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Abstract

Analysis and Approaches To Image Local Orientation Estimation

by

Xiaoguang Feng

Image local orientation estimation plays an important role in many computer

vision and image processing tasks such as edge detection, image segmentation, and

texture analysis. The 2-D local orientation estimation is also directly related to optical

flow estimation, which is the generalization of orientation in a 3-D space/time volume.

This thesis presents an image local orientation estimation method, which is

based on a combination of two already well-known techniques: the principal component

analysis (PCA) and the multiscale pyramid decomposition. The PCA analysis is

applied to find the Maximum Likelihood (ML) estimate of the local orientation. The

multiscale decomposition helps in improving the estimation robustness and accuracy.

The underlying theories of the proposed method, such as directional statistics, the

principle component analysis and the multiscale decomposition are introduced and

discussed.

The proposed technique is shown to enjoy excellent robustness against noise.

It is also shown to achieve an automatic balance between estimation stability and

accuracy. We present both simulated and real image examples to demonstrate the

proposed technique.
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Chapter 1

Introduction

In this chapter we will briefly introduce the image local orientation estimation problem.

We will discuss several previous approaches in orientation estimation. And finally, we

will introduce the organization of this thesis.

1.1 Image Local Orientation

In some image processing or computer vision problems, what we are inter-

ested is not the gray level of the image, but some properties of the image feature.

Image local orientation is an important image feature in many computer vision and

image processing tasks such as edge detection [4], image segmentation, and texture

analysis [25].

For example, in the fingerprint recognition problem, what we are interested

in is the orientation of the fingerprint lines, instead of the brightness value of the
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fingerprint image.

Figure 1.1: A fingerprint image

The 2-D local orientation estimation is also directly related to optical flow

estimation, which can be seen as the generalization of orientation in a 3-D space/time

volume.

As mentioned in [22], the image orientation estimation problem can be gen-

eralized into n-dimension space. For example, in the RGB color space, a specific color

corresponds to a 3-D vector. Then the orientation estimation of the color vector can

be used to match or recognize object in color images.

1.2 Previous Works

Several techniques for orientation estimation have been proposed in the past.

Here in this section we will give some brief introductions of these works.

Most established local orientation estimation techniques are based on the
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analysis of the local gradient field of the image. But the local gradients are very

sensitive to noise, making the estimate of local orientation directly from these rather

unreliable. How to deal with the noise effect is the major problem that all the gradient-

based methods have to face. Perona [24] extended the idea of anisotropic diffusion in

images to orientation maps. It is claimed that by carrying such diffusions forward for

sufficiently long, accurate and effective estimates can be obtained. Bigun et al. [2]

posed the orientation estimation problem as the least-squares fitting of an axis in the

Fourier transform domain. The implementation is actually carried out in the image

spatial domain without doing a Fourier transformation. The solution of the least-

squares fitting problem is shown to be an eigenvalue solution of a matrix derived from

the gradient field of the given image. The implementation method employed in [2]

is directly related to the Principal Component Analysis(PCA) method we propose

in this thesis. But the PCA method is numerically much more stable and efficient.

Another set of techniques is based on steerable filters [11], but they are often limited

in precision and generalization.

Since the noise sensitivity of the gradient operator is the major problem in

gradient-based orientation estimation methods, there are several papers that discuss

about optimizing the local gradient operators. Lyvers [17] examined the accuracy of

different local differential operators in both noiseless case and in the presence of addi-

tive Gaussian noise. Zhou et al. [32] estimated the orientation by Gaussian gradient

filter. The problem of this kind of methods is the scale of the analysis window. In
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order to reduce the noise sensitivity, the width of the Gaussian needs to be big enough,

but this will cause the loss of the estimation localization. Costa et al. [6] introduced

a new operator which is a combination of the gradient-like operator and the valley-

ness operator. The combined operator can be used to estimate orientation in both

the brightness sloped regions and brightness crests-valleys regions of the image. Also

the operator can be optimized to get better bias reduction and noise robustness. The

problem of this operator is it needs a prior knowledge of the texture model.

In contrast to most orientation estimation approaches which are based on

gradient field, Mester [21] introduced an approach which directly estimates a small

central part of the autocovariance function (acf ) of the gray value image and derived

the sought orientation from the direction of the main curvature in the acf origin [21].

It shows that the matrix of the eigenvalue problem in [2] can be directly determined

from the autocovariance function, without computing the gradients. But this method

needs much more computation than the classical simple gradient-based methods.

In order to solve the noise sensitivity problem of the gradient operator, there

is often a need for some local or even global process to ’smooth’ the estimate. However,

by smoothing one gives up localization. A mechanism with both noise robustness and

feature localization is needed. Wilson et al. [31] developed a multiscale orientation

estimation approach, which is closely related to the one we propose here. But our

method of combining the PCA and multiscale is novel, more efficient, and will give

more robust results.
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1.3 Thesis Organization

In this thesis we will introduce a multiscale principal component analysis

method for image local orientation estimation problem. We will start with the intro-

duction and discussion of some underlying theories. In Chapter 2, we will first talk

about directional statistics. We will show that for zero mean Normal distribution

random vectors, the conditional distribution of the vector orientation, given the norm

of vectors equal to one, is the Bingham distribution. And for Bingham distribution,

the optimal (Maximum Likelihood) estimation can be obtained by the Singular Value

Decomposition (SVD) of the data vector matrix, which is the method we will use in

the proposed estimation scheme.

In Chapter 3, we will discuss the SVD and its application in oriented energy

analysis. We will develop the results of the random eigenvalue theory to get the

distribution of an orientation dominance measure (the normalized difference of the

singular values), which will be used in our estimation method.

We will present the multiscale estimation scheme in Chapter 4. We start

with the introduction of the basic Gaussian and Laplacian pyramid. For our task of

orientation estimation, we introduce a multiscale scheme which yields the minimum

variance estimation. A Kalman-filter based optimal (Maximum Likelihood) multiscale

scheme will be discussed and simplified for practical usage. In order to solve the

blocking effect of the multiscale decomposition, we use an overlapped multiscale model

and will give some analysis of its statistical properties.
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In Chapter 5 we will describe the implementation of the proposed estimation

method and provide some experimental results, including the comparisons of some

different estimation methods, on both simulated and real image examples.

Finally, the Chapter 6 is the conclusion of the thesis and a further applica-

tions of the proposed multiscale principal component analysis method will be briefly

introduced.
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Chapter 2

Directional Statistics

In this chapter we will discuss the field of Directional Statistics, which can be seen as

the underlying theory of the orientation estimation problem. We will introduce some

common distributions and show that for the Bingham distribution, the Singular Value

Decomposition(SVD) can be used to find the Maximum Likelihood(ML) estimation of

the orientation, which is the method we propose in this thesis.

2.1 Introduction

Directional statistics [19] is mainly concerned with performing statistical

analysis on the direction of unit random vectors. The standard statistical analy-

sis method for linear random variables are not appropriate here. Special directional

methods which take account of the periodic nature of the directional data are needed.

For more details about the difference between directional statistics and conventional

linear statistics, we refer the reader to [18] and [30].
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Because the concerned vectors in the directional statistics are mainly unit

vectors, the statistical behavior of these vectors can be studied by the distribution

of the vector angle θ. In the next sections, we will introduce some commonly used

distributions. We will start with the von-Mises distribution, which plays a key role

in the directional statistics, analogous to the normal distribution in the conventional

statistics. Actually, as we will show, the von-Mises distribution can be obtained by

conditioning bivariate normal distribution [19].

In some cases, such as our problem of image orientation estimation, the

orientation of an undirected line is of interest. In other words, the unit vectors x

and −x are indistinguishable. Such observations can be described as axes rather

than directions [19]. The probability density function(p.d.f) of axes is antipodally

symmetric:

f(x) = f(−x).

One important axes distribution is the Bingham distribution, which, in 2-D case, is the

2-wrapped von-Mises distribution and also can be obtained by conditioning zero-mean

normal distributions on ‖x‖ = 1.

What is the relationship between Directional Statistics and the image orien-

tation estimation problem? As described in the first chapter, most image orientation

estimation methods are based on the analysis of image gradient. For a given image

f(x, y), the gradient of the image is defined as:

g(x, y) ≡ (gx, gy)T = (
∂f(x, y)

∂x
,
∂f(x, y)

∂y
)T

8



For discrete digital image, the gradient can be approximated by the difference of

neighboring pixels. There are several differential operators for the approximation of

gradient. In our work, we use the gradient() function in Matlab, which computes the

gradient by:

g̃(x, y) ≡ (g̃x, g̃y)T ≈ (
f(x + 1, y)− f(x− 1, y)

2
,
f(x, y + 1)− f(x, y − 1)

2
)T (2.1)

(For the effect of different gradient operators on the accuracy of orientation estimation,

we refer the reader to [17].)

In this work, the image of interest is modeled as being composed of a noiseless

feature image and additive random noise:

f(x, y) = f0(x, y) + n(x, y)

Then the gradient vector g̃, which is approximated by (2.1), can also be seen as the

sum of the gradient of the noiseless image and the gradient of the additive noise:

g̃(x, y) = g̃0(x, y) + g̃n(x, y). (2.2)

From the determined vector g̃0(x, y), we can directly get the image orientation(by

rotating the orientation of g̃0(x, y) by π/2 and normalizing the vector to unit length).

Then the object of the orientation estimation problem is estimating the underlying

ideal gradient vector g̃0(x, y) from the noise-corrupted gradient vector g̃(x, y), which

is a random vector with some distribution. If we restrict the additive noise as Gaussian

noise, then the gradient vector g̃(x, y) will also have Gaussian distribution. As we will

show in next sections, Gaussian distributed vector field has close relationship with
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von-Mises distribution and Bingham distribution, for which the optimal (Maximum

Likelihood) estimation of the orientation is known.

2.2 Von-Mises Distribution

The von-Mises distribution M(µ, κ) [19] has p.d.f as:

f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ) (2.3)

I0(κ) =
1
2π

∫ 2π

0
eκ cos(θ)dθ (2.4)

The parameter µ is the mean of the angles and the parameter κ is called concentration

parameter [19]. The larger the value of κ, the greater the distribution clustering around

the angle µ, just as shown in Fig. 2.1

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K=0.1 

K=0.5 

K=1 

Figure 2.1: The p.d.f of Von-Mises distribution M(0, κ)

From the shape of the von-Mises distribution we can see, the von-Mises
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distribution is very similar to the normal distribution. Actually, for large κ, the

von-Mises distribution M(µ, κ) can be approximated by wrapped normal distribution

N(µ, 1/κ2) [19]. (When κ = 0, M(µ, κ) is the uniform distribution.)

For us, the most important property of the von-Mises distribution is that it

can arise from conditional normal distribution [19]. For a bivariate normal distribution

vector x = r(cos θ, sin θ)T with mean ~µ = r(cosµ, sinµ)T and covariance matrix κ−1I2,

the conditional distribution of θ given r = 1 is M(µ, κ).

For a set of independent and identically distributed (i.i.d) sample vectors,

with angle θ1, . . . , θn, drawn from a von-Mises distribution M(µ, κ). The log-likelihood

function is [19]:

l(µ, κ; θ1, . . . , θn) = n log 2π + κ
n∑

i=1

cos(θi − µ)− n log I0(κ)

= n{log 2π + κR̄ cos(θ̄ − µ)− log I0(κ)}.

Here θ̄ is the mean of the sample angles and R̄ is the average length of the sample

vectors. For given κ, the log-likelihood function l(µ, κ; θ1, . . . , θn) is a function of µ,

and it attain its maximum value when µ = θ̄. Then the maximum likelihood estimate

µ̂ of µ is the mean of the sample angles:

µ̂ = θ̄.

We note that the von-Mises distribution is not directly applicable for the im-

age orientation estimation problem, where the axes, instead of direction, is of interest.
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We will next introduce Bingham distribution, which is an important axes distribution

for our task, in the following section.

2.3 Bingham Distribution

Before we introduce the Bingham distribution, let us first go back to the

relationship between bivariate normal distribution and von-Mises distribution. From

last section we recall that the von-Mises distribution can be obtained by conditioning

normal distribution N(µ, κ−1I2) with ‖x‖ = 1. We can extend this relationship to a

more general case [19]. Let x have a normal distribution as:

x ∼ N(−1
2
κ(A + cI2)−1µ,−1

2
(A + cI2)−1). (2.5)

where A is a symmetric 2 × 2 matrix and c is such that A + cI2 is negative definite.

Then the conditional density of x given ‖x‖ = 1 is:

f(x; µ, κ, A) =
1

α(κ,A)
exp{κµTx + xT Ax}, (2.6)

which is called the Fisher-Bingham distribution [19].

If A = 0 then (2.5) reduces to white Gaussian distribution, and the Fisher-

Bingham distribution ( 2.6) will become the von-Mises distribution. If κ = 0 then (2.5)

reduces to a zero-mean normal distribution, and the Fisher-Bingham distribution (2.6)

will become the Bingham distribution. If both A = 0 and κ = 0, then (2.5) reduces

to a simple zero-mean white normal distribution, and (2.6) will turn into a uniform

distribution.
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The p.d.f of Bingham distribution is [19]:

f(±x; A) =1 F1(
1
2
,
p

2
, A)−1 exp{xT Ax} (2.7)

1F1(
1
2
,
p

2
, A) =

∫

Sp−1
ex

T Axdx. (2.8)

where p is the dimension of the vectors, Sp−1 is the unit sphere in p dimen-

sions. In the 2-D case, the Bingham distribution reduces to the 2-wrapped von-Mises

distribution, which means, given the p.d.f of von-Mises distribution f(θ), the p.d.f of

Bingham distribution f∗(θ) = f(2θ) [19]:

A =




cos 2µ sin 2µ

sin 2µ − cos 2µ




f(θ; µ, κ) =
1

2πI0(κ)
eκ cos 2(θ−µ).

Bingham distribution is important for our task of image orientation estima-

tion because it can arise from conditional normal distribution. We will discuss the

optimal (Maximum Likelihood) estimate for Bingham distribution in next section.

2.4 Maximum Likelihood Estimation

For a set of random vectors x1, . . . ,xn from the Bingham distribution (2.7),

the log-likelihood function is:

l(A;x1, . . . ,xn) = n{log tr(AT̄ )− log1 F1(
1
2
,
p

2
, A)}

T̄ =
1
n

n∑

i=1

xixT
i .
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From [19], the maximum of tr(AT̄ ) can be obtained when µ = arg(v1), where

v1 is the first eigenvector of the matrix T̄ . Then the maximum likelihood estimate µ̂

of µ is:

µ̂ = arg(v1).

Note that this eigenvector of the scatter matrix T̄ is equivalent to the singular

vector of the data matrix X, corresponding to its largest singular value:

X =




xT
1

xT
2

...

xT
n




=




r1 cos θ1 r1 sin θ1

r2 cos θ2 r2 sin θ2

...
...

rn cos θn rn sin θn




. (2.9)

And the singular value decomposition(SVD) method is numerically much more stable

and efficient. We will discuss more details about the SVD method in the next chapter.

How to apply this maximum likelihood estimate to the image orientation

estimation problem? Remember in the first section of this chapter, we describe the

gradient vectors of the concerned image as a set of random vectors with some dis-

tribution. If we assume the additive noise to be Gaussian noise (the most common

assumption in signal/image processing), then the gradient vectors g will also have

Gaussian distribution: g ∼ N(µ, C). As we discussed before, if the gradient vectors

have white Gaussian distribution, say, g ∼ N(µ, σ2I2), then the direction of the vec-

tors given ‖g‖ = 1 is von-Mises distribution. And the maximum likelihood estimate

of the underlying dominant direction is given by the mean of the sample vectors (Note

14



that this is not applicable for our task, where the axes but not direction is interested).

If the gradient vectors have zero-mean Gaussian distribution, g ∼ N(0, C), then the

axes of the gradient vectors given ‖g‖ = 1 is Bingham distribution. And the maximum

likelihood estimate of the underlying dominant axes can be obtained from the singular

value decomposition of the data matrix (2.9), which is the method we proposed in this

thesis.

Note that for most case in the image orientation estimation problem, the gra-

dients can be locally modeled as a deterministic gradient vector plus a noise vector,

as shown in (2.2). Suppose the additive noise vectors have zero mean and the estima-

tion window is big enough to contain multiple image feature lines, then the determine

gradient vectors also have zero mean, and finally the noisy gradient vectors have zero

mean. The assumption of zero mean is satisfied in most of our test images.

In this chapter, we introduced the underlying theory of the image orientation

problem: directional statistics. As we know, in the literature dealing with image

orientation, there is rarely an explicit reference to the field of directional statistics.

We showed that for zero-mean normal distribution gradient vectors, which is true

for most case in our tests, the axes of those vectors has Bingham distribution and

the maximum likelihood estimate of the dominant orientation can be obtained by the

singular value decomposition method. We will discuss more details of the SVD method

in the next chapter.
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Chapter 3

Principal Component Analysis

In this chapter we will introduce the Principal Component Analysis (PCA) method

for image orientation estimation. As described in last chapter, the Singular Value

Decomposition (SVD), which is the computational basis of PCA, can be used to obtain

the maximum likelihood estimate of the dominant orientation for images with Gaussian

additive noise. In this chapter we will discuss the SVD and the orientation estimation

problem from another point of view. We will also introduce an orientation dominance

measure R and discuss its statistical behavior.

3.1 Introduction

Principal Components Analysis is used to compute the dominant vectors

representing a given data set and also provides an optimal basis for minimum mean-

squared reconstruction of the given data. It is also sometimes referred to as the

Karhunen-Loeve Transform [7]. The computational basis of PCA is the calculation of
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the Singular Value Decomposition of the data matrix, or equivalently the eigenvalue-

decomposition of the data covariance matrix. Here we describe the method in terms

of the SVD. For more details about SVD and PCA, we refer the reader to [7], [29] and

[23].

3.2 Singular Value Decomposition

Any given m×n matrix A (without losing generality, assume m > n) can be

decomposed as:

A = USV T , (3.1)

where S is an augmented diagonal m× n matrix with entries s1, . . . , sn:

S =




s1

. . .

sn

0 · · · 0

...

0 · · · 0




m×n

.

U and V are orthonormal matrices such that U is m×m and V is n×n. The diagonal

entries of S, {s1, . . . , sn}, are called the singular values of matrix A, the columns of

the matrix U are called the left singular vectors of A and the columns of the matrix

V (or the rows of matrix V T ) are called the right singular vectors of A.

Since the last m−n rows of the matrix S are all zeros, the corresponding last
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m − n left singular vectors ui, i = n + 1, . . . ,m are not used. Another more efficient

way to write the decomposition is called economical SVD, in which the matrix U is

an m× n orthonormal matrix that only contains the first n left singular vectors, S is

an n× n diagonal square matrix. We will use the economical SVD in our method.

One important application of SVD in signal processing is the analysis of

oriented energy [7]. The oriented energy of a matrix A, measured in the direction q,

is defined as:

Eq(A) =
n∑

k=1

(qTak)2,

where ak, k = 1, . . . , n are the columns of A and ‖q‖ = 1. Doing SVD of A as shown in

(3.1), then each direction of the critical oriented energy is generated by a right singular

vector with the critical energy equal to the corresponding singular value squared [7].

The left singular vectors represent each sample’s contribution to the corresponding

principal direction. This can be illustrated in 2-D in Figure 3.1.

In Figure 3.1, the sample points have maximal oriented energy at the angle

π/4. The two vectors represent the singular vectors of the sample point matrix, which

is a n × 2 matrix, where n is the number of sample points and the two columns are

the x and y values of the sample points. The lengths of the vectors represent the

corresponding average energy in that direction: ei = s2
i /n, i = 1, 2, where si are the

corresponding singular values.

How can we apply the oriented energy analysis to the image orientation

estimation problem? As discussed in Chapter 2, for zero-mean Gaussian distributed
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Figure 3.1: Oriented Energy and Singular Vectors

gradient vectors, the maximum likelihood estimate of the underlying orientation can

be obtained by the SVD of the gradient matrix. Here we will discuss this problem as

a least square estimation [10], without considering the distribution.

Let us assume that in the image of interest f(x, y), the orientation field is

piecewise constant (this assumption is only needed to get a single estimate at each

location, we don’t need this assumption to implement our approach). Under this

assumption, the gradient vectors in an image block should on average be orthogonal

to the dominant orientation of the image pattern. So orientation estimation can be

formulated as the task of finding a unit vector q, to maximize the average of angles θi

between q and gradient vectors gi (i = 1, . . . , n, within a local window), as shown in

Figure 3.2.
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Figure 3.2: Gradient vectors and the dominant orientation.

Equivalently we can minimize:

n∑

i=1

(qTgi)
2 = qT

n∑

i=1

(gig
T
i )q = qT Cq

subject to ‖q‖ = 1, where

C =




∑n
i=1 g2

i,x

∑n
i=1 gi,xgi,y

∑n
i=1 gi,xgi,y

∑n
i=1 g2

i,y


 ,

gi,x and gi,y are derivatives in x and y direction at pixel location indexed by i, respec-

tively. This problem is a constrained optimization problem and can be solved using

Lagrange multipliers:

f(q, λ) = qT Cq− λ(qTq− 1)

The extremum can be found by taking the derivative of f(q, λ) with respect to q:

∂f

∂q
=

∂

∂q
(qT Cq)− λ

∂

∂q
(qTq)

= 2Cq− 2λq.

Set it equal to zero, we will get:

(C − λI)q = 0.
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This is a standard eigenvalue problem. So the unit vector q minimizing qT Cq is the

eigenvector of C corresponding to the smallest eigenvalue, or equivalently, the singular

vector of X corresponding to the smallest singular value; X is defined in (2.9). Note

that the SVD method is numerically much more stable and efficient.

In order to get the local orientation estimate, we first divide the region of

interest into small blocks. Within each block, rearrange the gradient vectors gi =

[gi,x, gi,y]T , i = 1, . . . , n into an n × 2 matrix as (2.9). Then compute the economical

SVD of the gradient matrix:



g1,x g1,y

g2,x g2,y

...
...

gn,x gn,y




=




u1,x u1,y

u2,x u2,y

...
...

un,x un,y







s1 0

0 s2







v11 v12

v21 v22




The image orientation can be obtained from the first right singular vector (note that

the gradient vectors are orthogonal to the image orientation we seek, so after obtaining

the principal direction of the gradient vectors, we need to rotate by π/2 to get the

orientation we want). Recall that the singular values represent the square root of the

energy in corresponding principal directions. So the difference between the singular

value s1 and s2 can be used as a measure of accuracy or dominance of the estimate.

However, since s1 − s2 is an energy dependent measure, the quantity

R =
s1 − s2

s1 + s2
(3.2)

will be more suitable for this task [2]. Note that when the gradient vectors have only
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one clean dominant orientation, s2 will equal to zero and then R will equal to 1. On

the other hand, if there is no dominant orientation, s1 ≈ s2 and then R will be close

to zero. For other intermediate cases, R has values ranging from 0 to 1.

We will discuss in more details the statistical behavior of the dominance

measure R, in next section.

3.3 Distribution of Random Singular Values

It is well known in the earlier works that the singular values can be seen as

the measure of concentration around the principal axes [20]. In this section, we will try

to discuss the statistical properties of the dominance measure R in a more systematic

way for the orientation estimation problem.

First, note that R, defined as a normalized difference of the singular values

in (3.2), is related to the condition number k of the gradient matrix X:

k =
s1

s2
,

R =
k − 1
k + 1

.

From the theory of random matrices [9], we know the p.d.f of the condition number

k of an n× 2 zero mean i.i.d white Gaussian matrix is:

fK(k) = (n− 1)2n−1 k2 − 1
(k2 + 1)n

kn−2

(here we discuss n×2 matrix because in our approach of image orientation estimation,

the gradient matrix is n× 2, but much more general results are available). From basic
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statistics we know, given the p.d.f of a random variable x as fX(x), and a function

x = h(y), then the p.d.f of y can be calculated as:

fY (y) = fX(h(y))|h′(y)|

In our case, we know the p.d.f of the condition number k, and we know the function

relating k to R, we are trying to get the p.d.f of R:

R =
k − 1
k + 1

=⇒ k =
1 + R

1−R
,

∂

∂R
(
1 + R

1−R
) =

2
(1−R)2

,

then we have:

fR(R) = (n− 1)2n−1
(1+R
1−R)2 − 1

((1+R
1−R)2 + 1)n

(
1 + R

1−R
)n−2 2

(1−R)2
.

Simplifying, we get the p.d.f of R for an n× 2 zero mean i.i.d Gaussian matrix:

fR(R) = 4(n− 1)R
(1−R2)n−2

(1 + R2)n
(3.3)

This density is illustrated in Figure 3.3.

Note that this distribution is independent of the variance of the Gaussian

matrix, but only depends on the size of the matrix, as shown in Figure 3.4.

This p.d.f is only valid when the Gaussian matrix has zero mean. Monte

Carlo simulation shows that by changing the mean value, the shape and the position

of the p.d.f will also change, as shown in Figure 3.5.

How to make use of this p.d.f in the orientation estimation problem? We can

use this p.d.f to do a significance test [8] to distinguish between a pure noise image
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Figure 3.3: The p.d.f of dominance measure R, n = 16.
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Figure 3.5: The p.d.f of R for different mean (n=16).

and an image with orientation pattern. First we set a significance level threshold R∗.

For any given image block, we perform the PCA-based estimation, if the R is less than

R∗, it is very likely that the corresponding image block is only pure white noise and

contains no orientation information. As shown in Figure 3.6.

In Figure 3.6, the test image (shown in left side) has oriented lines with

additive noise. We do the estimation within 4× 4 blocks. The estimated orientation

Figure 3.6: A significance test on the dominance measure R
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map is shown in the right part of Figure 3.6. If we set the significance threshold as 0.3

(significance level of 93%), all the blue vectors will be eliminated. We can see that,

by doing so, we can eliminate most error estimates, but the problem is we will also

eliminate some correct estimates. That is the limitation of the significance test [8].

Note that the value of the dominance measure R is related to the size of the

estimation blocks. So only by knowing the p.d.f of R, as a function of the block size,

we can determine the threshold appropriately.

3.4 Conclusion

In this chapter we discussed the Principal Component Analysis in the ori-

entation estimation problem. We presented the method of using SVD to get the

least-square estimate of the orientation. We also introduced an orientation dominance

measure R and discussed the statistical properties of R, which have not been fully

discussed in previous works. Our tests show that the SVD method will give quite

accurate and stable estimate of the image orientation, as shown in Figure 3.7 and 3.8.

In the next chapter, we will introduce multiscale decomposition, which will

further improve the stability of the estimate and get adaptive compromise between

the resolution of the orientation field and its relative accuracy.
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Figure 3.7: The fingerprint test image

Figure 3.8: The fingerprint image with orientation map overlaid.
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Chapter 4

Multiscale Estimation

In this chapter we discuss a multiscale approach to the PCA-based orientation esti-

mation. We will start with the pyramid decomposition, and discuss how to choose

propagation weights in the multiscale approach to obtain optimal estimates. We will

also introduce an overlapped multiscale model, which can be used to eliminate the

blocking effect of the multiscale method.

4.1 Introduction

Multiscale signal and image analysis have been investigated for some time

with applications in data compression [3], edge detection [26], and segmentation [28],

etc. The multiscale model describes images in terms of an evolution from coarse to fine

scales, which is a more natural way than the common raster scan model and is also

more similar to the human visual system. Another benefit of the multiscale approach

is the significant computational efficiency. For more discussions about the multiscale
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image model, we refer the reader to [15].

Why use the multiscale approach in image orientation estimation? As we

discussed in the first chapter, a major problem of the orientation estimation is the

noise sensitivity of the gradient operator. In order to depress the noise effect, one

solution is using larger estimate window, since more neighboring gradients will be

used to get the estimate and the averaging process will depress or eliminate the noise

effect. But this will cause the loss of the estimate resolution. A mechanism with

both noise robustness and feature localization is needed. Multiscale model provides

an efficient way to combine the information from coarse scales and fine scales. As we

will describe in following sections, by choosing appropriate propagation weights, the

multiscale approach can be used to obtain Minimum Mean Square Error (MMSE)

estimate, which is based on a Kalman filter-like multiscale model, introduced in [5].

A problem of the multiscale approach is the blocking effect. Actually, block-

ing effect exits in any block-based method, but because multiscale approach combines

information from coarse scales, with larger block, this makes the blocking effect more

obvious. A simple way to eliminate the blocking effect is doing spatial smoothing

on the resulting estimate. But this smoothing will cause a decrease in the resolution

of the estimate. Another, better, method to solve this problem is using overlapped

blocks in the multiscale model, as introduced in [14] and [27]. We will use the idea of

overlapped blocks in our approach and discuss its properties.

According to our research of the previous literature in orientation estimation,
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Figure 4.1: An example of image pyramid.

there is only one paper clearly talking about using multiscale estimate approach [31],

by R Wilson et al., their method is closely related to the one we propose here. But our

method of combining the PCA and multiscale is novel, more efficient, and will give

more robust results. We will discuss more details about the difference of our method

and Wilson’s approach in the last section of this chapter.

4.2 Pyramid-based Estimation

Before introducing our multiscale estimation approach, we first need to define

the image pyramid. Image pyramid is a collection of copies of an original image in

which both sample density and resolution are decreased [1], as an example shown in

Figure 4.1.

The bottom layer of the pyramid is the original image. Without losing gener-

ality, denote the first(bottom) layer as G0, and increase the layer number index as the

pyramid goes up to lower resolution. More specifically, low-pass-filter G0 and subsam-
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ple it by 2 to obtain the next pyramid layer G1. Repeat the low-pass-filter/subsample

steps to generate remaining pyramid layers [1]:

Gl(i, j) =
∑
m

∑
n

w(m,n)Gl−1(2i + m, 2j + n)

where 0 < l < N , N is the total number of layers in the pyramid, and w(m,n) is

the low pass filter weighting function. If we use Gaussian low pass filter, the image

pyramid is often referred as a Gaussian pyramid. Another type of image pyramid,

which is often referred to as Laplacian pyramid, is obtained by recursively subtracting

each Gaussian pyramid layer (up-sampled to fit the size) from the next high resolution

layer [15]. Laplacian pyramid is composed of bandpass images. Since our goal of using

multiscale approach is to depress noise effect, Gaussian pyramid is more appropriate

for our task.

There are three major steps in our multiscale estimation approach, as shown

in Figure 4.2.

1. Built up the image pyramid. From the original image, repeat the low-pass-

filter/subsample steps as described in this section to get the Gaussian image

pyramid, then calculate gradients at each scale. Another option is to calculate

the gradients of the original image first, then build up a gradient pyramid. These

two options will give similar results, as we will show the test results in the next

chapter.

2. PCA-based estimation on each layer. On each layer of the image pyra-

mid(or gradient pyramid), use the PCA-based method introduced in Chapter 3
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Figure 4.2: Multiscale estimation approach.

to estimate the local orientation. This will produce an orientation pyramid, with

orientation maps in different resolutions. Notice in this step the interest image

can be divided into non-overlapped blocks or overlapped blocks. We will discuss

more details later in this chapter.

3. Propagate down the estimation from low resolution to high resolu-

tion. From the top layer of the orientation pyramid (low resolution), propagate

the estimates down. Combine the estimates from different scales to get a final

orientation map.

Among these three steps, we have discussed the first two. Now the problem

is how to combine different scale estimations to get an optimum orientation map. We

will discuss this issue in next two sections.
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4.3 Minimum Variance Estimation

The most straightforward way to propagate the estimates from different scales

is weighted linear combination.

θ̂n = k[n]θγn + (1− k[n])θn. (4.1)

where θn is the estimated orientation angle map on current layer, θγn is the estimated

orientation angle map on the parent layer(with lower resolution, up-sampled to fit the

size), k[n] is the propagation weight, and θ̂n is the resulting orientation estimate for

the current layer. Note that, in order to simplify the description, in this section, we

use orientation angles to model the orientation, while in other sections we use unit

vectors to model it. As we will show in next section, by assuming the variance in x

direction and in y direction are equal, these two models are equivalent.

If we choose the linear combination approach, a natural question is how

to choose the propagation weight k[n]? One commonly used criterion is minimum

variance of the resulting estimate. From (4.1), the variance of θ̂n can be calculated as:

σ2
n̂ = k2[n]σ2

γn + (1− k[n])2σ2
n + 2k[n](1− k[n])Cn,γn,

where σ2
n is the variance of orientation in the current layer, σ2

γn is the variance of

orientation in the parent layer and Cn,γn is the covariance of the orientation between

current layer and the parent layer. The differential of σ2
n̂ with respect to the propaga-

tion weight k[n] is:

∂σ2
n̂

∂k[n]
= 2k[n]σ2

γn − 2(1− k[n])σ2
n + 2(1− 2k[n])Cn,γn.
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Setting the above equal to zero we will yield the propagation weight k[n] to reach the

extremum of the variance of θ̂n as:

k[n] =
σ2

γn − Cn,γn

σ2
n + σ2

γn − 2Cn,γn

The second derivative of σ2
n̂ is:

∂2σ2
n̂

∂k2[n]
= 2σ2

γn + 2σ2
n − 4Cn,γn

From the observation of our simulations, the covariance of the orientation between

two layers is very small compared with the variance of the orientation in each layer.

Hence, the second derivative of σ2
n̂ can be simplified as:

∂2σ2
n̂

∂k2[n]
≈ 2σ2

γn + 2σ2
n > 0,

which means the extremum is minimum. And we can also simplify the propagation

weight as:

k[n] ≈ σ2
γn

σ2
n + σ2

γn

. (4.2)

Note that here calculating the variance of orientation angles is a computationally

expensive task. In order to further simplify the computation, recall that in Chapter

3, we introduced an orientation dominance measure R (3.2). As we described, the

value of R can be viewed to be inversely proportional to the variance of orientation.

Thus, we elect to define the propagation weight in terms of R, which can be directly

obtained from the SVD step:

k[n] ≈ Rn

Rn + Rγn
. (4.3)
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Figure 4.3: Multiscale estimation result of Figure 3.7.

Our tests show that this propagation weight can produce very robust esti-

mation, and since it is a byproduct of the SVD step, it is efficient and will not require

additional computations. A multiscale estimation result is shown in Figure 4.3. Here

we use the same estimation window size as the single scale method in Figure 3.8, but

the multiscale method will produce a more smooth orientation map. From the esti-

mated orientation angle maps of these two methods in Figure 4.4, it is easy to see that

the multiscale method has less noisy estimates than the single scale method. More

test results will be shown in next chapter.

Note that the calculation of gradient on the image boundary is not accu-

rate. So the orientation estimation on the boundary is not reliable. In the multiscale

approach, since we make use of the estimates from low resolution layers, after being

propagated onto the resulting orientation map, the boundary effect is increased, which
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Figure 4.4: Orientation angle maps of single-scale and multiscale methods.

can been seen from Figure 4.3 and 4.4. We can do some post-processing to eliminate

the boundary effect, or extend the image in various ways like replication, or mirroring.

In next section, we introduce a Kalman filter-like multiscale scheme. It is

shown that, this multiscale scheme can also lead to the propagation weight in (4.3).

4.4 Multiscale Kalman Filter

As introduced in [5], multiscale estimation can be modeled within the frame-

work of Kalman filtering across scales:

s[n] = A[n]s[γn] + B[n]w[n]

x[n] = H[n]s[n] + v[n]

where s[n] is the signal in the current layer; s[γn] is the signal in the parent layer

(coarser resolution); x[n] is the measurement in the current layer; w[n] and v[n] are the

36



innovation signal and measurement noise in current layer, respectively. The covariance

matrix of v[n] is denoted as C[n].

From the theory of Kalman Filter [16], the MMSE estimate ŝ[n|n] of the

signal s[n], given all the low resolution layers, can be obtained recursively as:

ŝ[n|n] = ŝ[n|γn] + K[n](x[n]−H[n]ŝ[n|γn]),

where

ŝ[n|γn] = Aŝ[γn|γn],

K[n] = M [n|γn]HT [n](C[n] + H[n]M [n|γn]HT [n])−1,

M [n|γn] = E{(s[n]− ŝ[n|γn])(s[n]− ŝ[n|γn])T }. (4.4)

In the task of image orientation estimation, the signal s[n] is the locally

dominant orientation vector (or equivalently, the locally dominant gradient vector).

The signal in the current layer can be modeled as the corresponding signal from parent

layer (up-sampled to fit the size) plus an innovation vector. And the measurement is

simply the signal vector plus a noise vector. So we consider the simplest form of the

Kalman filter equations:

s[n] = s[γn] + w[n]

x[n] = s[n] + v[n]

The MMSE estimate can be simplified in the form of recursive linear combi-

nation:

ŝ[n] = ŝ[γn] + K[n](x[n]− ŝ[γn])
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where K[n] is the Kalman gain matrix:

K[n] = M [n|γn](C[n] + M [n|γn])−1 (4.5)

M [n|γn] is the covariance matrix of the estimation error, as in (4.4).

The optimal propagation weight K[n] is given by (4.5) in terms of the covari-

ance of estimation error and the covariance of noise. But these quantities are unknown

or hard to determine. In our approach, we assume the innovation vector w[n] and the

measurement noise v[n] are both zero-mean white Gaussian. Then both M [n|γn] and

C[n] will be diagonal matrices. We also assume the variances in x direction and y

direction are same. Then the covariance matrix of the vectors can be simplified as

variance of the orientation angles. The Kalman gain matrix K[n] can be simplified as

a scalar quantity k[n] times the identity matrix, where k[n] can be approximated as:

k[n] ≈ σ2
γn

σ2
γn + σ2

n

where σ2
γn and σ2

n are variances of orientation angles in the parent layer and current

layer, respectively. Note that we obtained the same propagation weight in the last

section (4.2), which is used to obtain the minimum variance estimation. As we did

before, we can simplify the calculation by the dominance measure R, which can be

obtained directly from the SVD estimate step. Our experiments show that this weight

will give more robust estimates than Wilson’s approach. We have:

ŝ[n] = ŝ[γn] +
Rn

Rn + Rγn
(x[n]− ŝ[γn])
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In these two sections, we discussed two multiscale estimation schemes, which

start with similar objectives but lead to the same propagation weight (4.2). The prop-

agation weight in (4.2) is directly related to the variance of the estimated orientation.

In the areas with low SNR, k[n] will give larger weight to the parent layer(coarser reso-

lution), which is more reliable. While in the areas with high SNR, k[n] will give larger

weight to the current layer(finer resolution), which is more accurate. This property

of k[n] enable the multiscale approach to obtain an automatic balance between the

estimate resolution and accuracy, which means in the final estimated orientation map,

the algorithm will use larger estimate window in noisy area to ensure the estimate

reliability and smaller estimate window in clean area to get more accurate estimate.

We will show the experimental results in next chapter.

One problem of the multiscale approach is blocking artifacts. We will in-

troduce an overlapped multiscale scheme in next section to solve this problem. It is

shown that besides solving the blocking effect, overlapped multiscale method can also

obtain more robust estimation results.

4.5 Overlapped Multiscale Model

The blocking effect exists in every block-based methods. The larger the block

size, the more obvious the blocking effect. If the block size is a constant, the blocking

effect can be eliminated by choosing appropriate size of the averaging kernel to smooth

the resulting image. But as we discussed, in our case the resulting orientation map does
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Figure 4.5: Overlapped blocks.

not have constant block size. In the areas with low SNR, the algorithm will tend to use

larger blocks; while in high SNR areas, the algorithm will tend to use smaller blocks.

The different block size makes the simple smoothing processing not appropriate. An

efficient method to eliminate the blocking effect is using overlapped blocks, instead

of separate non-overlapped blocks, as introduced in [14] and [27]. Recall that in the

second step of our multiscale scheme, we need to first divide the current layer image

into local blocks and do the PCA estimation within each block. In order to eliminate

the blocking effect, we can divide the image into overlapped blocks, as shown in Figure

4.5.

Here the solid blocks are non-overlap blocks, dashed blocks are overlapped

blocks and the shaded block is one sample of the overlapped blocks.

We do this overlap block division in each layer of the pyramid and use the

estimation scheme we described before. We use the same block size and overlap size

on every layer, but actually after being propagated to the finest resolution, the low

resolution layer will have larger block size and also larger overlap size. That means, by

using the multiscale approach, the overlap size is automatically adaptive to the block
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Figure 4.6: Overlapped multiscale estimation result.

size, which is desired to eliminate the blocking effect and also keep detail information.

The estimation results are shown in Figure 4.6 and 4.7. It is shown that, comparing

with non-overlap multiscale method, the overlapped multiscale estimation scheme will

get more smooth results. Our further tests also show that the overlapped multiscale

method is more robust to noise than the non-overlap method, as we will show in next

chapter.

4.6 Conclusion

In this chapter we discussed multiscale estimation approaches. Compared

with single scale estimation, the multiscale method is more robust to noise. By choos-

ing the propagation weight as (4.2), our multiscale method will yield an automatic
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Figure 4.7: Overlapped multiscale estimation angle map.

balance between the estimate resolution and accuracy. We also used an overlap mul-

tiscale method to eliminate the blocking effect.

Wilson et al. [31] used similar multiscale approach to do orientation estima-

tion. They also used the linear combination to propagate the estimates. They pointed

out, as we described in this chapter, the optimum propagation weight is a function of

the variance of estimation error and the variance of additive noise. Since these quan-

tities are unknown or hard to determined, they used the rate of the average energy of

gradient vectors as the propagation weight:

k[n] =
ε2n

ε2n + ε2γn

,

where ε2n is the average value of the magnitude square of the gradient estimate [13].

Note that the vector energy has nothing to do with the vector orientation. So we think

this quantity is not fit for the orientation estimation problem. In our approach, we use

PCA-based estimation method in each scale, and use the by-product of the PCA step
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as propagation weight, which is directly related to the variance of orientation. The

combination of the PCA and multiscale approach makes our method more robust and

efficient than Wilson’s method, as we will shown in next chapter.

More comparisons between the single scale method and multiscale method,

overlapped or non-overlapped, will be shown in the next chapter.
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Chapter 5

Implementation and Results

In this chapter we will discuss some details of the implementation of our multiscale

PCA-based orientation estimation approach and show some test results. We will start

with the discussion of using image pyramid or gradient pyramid in the multiscale

approach and compare the estimation results. Then we will introduce another prop-

agation option in the third step of the multiscale approach and compare it with the

linear combination propagation we used in last chapter. We will also introduce a pre-

processing step which is needed to eliminate some propagation errors in the resulting

orientation map.

In the second half of this chapter, we will give some test results using the

proposed method. One important test is for noise robustness. As we claimed, the

combination of PCA and multiscale scheme makes the proposed method to be very

robust to additive noise. We will show this property in our tests. The test image is an

image with a single known orientation pattern, as shown in Figure 5.1(a). We apply
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(a)  Clean test image (b)  Noisy test image 

Figure 5.1: The test image with single orientation.

additive Gaussian white noise on the test image, as shown in Figure 5.1(b), and perform

orientation estimation on the noisy test image. Since the sought orientation is known,

we can calculate the estimation error. Increasing the variance of the additive noise,

doing Monte Carlo simulation (10000 times simulation), then we plot the change of the

average estimation error with respect to the increase of the noise variance. The more

robust the estimation method, the slower the average estimation error will increase.

We will use this test to compare the noise robustness of the proposed method with

some other approaches.

Another important property of the proposed method is the automatic adapt-

ability of the estimation resolution and the estimation reliability, which means in the

image area with low SNR, the algorithm will tend to use large estimate blocks to

increase the reliability; while in the image area with high SNR, the algorithm will use

smaller estimate blocks to get more localized estimates. We will show this property

visually by an estimated orientation angle map.

45



Finally, we will show some estimate results on real and simulative images.

5.1 Image pyramid vs. Gradient pyramid

As we discussed in last chapter, in the first step of the multiscale approach, we

can build up an image pyramid, then calculate the gradients on each layer of the image

pyramid. Alternatively we can first calculate the gradients on the original image, then

apply the low-pass-filter/subsample step on the gradient field to build up a gradient

pyramid. From our first intuition, since both the gradient calculator we used and

the low-pass-filter/subsample step in building the image/gradient pyramid are linear

operators, these two options should yield the same results. But our test results show

that they are not exactly. In order to see the difference, let us look more carefully

at the process of building the image pyramid and the gradient pyramid. Two layers

from the image/gradient pyramid are shown in Figure 5.2. Here we only discuss the

gradient in the x-direction, the discussion for the gradient in y-direction is the same.

Figure 5.2: Two layers of the image/gradient pyramid
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Let us first look at the image pyramid method. Denote the image pixel at

the position (i, j) of layer n as In,(i,j) and the gradient (in x-direction) at the position

(i, j) of layer n as gn,(i,j). Using the MATLAB gradient function, gn,(i,j) is calculated

as:

gn,(i,j) =
In,(i,j+1) − In,(i,j−1)

2
.

In our approach, the image pyramid is built up with a 2×2 average kernel. Then each

image pixel in the low resolution layer is composed by the average of its four children

pixels in the high resolution layer:

In,(i,j) =

∑2i
k=2i−1

∑2j
l=2j−1 In−1,(k,l)

4
.

Then gn,(i,j) can be written as:

gn,(i,j) =
1
4

∑2i
k=2i−1

∑2j+2
l=2j+1 In−1,(k,l) − 1

4

∑2i
k=2i−1

∑2j−2
l=2j−3 In−1,(k,l)

2

=
1
4

2i∑

k=2i−1

2j+2∑

l=2j+1

In−1,(k,l) − In−1,(k,l−4)

2
.

Notice here:

In−1,(k,l) − In−1,(k,l−4)

2
=

In−1,(k,l) − In−1,(k,l−2)

2
+

In−1,(k,l−2) − In−1,(k,l−4)

2

= gn−1,(k,l−1) + gn−1,(k,l−3).

Then we can simplify gn,(i,j) as:

gn,(i,j) =
1
4

2i∑

k=2i−1

2j+1∑

l=2j−2

gn−1,(k,l).

This can be shown in Figure 5.3. The gradient on the low resolution layer, marked

with shade, is composed from the sum of the gradients in the shaded area of the high

resolution layer, divided by four.
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Figure 5.3: Estimation propagation for the image pyramid method.

This is for the case of image pyramid. For the gradient pyramid method,

the low resolution gradient is simply the average of the four gradients in the high

resolution parent layer:

gn,(i,j) =
1
4

2j∑

k=2j−1

2i∑

l=2i−1

gn−1,(k,l),

as shown in Figure 5.4.

Figure 5.4: Estimation propagation for the gradient pyramid method.

From Figure 5.3 and 5.4 we know, if we use the MATLAB gradient function,

in the image pyramid method, the low resolution gradients are composed with more

neighboring high resolution gradients than in the gradient pyramid method. Since

the average process can depress the noise effect, we have reason to expect, in our
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case, the image pyramid method should have better noise robustness than the gradient

pyramid method. Our test results (using the robustness test and test images which are

introduced in the beginning of this chapter; using error bars in the curve to represent

the variance of the quantity) prove this prediction, as shown in Figure 5.5. Please note

that this is only applicable for the MATLAB gradient operator. If we choose to use

some other gradient operator, the image pyramid method is NOT always better than

the gradient pyramid method.
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Figure 5.5: Image pyramid method VS. gradient pyramid method.

From Figure 5.5 we can see, with the increase of noise variance, the image

pyramid method works a little more robustly than the gradient pyramid. The problem

of the image pyramid method is the efficiency. It needs to calculate the gradients on

each layer of the pyramid, while in the gradient pyramid method, we only need to

calculate the gradients once.
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5.2 Propagation: selection vs. weighted average

As we described in the last chapter, in the third step of the multiscale ap-

proach, we use the rate of the dominance measure R, (4.3), as the combination weight,

to propagate the estimates from low resolution layers to high resolution layers with

a linear combination. The problem of linear combination is if one of the estimates is

error estimate, this error will be propagated down to the final result. Here we intro-

duce another way to propagate the estimates, also using the dominance measure R.

Instead of using R as combination weight, we can use it as a selection criterion. When

propagate the low resolution estimates θγn to high resolution estimates θn, within each

block, we compare the dominance measure R, and choose the estimate with larger R:

θ̂n =





θγn if Rγn > Rn

θn if Rγn < Rn

where Rγn is the dominance measure in the low resolution layer,Rn is the dominance

measure in the high resolution later and θ̂n is the resulting estimation. We compare

the noise robustness of these two propagation options in Figure 5.6, using the test

image in Figure 5.1.

From Figure 5.6 we can see, the selection propagation method is not as

robust as the linear combination method. But since this method will prevent the

error estimates from propagating down and also will need less computation than the

combination method. Still, it is a viable alternate for the propagation of the estimates.
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Figure 5.6: Selection propagation method VS. weighted average propagation method.

5.3 Eliminating propagation errors

As we discussed in previous chapters, the multiscale approach will yield ro-

bust and accurate orientation estimates. But in some of our tests, we find that when

using the linear combination propagation, there are some unexpected errors. The re-

sulting orientation estimation is about orthogonal to the correct direction, as shown

in Figure 5.7.

The reason for these errors is that we limit the orientation to the range of

[−π
2 , π

2 ). As we discussed in Chapter 2, in the image orientation estimation problem,

the orientation of an undirected line is of interest, which means the unit vectors x and

-x are indistinguishable. The propagation errors may occur in the image area where
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Figure 5.7: Estimation propagation errors.

the pattern orientation is close to π
2 (or -π

2 ), as in shown Figure 5.7. The reason is,

on one pyramid layer, the estimate may be close to π
2 , while on the other layer, the

estimate may be close to -π
2 . Then after we combine these two estimates by linear

combination, the result will be roughly orthogonal to both of these two estimates, as

shown in Figure 5.8.

Figure 5.8: Reason for the propagation error.

The solution of this kind of propagation errors is to pre-process the high res-
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Figure 5.9: Pre-process the orientation(1)

olution estimate, with respect to the low resolution estimate, before the propagation.

If θn > θγn + π
2 , then θn = θn − π, as shown in Figure 5.9. If θn < θγn − π

2 , then

θn = θn + π, as shown in Figure 5.10.

Note that this processing only affects the error propagation. After this pro-

cessing, the error estimates in Figure 5.7 will be corrected, as shown in Figure 5.11.

5.4 SVD vs. Mean

Starting with this section, we will show some more test results. First we will

compare the SVD-based method with a simple averaging method. As we discussed

in Chapter 2, for Von-Mises distribution, the maximum likelihood estimate of the

dominant direction is the mean of the sample unit vectors. Although this does not

fit the image orientation model we have considered (where the orientation, but not

direction, is of interest), it does show that the averaging method may be a simple way

to estimate the orientation. We compare the averaging method with our SVD-based
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Figure 5.10: Pre-process the orientation(2)

Figure 5.11: Propagation errors are corrected.
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method, within a single block of the test image in Figure 5.1. The result, Figure 5.12,

shows that the SVD-based method works much more robustly than the averaging

method.
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Figure 5.12: Single-scale average method VS Single-scale PCA method.

5.5 Multiscale vs. Single-scale

As we showed in the last chapter, the multiscale estimation approach works

much better than the single scale approach in the presence of additive noise. Here

we will show the robustness test results of the proposed multiscale PCA method,

compared with the single scale PCA method. We also compare with Wilson’s method

[31]. The results are shown in Figure 5.13, using the test image in Figure 5.1. The

block size is 8. For overlapped methods, the overlap size is 2.
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Figure 5.13: Multiscale PCA method VS Single-scale PCA method.

From Figure 5.13 we can see that, with increasing noise variance, the multi-

scale methods are much more robust than the single scale methods. Wilson’s method

works better than the single scale PCA methods, but worse than the multiscale PCA

methods. We can also see that in both single-scale and multiscale methods, the over-

lapped block scheme is more robust than the non-overlapped scheme.

Notice that with increasing noise variance, the average estimation error will

converge to some value, instead of going to infinity, as we expect from our first intuition.

The reason for this convergence is, from the directional statistics (Chapter 2 in this

thesis), for a pure Gaussian white noise vector field, the distribution of the orientation

angle is a uniform distribution in (−π
2 , π

2 ], with the mean equal to 0. In our test,

the sought orientation is π
4 , so with the increase of the additive noise, the average
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estimation error will converge to π
4 − 0 = π

4 , as shown in Figure 5.13.

5.6 Adaptability Between Resolution and Reliability

One important property of the proposed multiscale PCA estimation method

is the automatic adaptability of the estimation resolution and accuracy. We will show

this property with the test image in Figure 5.14.

Figure 5.14: Test image for the adaptability.

The test image has diverse orientations with different contrast. Gaussian

white noise is applied in the right half. From the estimated orientation map we can

see (Figure 5.15 and Figure 5.16), the single scale method is quite messy in the noisy

half, while the multiscale method works well on both sides.

Figure 5.17 shows the estimated orientation vector angles using these two

methods, we can see that the multiscale method uses small blocks in the clean half of

the image to get high resolution estimates, and uses large blocks in the noisy half to

yield more reliable, but coarser, estimates.
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Figure 5.15: Single scale estimate result of Figure 5.14

Figure 5.16: Multiscale estimate result of Figure 5.14
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Single scale estimation Multiscale estimation

Figure 5.17: Orientation angle map of single-scale and multiscale methods.

5.7 Other examples

As an example of the performance of the proposed method on a real image,

the orientation estimation result for a real fingerprint image (Figure 5.18) is shown in

Figure 5.19 and Figure 5.20.

Figure 5.18: Another fingerprint test image

Finally, as an application of the image orientation estimation, we use it to
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Figure 5.19: Orientation map of the fingerprint image

do image segmentation. The test image, Figure 5.21, has textures with different ori-

entation in the middle. After applying additive noise on the test image, it is hard to

visually tell the difference. But from the estimated orientation map (using multiscale

method, block size 8, overlap 4), it is easy to segment the test image into different

texture patches, as shown in Figure 5.22.
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Figure 5.20: Orientation angle map of the fingerprint image

Figure 5.21: Test image with different textures.

61



Figure 5.22: Orientation angle map of the texture image
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Chapter 6

Conclusions and Future

Directions

This chapter is the conclusion of the thesis. We will briefly introduce a further appli-

cation of the proposed multiscale PCA-based estimation method and followed with a

summary of the thesis contribution.

6.1 Further Applications

As we discussed in previous chapters, the proposed multiscale PCA estima-

tion method will yield robust and accurate estimation of the image orientation. Actu-

ally, this multiscale PCA-based method can also be developed for other applications,

e.g. corner detector.

The PCA method is used in the Harris corner detector [12]. For each pixel

in the image, first calculate the gradients in its neighboring area, then calculate the
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SVD of the gradients matrix (2.9). If the second singular value s2 is larger than a

threshold, this pixel is likely to be a corner [12]. It is easy to see that the Harris corner

detection method is very similar to the PCA-based orientation estimation method. The

difference is, for orientation estimation, the normalized difference of the singular values,

R in (3.2), is used as the orientation dominance measure; while in the Harris corner

detector, the second singular value s2 is used as an indicator of corners. Actually, only

the value of s2 is not enough to detect the corners correctly. Since in the image area

with sharp edge, both s1 and s2 may be larger than the threshold, but s1 >> s2. So

in our simulation we use

s2(1− s1 − s2

s1 + s2
) = s2(1−R)

as the corner indicator, which requires the value of s2 to be large, and s1 need to be

close to s2.

The problem of the Harris corner detector is, if we want to get accurate corner

location, we need to limit the size of the calculation window. By doing that, some

smooth corners can not be detected. We show this with the test image of Figure 6.1.

If we directly use the Harris corner detector on the image, only those sharp

corners can be detected, as shown in Figure 6.2. If we build up an image pyramid, do

corner detector on each layer of the pyramid, some larger scale corners can be detected

in the low resolution layers. As shown in Figure 6.3, the corner detection on the third

layer of the image pyramid will detect the smooth corner.

Combine the detections from different resolution layers, we will get a corner
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Figure 6.1: Corner detection test image
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Figure 6.2: Corner detection on high resolution image layer
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Figure 6.3: Corner detection on low resolution image layer

detection result with different scale corners.

6.2 Conclusions

In this thesis we presented a new approach to the image local orientation

estimation problem. The proposed orientation estimation method works well in terms

of both robustness and accuracy.

In Chapter 2 we discussed the underlying theory of the orientation estimation

problem: directional statistics. As far as we know, in the literature dealing with image

orientation, there is rarely an explicit reference to the field of directional statistics.

From the theory of the directional statistics, for a Bingham distribute orientation

vector field, which can be obtained from a zero-mean normally distributed gradient

field, the optimum (maximum likelihood) estimation of the dominance orientation is

the singular vector of the gradient matrix (2.9).
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We discussed more details about the SVD-based estimation method in Chap-

ter 3. It is well known that SVD can be used to analyze the oriented energy of the

given data matrix [7]. We apply this to the image orientation estimation problem. We

proposed a dominance measure R, (3.2), and discussed the statistical behavior of R.

By obtaining the distribution function of R for a zero-mean i.i.d Gaussian matrix, we

can do a significance test to eliminate the error estimates from the resulting orientation

map.

In Chapter 4 we introduced a multiscale scheme to further improve the ro-

bustness and adaptability of the PCA-base estimation method. We discussed the

multiscale scheme from two start points, minimum variance estimation and multiscale

vector Kalman filter, and reach a same estimation propagation method. By using the

dominance measure R, introduced in Chapter 3, our multiscale method can yield ro-

bust estimates and the automatic adaptability between the estimation resolution and

the estimation reliability. We also proposed an overlap multiscale model to eliminate

the blocking effect and get even more robust estimates.

In Chapter 5 we discussed several problems and details in the implementa-

tion of the proposed method. We discussed the different options in the method and

compare the estimated results. From the results we can see, the multiscale method

is much more robust than single scale method. The automatic adaptability between

the estimation resolution and the estimation reliability is also shown visually in the

resulting orientation map.
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We also presented another application of the multiscale PCA method in image

corner detection, which can detect corners at different scales but still needs further

work in the implementation details.
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