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Abstract

A General Framework for Iterative Regularization in Image Processing

by

Michael R. Charest Jr.

Many existing techniques for image restoration can be expressed in terms of minimizing a

particular cost function. We address the problem of restoring images in a novel way by

iteratively refining the cost function. This allows us some control over the tradeoff between

the bias and variance of the image estimate. The result is an improvement in the mean-

squared error as well as the visual quality of the estimate. We consider four different methods

of updating the cost function and compare and contrast them. The framework presented

here is extendable to a very large class of image reconstruction methods. The effectiveness of

the proposed methods is illustrated on a variety of examples. Additionally, the convergence

properties of the sequence of estimates produced by these iterative regularization methods

lend themselves to a variety of useful applications. We discuss some of these applications

and include examples to illustrate them.
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Chapter 1

Introduction

This chapter will introduce the ideas and concepts used throughout this thesis. We

will begin by describing the image reconstruction problem that motivates this work, and a

brief description of some of the previous work in this area will then be given.

1.1 Background

Digital imaging is used a vast array of technical fields including medical and satellite

imaging. With the proliferation of cheap digital imaging equipment, digital imaging is

common in a wide range of consumer applications as well. The goal in field of digital image

restoration is to improve the quality of these images. Each imaging application has its own

factors that contribute to degraded image quality. Medical applications are typically limited

in the amount of exposure they can use. Too much exposure to X-rays, for example, can

harm the patient. Satellite images often suffer from the effects of atmospheric blur. Thermal

changes in the atmosphere cause slight changes in the air’s refractive index, causing the

image to appear out of focus. No matter the underlying cause, an always present difficulty

1



to overcome in any digital imaging application is the presence of noise and/or blur that

degrades the image quality. This can give the image an undesirable appearance in consumer

applications and can result in lost information in scientific applications.

We can represent an image y as:

y = Ax + v (1.1)

where x is the true image, v is zero-mean additive white noise that is uncorrelated to x and

with no assumptions made on its distribution, and A is a blurring operator.

The goal of image reconstruction is to recover the true image x from the given data

y. Note that for ease of notation we carry out all of our analysis with vectors representing

1-D signals, though the treatment is valid in multiple dimensions. Also note that if A = I,

where I is the identity matrix, then we have:

y = x + v (1.2)

The problem of recovering x from the data y in this simplified model is called “ denoising.”

Let us consider this case first for simplicity; we will consider the more general case at the

end of this chapter.

A very extensive body of work exists with many different techniques for performing

image reconstruction. The Wiener filter is a well-known method for image reconstruction

that considers images and noise as random processes and finds the estimate which has

the minimum mean-squared error between itself and the true image [2]. The Wiener filter

method assumes that the user has knowledge of the power spectrum of the true image;

while this is seldom the case, it can typically be approximated. Wavelet methods process

different frequency band decompositions of an image at multi-resolution scales [3]. These

wavelet decomposed images have been used in an expectation maximization algorithm to

2



Denosing Technique J(x)
Tikhonov [5] λ

2 ‖x‖2

Total Variation [1], [6] λ‖|∇x|‖1

Bilateral Filter [7], [8] λ
2

∑N
n=−N [x − Snx]T Wy,n [x − Snx]

Table 1.1: Various denoising techniques and their associated regularization terms.

estimate the true image [4]. We will focus on what are known as “ regularization methods.”

Regularization is a very general technique for estimating x from the data y by minimizing

a cost function of the form:

x̂ = arg min
x

C(x,y)

= arg min
x

{H(x,y) + J(x)} . (1.3)

For denoising problems the functional H(x,y) = 1
2‖y−x‖2 is typically used, forcing

the Euclidean distance between the measured data and the true signal to be minimized.

The convex regularization functional J(x) varies depending on the regularization method

and enforces some additional constraint on the estimate. Some specific examples of cost

functions of this type are given in Table 5.1. The parameter λ in J(x) controls the amount

of regularization.

Tikhonov regularization is a classical method of this type [5] where the regular-

ization functional requires energy of the estimate to be minimized. Total Variation (TV)

regularization is a more recent image denoising method developed by Rudin, Osher, and

Fatemei [9]. The TV regularization functional forces the estimate to be piecewise constant

by requiring the L1-norm of the image gradient to be minimized. The Bilateral Filter is an

even more recent method first proposed as a nonlinear filter by Tomasi and Manduchi [10]

and later connected to regularization by Elad [7]. For the regularization term corresponding

to the Bilateral Filter in Table 5.1, Sn is a matrix shift operator and Wy,n is a weight
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matrix where the weights are a function of both the radiometric (or gray-value) and spatial

distances between pixels in a local neighborhood ([7],[8]).

Figure 1.1 is an example of the types of estimates produced by using regularization

methods (Bilateral Filter in this case). By looking at the estimate residual (y− x̂) we notice

that we have removed some of the high frequency content of the image along with the noise.

This is true more generally with other denoising techniques as well, as it is never possible

to recover x exactly.

(a) (b)

(c) (d)

Figure 1.1: (a) Detail of the original ‘ Barbara’ image (b) ‘ Barbara’ with added white
Gaussian noise of variance 29.5 (MSE= 29.50) (c) The result of minimizing the Bilateral
cost function for the noisy image (b) (MSE= 19.30) (d) The residual (b)-(c)
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1.2 Achievements of this work

In the next chapter we will turn our attention to recovering this lost detail through

iterative regularization. One can think of iterative regularization in two ways. The first

interpretation is that the lost detail is added back to the estimate in a controlled manner.

At each iteration, the detail is extracted from the residual of the current solution. The

manner is which the detail is extracted can vary, giving rise to a variety of different methods

of performing iterative regularization.

The second interpretation of iterative regularization deals with the idea of modify-

ing the initial cost function as the iterations proceed. Assuming that the parameters chosen

for the initial cost function do not give the optimal solution, at each iteration, the process

of iterative regularization uses the current solution to direct the cost function for the next

iteration to a form that will give a better solution.

Receiving considerable attention lately (especially in [1]), is the connection be-

tween iterative regularization and the use of the Bregman distance (see Appendix A) as a

penalty term. Though less intuitive and seemingly more complicated, the equivalent Breg-

man distance formulations are quite useful in proving the convergence properties of iterative

regularization. In this work we show that there are in fact several ways to practice this idea.

The work of Osher et. al ([1]) and Tukey ([11]) both fit into this general framework for

iterative regularization. We herein name these methods “ Osher’s Method” and “ Iterative

Twicing Regularization” (ITR) respectively. We propose two additional iterative regular-

ization methods that also fit this framework: “ Summed Residual Regularization” (SSR)

and “ Iterative Unsharp Regularization” (IUR).
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1.2.1 Content of this Thesis

In the coming chapters of this thesis, we will discuss the properties and applications

of the different iterative regularization methods. By operating on the initial cost function

in different ways, these methods offer a variety of options for improving the initial estimate.

One of the methods, IUR, can be used for particular applications such as compression due

to its formulation. Whereas the other methods cannot be used for these same applications.

Through extensive examples we compare and contrast the different methods, and explore

the benefits of each. We further describe and illustrate some of the practical application for

these methods.

Additionally, we rigorously prove the convergence of these methods by relating

them to the Bregman distance. Using the knowledge that these methods converge and the

value to which they converge allows us to apply these methods to a variety of different

applications. The statistical properties of the estimates produced by these methods are also

considered.

There are still a number of major questions that are open to future work. One of

these questions is regarding the relationship between the different iterative regularization

methods. It is not clear what underlying property allows these very different methods to

produce similar results. Another major question that has yet to be addressed is the details

behind the bias-variance tradeoff that occurs in the estimates as one iterates using one of

the iterative regularization methods in this framework. We experimentally show that there

is a tradeoff taking place, but the underlying cause is still unknown.

6



Chapter 2

Iterative Regularization

2.1 Iterative Regularization Methods

The general framework that we present here seeks to improve the traditional reg-

ularized image estimate by iteratively updating the cost function of our choosing. We can

express this as

x̂k = arg min
x

Ck(x,y). (2.1)

The further benefit of such an approach is the level of control given to user by slowly adding

the lost detail back to the initial regularized estimate. As we will see later, this will aid

in the selection of cost function parameters. Normally the user must select some operating

parameters for the cost function that is to be used. The iterative approach allows the initial

parameter selection to be poor (that is, one that yields a poor regularized estimate either

visually or in some metric such as mean-squared error) and still produce a satisfactory final

estimate. As we will also see later, these methods asymptotically converge back to the

initial data. This means that by iterating we can “ undo” the highly non-linear function of

7



regularization. There are many practical applications for this property, such as compression,

texture transfer, texture matching, etc.

A couple of iterative regularization methods exist separately in the regularization

literature ([11], [1]). We tie these methods together as well as introduce some new methods

that fit into the same framework.

We present four different algorithms for performing the cost function update. Each

algorithm seeks to extract lost detail from the the residual y− x̂k in a unique way. Specifi-

cally:

1) x̂k+1 = arg min
x

{
H

(
x,y +

k∑
i=1

(y − x̂i)

)
+ J(x)

}
,

2) x̂k+1 = x̂1 + arg min
x

{
H

(
x,

k∑
i=1

(y − x̂i)

)
+ J(x)

}
,

3) x̂k+1 = x̂1 +
k∑

i=1

argmin
x

{H (x,y − x̂i) + J(x)} , and

4) x̂k+1 = x̂1 +
k∑

i=1

(
x̂1 − argmin

x
{H (x, x̂i) + J(x)}

)
= (k + 1)x̂1 −

k∑
i=1

arg min
x

{H (x, x̂i) + J(x)} .

where

x̂1 = arg min
x

{H (x,y) + J(x)} .

The first method was recently proposed in [1] by Osher et al., and Method (3) is

a generalization of Tukey’s “ twicing” idea [11] while the other two methods are ones which

we introduce here.

Using B(·) to denote the net effect of the cost function minimizations above, we

8



formulate these iterative regularization methods as

1) x̂k+1 = B

(
y +

k∑
i=1

(y − x̂i)

)
,

2) x̂k+1 = B(y) + B

(
k∑

i=1

(y − x̂i)

)
,

3) x̂k+1 = B(y) +
k∑

i=1

B(y − x̂i), and

4) x̂k+1 = B(y) +
k∑

i=1

(B(y) − B(x̂i))

= (k + 1)B(y) −
k∑

i=1

B(x̂i).

which makes it clear that all four methods are related by a linear distribution of B(·). If

the minimization process themselves were linear, that is if B(a + b) = B(a) + B(b), then

all four methods would be equivalent. However, for most useful regularization methods,

B(a + b) �= B(a) + B(b) and hence the methods are distinct.

We further note the framework presented here presents the possibility for infinitely

many variations on these four methods, e.g.

x̂k+1 = B(y) + B(y) − B(x̂k) + B

(
k−1∑
i=1

(y − x̂i)

)

etc. We will only focus on the four major methods listed above since the other variations

will produce estimates that are very similar to either Method 3 or Method 4. In fact, the

forumlations would be exactly the same as either Method 3 or 4 (depending on the variant)

for at least the first two iterations.

2.2 Description of Iterative Regularization Methods

In this section we will discuss the details of each of the iterative regularization

methods introduced in the previous section.
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2.2.1 Method 1: Osher et al.’s Method [1]

The work of Osher et al. improves the estimate that results from the cost function

in (1.3) via the following algorithm, which we here call “ Osher’s Iterative Regularization

Method”

x̂k+1 = B

(
y +

k∑
i=1

(y − x̂i)

)
, (2.2)

with x̂0 = 0.

This can also be written as

x̂k+1 = B (y + vk) , (2.3)

with x̂0 = 0, v0 = 0, and vk+1 = vk + (y − x̂k+1). If we define rk ≡ (y − x̂k) we can also

write:

vk+1 = vk + rk+1.

The quantity vk can be interpreted as a cumulative sum of the image residuals (rk).

We note that the sum of the residuals has been added back to the noisy image and

processed again. The intuition here is that if, at each iteration, the residual contains more

signal than noise, our estimate will improve. We illustrate this method in Figures (2.1) and

(2.2).

Interestingly, Osher’s method may be written in yet another way as:

x̂k+1 = argmin
x

{H(x,y) + J(x) − J(x̂k) − 〈pk,x− x̂k〉} (2.4)

where

pk+1 = pk +
(

∂H(x,y)
∂x

∣∣∣∣x = x̂k+1

)
(2.5)

with p0 = 0. The operator 〈·, ·〉 denotes the duality product which is related to the standard

vector inner product in the following manner: a · b = 〈a∗,b〉 where a∗ is the dual of a. If a

10



B(·)

−

+
x̂k

x̂k+1

vk

vk+1

y

rk

Figure 2.1: Method 1 Block Diagram

is in vector space V, then a∗ is in the vector space of functions that map V into the space

of all real numbers, i.e.

a ∈ V

a∗ ∈ V∗ : V → R.

While this formulation may seem more complicated and not as intuitive as Equation

(2.2), we will see later that it is vital in proving the convergence of this method.

Lemma 1. If J(x) is non-negative and convex, Equations (2.4) and (2.2) have the same

minimum, and thus produce the same estimate x̂k.

Proof: We now prove this for the case when H(x, ·) = 1
2‖(·)−x‖2 as an example.

Define Zk(x,y) ≡ 1
2‖y +

∑k
i=1(y − x̂i) − x‖2 + J(x) and Qk(x,y) ≡ 1

2‖y − x‖2 + J(x) −

J(x̂k) − 〈pk,x − x̂k〉. Now we have

∂Zk(x,y)
∂x

= x − y −
k∑

i=1

(y − x̂i) +
∂J(x)

∂x
(2.6)

and

∂Qk(x,y)
∂x

= x − y +
∂J(x)

∂x
− pk. (2.7)
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(a) y (b) x̂1 (c) r1

(d) y + r1 (e) x̂2 (f) r2

(g) y + r1 + r2 (h) x̂3 (i) r3

Figure 2.2: (a) Noisy data (b) The first estimate produced by Osher’s method with Total
Variation regularization (MSE=53.16). (c) The residual from the first estimate. (d) The
first residual is added to the noisy data. (e) The second estimate produced by Osher’s
method (MSE=17.14) from (d). (f) The residual from the second estimate. (g) The first
and second residuals are added to the noisy data. (h) The third estimate produced by
Osher’s method (MSE=20.72) from (g). (i) The residual from the third estimate.
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From 2.5 we have the following:

p0 = 0

p1 = 0 + (y − x̂1)

p2 = 0 + (y − x̂1) + (y − x̂2)

...

pk =
k∑

i=1

(y − x̂i).

Thus,

∂Qk(x,y)
∂x

= x − y +
∂J(x)

∂x
−

k∑
i=1

(y − x̂i) =
∂Zk(x,y)

∂x
. (2.8)

�

We now note that, based on the definition of the Brgeman distance (Appendix A),

Equation (2.4) is equivalent to:

x̂k+1 = argmin
x

{H(x,y) + Dpk

J (x, x̂k)} (2.9)

where Dpk

J is the generalized Bregman distance (see appendix A) between x and x̂k on

functional J(·) for subgradient (see appendix A) pk.

2.2.2 Method 2: Summed Residual Regularization

This iterative regularization method is formulated as:

x̂k+1 = x̂1 + arg min
x

{
H

(
x,

k∑
i=1

(y − x̂i)

)
+ J(x)

}
= x̂1 + arg min

x
{H(x,vk) + J(x)} (2.10)

where x̂1 and vk are the same as in Method 1. Because the cost function operates on a

sum of residuals, we give this method the name “Summed Residual Regularization” (SRR).

13



Using our B(·) notation we formulate this as:

x̂k+1 = B(y) + B (vk) (2.11)

as illustrated this in Figures (2.3) and (2.4).

B(·)

x̂k x̂k+1
vk+1

y

B(·)

−
+

vk

x̂1

rk

Figure 2.3: Method 2 Block Diagram

As with Osher’s method, we may rewrite this method in terms of the generalized

Bregman distance. Let us define ṽk ≡ B(vk), then we can write this as:

x̂k+1 = x̂1 + arg min
x

{H(x,y − x̂1) + J(x) − J(ṽk−1) − 〈pk−1,x − ṽk−1〉}

= x̂1 + arg min
x

{
H(x,y − x̂1) + D

pk−1
J (x, ṽk−1)

}
. (2.12)

where

pk+1 = pk +
(

∂H(x,y − x̂1)
∂x

∣∣∣∣x = ṽk

)
(2.13)

with p0 = 0. The first estimate, x̂1 is the same as in Osher’s method.

Lemma 2. If J(x) is non-negative and convex, the gradients of the cost functions in (2.10)

and (2.12) are equivalent. Thus, the cost functions differ by only a constant and have the

same minimum; making the two formulations equivalent.

Proof: We prove this for the case when H(x, ·) = 1
2‖(·) − x‖2 as an example.

Define Zk(x,y) ≡ 1
2‖
∑k

i=1(y − x̂i) − x‖2 + J(x) and Qk(x,y) ≡ 1
2‖y − x̂1 − x‖2 + J(x) −
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(a) y (b) x̂1 (c) v1 = r1

(d) B(v1) (e) x̂2 = x̂1 + B(v1) (f) r2

(g) v2 = r1 + r2 (h) B(v2) (i) x̂3 = x̂1 + B(v2)

Figure 2.4: (a) Noisy data (b) The first estimate produced by SRR with Total Variation
regularization (MSE=43.29). (c) The residual from the first estimate. (d) The estimate pro-
duced from the first residual. (e) The second estimate produced by Method 2 (MSE=40.39)
from summing (b) and (d). (f) The residual from the second estimate. (g) The sum of the
first and second residuals. (h) The estimate produced from the sum of the first and second
residuals. (i) The third estimate produced by Method 2 (MSE=16.40) from summing (b)
and (h).
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J(ṽk−1) − 〈pk−1,x − ṽk−1〉. Now we have

∂Zk(x,y)
∂x

= x −
k∑

i=1

(y − x̂i) +
∂J(x)

∂x
(2.14)

and

∂Qk(x,y)
∂x

= x − (y − x̂1) +
∂J(x)

∂x
−

k∑
i=2

(y − x̂i) =
∂Zk(x,y)

∂x
. (2.15)

�

2.2.3 Method 3: Iterative “ Twicing” Regularization

In his book [11], published in the mid 1970’s, Tukey presented a method he called

“ twicing” where a filtered version of the data residual was added back to the inital estimate

x̂0 as

x̂1 = x̂0 + B(y − x̂0). (2.16)

Tukey’s original motivation for this was to provide an improved method for data fitting that

would go beyond a direct fit and incorporate additional “ roughness” into the estimate in

a controlled way. The same year, motivated by this idea, this concept was used by Kaiser

and Hamming [12] as a way of sharpening the response of symmetric FIR linear filters.

Both references also mentioned the possibility of iterating this process. Thus we here call

the iterated version of Tukey’s Twicing, “ Iterative Twicing Regularization” (ITR). We can

express this as:

x̂k+1 = x̂k + B(y − x̂k)

= x̂k−1 + B (y − x̂k−1) + B (y − x̂k)

...

= x̂1 +
k∑

i=1

B (y − x̂i) (2.17)
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where x̂0 = 0 and x̂1 = B(y). The same idea has been used in the machine learning

community ([13]) under the name L2Boost .

We illustrate this algorithm in Figures (2.5) and (2.6). Note the simplified ap-

pearance of the block diagram in Figure (2.5) as compared to those in Figures (2.1) and

(2.3). This is due to the fact that the estimates produced via Method 3 (and Method 4 as

we will see shortly) can be computed from a simple update to the previous estimate whereas

the estimates produced via Methods 1 and 2 must be re-calculated at each iteration based

on an updated input.

B(·)
+−

x̂k x̂k+1

y

rk r̃k

Figure 2.5: Method 3 Block Diagram

If we define r̃k ≡ B(rk), we can rewrite ITR in terms of the generalized Bregman

distance as:

x̂k+1 = x̂1 +
k−1∑
i=1

+ argmin
x

{H(x, 0) + J(x) − J(r̃k−1) − 〈pk−1,x− r̃k−1〉}

= x̂1 +
k−1∑
i=1

+ argmin
x

{
H(x, 0) + D

pk−1
J (x, r̃k−1)

}
(2.18)

where

pk+1 = pk +
(

∂H(x, 0)
∂x

∣∣∣∣x = r̃k+1

)
(2.19)

with p0 = y − x̂1 and r̃0 = 0. The first estimate, x̂1 is the same as in both Methods 1 and

2.

17



(a) y (b) x̂1

(c) r1 (d) r̃1 (e) x̂2 = x̂1 + r̃1

(f) r2 (g) r̃2 (h) x̂3 = x̂1 + r̃1 + r̃2

Figure 2.6: (a) Noisy data (b) The first estimate produced by ITR with Total Variation
regularization (MSE=28.52). (c) The residual from the first estimate. (d) The estimate
produced from the first residual. (e) The second estimate produced by ITR (MSE=27.11)
from summing (b) and (d). (f) The residual from the second estimate. (g) The estimate
produced from the second residual. (h) The third estimate produced by ITR method
(MSE=26.48) from summing (b), (d), and (g).
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Lemma 3. If J(x) is non-negative and convex, the gradients of the cost functions in (2.17)

and (2.18) are equivalent. Thus, the cost functions differ by only a constant and have the

same minimum; making the two formulations equivalent.

Proof: We prove this for the case when H(x, ·) = 1
2‖(·)−x‖2 as an example. Define

Zk(x,y) ≡ 1
2‖y− x̂k −x‖2 +J(x) and Qk(x) ≡ 1

2‖x‖2 +J(x)−J(r̃k−1)−〈pk−1,x− r̃k−1〉.

Now we have

∂Zk(x,y)
∂x

= x − (y − x̂k) +
∂J(x)

∂x
(2.20)

and

∂Qk(x)
∂x

= x +
∂J(x)

∂x
−
(

y − x̂1 −
k−1∑
i=1

r̃i

)
=

∂Zk(x,y)
∂x

. (2.21)

�

2.2.4 Method 4: Iterative Unsharp Regularization

The process of unsharp masking is a well-known technique by which edges are

enhanced by subtracting a blurred version of an image from the image itself [2]. The fourth

algorithm for iterative regularization that we present is very similar in spirit to unsharp

masking, thus we call this method “Iterative Unsharp Regularization” (IUR). We formulate

it as:

x̂k+1 = x̂k + x̂1 − B(x̂k)

= x̂k−1 + (x̂1 − B(x̂k−1)) + (B(y) − B(x̂k))

...

= x̂1 +
k∑

i=1

(x̂1 − B(x̂i)) = (k + 1)x̂1 −
k∑

i=1

B(x̂i) (2.22)

where x̂0 = 0 and x̂1 = B(y).
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B(·)
−

+
x̂k x̂k+1

y B(·) x̂1

x̃k

Figure 2.7: Method 4 Block Diagram

We illustrate this method in Figures (2.7) and (2.8).

If we define x̃k ≡ B(x̂k), this can be rewritten in terms of the generalized Bregman

distance as:

x̂k+1 = (k + 1)x̂1 −
k−1∑
i=1

x̃i − arg min
x

{H(x, x̂1) + J(x) − J(x̃k−1) − 〈pk−1,x − x̃k−1〉}

= (k + 1)x̂1 −
k−1∑
i=1

x̃i − arg min
x

{
H(x, x̂1) + D

pk−1
J (x, x̃k−1)

}
(2.23)

where

pk+1 = pk +
(

∂H(x, x̂1)
∂x

∣∣∣∣x = x̃k+1

)
(2.24)

with p0 = 0 and x̃0 = 0.

Lemma 4. If J(x) is non-negative and convex, the gradients of the cost functions in (2.22)

and (2.23) are equivalent. Thus, the cost functions differ by only a constant and have the

same minimum; making the two formulations equivalent.

Proof: We prove this for the case when H(x, ·) = 1
2‖(·) − x‖2 as an example.

Define Zk(x, x̂k) ≡ 1
2‖x̂k − x‖2 + J(x) and Qk(x, x̂1) ≡ 1

2‖x̂1 − x‖2 + J(x) − J(x̃k−1) −

〈pk−1,x − x̃k−1〉. Now we have

∂Zk(x, x̂k)
∂x

= x − x̂k +
∂J(x)

∂x
(2.25)
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(a) y

(b) x̂1 (c) x̃1 (d) x̂1 − x̃1

(e) x̂2 = x̂1 + (x̂1 − x̃1) (f) x̃2 (g) x̂1 − x̃2

(h) x̂3 = x̂2 + (x̂1 − x̃2) (i) x̃3 (j) x̂1 − x̃3

Figure 2.8: (a) Noisy data (b) The first estimate produced by IUR with Total Variation
regularization (MSE=26.76). (c) The estimate produced from (b). (d) The residual between
(b) and (c). (e) The second estimate produced by IUR (MSE=18.09) from summing (b)
and (d). (f) The estimate produced from (e). (g) The residual between (b) and (f). (h)
The third estimate produced by IUR method (MSE=20.22) from summing (b), (d), and (g).
(i) The estimate produced from (h). (j) The residual between (b) and (i).
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and

∂Qk(x, x̂1)
∂x

= x − x̂1 +
∂J(x)

∂x
−

k−1∑
i=1

(x̂1 − x̃i) =
∂Zk(x, x̂k)

∂x
. (2.26)

�

Now that we have established a general iterative regularization framework for im-

age denoising, one may wonder how this framework is generalized to the case of image

restoration. One may further wonder if these iterative methods converge, and if so, to what

value? These questions, and others, will be addressed in the following chapters.
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Chapter 3

Generalized Image Reconstruction

3.1 Generalized Image Reconstruction

We have looked at the case when our data model includes additive noise only. We

now wish to consider the more general case when the data model includes some blur as well

as additive noise. This is a more realistic model. Blurring in images can be cause by many

factors including imperfect optics, motion due to long exposure times, motion of the imager

itself, or atmospheric turbulence. To take these factors into account, we now consider the

more general measurement model:

y = Ax + v, (3.1)

where A is a convolution operator.

A typical cost function used to estimate x from y, in this case, is of the form

1
2‖y − Ax‖2 + J(x).

By a simple substitution of H(x, ·) = 1
2‖(·) − Ax‖2 into the generalized Bregman

distance forms of the four iterative regularization methods presented in Chapter 2, we can
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improve the estimate produced by minimizing this cost function as:

1) x̂k+1 = argmin
x

{
1
2
‖y − Ax‖2 + Dpk

J (Ax, x̂k)
}

, (3.2)

2) x̂k+1 = x̂1 + argmin
x

{
1
2
‖y − x̂1 − Ax‖2 + D

pk−1
J (Ax, ṽk−1)

}
, (3.3)

3) x̂k+1 = x̂k + arg min
x

{
1
2
‖Ax‖2 + D

pk−1
J (Ax, r̃k−1)

}
, and (3.4)

4) x̂k+1 = x̂k + x̂1 − argmin
x

{
1
2
‖x̂1 − Ax‖2 + D

pk−1
J (Ax, x̃k−1)

}
. (3.5)

(3.6)

where

x̂1 = arg min
x

{
1
2
‖y − Ax‖2 + J(x)

}
. (3.7)

Which can be rewritten in the following more easily understood forms:

1) x̂k+1 = B

(
y +

k∑
i=1

AT (y − Ax̂i)

)
,

2) x̂k+1 = x̂1 + AB

(
y − x̂1 +

k∑
i=2

AT (y − x̂i)

)
,

3) x̂k+1 = x̂1 +
k∑

i=1

ATAB (y − x̂i)

= x̂k + ATAB (y − x̂k) , and

4) x̂k+1 = x̂1 +
k∑

i=1

(
AT x̂1 − ATAB(x̂k)

)
= x̂k + AT x̂1 − AT AB (x̂k) .

where x̂1 is the same as in (3.7).

Lemma 5. If J(x) is non-negative and convex, the gradients of the cost functions shown

above are equivalent to the gradients of the cost functions in 3.6; meaning that the cost

functions have the same minima and thus are equivalent.
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Proof: As an example, we will look at Method 4. Define Zk(x, x̂1) ≡ 1
2‖x̂1 −

Ax‖2 + D
pk−1
J (Ax, x̃k−1) and Qk(x, x̂k) ≡ 1

2‖x̂k − Ax‖2 + J(x). We have

pk+1 = pk +
(

∂ 1
2‖x̂1 − Ax‖2

∂x

∣∣∣∣x = x̃k+1

)
(3.8)

with p0 = 0 and x̃0 = 0, thus

pk =
k∑

i=1

AT (x̂i − Ax̃i) . (3.9)

Therefore,

∂Zk(x, x̂1)
∂x

= AT (Ax − x̂1) +
∂J(x)

∂x
− AT

(
k∑

i=1

AT (x̂i − Ax̃i)

)

= AT

(
Ax − x̂1 −

k∑
i=1

AT (x̂i − Ax̃i)

)
+

∂J(x)
∂x

(3.10)

and

∂Qk(x, x̂1)
∂x

= AT (Ax − x̂k) +
∂J(x)

∂x
. (3.11)

Recall that the formulation that we are verifying is:

x̂k+1 = x̂1 +
k∑

i=1

(
AT x̂1 − AT AB(x̂k)

)
= x̂1 +

k∑
i=1

(
AT x̂1 − AT Ax̃k

)
,

thus

∂Qk(x, x̂1)
∂x

= AT

(
Ax − x̂1 +

k∑
i=1

(
AT x̂1 − ATAx̃k

))
+

∂J(x)
∂x

=
∂Zk(x, x̂1)

∂x
. (3.12)

�
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Chapter 4

Properties

We will show that the sequence of estimates produced by each of the four iterative

regularization methods converges to the noisy data y as the number of iterations increases.

Additionally we will look at the bias-variance tradeoff of the estimates produced by these

methods.

The convergence proofs are similar to the one provided by Osher in [1] but different

enough to warrant showing the explicit details for each of the four iterative regularization

methods.

The only constraints on the functional H(x, ·) are that it must be nonnegative and

convex. We will therefore use H(x, ·) = 1
2‖(·)−x‖2 in the following proofs for simplicity and

since this is a common functional choice for denoising problems. Note that the Bilateral

Filter ([10], [7]), Total Variation ([9], [6]), Bilateral Total Variation ([8]), and Tikhonov

regularization ([5]) all use this functional for denoising.
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4.1 Convergence of Osher’s Method

Though Osher’s method is thoroughly analyzed in [1], we will repeat it here, using

our own notation.

Recall that Osher’s method is formulated in terms of the generalized Bregman

distance as:

x̂k+1 = argmin
x

{H(x,y) + J(x) − J(x̂k) − 〈pk,x− x̂k〉}

= argmin
x

{H(x,y) + Dpk

J (x, x̂k)} (4.1)

where

pk+1 = pk +
(

∂H(x,y)
∂x

∣∣∣∣x = x̂k+1

)
(4.2)

with p0 = 0 and x̂0 = 0.

Lemma 6. For non-negative J(x), the sequence 1
2‖y−x̂i‖2 is monotonically non-increasing

for i = 1, 2, . . . , k.

Proof: We prove the monotonicity as follows:

1
2
‖y − x̂k‖2 ≤ 1

2
‖y − x̂k‖2 + Dpk

J (x̂k, x̂k−1)

due to the non-negativity of the Bregman distance. Note that x = x̂k minimizes

1
2‖y − x‖2 + Dpk

J (x, x̂k) by definition. Hence,

1
2
‖y − x̂k‖2 ≤ 1

2
‖y − x̂k‖2 + Dpk

J (x̂k, x̂k−1) ≤ 1
2
‖y − x̂k−1‖2 + Dpk

J (x̂k−1, x̂k−1)

≤ 1
2
‖y − x̂k−1‖2. (4.3)

�

Theorem 1. For non-negative, convex J(x), Osher’s method converges as:

lim
k→∞

x̂k = y, (4.4)
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with rate of convergence

‖y − x̂k‖2 ≤ 2J(y)
k

= O
(
(k)−1

)
(4.5)

Proof: We begin the proof with the identity:

Dpk

J (x, x̂k) − D
pk−1
J (x, x̂k−1) + D

pk−1
J (x̂k, x̂k−1) = 〈x̂k − x,pk − pk−1〉

= 〈x̂k − x,

(
∂H(x,y)

∂x

∣∣∣∣x = x̂k−1

)
〉. (4.6)

Note that
(

∂H(x,y)
∂x

∣∣∣x = x̂k+1

)
is a subgradient of H(x,y). Hence, from the definition of

the subgradient (A.1), we have the following relation:

Dpk

J (x, x̂k) − D
pk−1
J (x, x̂k−1) + D

pk−1
J (x̂k, x̂k−1) ≤ H(x,y) − H(x̂k,y) (4.7)

If there exists a minimizer x of H(x,y) such that J(x) < ∞, from the particular

choice of x = x, the following is true:

Dpk

J (x, x̂k) ≤ Dpk

J (x, x̂k) + D
pk−1
J (x̂k, x̂k−1) + H(x,y) (4.8)

due to the non-negativity of the Bregman distance and H . Since we are considering

H(x,y) = 1
2‖y − x‖2, we have x = y.

Now we can combine (4.7) with (4.8) to show that:

Dpk

J (x, x̂k) ≤ Dpk

J (x, x̂k) + D
pk−1
J (x̂k, x̂k−1) + H(x̂k,y) ≤ H(x,y) + D

pk−1
J (x, x̂k−1)

For the particular choice x = x = y, we have Dpk

J (x, x̂k) ≤ D
pk−1
J (x, x̂k−1) which allows

us to conclude a general convergence theorem. We would like to know the final value that

Osher’s method converges to as well, so we shall continue.

Rearranging (4.7) and substituting H(x,y) = 1
2‖y − x‖2 and k = i, we can write:

Dpi

J (x, x̂i) + D
pi−1
J (x̂i, x̂i−1) +

1
2
‖y − x̂i‖2 − 1

2
‖y − x‖2 ≤ D

pi−1
J (x, x̂i−1).
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We can then repeatedly substitute i = 1, 2, . . . , k into the above formulation to obtain:

Dpk

J (x, x̂k)+
k∑

i=1

[
D

pi−1
J (x̂i, x̂i−1) +

1
2
‖y − x̂i‖2 − 1

2
‖y − x‖2

]
≤ Dp0

J (x, x̂0) = J(x). (4.9)

For example: when i = 1 we have

Dp1
J (x, x̂1) + Dp0

J (x̂1, x̂0) +
1
2
‖y − x̂1‖2 − 1

2
‖y − x‖2 ≤ Dp0

J (x, x̂0) = J(x), (4.10)

and when i = 2 we have

Dp2
J (x, x̂2) + Dp1

J (x̂2, x̂1) +
1
2
‖y − x̂2‖2 − 1

2
‖y − x‖2 ≤ Dp1

J (x, x̂1). (4.11)

Substituting (4.11) into (4.10) yields:

Dp2
J (x, x̂2) +

2∑
i=1

[
D

pi−1
J (x̂i, x̂i−1) +

1
2
‖y − x̂i‖2 − 1

2
‖y − x‖2

]
≤ J(x).

Now, using the fact that D
pi−1
J (x̂i, x̂i−1) ≥ 0 we can rewrite (4.9) as:

Dpk

J (x, x̂k) +
k∑

i=1

[
1
2
‖y − x̂i‖2

]
− k

[
1
2
‖y − x‖2

]
≤ J(x). (4.12)

We can then substitute x = x = y into (4.12), (since this is the value of x that will guarantee

convergence) to obtain:

Dpk

J (y, x̂k) +
k∑

i=1

[
1
2
‖y − x̂i‖2

]
≤ J(y) (4.13)

Since the sequence 1
2‖y − x̂i‖2 is monotonically non-increasing for i = 1, 2, . . . , k we can

write:

Dpk

J (y, x̂k) + k

[
1
2
‖y − x̂k‖2

]
≤ J(y). (4.14)

Equation (4.14) can be rearranged as:

1
2
‖y − x̂k‖2 ≤ J(y) − Dpk

J (y, x̂k)
k

≤ J(y)
k

. (4.15)
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This implies that

lim
k→∞

x̂k = y. (4.16)

This also conveniently gives us a rate of convergence.

‖y − x̂k‖2 ≤ 2J(y)
k

= O
(
(k)−1

)
(4.17)

�

We verify this rate of convergence by plotting ‖y − x̂k‖2 vs k in Figure (4.1).

To generate this curve, x̂k was calculated from the image in Figure (4.5 b) using Osher’s

method. We note that ‖y − x̂k‖2 does in fact approach 0 as k → ∞. The rate at which it

approaches 0 appears to be on the order of k−3, which indicates that (4.17) may not be a

tight bound.
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Figure 4.1: Plot of ‖y − x̂k‖2 vs k verifying the convergence properties of method 1.
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4.2 Convergence of SRR

Recall that SRR is formulated in terms of the generalized Bregman distance as:

x̂k+1 = arg min
x

{H(x,y − x̂1) + J(x) − J(ṽk−1) − 〈pk−1,x − ṽk〉}

= arg min
x

{
H(x,y − x̂1) + D

pk−1
J (x, ṽk−1)

}
(4.18)

where

pk+1 = pk +
(

∂H(x,y − x̂1)
∂x

∣∣∣∣x = ṽk

)
(4.19)

with p0 = 0 and ṽ0 = 0.

Lemma 7. For non-negative J(x), the sequence 1
2‖y − x̂1 − ṽi−1‖2 is monotonically non-

increasing for i = 2, 3, . . . , k.

Proof: We prove the monotonicity as follows:

1
2
‖y − x̂1 − ṽk‖2 ≤ 1

2
‖y − x̂1 − ṽk‖2 + D

pk−1
J (ṽk, ṽk−1)

due to the non-negativity of the Bregman distance. Note that x = ṽk minimizes

1
2‖y − x̂1 − x‖2 + D

pk−1
J (x, ṽk−1) by definition. Hence,

1
2
‖y − x̂1 − ṽk‖2 ≤ 1

2
‖y − x̂1 − ṽk‖2 + D

pk−1
J (ṽk, ṽk−1)

≤ 1
2
‖y − x̂1 − ṽk−1‖2 + D

pk−1
J (ṽk−1, ṽk−1) =

1
2
‖y − x̂1 − ṽk−1‖2. (4.20)

�

Theorem 2. For non-negative, convex J(x), as k → ∞, SRR converges to

y − x̂1 = ṽk−1

x̂1 + ṽk−1 = y

x̂k−1 = y (4.21)
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with rate of convergence

‖y − x̂1 − ṽk−1‖2 ≤ 2J(y − x̂1)
k − 1

= O
(
(k)−1

)
(4.22)

Proof: We begin the proof with the identity:

D
pk−1
J (x, ṽk−1) − D

pk−2
J (x, ṽk−2) + D

pk−2
J (ṽk−1, ṽk−2) = 〈ṽk−1 − x,pk−1 − pk−2〉

= 〈ṽk−1 − x,

(
∂H(x,y − x̂1)

∂x

∣∣∣∣x = ṽk−2

)
〉. (4.23)

Note that
(

∂H(x,y−�x1)
∂x

∣∣∣x = ṽk−2

)
is a subgradient of H(x,y − x̂1). Hence, from the defi-

nition of the subgradient (A.1), we have the following relation:

D
pk−1
J (x, ṽk−1) − D

pk−2
J (x, ṽk−2) + D

pk−2
J (ṽk−1, ṽk−2)

≤ H(x,y − x̂1) − H(ṽk−1,y − x̂1). (4.24)

If there exists a minimizer x of H(x,y−x̂1) such that J(x) < ∞, from the particular

choice of x = x, the following is true:

D
pk−1
J (x, ṽk−1) ≤ D

pk−1
J (x, ṽk−1) + D

pk−2
J (ṽk−1, ṽk−2) + H(x,y − x̂1) (4.25)

due to the non-negativity of the Bregman distance and H . Since we are considering

H(x,y − x̂1) = 1
2‖y − x̂1 − x‖2, we have x = y − x̂1.

Now we can combine (4.24) with (4.25) to show that:

D
pk−1
J (x, ṽk−1) ≤ D

pk−1
J (x, ṽk−1) + D

pk−2
J (ṽk−1, ṽk−2) + H(ṽk−1,y − x̂1)

≤ H(x,y − x̂1) + D
pk−2
J (x, ṽk−2).

For the particular choice x = x = y − x̂1, we have D
pk−1
J (x, ṽk−1) ≤ D

pk−2
J (x, ṽk−2) which

allows us to conclude a general convergence theorem. We would like to know the final value

that SRR converges to as well, so we shall continue.
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Rearranging (4.24) and substituting H(x,y− x̂1) = 1
2‖y− x̂1 −x‖2 and k = i, we

can write:

D
pi−1
J (x, ṽi−1)+D

pi−2
J (ṽi−1, ṽi−2)+

1
2
‖y− x̂1 − ṽi−1‖2− 1

2
‖y− x̂1 −x‖2 ≤ D

pi−2
J (x, ṽi−2).

We can then repeatedly substitute i = 2, 3, . . . , k into the above formulation to obtain:

D
pk−1
J (x, ṽk−1) +

k∑
i=2

[
D

pi−2
J (ṽi−1, ṽi−2) +

1
2
‖y − x̂1 − ṽi−1‖2 − 1

2
‖y − x̂1 − x‖2

]
≤ Dp0

J (x, ṽ0) = J(x). (4.26)

For example: when i = 2 we have

Dp1
J (x, ṽ1)+ Dp0

J (ṽ1, ṽ0) +
1
2
‖y− x̂1 − ṽ1‖2 − 1

2
‖y− x̂1 −x‖2 ≤ Dp0

J (x, ṽ0) = J(x) (4.27)

and when i = 3 we have

Dp2
J (x, ṽ2) + Dp1

J (ṽ2, ṽ1) +
1
2
‖y − x̂1 − ṽ2‖2 − 1

2
‖y − x̂1 − x‖2 ≤ Dp1

J (x, ṽ1). (4.28)

Substituting (4.28) into (4.27) yields:

Dp2
J (x, ṽk−1) +

3∑
i=2

[
D

pi−2
J (ṽi−1, ṽi−2) +

1
2
‖y − x̂1 − ṽi−1‖2 − 1

2
‖y − x̂1 − x‖2

]
≤ J(x).

Now, using the fact that D
pi−2
J (ṽi−1, ṽi−2) ≥ 0 we can rewrite (4.26) as:

D
pk−1
J (x, ṽk−1) +

k∑
i=2

[
1
2
‖y − x̂1 − ṽi−1‖2

]
− (k − 1)

[
1
2
‖y − x̂1 − x‖2

]
≤ J(x). (4.29)

We can then substitute x = x = y − x̂1 into (4.29), (since this is the value of x that will

guarantee convergence) to obtain:

D
pk−1
J (y − x̂1, ṽk−1) +

k∑
i=2

[
1
2
‖y − x̂1 − ṽi−1‖2

]
≤ J(y − x̂1) (4.30)

Since the sequence 1
2‖y− x̂1 − ṽi−1‖2 is monotonically non-increasing for i = 2, 3, . . . , k we

can write:

D
pk−1
J (y − x̂1, ṽk−1) + (k − 1)

[
1
2
‖y − x̂1 − ṽk−1‖2

]
≤ J(y − x̂1). (4.31)
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Equation (4.31) can be rearranged as:

1
2
‖y − x̂1 − ṽk−1‖2 ≤ J(y − x̂1) − D

pk−1
J (y − x̂1, ṽk−1)
k − 1

≤ J(y − x̂1)
k − 1

(4.32)

This implies that as k → ∞

y − x̂1 = ṽk−1

x̂1 + ṽk−1 = y

x̂k−1 = y. (4.33)

This also conveniently gives us a rate of convergence.

‖y − x̂1 − ṽk−1‖2 ≤ 2J(y − x̂1)
k − 1

= O
(
(k)−1

)
(4.34)

�

We verify this rate of convergence by plotting ‖y− x̂1 − x̂k‖2 vs k in Figure (4.2).

To generate this curve, x̂k was calculated from the image in Figure (4.5 b) using SRR.

Because we don’t compute ṽk until the second iteration, our plot begins at k = 2. We note

that ‖y − x̂1 − x̂k‖2 does in fact approach 0 as k → ∞. The rate at which it approaches 0

appears to be on the order of k−3, which indicates that (4.34) may not be a tight bound.

4.3 Convergence of ITR

Recall that ITR can be formulated such that each estimate can be calculated as a

simple update to the previous estimate:

x̂k+1 = x̂k + B(y − x̂k). (4.35)

If we assume that the sequence of estimates produced by this method are convergent, then

as k → ∞, x̂k+1 = x̂k = x̂∞, which implies that B(y − x̂∞) = 0. Remember that B(·) here
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Figure 4.2: Plot of ‖y − x̂1 − x̂k‖2 vs k verifying the convergence properties of SRR

denotes the minimization of the cost function Qk(x, ·) = 1
2‖ · −x‖2 + J(x). Thus, if the

regularization term J(x) is non-negative and convex with a minimum at x = 0, then

∂Qk(x, 0)
∂x

= x +
∂J(x)

∂x
= 0 ⇐⇒ x = 0. (4.36)

Thus B(y − x̂∞) implies that y = x̂∞ once convergence has occurred. We shall now

thoroughly prove that the series of estimates produced by ITR is convergent.

Recall that ITR is formulated in terms of the generalized Bregman distance as:

x̂k+1 = x̂1 +
k−1∑
i=1

r̃i + argmin
x

{H(x, 0) + J(x) − J(r̃k−1) − 〈pk−1,x− r̃k−1〉}

= x̂1 +
k−1∑
i=1

r̃i + argmin
x

{
H(x, 0) + D

pk−1
J (x, r̃k−1)

}
(4.37)

where

pk+1 = pk +
(

∂H(x, 0)
∂x

∣∣∣∣x = r̃k+1

)
(4.38)

with p0 = y − x̂1.

Lemma 8. For non-negative J(x), the sequence 1
2‖r̃i−1‖2 is monotonically non-increasing

for i = 2, 3, . . . , k.
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Proof: We prove the monotonicity as follows:

1
2
‖r̃k‖2 ≤ 1

2
‖r̃k‖2 + D

pk−1
J (r̃k, r̃k−1)

due to the non-negativity of the Bregman distance. Note that x = r̃k minimizes

1
2‖x‖2 + D

pk−1
J (x, r̃k−1) by definition. Hence,

1
2
‖r̃k‖2 ≤ 1

2
‖r̃k‖2 + D

pk−1
J (r̃k, r̃k−1) ≤ 1

2
‖r̃k−1‖2 + D

pk−1
J (r̃k−1, r̃k−1) =

1
2
‖r̃k−1‖2. (4.39)

�

Theorem 3. For non-negative, convex J(x) with a minimum at x = 0, ITR converges as:

lim
k→∞

x̂k−1 = y, (4.40)

with rate of convergence

‖r̃k−1‖2 ≤ 2 (J(0) − J(x̂1) + 〈y − x̂1, x̂1〉)
k − 1

= O
(
(k)−1

)
. (4.41)

Proof: We begin the proof with the identity:

D
pk−1
J (x, r̃k−1) − D

pk−2
J (x, r̃k−2) + D

pk−2
J (r̃k−1, r̃k−2) = 〈r̃k−1 − x,pk−1 − pk−2〉

= 〈r̃k−1 − x,

(
∂H(x, 0)

∂x

∣∣∣∣x = r̃k−1

)
〉. (4.42)

Note that
(

∂H(x,0)
∂x

∣∣∣x = r̃k−1

)
is a subgradient of H(x, 0). Hence, from the definition of

the subgradient (A.1), we have the following relation:

D
pk−1
J (x, r̃k−1) − D

pk−2
J (x, r̃k−2) + D

pk−2
J (r̃k−1, r̃k−2) ≤ H(x, 0) − H(r̃k−1, 0) (4.43)

If there exists a minimizer x of H(x, 0) such that J(x) < ∞, from the particular

choice of x = x, the following is true:

D
pk−1
J (x, r̃k−1) ≤ D

pk−1
J (x, r̃k−1) + D

pk−2
J (r̃k−1, r̃k−2) + H(x, 0) (4.44)
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due to the non-negativity of the Bregman distance and H . Since we are considering

H(x, 0) = 1
2‖x‖2, we have x = 0.

Now we can combine (4.43) with (4.44) to show that:

D
pk−1
J (x, r̃k−1) ≤ D

pk−1
J (x, r̃k−1)+D

pk−2
J (r̃k−1, r̃k−2)+H(r̃k−1, 0) ≤ H(x, 0)+D

pk−2
J (x, r̃k−2).

For the particular choice x = x = 0, we have D
pk−1
J (x, r̃k−1) ≤ D

pk−2
J (x, r̃k−2) which allows

us to conclude a general convergence theorem.

Rearranging (4.43) and substituting H(x, 0) = 1
2‖x‖2 and k = i, we can write:

D
pi−1
J (x, r̃i−1) + D

pi−2
J (r̃i−1, r̃i−2) +

1
2
‖r̃i−1‖2 − 1

2
‖x‖2 ≤ D

pi−2
J (x, r̃i−2).

We can then repeatedly substitute i = 2, 3, . . . , k into the above formulation to obtain:

D
pk−1
J (x, r̃k−1) +

k∑
i=2

[
D

pi−2
J (r̃i−1, r̃i−2) +

1
2
‖x̃i−1‖2 − 1

2
‖x‖2

]
≤ Dp0

J (x, r̃0)

≤ J(x) − J(x̂1) − 〈y − x̂1,x− x̂1〉. (4.45)

For example: when i = 2 we have

Dp1
J (x, r̃1) + Dp0

J (r̃1, r̃0) +
1
2
‖r̃1‖2 − 1

2
‖x‖2 ≤ Dp0

J (x, r̃0) (4.46)

and when i = 3 we have

Dp2
J (x, r̃2) + Dp1

J (r̃2, r̃1) +
1
2
‖r̃2‖2 − 1

2
‖x‖2 ≤ Dp1

J (x, r̃1). (4.47)

Substituting (4.47) into (4.46) yields:

Dp2
J (x, r̃k−1) +

3∑
i=2

[
D

pi−2
J (r̃i−1, r̃i−2) +

1
2
‖r̃i−1‖2 − 1

2
‖x‖2

]
≤ Dp0

J (x, r̃0).

Now, using the fact that D
pi−2
J (r̃i−1, r̃i−2) ≥ 0 we can rewrite (4.45) as:

D
pk−1
J (x, r̃k−1)+

k∑
i=2

[
1
2
‖r̃i−1‖2

]
−(k−1)

[
1
2
‖x‖2

]
≤ J(x)−J(x̂1)−〈y−x̂1,x−x̂1〉. (4.48)
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We can then substitute x = x = 0 into (4.48), (since this is the value of x that will guarantee

convergence) to obtain:

D
pk−1
J (0, r̃k−1) +

k∑
i=2

[
1
2
‖r̃i−1‖2

]
≤ J(0) − J(x̂1) + 〈y − x̂1, x̂1〉. (4.49)

Since the sequence 1
2‖r̃i−1‖2 is monotonically non-increasing for i = 2, 3, . . . , k we can write:

D
pk−1
J (0, r̃k−1) + (k − 1)

[
1
2
‖r̃k−1‖2

]
≤ J(0) − J(x̂1) + 〈y − x̂1, x̂1〉. (4.50)

Equation (4.50) can be rearranged as:

1
2
‖r̃k−1‖2 ≤ J(0) − J(x̂1) + 〈y − x̂1, x̂1〉 − D

pk−1
J (0, r̃k−1)

k − 1

≤ J(0) − J(x̂1) + 〈y − x̂1, x̂1〉
k − 1

(4.51)

This implies that as k → ∞,

r̃k−1 = 0

B(y − x̂k−1) = 0. (4.52)

As we stated earlier, because the regularization function J(x) is non-negative and convex

with a minimum at x = 0, this implies that

lim
k→∞

x̂k−1 = y. (4.53)

This also conveniently gives us a rate of convergence.

‖r̃k−1‖2 ≤ 2 (J(0) − J(x̂1) + 〈y − x̂1, x̂1〉)
k − 1

= O
(
(k)−1

)
(4.54)

�

We verify this rate of convergence by plotting ‖r̃k−1‖2 vs k in Figure (4.3). To

generate this curve, x̂k was calculated from the image in Figure (4.5 b) using ITR. Because
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we don’t compute r̃k until the second iteration, our plot begins at k = 2. We note that

‖r̃k−1‖2 does in fact approach 0 as k → ∞. The rate at which it approaches 0 appears to

be on the order of k−3, which indicates that (4.53) may not be a tight bound.
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Figure 4.3: Plot of ‖r̃k−1‖2 vs k verifying the convergence properties of method 3.

4.4 Convergence of IUR

Recall that IUR can be formulated such that each estimate can be calculated as a

simple update to the previous estimate:

x̂k+1 = x̂k + x̂1 − B(x̂k). (4.55)

If we assume that the sequence of estimates produced by this method are convergent, then

as k → ∞, x̂k+1 = x̂k = x̂∞, which implies that

x̂1 − B(x̂∞) = 0

B(y) − B(x̂∞) = 0

B(y) = B(x̂∞)
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Remember that B(·) denotes the minimization of a cost function. Thus, if the cost function

that is used is convex, there will only be one minimum. Thus B(y) = B(x̂∞), implies that

y = x̂∞.

Notice in Equation (4.55) that IUR does not require direct knowledge of the noisy

data y to compute the estimate x̂k. For k > 1, x̂k can be computed just from x̂1, the

filtered version of y. The other three methods do however require direct knowledge of y at

each iteration to compute their estimates (see Equations (2.2) (2.11) and (2.17)). We can

take advantage of this property (unique to IUR) along with IUR’s convergence property, to

”undo” the regularization in the first iteration by continuing to iterate. Since regularization

methods are typically highly non-linear operations, this is rather impressive. We give this

method of recovering y from x̂1 the name ”inverse regularization.” The ability to be used

for inverse regularization is a clear advantage of IUR over the other iterative regularization

methods in this framework. We will look at a number of the applications that make use of

this interesting property in the next chapter.

We shall now thoroughly prove that the series of estimates produced by IUR is

convergent.

Recall that IUR is formulated in terms of the generalized Bregman distance as:

x̂k+1 = (k + 1)x̂1 −
k−1∑
i=1

x̃i − arg min
x

{H(x, x̂1) + J(x) − J(x̃k−1) − 〈pk−1,x − x̃k−1〉}

= (k + 1)x̂1 −
k−1∑
i=1

x̃i − arg min
x

{
H(x, x̂1) + D

pk−1
J (x, x̃k−1)

}
(4.56)

where

pk+1 = pk +
(

∂H(x, x̂1)
∂x

∣∣∣∣x = x̃k+1

)
(4.57)

with p0 = 0 and x̃0 = 0.

Lemma 9. For non-negative J(x), the sequence 1
2‖x̂1 − x̃i−1‖2 is monotonically non-
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increasing for i = 2, 3, . . . , k.

Proof: We prove the monotonicity as follows:

1
2
‖x̂1 − x̃k‖2 ≤ 1

2
‖x̂1 − x̃k‖2 + D

pk−1
J (x̃k, x̃k−1)

due to the non-negativity of the Bregman distance. Note that x = x̃k minimizes

1
2‖x̂1 − x‖2 + D

pk−1
J (x, x̃k−1) by definition. Hence,

1
2
‖x̂1 − x̃k‖2 ≤ 1

2
‖x̂1 − x̃k‖2 + D

pk−1
J (x̃k, x̃k−1) ≤ 1

2
‖x̂1 − x̃k−1‖2 + D

pk−1
J (x̃k−1, x̃k−1)

≤ 1
2
‖x̂1 − x̃k−1‖2. (4.58)

�

Theorem 4. For non-negative, convex J(x), IUR converges as:

lim
k→∞

x̂k = y, (4.59)

with rate of convergence

‖x̂1 − x̃k−1‖2 ≤ 2J(x̂1)
k − 1

= O
(
(k)−1

)
. (4.60)

Proof: We begin the proof with the identity:

D
pk−1
J (x, x̃k−1) − D

pk−2
J (x, x̃k−2) + D

pk−2
J (x̃k−1, x̃k−2) = 〈x̃k−1 − x,pk−1 − pk−2〉

= 〈x̃k−1 − x,

(
∂H(x, x̂1)

∂x

∣∣∣∣x = x̃k−1

)
〉. (4.61)

Note that
(

∂H(x,�x1)
∂x

∣∣∣x = x̃k−1

)
is a subgradient of H(x, x̂1). Hence, from the definition of

the subgradient (A.1), we have the following relation:

D
pk−1
J (x, x̃k−1) − D

pk−2
J (x, x̃k−2) + D

pk−2
J (x̃k−1, x̃k−2) ≤ H(x, x̂1) − H(x̃k−1, x̂1). (4.62)
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If there exists a minimizer x of H(x, x̂1) such that J(x) < ∞, from the particular

choice of x = x, the following is true:

D
pk−1
J (x, x̃k−1) ≤ D

pk−1
J (x, x̃k−1) + D

pk−2
J (x̃k−1, x̃k−2) + H(x, x̂1) (4.63)

due to the non-negativity of the Bregman distance and H . Since we are considering

H(x, x̂1) = 1
2‖x̂1 − x‖2, we have x = x̂1.

Now we can combine (4.62) with (4.63) to show that:

D
pk−1
J (x, x̃k−1) ≤ D

pk−1
J (x, x̃k−1) + D

pk−2
J (x̃k−1, x̃k−2) + H(x̃k−1, x̂1)

≤ H(x, x̂1) + D
pk−2
J (x, x̃k−2)

For the particular choice x = x = x̂1, we have D
pk−1
J (x, x̃k−1) ≤ D

pk−2
J (x, x̃k−2) which

allows us to conclude a general convergence theorem.

Rearranging (4.62) and substituting H(x, x̂1) = 1
2‖x̂1 − x‖2 and k = i, we can

write:

D
pi−1
J (x, x̃i−1) + D

pi−2
J (x̃i−1, x̃i−2) +

1
2
‖x̂1 − x̃i−1‖2 − 1

2
‖x̂1 − x‖2 ≤ +D

pi−2
J (x, x̃i−2).

We can then repeatedly substitute i = 2, 3, . . . , k into the above formulation to obtain:

D
pk−1
J (x, x̃k−1) +

k∑
i=2

[
D

pi−2
J (x̃i−1, x̃i−2) +

1
2
‖x̂1 − x̃i−1‖2 − 1

2
‖x̂1 − x‖2

]
≤ Dp0

J (x, x̃0) = J(x). (4.64)

For example: when i = 2 we have

Dp1
J (x, x̃1) + Dp0

J (x̃1, x̃0) +
1
2
‖x̂1 − x̃1‖2 − 1

2
‖x̂1 − x‖2 ≤ Dp0

J (x, x̃0) = J(x) (4.65)

and when i = 3 we have

Dp2
J (x, x̃2) + Dp1

J (x̃2, x̃1) +
1
2
‖x̂1 − x̃2‖2 − 1

2
‖x̂1 − x‖2 ≤ Dp1

J (x, x̃1). (4.66)
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Substituting (4.66) into (4.65) yields:

Dp2
J (x, x̃k−1) +

3∑
i=2

[
D

pi−2
J (x̃i−1, x̃i−2) +

1
2
‖x̂1 − x̃i−1‖2 − 1

2
‖x̂1 − x‖2

]
≤ J(x).

Now, using the fact that D
pi−2
J (x̃i−1, x̃i−2) ≥ 0 we can rewrite (4.64) as:

D
pk−1
J (x, x̃k−1) +

k∑
i=2

[
1
2
‖x̂1 − x̃i−1‖2

]
− (k − 1)

[
1
2
‖x̂1 − x‖2

]
≤ J(x). (4.67)

We can then substitute x = x = x̂1 into (4.67), (since this is the value of x that will

guarantee convergence) to obtain:

D
pk−1
J (x̂1, x̃k−1) +

k∑
i=2

[
1
2
‖x̂1 − x̃i−1‖2

]
≤ J(x̂1) (4.68)

Since the sequence 1
2‖x̂1 − x̃i−1‖2 is monotonically non-increasing for i = 2, 3, . . . , k we can

write:

D
pk−1
J (x̂1, x̃k−1) + (k − 1)

[
1
2
‖x̂1 − x̃k−1‖2

]
≤ J(x̂1). (4.69)

Equation (4.69) can be rearranged as:

1
2
‖x̂1 − x̃k−1‖2 ≤ J(x̂1) − D

pk−1
J (x̂1, x̃k−1)
k − 1

≤ J(x̂1)
k − 1

(4.70)

This implies that limk→∞ x̃k−1 = x̂1. Recalling that

x̂1 = argmin
x

{
1
2
‖y − x‖2 + J(x)

}
= B(y) (4.71)

and that

x̃k−1 = argmin
x

{
1
2
‖x̂k−1 − x‖2 + J(x)

}
= B(x̂k), (4.72)

this further implies that

lim
k→∞

x̂k = y (4.73)
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if, as discussed earlier, B(·) minimizes a convex cost function.

This also conveniently gives us a rate of convergence.

‖x̂1 − x̃k−1‖2 ≤ 2J(x̂1)
k − 1

= O
(
(k)−1

)
(4.74)

�

We verify this rate of convergence by plotting ‖x̂1 − x̃k−1‖2 vs k in Figure (4.4).

To generate this curve, x̂k was calculated from the image in Figure (4.5 b) using IUR.

Because we don’t compute x̃k until the second iteration, our plot begins at k = 2. We note

that ‖x̂1 − x̃k−1‖2 does in fact approach 0 as k → ∞. The rate at which it approaches 0

appears to be on the order of k−6, which indicates that (4.74) may not be a tight bound.

2 4 6 8 10
0

5

10

15
Method 4 Convergence

iterations

experiment data

best fit 894.77k−6

Figure 4.4: Plot of ‖x̂1 − x̃k−1‖2 vs k verifying the convergence properties of method 4.

As a side note, recall that the general image restoration formulation of IUR is:

x̂k+1 = x̂k + AT x̂1 − ATAB (x̂k) . (4.75)

Interestingly, if we assume that this generalized version of Method 4 converges, then it’s
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final value is a least-squares solution. That is, as k → ∞, x̂k+1 = x̂k = x̂∞, and we have:

AT x̂1 − ATAB (x̂∞) = 0

ATAB (x̂∞) = AT B(y)

B (x̂∞) = (AT A)−1AT B(y) (4.76)

4.5 Bias-Variance Tradeoff

To measure the effectiveness of the iterative regularization algorithms in recovering

the true signal x from the data y , the mean-squared error (MSE) is a natural choice. The

MSE is defined as

mse(θ̂) = E
[
(θ̂ − θ)2

]
(4.77)

where θ̂ is the estimate and θ is the underlying signal. We can rewrite the MSE as

mse(θ̂) = E

([(
θ̂ − E(θ̂)

)
+
(
E(θ̂) − θ

)]2)

= E

[(
θ̂ − E(θ̂)

)2
]

+ 2 E
[(

θ̂ − E(θ̂)
)(

E(θ̂) − θ
)]

+E

[(
E(θ̂) − θ

)2
]

= var(θ̂) + 0 +
(
E(θ̂) − θ

)2

= var(θ̂) + bias2(θ).

Thus, as is well-known, MSE is the sum of the estimate variance and squared-bias [14].

Ref. [13] provides a bias-variance tradeoff analysis for L2 boosting (which is equiv-

alent to the ITR method), however, some of the key assumptions made in that analysis do

not apply to the iterative regularization methods that we present here (namely, in our gen-

eral analysis B(·) is a non-linear estimator). Because of this nonlinearity, the statistics of
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the estimate x̂k are difficult to compute analytically. We will show the bias-variance trade-

off properties of the four iterative regularization methods experimentally using Monte-Carlo

simulations.

(a) (b) MSE=29.54

Figure 4.5: (a) The original ’Barbara’ image (b) ’Barbara’ with added while Gaussian
noise of variance 29.5 (PSNR= 33.43dB)

For these Monte-Carlo simulations, we add 1 realization of random (Gaussian)

noise with a variance of 29.5 to the image in Figure (4.5 a) resulting in 1 noisy image. A

series of estimates (x̂1 through x̂10) is computed from this noisy image using one of the

iterative regularization methods. This process is repeated for a total of 50 different noise

realizations. Next, the average variance, bias, and MSE between each of the 50 versions of

each of the estimates (x̂1 through x̂10)are calculated. The entire simulation is then repeated

for a different iterative regularization method.

In Figure (4.6) we have plotted the average MSE, variance, and squared-bias of

Osher’s iterative regularization method as a function of iteration number. Two different

regularization functionals (Total Variation and Bilateral Filter) were used for comparison.

The operating parameters for each of the regularization functionals were selected to yield

the overall lowest MSE. For the Bilateral Filter regularization we used kernel size N = 2
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(5), spatial blur parameter σd = 1.1, and radiometric blur parameter σr = 35. For the Total

Variation Regularization we used regularization parameter λ = .18 and 50 steepest descent

iterations. For details on the implementation of either of these regularization methods,

please see [10] and [6] respectively.

Notice, in Figure (4.6), that the squared-bias decreases as we iterate but the

variance increases. The mean-square error optimal estimate occurs where the sum of these

two values is at a minimum, which occurs at the second iteration of Osher’s method in this

case.
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(a) Bilateral (b) Total Variation

Figure 4.6: Average MSE, variance, and squared-bias of the estimates x̂k of the noisy
versions of the image shown in Figure (4.5 a), (Figure (4.5 b) is an example of one such
noisy version) using Osher’s iterative regularization method (with (a) Bilateral and (b) Total
Variation regularization functionals).

Interestingly, the best overall MSE estimate is arrived at by applying a large

amount of regularization such that the first estimate has a low variance (due to the re-

moval of noise) but a high bias (due to the loss of high frequency image details). The bias

decreases as we iterate and more of the ”lost detail” is returned to the estimate. Some noise

is also returned along with the detail causing the variance to increase. The MSE, being

the sum of these two statistics is optimal at the point in the iterative process where we get
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Bilateral Filter Parameters Total Variation Parameters
Method 1 N = 2, σd = 1.1, σr = 35 λ = .18, 50 steepest descent iterations
Method 2 N = 2, σd = 1.1, σr = 31 λ = .21, 50 steepest descent iterations
Method 3 N = 2, σd = 1.1, σr = 14 λ = .7, 50 steepest descent iterations
Method 4 N = 2, σd = 1.1, σr = 23 λ = .32, 50 steepest descent iterations

Table 4.1: Regularization operating parameters used in Figures (4.6),(4.7),(4.9), and
(4.8).

the best tradeoff between restored texture and suppressed noise. Had we chosen too small

an amount of regularization, the variance of the first estimate would have been too high to

yield much of an improvement in MSE.

We compare the average MSE, squared-bias, and variance of the estimated pro-

duced by all four iterative regularization methods in Figures (4.7),(4.9), and (4.8) respec-

tively. Again, both Bilateral Filter and Total Variation regularization are represented for

comparison (see Table 4.1 for the operating parameters used). The general behavior of the

variance, squared-bias, and MSE of the estimates produced by each of the methods appears

to be very similar, though the MSE of ITR’s estimates appears to converge much more

slowly than the other methods.

Note that the minimum MSE estimate produced by each of the four iterative

regularization methods (using a given regularization functional) have approximately the

same MSE. This allows us to compare how each of the methods trades off variance for bias

to produce the optimal MSE estimate. Methods 1,3,and 4 have minimum MSE at k = 2,

while method 2 has its minimum MSE at k = 3. By looking at the variance of methods

1,3, and 4 at k = 2 and the variance of method 2 at k = 3 we can see that all four of the

iterative regularization methods actually trade off the bias and variance of the estimates in

the same way. That is to say that the optimal MSE estimate of produced by each of the

methods has the same proportion of variance and squared-bias.

48



2 4 6 8 10

20

30

40

50

iterations

M
S

E

MSE of estimates

Method 1
Method 2
Method 3
Method 4
MSE of data

2 4 6 8 10

20

30

40

50

iterations

M
S

E

MSE of estimates

Method 1
Method 2
Method 3
Method 4
MSE of data

(a) Bilateral (b) Total Variation

Figure 4.7: Average MSE of the estimates x̂k of the noisy versions of the image shown
in Figure (4.5 a), (Figure (4.5 b) is an example of one such noisy version) using itera-
tive regularization methods 1-4 (with (a) Bilateral and (b) Total Variation regularization
functionals).
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Figure 4.8: Average variance of the estimates x̂k of the noisy versions of the image shown
in Figure (4.5 a), (Figure (4.5 b) is an example of one such noisy version) using itera-
tive regularization methods 1-4 (with (a) Bilateral and (b) Total Variation regularization
functionals).
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Figure 4.9: Average squared-bias of the estimates x̂k of the noisy versions of the image
shown in Figure (4.5 a), (Figure (4.5 b) is an example of one such noisy version) using iter-
ative regularization methods 1-4 (with (a) Bilateral and (b) Total Variation regularization
functionals).
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Chapter 5

Applications Beyond Image

Reconstruction

Iterative regularization methods take an initially over-regularized image and slowly

add the texture that was removed by the initial regularization back to the estimate in a

controlled manner. As we have seen in the previous chapters, for simple denoising prob-

lems, there is an optimal tradeoff between the amount of noise removed and the amount of

texture retained at which the iterations would be stopped. Another interpretation of this

is that the optimal tradeoff between bias and variance results in the smallest MSE (recall

that we investigated the bias-variance tradeoff properties of the estimates produced by our

iterative regularization framework in Chapter 4). Continuing to iterate using the iterative

regularization framework causes the estimate to asymptotically converge back to the initial

data. Essentially, the iterative regularization framework allows us to invert the highly non-

linear initial regularization. However, IUR is the only method in the framework that does

not require direct knowledge of y in order to compute it’s estimates, but rather requires
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only x̂1, the filtered version of y. When used in this modality we refer to this iterative

regularization method as “ Inverse Regularization.”

Osher’s method was originally motivated in [1] by the desire to reduce the piecewise

“ staircase” effect that Total Variation can sometimes produce in its estimates. The other

methods in our iterative regularization framework were similarly motivated by the desire to

reduce the bias in the estimate produced by any general denoising method. In addition to

the image restoration capabilities that initially motivated this framework, there are a wide

variety of applications where inverse regularization is highly useful. We shall explore these

applications in this chapter.

5.1 Compression

As movie theaters switch over to digital projectors, the method of transporting

movies is changing as well. Instead of physically moving large reels of film around, movies

are now being transmitted to digital theaters via satellite. In order to speed up transmis-

sion of these high definition movies, some form of compression is often used. To facilitate

compression, some high frequency texture, including grain noise, may be removed in this

process. It would be highly desirable to be able to reproduce the grain noise in the received

movie frames and thus have the benefits of increased transmission rates and the desired

appearance of grain noise in the movies.

Total Variation Regularization has been discussed as a method of decomposing an

image into two parts: high frequency texture and piecewise constant cartoon ([6], [1], [15],

[16]). To a lesser degree, there has been a similar analysis of the Bilateral Filter ([10], [7]).

Both techniques were originally intended to provide an estimate of the underlying
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Denosing Technique J(x)
Total Variation [1], [6] λ‖|∇x|‖1

Bilateral [7], [8] λ
2

∑N
n=−N [x − Snx]T Wy,n [x − Snx]

Table 5.1: Total Variation and Bilateral Filter Regularization methods and their associated
regularization terms.
signal in the classic denoising problem:

y = x + v. (5.1)

where x is the true image and v is zero-mean additive white noise that is uncorrelated to

x and with no assumptions made on its distribution. The image decomposition property of

these techniques were a later discovery.

Recall that both Total Variation Regularization and the Bilateral Filter can be

implemented in the regularization framework as:

x̂ = arg min
x

{
1
2
‖y − x‖2 + J(x)

}
(5.2)

where J(x) is a convex regularization functional as summarized in Table 5.1. The parameter

λ controls the amount of regularization. The signal x̂ is an estimate of the the true signal

x produced by minimizing the cost function associated with either Total Variation Regular-

ization or Bilateral Filter Regularization (as we shall call the regularization interpretation

of the Bilateral Filter).

For the regularization term corresponding to the Bilateral Filter, Sn is a matrix

shift operator and Wy,n is a weight matrix where the weights are a function of both the

radiometric and spatial distances between pixels in a local neighborhood.

Inverse regularization is perfectly suited for providing bandwidth savings in com-

pression applications. The “ cartoon” version of the signal x̂1 is generated by simply apply-

ing Total Variation or the Bilateral Filter to the signal y which may contain high frequency

texture that is desirable to keep but difficult to compress. The “ cartoon” is much easier
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Parameters Bandwidth (bits/pixel) % reduction PSNR (dB)
λ = .2, k = 400 7.49 6.94 35.67
λ = .4, k = 46 7.83 2.73 43.01
λ = .5, k = 20 7.94 1.31 45.95
λ = .6, k = 11 8.01 0.47 48.43

Table 5.2: Lossless (packbits) compression results using IUR with Total Variation
regularization.
to compress in a lossless compression scheme such as ‘ run-length coding’ ([17]) due to its

piecewise-constant nature.

By transmitting just the “ cartoon” and the regularization parameters used to

generate it, we can exactly reconstruct the original signal y by using (IUR) inverse regu-

larization at the receiver (iterating until the estimate x̂k converges). Table 5.2 shows the

results from using ‘ packbits’ compression (a variant of run-length coding) on the JFK image

shown in Figure 5.1 (a). The digital Total Variation Filter ([6]) was used to implement Total

Variation Regularization. Note that as the amount of regularization is increased (making

the transmitted image x̂1 more piecewise constant), the bandwidth is decreased but at a

cost of increased number of iterations at the receiver. For these results the image x̂k was

considered to have converged when its mean-squared error (MSE) was less than or equal to

the arbitrary value 0.085.

It is well known that the result with the best PSNR is not necessarily the best visual

quality result. Furthermore, for the applications that we are considering, visual results are

all that we care about. We are simply trying to reduce the amount of bandwidth necessary

to transmit a grainy image and have the received image appear to be just as grainy as the

original image. For this reason, lossy compression schemes such as JPEG may be used as

well. However, they are not as well suited for compressing images containing texture since

the artifacts introduced into the received version of the “cartoon” can change the appearance

of the received data. These artifacts can then be amplified in the iterative process at the
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decoder.

5.1.1 Approximate Bilateral Filter Version of Inverse Regulariza-

tion

We now introduce an alternate method of creating a visually similar result using

the bilateral filter to generate x̂1, the “ cartoon” version of the data at the transmitter.

We can use just one iteration of IUR to return a majority of the lost detail back

to the “ cartoon” x̂1. Then we can add zero-mean white noise with approximately the same

statistics as the grainy noise in y to the estimate x̂2. The resulting image which we shall

denote as ŷ will closely match the first and second order statistics of y and thus be visually

similar to the desired output y. Earlier work in film grain synthesis can be found in [18],

[19], and [20]. Here we consider an entirely different approach.

The Bilateral Filter is a locally adaptive filter which, in the 1−D case, can be

written as

x̂1(j) =
N∑

n=−N

w(j, n)y(j − n) (5.3)

or more concisely as x̂1 = B(y, N), where the integer N defines a 2N +1 symmetric window

about any given value of y(j) in the signal y over which the filter operates. The locally

adaptive weights w(j, n) are related to both spatial and radiometric (e.g. pixel intensity)

distance between the value y(j) and its N pixels to each side. The details of how these

coefficients are chosen can be found in [10].

The error image e = y − x̂1 contains the lost texture that we wish to replicate at

the receiver in our IUR inverse regularization scheme. Let us now study the statistics of

this error image.
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We calculate the point-wise expected value of e as follows:

E [e(j)] = E [y(j) − x̂1(j)]

= E [x(j) + v(j) − x̂1(j)]

= x(j) − E [x̂1(j)] . (5.4)

We note that the lost detail restored by a single iteration of IUR (e.g x̂1 −B(x̂1))

will have approximately the same expected value as the error e under the condition that

x ≈ x̂1 (5.5)

which is true in general when the noise variance is small (remember that the Bilateral

Filter was designed to estimate the true signal x). Thus x̂2 = x̂1 + (x̂1 − B(x̂1)) matches

(approximately) the expected value of y at each pixel.

We can now compute the point-wise variance of e as:

V ar [e(j)] = E
[
(e(j) − E [e(j)])2

]
= E

⎡⎣(y(j) −
N∑

n=−N

w(j, n)y(j − n) − E

[
y(j) −

N∑
n=−N

w(j, n)y(j − n)

])2
⎤⎦ .

If we naively assume B(y) ≈ B(x) + B(v) and that E [B(v)] ≈ 0, then we have:

V ar [e(j)] ≈ E

⎡⎣(y(j) −
N∑

n=−N

w(j, n)y(j − n) − x(j) +
N∑

n=−N

w(j, n)x(j − n)

)2
⎤⎦

= E

⎡⎣(v(j) −
N∑

n=−N

w(j, n)v(j − n)

)2
⎤⎦

= E
[
v2(j)

]− 2E

[
v(j)

N∑
n=−N

w(j, n)v(j − n)

]
+ E

⎡⎣( N∑
n=−N

w(j, n)v(j − n)

)2
⎤⎦ .

(5.6)

Let’s look more closely at the second term in the above expression. Since we assuming that
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our noise is uncorrelated and zero-mean, the expected value

E [v(j)v(j − n)] (5.7)

where n �= 0 will be zero, and the only non-zero term will be

E [v(j)w(j, 0)v(j − 0)] = E
[
w(j, 0)v2(j)

]
= σ2w(j, 0) (5.8)

where σ2 is the variance of the noise v.

Similarly, in the third term of (5.6), the squared summation can be expanded, and

all of the terms of the form

E [w(j, n)v(j − n)w(j, m)v(j − m)] (5.9)

with n �= m will be zero. The remaining non-zero terms will be:

E

[
N∑

n=−N

w2(j, n)v2(j, n)

]
=

N∑
n=−N

w2(j, n)E
[
v2(j, n)

]
= σ2

N∑
n=−N

w2(j, n). (5.10)

Now, putting together Equations (5.6), (5.8) and (5.10), we can write the approximate

point-wise variance of e as:

V ar [e(j)] =

(
1 − 2w(j, 0) +

N∑
n=−N

w2(j, n)

)
σ2 (5.11)

From (5.11) and (5.4) we conclude that, in order for our estimate to match both

the variance as well as the mean of y, we must add zero-mean white noise with the same

distribution and variance as the grainy noise in y to the estimate x̂2. Thus, if we define

wT ≡
(
1 − 2w(j, 0) +

∑N
n=−N w2(j, n)

)
, we can estimate

ŷ = x̂1 + (x̂1 − B(x̂1)) +

(
1 − 2w(j, 0) +

N∑
n=−N

w2(j, n)

) 1
2

σ ε(j)

= x̂1 + (x̂1 − B(x̂1)) + w
1
2
T σ ε(j) (5.12)
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where ε is a zero-mean white noise process with the same distribution as v but with unit

variance. The last term in the above expression (5.12) returns the stochastic component

of y (a spatially varying variance), whereas the first two terms in effect “ undo” (at least

partially) the deterministic action of the Bilateral Filter on the true structure of the image.

Note we must transmit two images x̂1 and wT (as well as the Bilateral Filter

parameters and the variance of the grain noise σ2) in order to create ŷ at the receiver.

However, wT is highly sparse and therefore easy to compress, and, as mentioned earlier,

the piecewise nature of x̂1 makes it easy to compress as well. As a result we get a visually

similar result at the output of the receiver that used less bandwidth than a non-compressed

transmission and required less work (iterations) to produce. An example of the estimates

produced by this method are shown in Figure (5.1). The Bilateral Filter parameters used

in this example were N = 2, σd = 1.1 and σr = 44, and the variance of the texture v

was estimated to be σ2 ≈ 55. The compression scheme used was JPEG compression with

a quality factor of 100 (which is still lossy compression) for the grainy image (Figure (5.1

a)) and “ cartoon” (Figure (5.1 b)), and JPEG compression with a quality factor of 80 for

the Bilateral Filter coefficient image (Figure (5.1 c)). Note that we can tolerate a larger

degree of data loss in the compressed version of wT since its effect of the reconstructed

image ŷ is more subtle than that of the compressed version of x̂1. Also not that the pixels

values of wT are typically small and will likely be rounded to zero at the quantizing stage

of whatever compression algorithm is being used, unless the dynamic range is scaled up. In

this example we has scaled to the dynamic range of wT to be in the range [0, 255] before

compression, then scaled it back to its original range at the receiver. This requires that the

dynamic range scale also be transmitted, but since this is only two numbers, the effect on

the total bandwidth is negligible.
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The total number of bytes transmitted using the approximate Bilateral Filter ver-

sion of inverse regularization (19620+2962=22582 bytes) is less than the number of bytes

(28871 bytes) required if we were to simply compress the the grainy image.

(a) 28871 bytes (b) 19620 bytes (c) 2962 bytes

(d) (e)

Figure 5.1: (a) The original grainy image y, compressed using JPEG with a quality factor
of 100. (b) The Bilateral Filtered image x̂1 = B(y) compressed using JPEG with a quality
factor of 100. (c) The compressed Bilateral Filter coefficient image wT , shown here with
gray levels reversed for ease of viewing, compressed using JPEG with a quality factor of
80. (d) The result of using one iteration of IUR on (b). (d) The resulting image ŷ with
reconstructed grain texture.

5.2 Texture Transfer

The ability to transfer the texture from one image to another finds uses in a variety

of areas. For artistic effect, it may be desirable to add grainy texture to images captured on

digital media. Composite images combine elements from different photographs into one; or

sometimes a computer generated image is combined with a real one. It is often desirable that
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the texture of the composite image be consistent. Also, high frequency textures such as hair

or sand can be difficult or labor intensive to implement in computer generated images. In

some instances it would be advantageous to simply extract the texture from a real image and

transfer it to the computer generated image. Commercial products such as ’Grain Surgery’

(http://www.visinf.com/gs/ps/ ) exist solely to accomplish these types of tasks. Our method

offers an alternative to these products.

The simplest way to accomplish the texture transfer is to apply either Total Vari-

ation or Bilateral Filter Regularization to the texture source y resulting in the piecewise-

constant image x̂1. The texture information (y − x̂1) can then be added to the textureless

image z. We can express this process as:

ẑ = z + N(y − x̂1), (5.13)

where N(·) is a normalization of the image gray values such that the texture and target

images are in the same dynamic range. However, there is an advantage to using IUR to

transfer the texture; namely more control. By transferring texture from image y to image

z as:

ẑk = z + N

(
k∑

i=1

(x̂i − x̃i)

)
(5.14)

we can control the amount of texture that is transferred, easily optimizing the appearance

of the resulting image.

In Figure (5.3) we show an example of this technique. We use Bilateral Filter reg-

ularization with kernel size N = 2, spatial parameter σd = 1.1, and radiometric parameter

σr = 50 to iteratively add the texture from the source image (Figure(5.2)) to the target

image in Figure (5.3) (a). A simple intensity threshold was used to mask the portion of the

image that we did not want to add texture to. Any kind of image segmentation may be used
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to achieve similar results. Notice how the transferred texture becomes more pronounced as

the number of iterations increases. The image in Figure (5.3) (e) looks very similar to the

image in Figure (5.3) (f) because the IUR process has stabilized.

(a) y (b) (y − x̂1)

Figure 5.2: (a) The texture source. (b) The texture extracted from (a) by applying
Bilateral Filter Regularization with N = 2, σd = 1.1, σr = 50.

5.3 Conclusions

In Chapter 4 we were able to show that the estimates produced by each of the

iterative regularization methods in our framework eventually converge back to the initial

data. One of the the methods in particular, IUR, is unique in the fact that the iterations do

not require knowledge of the initial data. Thus, it can be thought of as inverse regularization;

undoing the effects of regularization through iterations.

We have demonstrated the bandwidth savings that are possible by regularizing

an image before transmission and using IUR at the receiver to restore the original image.

We have also illustrated an approximate version of inverse regularization using the bilateral

filter that is very useful for restoring grain texture to images using only a single iteration

at the receiver. Finally, we showed an example of the controlled manner by which inverse

regularization can be used to transfer texture from a texture source to texture-less image.
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(a) z (b) ẑ2 (c) ẑ4

(d) ẑ6 (e) ẑ10 (f) z + N(y − x̂1)

Figure 5.3: (a) The original image without any texture added. (b) The result of one IUR
iteration (with Bilateral Filter Regularization) to transfer the texture of the image in Figure
5.2 (a) to the image in (a). (c) The result of three IUR iterations. (d) The result of five
IUR iterations. (e) The result of nine IUR iterations. (f) The result of adding the full
texture of Figure 5.2 (b) to (a).

In addition to the many applications for image restoration for which our iterative

regularization framework was initially motivated, these other applications further exemplify

the utility of our framework.
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Chapter 6

Image Reconstruction Experimental

Results

While we show experiment results throughout this thesis, we further expand upon

them in this chapter to illustrate a number of key points.

In Chapters 2 and 3 we discussed our iterative regularization framework in the

context of image restoration: namely, deblurring and denoising. In this chapter, we illustrate

this thoroughly with extensive examples. We use several different regularization methods

to help illustrate the generality of the iterative regularization framework. These methods

are briefly described below.

The Bilateral Filter ([10]) is a spatially adaptive filter that replaces each pixel of

the noisy image with a weighted average of the pixels in some surrounding neighborhood.

These weights depend on both the spatial distance (far away pixels contribute less to the

estimate) and the radiometric (gray value) distance (pixels with a very different gray level

contribute less to the estimate). The Bilateral Filter requires some control parameters to
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compute its estimate. These parameters are: N , which determines the (2N + 1)× (2N + 1)

window over which the weighted averages are computed; σd, which controls how strongly

the spatial distances affect the weights; and σr, which controls how strongly the radiometric

distances affect the weights (see Appendix B for more details).

Total Variation Regularization ([9]) may be implemented as a steepest descent

problem, as described in Appendix C. Based on this implementation, Total Variation regu-

larization requires the following control parameters: λ, which controls the amount of regu-

larization; γ, the gradient descent step size; and i, the number of gradient descent steps.

Bilateral Total Variation regularization was formulated in [8] as an extension to

Total Variation regularization based upon the Bilateral Filter idea of using both spatial and

radiometric information to calculate the estimate. It is formulated as:

x̂ = arg min
x

{
1
2
‖y − x‖2 + λ

N∑
n=−N

α|n|‖x − Snx‖1

}
(6.1)

where 0 ≤ α ≤ 1 to reflect the decreased confidence in pixels far away from the one being

estimated. Much like the Bilateral Filter, this can be interpreted as a spatially adaptive

filter where each pixel of the noisy image is replaced with the weighted average of the pixels

in a local neighborhood. The weights are dependant on spatial and radiometric distances.

However, unlike the Bilateral Filter, the distance metric used is the L1 norm, not the L2

norm. This is solved via gradient descent as:

x̂i+1 = x̂i − γ

[
x̂i − y + λ

(
N∑

n=−N

α|n|[I − Sn] sign[x̂i − Snx̂i]

)]
. (6.2)

Based on this implementation, Bilateral Total Variation regularization requires the following

control parameters: N , which determines the (2N + 1) × (2N + 1) window over which the

weighted averages are computed; α, which controls how strongly the spatial distances affect

the weights; λ, which controls the amount of regularization; γ, the gradient descent step
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size; and i, the number of gradient descent steps.

Tikhonov regularization ([5]) is perhaps the most widely used regularization method.

It is formulated as:

x̂ = argmin
x

{
1
2
‖y − x‖2 +

λ

2
‖Γx‖2

}
. (6.3)

where Γ is usually a highpass operator such as the Laplacian. For our examples we in fact

use the Laplacian operator version. We use gradient descent to carry out the cost function

minimization as follows:

x̂i+1 = x̂i − γ
[
x̂i − y + λΓT Γx̂i

]
. (6.4)

Based on this implementation, Tikhonov regularization requires the following control para-

meters: λ, which controls the amount of regularization, γ, the gradient descent step size,

and i, the number of gradient descent steps.

Classic kernel regression ([21], [22]) is rather well known and frequently used in

the machine learning community. However, its use in the image processing field for image

estimation has been limited (though it receives a very thorough treatment in ([23]). The

goal of classic kernel regression is to consider the image pixels as samples of an unknown

regression function for which we wish to estimate the Q-th order Taylor series approximation

coefficients. In other words, the denoising problem model for classic kernel regression is:

y = z(x) + v (6.5)

where z(x) ≈ (β0−β1x+β2x2 + ...+βQxQ) and v is zero-mean additive white noise that is

uncorrelated to x. If we let g
(
x, {βi}Q

i=0

)
= β0−β1x+β2x2 + ...+βQxQ, we can formulate

classic kernel regression as:

x̂ = arg min
g(x,{βi}Q

i=0)

{[
y − g

(
x, {βi}Q

i=0

)]T
Wh

[
y − g

(
x, {βi}Q

i=0

)]}
(6.6)
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where Wh is a (space dependant) weight matrix. The weights are computed as a decaying

function of spatial distance (pixels further from the pixel to be estimated will be weighted

less than those closer to the pixel to be estimated). For our experiments we will use a

Gaussian function for this purpose. The details of how this method is implemented can be

found in ([23]). Based on this implementation, classic kernel regression has the following

control parameters: h, which controls how strongly the spatial distances affect the weights;

N , which determines the (2N + 1)× (2N + 1) window over which the weighted averages are

computed; and Q, the regression order. We also note that Di Marzio and Taylor consider

iterating kernel regression via boosting (which is closely related to IUR) in [24] and [25].

6.1 Experiment 1: Best MSE Method

As we have seen in Chapter 5, IUR clearly has an advantage over the other methods

in the sense that it can be used for inverse regularization (reconstruction of y from the regu-

larized estimate x̂1) while the other methods cannot. However, we would like to investigate

whether any of the methods is superior to the others in terms of producing the lowest MSE

estimate. Therefore, we have applied all four methods to the same image. Additionally, we

have used several regularization functionals for each method as well. Table 6.1 summarizes

the comparisons made in this first experiment.

The image that we are trying to denoise is shown in Figure 6.1 (b). This image

was generated by adding white Gaussian noise of variance σ2 = 29.5 to the image shown in

Figure 6.1 (a). We have produced each estimate for 20 different noise realizations in order

to compute the average MSE in this and all remaining experiments in this chapter.

As we mentioned in the introduction of this chapter, all of the regularization meth-

ods that we compare here require control parameters to produce their estimates. In order to
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Method 1 Method 2 Method 3 Method 4
BF Figure 6.6 (a) Figure 6.6 (b) Figure 6.6 (c) Figure 6.6 (d)
TV Figure 6.7 (a) Figure 6.7 (b) Figure 6.7 (c) Figure 6.7 (d)
BTV Figure 6.8 (a) Figure 6.8 (b) Figure 6.8 (c) Figure 6.8 (d)
Tik Figure 6.9 (a) Figure 6.9 (b) Figure 6.9 (c) Figure 6.9 (d)
CKR Figure 6.10 (a) Figure 6.10 (b) Figure 6.10 (c) Figure 6.10 (d)

Table 6.1: The different denoising techniques performed on Figure 6.1 (b) in Experiment
1. The lowest MSE result in each row is italicized. BF stands for Bilateral Filter, TV
for Total Variation regularization, BTV for Bilateral Total Variation regularization, Tik for
Tikhonov regularization, and CKR for classic kernel regression.

(a) (b)

Figure 6.1: (a) The original ‘ Barbara’ image (b) ‘ Barbara’ with added white Gaussian
noise of variance 29.5 (MSE= 29.50)

find the lowest MSE estimate, each of these parameters was tuned by hand. In many cases a

“reasonable” initial estimate helps to reduce the amount of trial-and-error testing needed to

tune a particular parameter. For instance, Total Variation Regularization, Bilateral Total

Variation Regularization, and Tikhonov Regularization all use gradient descent to minimize

their associated cost functions. It makes sense to choose the gradient descent step size to be

” small” and the number of gradient descent steps to be” large” so that the gradient descent

algorithm will converge to the minimum solution. The parameters, the number of iterations

used for each method, and the estimates themselves are shown in Figures (6.6), (6.7), (6.8),

(6.9), and (6.10). The best way to see the subtle differences between the methods is to look

at the residual |y − x̂k|, thus these are shown as well. A residual that contains less structure
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and looks more like pure noise is one indication of better denoising. We have reversed the

gray levels of these residuals for easier viewing and scaled their dynamic ranges such that

all of the residuals in a particular figure have the same dynamic range. We shall similarly

scale the dynamic ranges and reverse the gray levels of all the residuals that we will show

in subsequent experiments as well.

Recall that all of the methods in our iterative regularization framework are related

by a linear distribution of the B(·) operator:

1) x̂k+1 = B

(
y +

k∑
i=1

(y − x̂i)

)
,

2) x̂k+1 = B(y) + B

(
k∑

i=1

(y − x̂i)

)
,

3) x̂k+1 = B(y) +
k∑

i=1

B(y − x̂i), and

4) x̂k+1 = B(y) +
k∑

i=1

(B(y) − B(x̂i))

= (k + 1)B(y) −
k∑

i=1

B(x̂i).

The net effect of both the Tikhonov Regularization and Classic Kernel Regression cost

functions are that they produce linear operators (B). Thus, all four iterative regularization

methods are equivalent when Tikhonov Regularization or Classic Kernel Regression are

used.

The best MSE estimate for each regularization type is shown in italics in Table

(6.1). Method 2 produces the best estimate in the Total Variation and Bilateral Total

Variation regularization cases, while method 4 produces the best estimate in the Bilateral

Filter case, and all four methods perform the same in the Tikhonov regularization and

classic kernel regression cases. In each case, the MSE values are an average of 20 Monte-Carlo

experiments. Based on this experiment it seems that there is not one iterative regularization

68



method in particular that performs better than the others. The best method to use can

depend on the type of regularization functional and on the image itself. Also note that the

mean-squared error of the estimates for any particular choice of regularization functional

are generally not very different from one another. Though one method may yield a slightly

lower MSE estimate, the other three methods will produce an estimate of similar quality.

6.2 Experiment 2: Low SNR Denoising

The signal-to-noise ratio (SNR) is a good indicator of the amount of noise in an

image. We define it here (in units of dB) as:

SNR(y) = 10 log10

(
V ar[x]

σ2

)
(6.7)

where σ2 is the variance of the noise, v. The image used in Experiment 1 has an SNR of

20dB, which is reasonably high. Thus we expect to produce very good (low MSE) estimates.

The task of estimating the true image from the noisy data becomes more difficult as the

SNR is decreased. We now examine how the iterative regularization methods perform when

the SNR is much lower than in experiment 1.

We will denoise two different images in this experiment. The first image is shown

in Figure 6.2 (b). This image was generated by adding white Gaussian noise of variance

σ2 = 298 to the image shown in Figure 6.2 (a) yielding a SNR of 10dB. The second image

is shown in Figure 6.3 (b), and was generated by adding white Gaussian noise of variance

σ2 = 229 to the image shown in Figure 6.3 (a) yielding a SNR of 10dB. We use our iterative

regularization framework with Bilateral Total Variation regularization to find the best MSE

estimates in each case. The operating parameters were tuned by hand and are shown, along

with the number of iterations and the estimates themselves, in Figures (6.11) and (6.12).
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(a) (b)

Figure 6.2: (a) The original ‘ Barbara’ image (b) ‘ Barbara’ with added white Gaussian
noise of variance 298 (MSE= 298.0)

(a) (b)

Figure 6.3: (a) The original ’ Lena’ image (b) ‘ Lena’ with added white Gaussian noise of
variance 229 (MSE= 229.0)

Notice that, although ITR did not produce the best MSE estimate in experiment

1 for any regularization functional (except for Tikhonov regularization and classic kernel

regression which produce the same estimate for all four methods), it does produce the best

MSE estimate in this experiment. Once again, the MSE values are an average of 20 Monte-

Carlo experiments. This suggests that ITR may be the best iterative regularization method

to use when the noisy image has a low SNR. Also note that the best MSE estimates produced

via ITR appear to have a higher variance than the estimates from the other three methods,

suggesting that the ITR trades off a higher variance for a lower bias in the presence of more

noise.
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6.3 Experiment 3: Removing Grain Noise From a Color

Image

In this experiment we will illustrate two facets of the versatility of our iterative

regularization framework: it can be applied to images with various kinds of noise, and it

can be applied to color images as well. The image that we are trying to denoise is shown in

Figure (6.4). This is a color image and the high frequency texture throughout the image is

film grain noise.

We used Total Variation regularization as our regularization functional in this

experiment. Following [26], we transferred this RGB image into YCrCb representation

in order to achieve a better quality color image estimate. We then hand tuned the Total

Variation regularization operating parameters in order to achieve the best visual quality

estimate of the luminance channel (Y). These same parameters were then used on the

chrominance channels (Cr and Cb). These parameters, the number of iterations, and the

estimates are shown in Figure (6.13).

Figure 6.4: The grainy ‘ JFK’ image

We cannot compute the MSE in this case because we do not have access to the true

image x. However, we note that we have produced estimates of a high visual quality for this
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color image with film grain noise. This attests to the ability of the iterative regularization

framework to work on various types of noise. The residual of the estimate produced by

method 2 appears to be the most ‘ noise-like,’ indicating that this estimate is the best

representation of the true signal, x, among the four iterative regularization methods that

we show.

6.4 Experiment 4: Deblurring

All of the experiments so far have focused on denoising. However, recall that we

have more general formulations of all the iterative regularization methods in our framework

as well. These formulations are as follows:

1) x̂k+1 = B

(
y +

k∑
i=1

AT (y − Ax̂i)

)
,

2) x̂k+1 = x̂1 + AB

(
y − x̂1 +

k∑
i=2

AT (y − x̂i)

)
,

3) x̂k+1 = x̂1 +
k∑

i=1

ATAB (y − x̂i)

= x̂k + ATAB (y − x̂k) , and

4) x̂k+1 = x̂1 +
k∑

i=1

(
AT x̂1 − ATAB(x̂k)

)
= x̂k + AT x̂1 − AT AB (x̂k) .

where A is a matrix blur operator and

x̂1 = arg min
x

{
1
2
‖y − Ax‖2 + J(x)

}
. (6.8)

The image that we are trying to deblur is shown in Figure (6.5 b). This image was generated

by convolving the image in Figure (6.5 a) with a 3 × 3 averaging kernel and then adding
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white Gaussian noise of variance σ2 = 28.46. We use the generalized version of our iterative

regularization framework with the Bilateral Filter to find the best MSE estimates. The

operating parameters were tuned by hand and are shown, along with the number of iterations

and the estimates themselves in Figure (6.14). For comparison we also show the estimate

obtained from the standard least-squares estimator (x̂ = (ATA)−1AT y) in Figure (6.15).

The least squares estimator was implemented using steepest descent; 400 iterations with a

step size of γ = .01 were used.

(a) (b)

Figure 6.5: (a) The original ‘ Peppers’ image (b) The noisy, blurred version of ‘ Peppers.’

We note that Method 1 and 4 appear to do the best job of deblurring the image,

though all four methods achieve a lower MSE than the least-squares estimate. In each case,

the MSE values are an average of 20 Monte-Carlo experiments.

We have now thoroughly illustrated the image restoration capabilities of our iter-

ative regularization framework and will move on to some conclusions about what we have

presented in this thesis and a short discussion of some areas where this work may be ex-

panded in the future.
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N σd σr iterations
Method 1 2 1.1 35 2
Method 2 2 1.1 31 3
Method 3 2 1.1 14 2
Method 4 2 1.1 23 2

Bilateral Filter parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=18.12 (f) Avg. MSE=17.84 (g) Avg. MSE=18.27 (h) Avg. MSE=17.48

Figure 6.6: Detail of the best MSE estimates of the image in Figure (6.1 b) using the
Bilateral Filter and iterating via: (a) Osher’s iterative regularization method, (b) SRR, (c)
ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The residual of (c)
(h) The residual of (d)
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λ γ i iterations
Method 1 .18 0.1 50 2
Method 2 .21 0.1 50 3
Method 3 .70 0.1 50 2
Method 4 .32 0.1 50 2

Total Variation Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=16.48 (f) Avg. MSE=15.99 (g) Avg. MSE=18.46 (h) Avg. MSE=17.08

Figure 6.7: Detail of the best MSE estimates of the image in Figure (6.1 b) using Total
Variation regularization and iterating via: (a) Osher’s iterative regularization method, (b)
SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The residual
of (c) (h) The residual of (d)
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N α λ γ i iterations
Method 1 2 0.008 788 0.01 50 2
Method 2 2 0.008 789 0.01 50 3
Method 3 2 0.008 207 0.01 50 2
Method 4 2 0.008 406 0.01 50 2

Bilateral Total Variation Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=19.42 (f) Avg. MSE=18.88 (g) Avg. MSE=19.37 (h) Avg. MSE=19.44

Figure 6.8: Detail of the best MSE estimates of the image in Figure (6.1 b) using Bilateral
Total Variation regularization and iterating via: (a) Osher’s iterative regularization method,
(b) SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The
residual of (c) (h) The residual of (d)
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λ γ i iterations
Method 1 2.34 0.1 60 4
Method 2 2.34 0.1 60 4
Method 3 2.34 0.1 60 4
Method 4 2.34 0.1 60 4

Tikhonov Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=26.09 (f) Avg. MSE=26.09 (g) Avg. MSE=26.09 (h) Avg. MSE=26.09

Figure 6.9: Detail of the best MSE estimates of the image in Figure (6.1 b) using Tikhonov
regularization and iterating via: (a) Osher’s iterative regularization method, (b) SRR, (c)
ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The residual of (c)
(h) The residual of (d)
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N h Q iterations
Method 1 7 0.84 2 5
Method 2 7 0.84 2 5
Method 3 7 0.84 2 5
Method 4 7 0.84 2 5

Classic kernel regression parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=23.57 (f) Avg. MSE=23.57 (g) Avg. MSE=23.57 (h) Avg. MSE=23.57

Figure 6.10: Detail of the best MSE estimates of the image in Figure (6.1 b) using classic
kernel regression and iterating via: (a) Osher’s iterative regularization method, (b) SRR,
(c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The residual of
(c) (h) The residual of (d)
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N α λ γ i iterations
Method 1 2 0.008 2903 0.01 50 2
Method 2 2 0.008 2790 0.01 50 3
Method 3 2 0.008 900 0.01 50 2
Method 4 2 0.008 1410 0.01 50 2

Bilateral Total Variation Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=123.83 (f) Avg. MSE=116.12 (g) Avg. MSE=111.04 (h) Avg. MSE=123.33

Figure 6.11: Detail of the best MSE estimates of the image in Figure (6.2 b) using Bilateral
Total Variation regularization and iterating via: (a) Osher’s iterative regularization method,
(b) SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The
residual of (c) (h) The residual of (d)
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N α λ γ i iterations
Method 1 2 0.008 2750 0.01 50 2
Method 2 2 0.008 4267 0.01 50 3
Method 3 2 0.008 1334 0.01 50 2
Method 4 2 0.008 2949 0.01 50 2

Bilateral Total Variation Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=41.67 (f) Avg. MSE=49.31 (g) Avg. MSE=39.16 (h) Avg. MSE=52.12

Figure 6.12: Detail of the best MSE estimates of the image in Figure (6.3 b) using Bilateral
Total Variation regularization and iterating via: (a) Osher’s iterative regularization method,
(b) SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The
residual of (c) (h) The residual of (d)
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λ γ i iterations
Method 1 .11 0.1 50 2
Method 2 .14 0.1 50 3
Method 3 .31 0.1 50 4
Method 4 .18 0.1 50 2

Total Variation Regularization parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) (f) (g) (h)

Figure 6.13: Detail of the best MSE estimates of the image in Figure (6.4) using Total
Variation regularization and iterating via: (a) Osher’s iterative regularization method, (b)
SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f) The residual of (b) (g) The residual
of (c) (h) The residual of (d)
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N σd σr iterations
Method 1 2 1.1 56 12
Method 2 2 1.1 23 10
Method 3 2 1.1 24 15
Method 4 2 1.1 23 8

Bilateral Filter parameters used to generate the estimates below

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(e) Avg. MSE=31.68 (f) Avg. MSE=59.59 (g) Avg. MSE=58.72 (h) Avg. MSE=41.70

Figure 6.14: Detail of the best MSE estimates of the image in Figure (6.5 b) using the
Bilateral Filter and iterating via the general (deblurring) formulations of: (a) Osher’s iter-
ative regularization method, (b) SRR, (c) ITR, and (d) IUR. (e) The residual of (a) (f)
The residual of (b) (g) The residual of (c) (h) The residual of (d)

(a) Least-squares (b) Avg. MSE=66.01

Figure 6.15: (a) Detail of the best MSE estimates of the image in Figure (6.5 b) using
the standard least-squares estimator (b) The residual of (a)
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Chapter 7

Conclusions and Future Work

Our iterative regularization framework presents a very general methodology for

image reconstruction. Under this framework we have related the independently derived

methods of Osher ([1]) and Tukey ([11]) and shown that infinitely many variants on these

methods are possible. We proposed two new major variants as methods in their own right;

making a total of four major iterative regularization methods which we studied in this thesis.

Each of these methods describes a technique for iteratively returning the lost detail to an

initially over-regularized estimate. The true generality of our framework lies in the fact that

any form of regularization may be used. One can think of any image restoration method as

simply a black box. Our framework presents several ways to feedback the estimate into this

black box and improve the overall reconstruction quality.

Essentially all image restoration methods require some control parameters to be

picked by the user. A typical technique to achieve a good quality estimate for these methods

is as follows: begin with a guess for the parameter values, compute the estimate, slightly

change one or more of the parameter values, compute the estimate again, and finally compare
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it to the last one. This process is continued until the best estimate is found. A more

analytical alternative is to use the cross-validation framework ([21], [22]). Either method

is usually quite tedious and time consuming. We have seen in our numerous experiments

that by alternatively using the iterative regularization framework, these control parameters

may be picked naively and the iterations will act as a controlled manner of correcting for

an initially bad guess.

We have also seen that all four major iterative regularization methods are useful;

there is not one method that is always more advantageous to use. From our experiments it

would appear that methods 2 and 4 are most useful for denoising images with a moderate to

high SNR; method 3 is most useful for denoising images with a low SNR, and methods 1 and

4 are most useful for deblurring images. Additionally, iterative Total Variation regularization

appears to yield the best denoising results among all the experiments shown. We note that

though one method may yield a slightly lower MSE estimate for a particular image, the

other three methods typically produce an estimate of similar quality. Also, in Chapter 5 we

saw that only method 4 can be used for inverse regularization, allowing it to be used for a

larger variety of applications such as compression and texture transfer.

In the future, the bias-variance tradeoff analysis of the estimates produced by our

framework could be studied further. We currently use experimental methods to compare

the bias and variance of the estimates from the different methods; we could further our

understanding of the tradeoff if we could do this analytically as well. Additionally, we

currently use only one application of the Bilateral Filter as a regularization method. We

know from ([7]) that multiple applications of the Bilateral Filter remove more noise but tend

to also increase the bias of the estimate. Another future direction of this research could be

to study what effect this has when used in an iterative regularization scheme.
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We have presented a generalized version of our iterative regularization framework

for deblurring when the blur function is known. A possible future direction for this work is

to investigate a blind deconvolution approach to iterative regularization.

Finally, we have seen that iterative regularization can improve an estimate when the

initial operating parameters were chosen naively. A further area to investigate in the future

is whether or not iterative regularization can produce better estimates than one iteration

of the normal regularization estimator (e.g. Bilateral Filter, Total Variation regularization,

etc.) with optimal operating parameters.
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Appendix A

The Generalized Bregman Distance

The details behind the subgradient and the generalized Bregman distance (both

used to prove the convergence properties of the iterative regularization methods) are given

herein.

A.1 The Subgradient

The gradient is a vector operator that computes the directional first derivatives of

a given function. When a function contains discontinuities or is otherwise non-differentiable,

the subgradient is defined. The vector p is defined as a subgradient of the convex functional

J(·) at x if it satisfies the inequality

J(q) ≥ J(x) + 〈p,q − x〉 (A.1)

for all q. The operator 〈·, ·〉 denotes the duality product which is related to the standard

vector inner product in the following manner: a ·b = 〈a∗,b〉 where a∗ is the dual of a. Note

that when J(·) is in fact differentiable, the only value of p that will satisfy this inequality is
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p = ∇J(x). Thus, the subgradient reduces to the regular gradient when the function that

it is applied to is differentiable.

We will now prove that the values used for pk in Equations (2.4, 2.12, 2.18, and

2.23) are in fact subgradients of the functional J(x) in their associated cost functions. This

is done by induction using H(x, ·) = 1
2‖(·) − x‖2 for illustrative purposes.

Recall that method 1 is formulated in terms of the generalized Bregman distance

as:

x̂k+1 = argmin
x

{Qk}

= argmin
x

{H(x,y) + J(x) − J(x̂k) − 〈pk,x− x̂k〉} (A.2)

where

pk+1 = pk +
(

∂H(x,y)
∂x

∣∣∣∣x = x̂k+1

)
(A.3)

with p0 = 0.

When k = 0 we have:

x̂1 = arg min
x

{Q0(x,y)} = arg min
x

{
1
2
‖y − x‖2 + J(x)

}
(A.4)

which is a well studied regularization problem known to have an optimal solution [27].

Because x̂1 minimizes Q0(·,y) and because J(x) is non-negative and therefore p0 = 0 is a

subgradient of J(x), we have:

∂Q0(x̂1,y)
∂x

= x̂1 − y +
∂J(x̂1)

∂x
− p0 = 0 (A.5)

hence

∂J(x̂1)
∂x

= p0 + (y − x̂1) = p1. (A.6)

When k=1:

x̂2 = arg min
x

{Q1(x,y)} = arg min
x

{
1
2
‖y − x‖2 + J(x) − 〈x,p1〉

}
(A.7)
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∂Q1(x̂2,y)
∂x

= x̂2 − y +
∂J(x̂2)

∂x
− p1 = 0 (A.8)

∂J(x̂2)
∂x

= p1 + (y − x̂2) = p2. (A.9)

etc.

This same process can be used to verify that pk is in fact a subgradient of J(x) in

the cost functions of the other three iterative regularization methods as well.

A.2 The Generalized Bregman Distance

The Bregman distance associated with functional J is defined as

DJ(u,q) ≡ J(u) − J(q) −
〈

∂J(u)
∂u

∣∣∣∣
u=q

,u − q

〉
(A.10)

When J is continuously differentiable, the Bregman distance is the difference at point u

between J(·) and the first-order Taylor series approximation to J(·) at q. It defines a notion

of distance between u and q in the sense that it satisfies the condition DJ(u,q) ≥ 0 for all

u,q and DJ(u,u) = 0. However, since it is not necessarily symmetric nor does it necessarily

satisfy the triangle inequality, it cannot be considered as a metric.

A graphical representation of Bregman distance as a measure of the convexity of

J is shown in Figure (A.1).

For the generalized Bregman distance introduced in [1], the gradient ∂J(u)
∂u is in-

stead replaced by p a subgradient of J . This extends the concept of the Bregman distance

to convex but non-continuously differentiable functionals.

The generalized Bregman distance is written as:

Dp
J(u,q) ≡ J(u) − J(q) − 〈p,u − q〉 . (A.11)
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q u

J(u) − J(q) − 〈 ∂J(u)
∂u

∣∣∣
u=q

,u − q〉

Figure A.1: The Bregman distance DJ(u,q)
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Appendix B

The Bilateral Filter

The Bilateral Filter (first proposed in [10]) is a simple one-pass, neighborhood filter

that is very effective at removing noise while preserving edges. This is because, unlike con-

ventional low-pass filters, the Bilateral Filter uses both the spatial distance and radiometric

(gray level) differences of pixels in a neighborhood to determine the weight that each pixel

will have in the weighted average that will replace the noisy pixel value at the center of the

neighborhood. Conventional low-pass filters use only spatial distances.

We can express the point-by-point application of the Bilateral Filter to the noisy

image y as:

x̂(i) =

∑N
n=−N W(i, n)y(i)∑N

n=−N W(i, n)
(B.1)

where x̂ is the Bilateral Filtered image, N defines the neighborhood size, and W(i, n) is the

weight matrix. This weight matrix is computed as the product of the spatial and radiometric

weights W(i, n) = Wr(i, n)Wd(i, n). While both the radiometric and spatial weights may

be any decaying function of the spatial and radiometric distance respectively, we use the
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original formulations laid out in [10]:

Wd(i, n) = exp
(
− n2

2σd

)
Wr(i, n) = exp

(
− [y(i) − y(i − n)]2

2σr

)
. (B.2)

The parameters σr and σd control the strength of the radiometric and spatial filtering

(respectively).

In [7], it was shown that the Bilateral Filter could equivalently be formulated as a

regularized cost function of the form:

x̂ = argmin
x

{
1
2
‖y − x‖2 +

λ

2

N∑
n=−N

[x − Snx]T Wy,n [x − Snx]

}
(B.3)

where Sn is a matrix shift operator, λ controls the amount of regularization, and Wy,n is a

(spatial and radiometric dependant) weight matrix. In Chapter 6, we don’t solve this cost

function minimization problem directly, but rather we simply apply the adaptive filtering

technique described in [10].
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Appendix C

Total Variation Regularization

Total Variation regularization is a regularization cost function for image denoising

developed by Rudin, Osher, and Fatemei [9]. The TV regularization functional forces the

estimate to be piecewise constant by requiring the L1-norm of the image gradient to be

minimized. This tends to preserve the edges and smooth out other areas in an image.

Total Variation Regularization ([9]) is formulated as:

x̂ = arg min
x

{
1
2
‖y − x‖2 + λ‖∇x‖1

}
(C.1)

where λ controls the amount of regularization. This can be solved in practice by using the

gradient descent technique, which can be written as:

x̂i+1 = x̂i − γ

[
∂

∂x̂i

(
1
2
‖y − x̂i‖2 + λ‖∇x̂i‖1

)]
≈ x̂i − γ

[
x̂i − y + λ

(
1∑

n=−1

[I− Sn] sign[x̂i − Snx̂i]

)]
(C.2)

where γ is the gradient descent step size, i is the iteration number, and

sign[z] =

⎧⎪⎪⎨⎪⎪⎩
−1 if z < 0

1 otherwise.
(C.3)
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We have approximated ∇x̂i ≈
∑1

n=−1[x̂i − Snx̂i], where Sn is a matrix shift operator.
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