visually satisfying refined transmission map. Finally, we have presented two

effective methods for final scene radiance recovery. The first method treats haze and

noise separately by denoising the image as a pre-processing step to dehazing. The sec-

ond method considers removing haze and noise simultaneously through an iterative

kernel regression based approach using an adaptive kernel. In comparing these two
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methods, we found that when the noise level is known or can be precisely estimated,

simply denoising prior to dehazing provides the best results when paired with a state-

of-the-art denoising algorithm. However, this approach is sensitive to both under- and

over-smoothing in the denoising step. This is especially true in low noise cases, when

a small quantitative error in noise estimation can mean a large relative error, with any

degradation remaining after denoising being further amplified in the dehazing pro-

cess. The iterative approach proves to be more robust, offering visually comparable

results to the first method when the noise level is known, and matching or exceeding

performance of the first method both in terms of MSE and subjective visual quality

when the noise level must be estimated.

Chapter 2 addressed the problem of haze estimation using the “dark channel

prior," proposed in [9]. We found that although effective for clean images, the accuracy

of the method is extremely sensitive to noise. In order to improve estimation of the

dark channel, the input image must be denoised first. Furthermore, in the case that the

exact level of noise is unknown, we found that it is far better to “over-"denoise than

it is to “under-"denoise. From this denoised image, both the atmospheric light and a

coarse transmission map can be accurately estimated.

The transmission map estimated directly using the dark channel prior suf-

fers from block artifacts, and so it is necessary to further refine it before recovering the

scene radiance. Accordingly, Chapter 3 reviewed two related methods for performing

this refinement that use the hazy image as a guide for filtering the transmission map.

The first method, called the “Matting Laplacian," in [9] was originally proposed for

image matting in [10]. Although this provides visually satisfying results, it involves

the inversion of large matrix, and so can be computationally expensive. An alternative
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refinement method, called the “Guided Filter," was proposed in [14] and is equivalent

to one Jacobi iteration in solving the cost function for the Matting Laplacian. Com-

putation of the Guided Filter is independent of filter size, and so can quickly achieve

visually satisfying results by using a large filter radius. Both methods are robust to

low to moderate amounts of noise, and in the case that the noise level is high, the

guide image can be pre-processed with a denoising algorithm to suppress artifacts.

Chapter 4 discussed the problem of scene radiance recovery once the atmo-

spheric light and transmission map have been estimated. First we considered the case

of directly dehazing the image, disregarding the noise. We showed that any noise

present in the hazy image is amplified in proportion to the haze content, and so even

when the amount of noise appears negligible in the input image, it can become a sig-

nificant factor in the recovered scene radiance. Two methods were proposed to remedy

this problem. The first method treated haze and noise separately by denoising the im-

age prior to dehazing. In contrast, the second method performed dehazing and denois-

ing simultaneously through an iterative, kernel regression based approach. Further-

more, for this method, an approximately optimal adaptive smoothing parameter was

proposed. When paired with a state-of-the-art denoising algorithm, the first method

performed well, providing visually satisfying results. In the case that the noise level

was known a priori, denoising prior to dehazing provided the best results in terms of

MSE. Although worse in terms of MSE, the iterative approach provided results visu-

ally comparable to the first approach when the noise was known. When the noise level

had to be estimated, the first method proved to be sensitive to errors in choosing the

amount of denoising, due to amplification of errors in the dehazing process. In the case

of “under"-denoising, even small amounts of noise left in the input image can become
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apparent in the dehazed result. In the case of “over"-denoising, significant details are

lost in hazy regions. In this situation, the iterative approach achieved superior results

both in terms of MSE and subjective visual quality in low noise cases, with comparable

results in the high noise cases.

5.1 Directions for Future Work

Beyond the work presented in this thesis, there are several areas that deserve

further research.

5.1.1 Parameter Estimation

There are a number of parameters that must be chosen throughout the dehaz-

ing process. For haze estimation, this includes dark channel patch size and refinement

parameters. Although some “good" parameters have been found empirically, these

may only work well for some images. It is desirable to automatically choose these pa-

rameters based on some measured features from the input image. This may be possible

using the Q metric [21] that was used for tuning the denoising algorithms in this thesis.

5.1.2 Improved Dehazing Algorithm

For this thesis, we used the dark channel prior for haze estimation, and al-

though this method provides good results for colorful images, it tends to over-estimate

the haze content in images containing many gray or white objects. We also consider

only a simple pixel-wise degradation model, which may not be true in cases where the

haze is dense and light from the scene radiance may suffer from blurring effects due to

heavy scatter.
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5.1.3 Video

Another potential topic of research is expanding the presented haze removal

and denoising process to video. He et al. have supplied video results in the supple-

mentary material for [9]. The restored videos are compelling; however, it appears that

these sequences are simply an application of the algorithm independently on individ-

ual video frames. More recently, Zhang et al. [37] found additional performance gains

by considering the video frames together, using the dark channel prior and Guided

Filter for haze estimation and refinement, and Markov random fields to increase spa-

tial and temporal coherence. Noise, however, was not addressed in their haze removal

process, and so is an open problem.
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Appendix A

Optimal Smoothing Parameter Derivation

In this section we present a derivation of an approximate expression for the

local mean squared error of a zeroth order kernel regression estimate using the locally

adaptive kernel proposed in [30]. From this expression, we further derive a locally

optimal smoothing parameter that approximately minimizes the mean squared error

for each window where the assumptions hold true.

A.1 Zeroth Order Kernel Regression Estimate

The general data model for kernel regression in 2-D is given by:

yi = z(xi )+εi , ∀ xi ∈ w, i = 1, . . . , N (A.1)

where yi is a noisy measurement at spatial coordinate xi = [x1i , x2i ]T , z( · ) is the un-

specified regression function, εi is zero mean I.I.D. measurement noise with variance

σ2, and w is a window around the point of interest at coordinate x, containing N sam-

ples. Here we assume that the sample positions are non-random and equally spaced.
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A local Taylor expansion of yi is given by:

z(xi ) = z(x)+ {∇z(x)}T (xi −x)+ 1

2
(xi −x)T {H z(x)}T (xi −x)+·· · (A.2)

where x is a spatial coordinate, ∇ is the gradient (2 × 1) operator, and H is the Hessian

(2 × 2) operator, i.e.:

∇z(x) =
[
∂z(x)

∂x1
,

∂z(x)

∂x2

]T

, H z(x) =

 ∂2z(x)
∂x2

1

∂2z(x)
∂x1∂x2

∂2z(x)
∂x1∂x2

∂2z(x)
∂x2

2

 (A.3)

Eq. (A.2) is true in the limit as the number of terms goes to infinity. For zeroth order

kernel regression, we fit a zeroth order model to the data, i.e.:

z(xi ) ≈ z(x) ∀ xi ∈ w, i = 1, . . . , N (A.4)

where x is the coordinate of interest. Thus our kernel regression estimate is found from

the following optimization problem:

min
ẑ(x)

N∑
i=1

[
yi − ẑ(x)

]2 KCi (xi −x) (A.5)

where KCi (xi −x) is the adaptive kernel proposed in [30] and reviewed in Chapter 4:

KCi (xi −x) =
√

det(Ci )

2πh2 exp

(
− (xi −x)T Ci (xi −x)

2h2

)
(A.6)

where h is a global smoothing parameter and Ci is the regularized gradient covariance

matrix explained in Chapter 4. This is a simple weighted least-squares problem, with

the caveat that the weights are a function of the given data. The solution to this can be

written as:

ẑ(x) =
∑N

i=1 KCi (xi −x)yi∑N
i=1 KCi (xi −x)

(A.7)

91



A.2 Mean Squared Error of Estimate

A typical measure for the performance of an estimator is the mean squared

error between the estimate and the true signal. Since the true signal is not restricted

to any specific expression, we compare our estimate to the local Taylor expansion of

the signal (Eq. (A.2)). Furthermore, since our regression kernel is non-linear, because

it depends on the measured data, finding an exact expression for the mean squared

error is quite difficult. Therefore we make some simplifying assumptions, making the

derived mean squared error only approximate, but also giving us a more intuitive

expression.

The first assumption is that Ci does not vary significantly in a local window.

This should hold true if the window size is sufficiently small, and the gradients change

in a smooth manner. From this we have:

Ci ≈ C ∀ i ∈ w, i = 1, . . . , N (A.8)

where C is the gradient covariance matrix at the coordinate of interest:

C =

C11 C12

C12 C22


Therefore:

KCi (xi −x) =
√

det(Ci )

2πh2 exp

(
− (xi −x)T Ci (xi −x)

2h2

)
≈

p
det(C)

2πh2 exp

(
− (xi −x)T C(xi −x)

2h2

)
(A.9)

So we can now refer to KCi as KC to reflect that its form is approximately constant

locally. We notice now that this simplified kernel has the same form as a bivariate

Gaussian distribution, which for a random variable y = [y1, y2]T with mean µy = E(y) =
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[µ1,µ2]T and covariance Σ= E((y−µy )(y−µy )T ) is described by the probability density

function[38]:

p(y) = 1

2π
p

det(Σ)
exp

(
−1

2
(y−µy )TΣ−1(y−µy )

)
(A.10)

This is exactly our kernel with (y−µy ) → (xi −x) and Σ→ ( 1
h2 C)−1. Note that:

(
1

h2 C
)−1

= h2

det(C)

 C22 −C12

−C12 C11

 (A.11)

Our second assumption is that we have a sufficiently large window with a sufficient

number of samples, such that:

N−1
N∑

i=1
KC(ui )ui ≈

∫
uKC(u)du (A.12)

where we make the substitution ui = xi − x, and let
∫

be shorthand for
∫ ∞
−∞. Without

loss of generality, we can let the position of interest at the center of the window be

x = [0, 0]T . Now recalling that the definition for expected value is E(u) = ∫
y p(y)dy, and

relating our kernel function to the probability density function in Eq. (A.10), we can

write the following [38]: ∫
uKC(u)du ≈ 0 (A.13)

and

∫
u2

1KC(u)du ≈ h2

det(C)
C22 (A.14)∫

u2
2KC(u)du ≈ h2

det(C)
C11 (A.15)∫

u2
12KC(u)du ≈− h2

det(C)
C12 (A.16)

With these assumptions, we can now proceed with finding the approximate

mean squared error of our estimate. First recall that the mean squared error can be
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expressed in terms of variance and bias as the following [31]:

MSE (ẑ(x)) = var (ẑ(x))+b2(ẑ(x)) (A.17)

where

var (ẑ(x)) = E(ẑ2(x))−E 2(ẑ(x)) (A.18)

and

b2(ẑ(x)) = (E(ẑ(x))− z(x))2 (A.19)

Recalling Eq. (A.7), the variance of our estimate is:

var (ẑ(x)) = E

((∑N
i=1 KC(xi −x)yi∑N

i=1 KC(xi −x)

)2)
−E 2

(∑N
i=1 KC(xi −x)yi∑N

i=1 KC(xi −x)

)
(A.20)

= E

((∑N
i=1 KC(xi −x)(z(xi )+εi )∑N

i=1 KC(xi −x)

)2)
−E 2

(∑N
i=1 KC(xi −x)(z(xi )+εi )∑N

i=1 KC(xi −x)

)
(A.21)

= E

((∑N
i=1 KC(xi −x)z(x)∑N

i=1 KC(xi −x)

)2)
+2E

(∑N
i=1 KC(xi −x)z(xi)εi∑N

i=1 KC(xi −x)

)
+

E

((∑N
i=1 KC(xi −x)εi∑N

i=1 KC(xi −x)

)2)
−E 2

(∑N
i=1 KC(xi −x)z(xi )∑N

i=1 KC(xi −x)

)
−

E 2

(∑N
i=1 KC(xi −x)εi∑N

i=1 KC(xi −x)

)
(A.22)

= E 2

(∑N
i=1 KC(xi −x)εi∑N

i=1 KC(xi −x)

)
(A.23)

Since the εi ’s are uncorrelated with E(ε) = 0, we can eliminate cross terms and simplify

this expression to:

var (ẑ(x)) = σ2

N

(
N−1 ∑N

i=1 K 2
C(xi −x)(

N−1 ∑N
i=1 KC(xi −x)

)2

)
(A.24)

≈ σ2

N

∫ (p
det(C)
2πh2

)2
exp

(
−uT Cu

h2 du
)

∫ p
det(C)
2πh2 exp

(
−uT Cu

2h2 du
) (A.25)

≈ σ2

N

p
det(C)

4πh2 (A.26)
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Recalling the Taylor expansion of our underlying signal (Eq. (A.2)), the bias of our

estimate is:

b(ẑ(x)) = E(ẑ(x))− z(x) (A.27)

= E

(∑N
i=1 KC(xi −x)z(x)∑N

i=1 KC(xi −x)

)
+E

(∑N
i=1 KC(xi −x)(∇z(x))T (xi −x)∑N

i=1 KC(xi −x)

)
+

E

(∑N
i=1 KC(xi −x) 1

2 (xi −x)T (H z(x))T (xi −x)∑N
i=1 KC(xi −x)

)
+

·· ·+E

(∑N
i=1 KC(xi −x)εi∑N

i=1 KC(xi −x)

)
− z(x) (A.28)

= E

(∑N
i=1 KC(xi −x)(∇z(x))T (xi −x)∑N

i=1 KC(xi −x)

)
+

E

(∑N
i=1 KC(xi −x) 1

2 (xi −x)T (H z(x))T (xi −x)∑N
i=1 KC(xi −x)

)
+·· · (A.29)

We can neglect higher order terms, since they will have a small effect relative to the

first and second order terms, and recalling Eq. (A.12) to Eq. (A.16) we have:

b(ẑ(x)) ≈
∫ p

det(C)
2πh2 exp

(
−uT Cu

2h2

)
uT ∇z(x)du∫ p

det(C)
2πh2 exp

(
−uT Cu

2h2

)
du

+
∫ p

det(C)
2πh2 exp

(
−uT Cu

2h2

)
1
2 uT H z(x)udu∫ p

det(C)
2πh2 exp

(
−uT Cu

2h2

)
du

(A.30)

≈ 0+
∫ p

det(C)

2πh2 exp

(
−uT Cu

2h2

)
1

2

(
H11u1 +2H12u1u2 +H22u2

2

)
du (A.31)

≈ h2

2det(C)
(H11C22 −2H12C12 +H22C11) (A.32)

b2(ẑ(x)) ≈ h4

4(det(C))2 (H11C22 −2H12C12 +H22C11)2 (A.33)

Thus we have our final expression for the MSE within a window where C is assumed

to be constant:

MSE(ẑ(x)) ≈ σ2

N

p
det(C)

4πh2 + h4

4(det(C))2 (H11C22 −2H12C12 +H22C11)2 (A.34)
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A.3 Optimal Smoothing Parameter

To find the optimal smoothing parameter we minimize Eq. (A.34) with respect

to h:

∂

∂h

(
σ2

N

p
det(C)

4πh2 + h4

4(det(C))2 (H11C22 −2H12C12 +H22C11)2
)
= 0 (A.35)

−σ
2

N

p
det(C)

2πh3 + h3

(det(C))2 (H11C22 −2H12C12 +H22C11)2 = 0 (A.36)

h =
(

σ2(det(C))5/2

2πN (H11C22 −2H12C12 +H22C11)2

)1/6

(A.37)

Thus we arrive at an expression for our optimal smoothing parameter:

hopt ≈
 σ2(det(C))5/2

2πN (∂
2z(x)
∂x2

1
C22 −2 ∂2z(x)

∂x1∂x2
C12 + ∂2z(x)

∂x2
2

C11)2

1/6

(A.38)
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